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Abstract: There are currently no accurate biomarkers for optimal treatment selection in early-stage
non-small cell lung cancer (NSCLC). Novel therapeutic targets are needed to improve NSCLC sur-
vival outcomes. This study systematically evaluated the association between genome-scale regula-
tory network centralities and NSCLC tumorigenesis, proliferation, and survival in early-stage
NSCLC patients. Boolean implication networks were used to construct multimodal networks using
patient DNA copy number variation, mRNA, and protein expression profiles. T statistics of differ-
ential gene/protein expression in tumors versus non-cancerous adjacent tissues, dependency scores
inin vitro CRISPR-Cas9/RNA interference (RNAi) screening of human NSCLC cell lines, and hazard
ratios in univariate Cox modeling of the Cancer Genome Atlas (TCGA) NSCLC patients were cor-
related with graph theory centrality metrics. Hub genes in multi-omics networks involving
gene/protein expression were associated with oncogenic, proliferative potentials and poor patient
survival outcomes (p < 0.05, Pearson’s correlation). Inmunotherapy targets PD1, PDL1, CTLA4, and
CD27 were ranked as top hub genes within the 10th percentile in most constructed multi-omics
networks. BUB3, DNM1L, EIF251, KPNB1, NMT1, PGAM1, and STRAP were discovered as im-
portant hub genes in NSCLC proliferation with oncogenic potential. These results support the im-
portance of hub genes in NSCLC tumorigenesis, proliferation, and prognosis, with implications in
prioritizing therapeutic targets to improve patient survival outcomes.

Keywords: multi-omics networks; hub genes; CRISPR-Cas9; RNAi; proliferation; non-small cell
lung cancer; patient survival; biomarkers; therapeutic targets

1. Introduction

Non-small cell lung cancer (NSCLC) is the most common cause of cancer mortality
for both men and women [1]. It is challenging to manage NSCLC due to its complex so-
matic mutations and DNA copy number variations (CNV) during cancer genome evolu-
tion [2], extensive invasion, acquired therapeutic resistance, and tumor recurrence/metas-
tasis [3]. Recent immunotherapy of blockades of PD1, PDL1, and CTLA4 has improved
NSCLC treatment outcomes [4,5] in both neoadjuvant and adjuvant settings for NSCLC
of all stages [6-10]. PD1 inhibitor nivolumab [4] is NCCN-recommended for neoadjuvant
treatment in combination with chemotherapy for early-stage NSCLC [11]. PDL1 inhibitor
atezolizumab is NCCN-recommended for adjuvant immunotherapy following chemo-
therapy for stage 2/3A NSCLC in patients with PDL1 > 1% [9,10]. Nevertheless, the 5-year
survival rate for NSCLC remains a dismal 26% [1]. The molecular mechanisms underlying
NSCLC tumorigenesis, proliferation, and recurrence/metastasis are not well-understood.
To date, there are no accurate prognostic or predictive biomarkers for optimal treatment
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selection for individual NSCLC patients. More therapeutic targets are needed to improve
NSCLC survival outcomes.

Molecular network analysis is important to understand cancer mechanisms and ad-
vance precision oncology [12]. Recent advances in high-throughput technologies em-
power landscape analysis of molecular machinery at DNA, RNA, and protein levels in
tumor initiation, progression, and metastasis. Traditional statistical or machine learning
methods merely computing numerical gene associations with clinical outcomes cannot
effectively reveal essential molecular interaction networks at multiple regulatory levels.
Combined with patient clinical phenotypes, artificial intelligence (AI)-based multi-modal
network analysis is needed to embed biological relevance into discovery of biomarkers
and therapeutic targets for improved cancer outcomes.

In our previous studies, disease-specific gene co-expression networks were con-
structed for identification of gene signatures with concurrent crosstalk with major NSCLC
signaling hallmarks [13]. These gene signatures led to discovery of a seven-gene panel
that can provide patient stratification and prediction of clinical benefits of chemotherapy
in early-stage NSCLC patients, including clinical trials [14]. Within the seven-gene panel,
CD?27 is an emerging target for cancer immunotherapy [15-18] involved in PD1 and CD70
blockades [19-22], CD8+ T cell expansion [23], and anti-viral/anti-tumor T cell immunity
[24]. As a new generation of immune checkpoint inhibitors (ICIs) [25], CD27 agonist anti-
bodies are being tested as adjuvant therapy in phase I/II clinical trials, showing promising
results for multiple tumor types [17,26]. We discovered proliferative multi-omics net-
works containing CD27, PD1, and PDL1I as well as the seven-gene panel, respectively, im-
plicated in NSCLC prognosis, drug sensitivity, and therapeutics [27,28].

Recent studies showed that hub genes in multi-omics networks are promising cancer
biomarkers and therapeutic targets [29,30]. There are insufficient reports on multi-omics
network centralities quantified with graph theory metrics and their relevance in cancer
etiology and therapy. Genome-scale analysis is needed to evaluate the biological and clin-
ical relevance of network hub genes in NSCLC tumorigenesis, proliferation, and patient
survival. In this study, we utilized a computationally efficient Boolean implication algo-
rithm to construct genome-scale multi-omics networks using CNV (n =371), transcriptom-
ics (n = 200), and proteomics profiles (n = 103) of NSCLC patient bulk tumors. Network
centralities were evaluated using graph theory metrics and were correlated with differen-
tial gene/protein expression in tumors versus non-cancerous adjacent tissues (NATSs), in
vitro dependency scores in CRISPR-Cas9/RNAi screening data, and hazard ratios in the
Cancer Genome Atlas (TCGA) NSCLC patients (n = 1016). Furthermore, the distributions
of network centrality metrics of immunotherapy targets PD1, PDL1, CTLA4, and CD27
were evaluated in the constructed NSCLC multi-omics networks.

2. Materials and Methods
2.1. Boolean Implication Networks

In this study, multi-omics networks were generated with our previously published
Boolean Implication network algorithm [31,32]. The details of the application of this algo-
rithm were described in our previous study [28]. Boolean implication networks were used
to construct CNV-mediated transcriptional networks in NSCLC tumors as described pre-
viously [27,28]. In addition, mRNA co-expression, protein co-expression, and mRNA-me-
diated protein expression networks were also constructed using the Boolean Implication
networks. The implication rules in each network were selected based on the thresholds of
their precision and scope [28,31,32]. In this study, the thresholds of precision and scope
were calculated using the sample size of each dataset and a z value of 1.64 (one-tailed z
tests, p <0.05, 95% confidence interval).
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2.2. NSCLC Patient Cohorts
2.2.1. NSCLC Patient Cohort GSE31800

NSCLC patient cohort with the NCBI Gene Expression Omnibus (GEO) accession
number GSE31800 [33] contained 271 tumor samples (179 adenocarcinomas and 92 squa-
mous cell carcinomas). All the samples had DNA copy number profiles, among which 49
samples (29 adenocarcinomas, 20 squamous cell carcinomas) had matched microarray
gene expression measurements. Gene expression data were generated using the Custom
Rosetta-Affymetrix Human platform. Fresh-frozen lung tumors were obtained from Van-
couver General Hospital. Microdissection of tumor cells was performed, and total RNA
was isolated using RNeasy Mini Kits (Qiagen Inc., Duesseldorf, Germany). Samples were
labeled and hybridized to a custom Affymetrix microarray, containing 43,737 probes map-
ping to approximately 23,000 unique genes, according to the manufacturer’s protocols
(Affymetrix Inc., Santa Clara, CA, USA) All data were normalized using the Robust Mul-
tichip Average algorithm in R. Of the lung tumor cohort, only samples with sufficient
material for RNA isolation were selected for expression analysis.

The genome reference version was converted to hg38. The genome annotation was
obtained from the UCSC genome browser with the Python package cruzdb on 28 January
2020. Copy number variation (CNV) data were processed with Bioconductor R package
“CGHbase” (v1.46.0) [34] and “CGHcall” (v2.48.0)[35]. CNV data were categorized as
“1—amplification”, “0—normal”, and “-~1—deletion” for constructing CNV co-occur-
rence (CNV-CNV) networks. The gene expression data were categorized into three cate-
gories: “1—up-regulated”, “0—normal”, and “~1—down-regulated” with the method us-
ing 27 housekeeping genes described in our previous study [28]. CNV-mediated gene ex-
pression networks were built with patients’ gene expression data and their matched CNV
profiles. Gene co-expression networks were constructed with the categorized gene expres-
sion data.

2.2.2. NSCLC Patient Cohort GSE28582

NSCLC patient cohort with NCBI GEO accession number GSE28582 [36,37] con-
tained 100 tumor samples (50 adenocarcinomas, 22 large cell carcinomas, and 28 squa-
mous cell carcinomas). All samples had SNP array DNA copy number profiles and micro-
array gene expression data.

A total of 2 ug RNA (RIN value >7.0) from each tissue specimen was used for analysis
on Affymetrix Human Genome U133 Plus 2 arrays (Affymetrix Inc.). Sample preparation,
processing, and hybridization were performed according to the GeneChip Expression
Analysis Technical Manual (Affymetrix Inc., Rev. 5). Subsequent analyses of the gene ex-
pression data were carried out in the freely available statistical computing language R
using packages available from the Bioconductor project. The raw data were normalized
using the robust multiarray average method and were available in GEO with the accession
number GSE28582. Only transcripts with average signal intensities above 5 were used for
further analysis. For the comparison of gene expression levels between different patient
groups, a two-sided Student’s ¢ test was used.

The genome annotation version was converted to hg38. SNP array CNV data were
processed with the PennCNV package [38] and were then categorized as “1—amplifica-
tion”, “0—normal”, and “~1—deletion”. The gene expression data were processed in the
same way as described above. CNV-CNYV networks, CNV-mediated gene expression net-
works, and gene co-expression networks were also generated for this patient cohort.

2.2.3. Xu’'s Lung Adenocarcinoma (LUAD) Patient Cohort

Xu’s LUAD patient cohort [39] contained paired tumors and non-cancerous adjacent
tissues (NATs) samples from 103 Chinese LUAD patients. All samples had protein expres-
sion profiles of matched tumors and NATs, among which 51 samples had RNA
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sequencing gene expression profiles in tumors and 49 matched RNA sequencing gene ex-
pression profiles in NATs.

The genome annotation version in Xu’s cohort was hg38 and thus did not require
additional conversion. Gene expression and logi transformed protein expression data
were categorized into three categories: “1 —up-regulated”, “0—normal”, and “~1—down-
regulated”. The categorization was based on the distribution of the selected housekeeping
genes (B2M, ESD, FLOT2, GAPDH, GRB2, HPRT1, HSP90AB1, LDHA, NONO, POLR2A,
PPP1CA, RHOA, SDCBP, and TFRC) [14,40-42]. Gene co-expression networks, mRNA-
mediated protein expression networks, and protein co-expression networks of LUAD tu-
mors and NATs were generated for this patient cohort.

2.24. TCGA

LinkedOmics (http://www .linkedomics.org/, accessed on 28 April 2021) [43] was uti-
lized to obtain RNA sequencing data of TCGA-LUAD (n = 515) and TCGA-LUSC (n =
501) patient cohorts. Clinical annotation including survival information was used to cal-
culate the hazard ratios of each gene with a univariate Cox model.

2.3. Graph Theory Centrality Metrics

Centrality metrics were used in the network analysis to identify critical nodes. The
centrality calculation methods can be divided into two main categories: local and global
methods. Local methods detect the influence of nodes based on local information (nodes
and their neighbors). These methods require simple information and low computational
complexity and are suitable for large and complex networks. Global methods require trav-
ersing the global knowledge of the whole network to calculate the impact of nodes. Alt-
hough the computational complexity is higher, it will obtain some compensation in accu-
racy and can obtain a more accurate node importance ranking. If the nodes and connected
edges in the network change over time, it will be challenging to obtain the global proper-
ties. Therefore, global methods are often limited in dynamic situations.

In each of the networks used to calculate the centralities, all implication rule types
were merged; i.e., if gene A and gene B have an association with each other in a CNV-
CNV network, the amplification of gene A implies the amplification of gene B, and the
deletion of gene A can also imply the deletion of gene B. In this study, we only count the
two rules as one association for “A implies B”. All the centralities were calculated with
the Python package NetworkX [44].

2.3.1. Degree Centrality

Degree centrality is a local method that was first proposed for ranking the importance
of nodes. Degree centrality is the simplest and most intuitive measure of the importance
of a node. In a directed network, degree centrality can be further divided into in-degree
centrality and out-degree centrality. In this study, the in- and out-degree centralities for
the same-level gene association networks (i.e., CNV-CNV, mRNA co-expression, or pro-
tein co-expression) are the same due to the symmetric characteristics. In- and out-degree
centralities are summed to degree centrality.

Degree centrality represents the total number of neighbors (the number of edges con-
nected to other nodes) of a node. The more neighbors the more important the node is [45].
A network G(N, E) with N nodes and E edges has an adjacency matrix of A. The degree
centrality of node i in G(N, E) can be expressed as:

YAy
N-1

j (j # i) denotes all other nodes in the network, and Aj is the value in adjacency matrix

A.If there is a connection between node 7 and node j, then Aij=1; otherwise, Aij=0. Z?Ll Ajj

1)

Cp (l) =
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represents the total number of neighbors (connections) of node i. N-1 is the maximum
number of possible connections of a single node in the network.

2.3.2. Eigenvector Centrality

Eigenvector centrality takes into account not only the number of neighbors of a node
but also the importance of its neighbors in the network [46]. The main idea of eigenvector
centrality is that each node in the network is assigned a centrality, and the centrality of
each node is the sum of the centrality of its neighbors to which it is connected. A node will
have its centrality boosted by connecting to high-centrality nodes [47]. Nodes with higher
centrality can be connected to a large number of general nodes or a small number of other
nodes with high centrality.

A network G(N, E) with N nodes and E edges has adjacency matrix A. Similar to
degree centrality, Aj is the value in adjacency matrix A. If there is a connection between
node i and node j, then Aj =1, and vice versa Aj = 0. Eigenvector centrality of node i is
expressed as [48]:

1
JjeM()
where A is a constant representing the maximum value of the eigenvalues of the adjacency
matrix A. M(i) is the set of neighboring nodes of node i. xi is the score of the importance of
node i, x = [x1, x2, x3, ..., Xa]”, then Equation (2) can be written as the eigenvector equation
Ax=Ax.

The basic way to calculate the vector x is to give an initial x(0) value, usually, 1, mul-
tiply the vector x cyclically with A, and update x with the following Equation (3) until x
stabilizes and does not change, then the final value of x is obtained. If x is divided by the
principal eigenvalue A of adjacency matrix A during each iteration, the equation yields a
convergent non-zero solution, i.e., x =A"1Ax

x(t)=A—-DAx(t—-1),t=1,2,3, ... ©)

2.3.3. Betweenness Centrality

Betweenness centrality considers that the more times a node is present in the shortest
path between any two non-adjacent nodes, the node is routable and more important in
the network. Betweenness centrality is a global method of computing centrality, which
requires first getting all the shortest paths in the network. If a node appears on the shortest
path of all node pairs in the network more often, then that node is more important. The
network G(N, E) with N nodes and E edges, and the set V denotes the set of all nodes in
the network. The betweenness centrality of node i in G(N, E) can be expressed as [49]:

N 2 Pst (1)
GO =TDAND L, @

S#i#teV

s and t are any two nodes in the network, the two nodes cannot be the same or node
i. pse denotes the number of shortest paths between node s and node ¢ in the network,
and ps (i) denotes the number of entries in the shortest path between node s and node ¢
that passed through node i. The term (N—l)ZT—Z) is used for normalization.

2.3.4. Closeness Centrality

Closeness centrality is also a global method based on the shortest path between
nodes. It ranks nodes based on the average distance between the target node and other
nodes in the network. The smaller the average distance between a node and other nodes,
the greater the closeness centrality of that node, i.e., the more critical that node is. di de-
notes the length of the shortest path between any two nodes in the network, then d; =
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ﬁz j=i dij is the average shortest path length from node i to other nodes in the network.
The closeness centrality of node i is expressed as follows:

Ll N-1
‘O T ad; ®)

This formula is only applicable to the case of a connected network (i.e., there exists a
path from every node to every other node in the network).

2.3.5. VoteRank Centrality

VoteRank centrality is an algorithm proposed by Zhang et al. [50] to identify im-
portant nodes based on the phenomenon of voting in reality. The VoteRank algorithm
simulates the voting process by considering that each node has two attributes: voting
score (VS) and voting ability (VA). The sum of VAs of all neighbors of node i is the VS of
node i. That is, in a network G(N, E) with N nodes and E edges, the VoteRank centrality
of node i is:

C, () = Z v, ©)
JeM(D)

M(i) is the set of neighboring nodes of node i. The VoteRank algorithm selects one
node that gets the highest voting score in each round. If the first ¥ nodes need to be se-
lected,  rounds of operation need to be performed, and the order of the nodes in the result
set S is their VoteRank centrality.

2.4. CRISPR-Cas9 Knockout Assays

In the Cancer Cell Line Encyclopedia (CCLE) panel, the dependency scores of whole-
genome CRISPR-Cas9 knockout screening data of 94 human NSCLC cell lines were ob-
tained from the DepMap portal (https://depmap.org/portal/download/all/, accessed on 12
September 2022; release 21Q4) [51,52]. The dependency score threshold used for deter-
mining a significant effect on a cell line was —0.5 in this study [27,53]. A gene with a de-
pendency score lower than —0.5 was considered as having a significant effect of CRISPR-
Cas9 knockout on the corresponding cell line.

2.5. RNAi Knockdown Assays

The dependency scores of whole-genome RNA interference (RNAi) knockdown
screening data of 92 human NSCLC cell lines in CCLE were also obtained from the Dep-
Map portal (https://depmap.org/portal/download/all/, accessed on 12 September 2022; re-
lease 21Q4) [51,52]. The dependency score threshold used for determining a significant
effect on the cell line was also —0.5 [27,53]. A dependency score smaller than -0.5 indicated
the gene has a significant RNAi knockdown effect on the corresponding cell line.

2.6. Statistical Methods

Statistical analysis was performed in R software (version 4.1.3) with RStudio (version
2022.07.2 Build 576). The comparisons of two groups, such as differential expression anal-
ysis, were performed with two sample ¢ tests. Univariate Cox proportional hazards re-
gression was performed to obtain hazard ratios using the R package “survival”. To test if
a constructed Boolean implication network had higher average centrality values com-
pared with random networks, the averaged centrality metrics (except VoteRank central-
ity) of the constructed network were compared with those of 1000 randomly selected net-
works with the same number of genes. The random networks contained the same number
of genes randomly selected from the whole genome excluding our identified network
genes. The p values were determined as the percentage of the constructed network that
did not have a higher average centrality value than a random network. Comparison of
VoteRank centrality was performed with one-tailed two-sample Wilcoxon tests. A total of
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1000 Wilcoxon tests were applied in the random tests, and the p values showed a percent-
age of non-significant results. The correlation between centrality metrics and tumorigen-
esis, proliferation, and cancer patient survival outcomes was measured with Pearson’s
correlation coefficients in the genome-scale. T statistics of two-tailed two-sample ¢ tests
(unpaired) in differential expression between tumor versus NATs were used for tumor-
igenesis assessment. Positive ¢ statistics indicated higher expression in tumors than in
NATSs and vice versa. Gene dependency scores of human NSCLC cell lines from CRISPR-
Cas9/RNAi data were used in proliferation analysis. Negative dependency scores indi-
cated the cancer cell line growth was highly dependent on the gene; positive dependency
scores indicated the cell line grew faster after the gene was knocked out/knocked down.
Univariate hazard ratios were used in the association assessment with patient survival
outcomes. Hazard ratios higher than 1 indicate increased risks from tumor recurrence,
metastasis, or death from disease. Since the VoteRank centrality indicated a higher rank
with a smaller number, which was the reverse of the other centrality metrics, a positive
correlation with VoteRank was equivalent to a negative correlation with other centrality
metrics. Any statistical results with a p value < 0.05 were considered significant.
ToppFun, an online tool from ToppGene Suite [54], was used to perform the func-
tional enrichment analysis. The ToppFun tool can be accessed at
https://toppgene.cchmc.org/enrichment.jsp (accessed on 25 November 2022).

3. Results
3.1. Multi-Omics Networks of NSCLC Patient Cohorts

Using the Boolean Implication network algorithm, 12 multi-omics networks were
constructed, including CNV-CNV networks, CNV-mediated gene expression (GE) net-
works, and mRNA co-expression networks for patient cohorts GSE28582 (1 = 100) [36,37]
and GSE31800 (n = 271) [33], respectively; mRNA co-expression networks, mRNA-medi-
ated protein expression networks, and protein co-expression networks in tumors and
NATSs samples, respectively, in Xu’s LUAD patient cohort [39]. Detailed network infor-
mation was provided in Table 1.

Table 1. Information of multi-omics networks in tumor samples from non-small cell lung cancer
patients. The network nodes are genes and network edges are computed gene associations (one-
tailed z tests, p <0.05, 95% confidence interval).

Patient Cohort Network (Number of Patient Samples) Nelj:gielilzges Ng;ﬁze;;);es

CNV-CNV (n =100) 11,533 3,228,054
GSE28582 [37,38] CNV-mediated GE (n = 100) 20,836 3,102,789
mRNA co-expression (1 = 100) 15,297 48,373,448
CNV-CNV (n=271) 19,344 20,950,447
GSE31800 [34] CNV-mediated GE (n = 49) 17,442 2,421,110
mRNA co-expression (1 =49) 15,180 4,541,858
NATSs: mRNA co-expression (1 = 49) 12,408 20,419,308

NATs: mRNA-mediated protein expression (1 = 49) 13,254 436,488

, NATS: Protein co-expression (1 =103) 2206 785,204
Xu’s LUAD [40] Tumors: mRNA co-expression (11 = 51) 11,938 16,101,406
Tumors: mRNA-mediated protein expression (1 = 51) 13,047 1,501,406
Tumors: Protein co-expression (1 = 103) 3072 2,273,792

3.2. Association of Centrality Metrics with Tumorigenesis, Proliferation, and Patient Survival

The centrality metrics in this study were generated based on the 12 multi-omics net-
works shown in Table 1. Degree centrality, in-degree centrality, out-degree centrality, ei-
genvector centrality, betweenness centrality, closeness centrality, and VoteRank centrality
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were calculated for each network. To assess the association between multi-omics network
centrality and NSCLC tumorigenesis, proliferation, and patient survival in the genome
scale, correlation coefficients between the seven centrality metrics and ¢ statistics of differ-
ential gene/protein expression in tumors versus NATs, dependency scores in CRISPR-
Cas9/RNAI, and hazard ratios in univariate Cox model of survival analysis were com-
puted for each of the 12 multi-omics networks. Figure 1 showed the number of concordant
significant correlations with seven centrality metrics between each pair of networks. Se-
lected hub genes were provided in Supplementary File S1. Measurements used to assess
tumorigenesis, proliferation, and patient survival were provided in Supplementary File
52. Categorized data as input to generate multi-omics networks were provided in Supple-
mentary File S3.

1 1nm v v v
Tumorigenesis - LUAD mRNA
Tumorigenesis - LUAD protein
Proliferation - CRISPR-Cas9
Proliferation - RNAI
Survival - TCGA mRNA

Number of concordant metrics:‘:D:l:_

01 2 3 4 5 6 7

Figure 1. Concordance of correlation coefficients between seven centrality metrics of the selected
networks with NSCLC tumorigenesis, proliferation, and patient survival. Tumorigenesis was de-
scribed with the f statistics (two-sample ¢ tests) of tumor vs. NAT differential expression in mRNA
(ntumor = 51, nnat = 49) and protein (1wmor = nnat = 103) datasets in Xu’s LUAD patients [39]. Prolifer-
ation was assessed in human NSCLC cell lines with dependency scores in in vitro CRISPR-Cas9 (n
=94) and RNAI (n = 92) genome-wide screening. Patient survival was represented by hazard ratios
in univariate Cox modeling of TCGA RNA sequencing data of NSCLC patient tumors (1 = 1016).
Each cell in the figure showed the number of metrics with concordant significant Pearson’s correla-
tion coefficients in a pair of compared networks: I. CNV-CNV networks (GSE28582 and GSE31800);
II. CNV-mediated GE networks (GSE28582 and GSE31800); IIl. gene co-expression networks
(GSE28582 and GSE31800); IV. gene co-expression networks (Xu’s LUAD tumors and NATs [39]);
V. mRNA-mediated protein expression networks (Xu’s LUAD tumors and NATs [39]); VI. protein
co-expression networks (Xu’s LUAD tumors and NATs [39]).

Differential mRNA expression in tumors versus NATs in Xu’s LUAD patients [39]
had a concordant significant correlation with network centrality metrics across independ-
ent patient cohorts except for CNV-CNV networks (Table 2). In CNV-mediated GE net-
works and mRNA co-expression networks constructed in GSE28582 and GSE31800 patient
cohorts, genes with higher network centrality, quantified with multiple metrics, corre-
lated with higher mRNA expression in tumors. For mRNA co-expression networks,
mRNA-mediated protein expression networks, and protein co-expression networks con-
structed in both tumors and NATs, higher network centrality metrics correlated with
higher mRNA expression in tumors. These results indicate that hub genes in multi-omics
networks in tumors and NATSs appear to be oncogenic.
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Table 2. Correlations between seven centralities of the selected networks and f statistics of differen-
tial mRNA expression in tumors vs. NATs in Xu's LUAD cohort [39]. pos: Pearson’s correlation
coefficient r > 0 and p < 0.05; neg: ¥ < 0 and p < 0.05. The blue color indicates concordant positive
correlations.

oy
%wbﬁgxsb%bm%xb
Tumorigenesis — Differential mRNA Expression in Tumors vs. T 2 BE TE E§2 3= § =
¢ P& 9 28 5§ £ & ¢
NATs O REAQE BE $E 2E RE
(n=51) s 2525 3% 55 8% 2%
ED =0 80U 50 2 O VU » 0
]
CNV-CNV network (GSE28582, n = 100) neg neg neg - neg - pos
NV-CNV network
¢ NEWOTSS T OCNV-CNV network (GSE31800, n =271) - - - - - -
CNV-mediated GE network (GSE28582, n = . os os os
CNV-mediated GE 100) P & P pos P
networks CNV-mediated GE network (GSE31800, n =
pos pos | pos  pos - neg

19) pos

mRNA co-expression

mRNA co-expression network (GSE28582, n =

100) pos pos pos = pos pos | Ppos -

networks mRNA co-expression network (GSE31800, n =
19) - - - pos - pos -
mRNA co-expression ~mRNA co-expression network in LUAD
pos pos pos  pos - pos -

networks in Xu’s
LUAD tumors and
NATs

tumors (n=51)

mRNA co-expression network in LUAD

NATs (1=49) pos pos pos pos pos  pos neg

mRNA-mediated mRNA-mediated protein expression network

protein expression in LUAD tumors (n=51) pos- pos i pos pos pOS - pos
tworks in Xu’
Lrllj Avg):uzgrs Zns q mRNA-mediated protein expression network o [ .
NATSs in LUAD NATSs (n =49)
Protein co-expression network in LUAD
Protein co-expression tumors pos pos pos pos Ppos  pos -
networks in Xu’s (n=103)
LUAD tumors and Protein co-expression network in LUAD
NATs NATs pos pos pos  pos - pos -

(n=103)

Differential protein expression in tumors versus NATs in Xu’s LUAD patients [39]
had a concordant significant correlation with centrality metrics in protein co-expression
networks in both tumors and NATs, respectively (Table 3), consistent with elevated
mRNA expression of hub genes in tumors in the above multi-omics networks (Table 2).
These results suggest that hub genes in protein co-expression networks in both tumors
and NATs have higher oncogenic potential. Interestingly, in CNV-CNV networks con-
structed in both GSE28582 and GSE31800, hub genes with more co-occurrence of CNV in
NSCLC tumors were associated with lower protein expression in tumors, suggesting tu-
mor-suppressive potential (Table 3).
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Table 3. Correlations between seven centralities of the selected networks and ¢ statistics of differen-
tial protein expression in tumors vs. NATs in Xu’s LUAD cohort (n = 103) [39]. pos: Pearson’s cor-
relation coefficient r > 0 and p < 0.05; neg: r < 0 and p < 0.05. The blue color indicates concordant
positive correlations. The orange color indicates concordant negative correlations.

oz £ £ £ B
= % £ E £ % %
" X k= = s B B
Tumorigenesis—Differential Protein Expression in Tumors vs. = g 3 3 o g g
NAT s O Y Y 2 O v
° S 8 g £ g g £
(n=103) & ® ®» T £ ¥ g
1Y) ) = > % %} &
g ) 0 s g 2 2
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CNV-CNV networks CNV-CNV network (GSE28582, n = 100) neg neg neg neg neg  pos
CNV-CNV network (GSE31800, n = 271) neg neg neg neg neg - -
CNV-mediated GE network (GSE28582, n = os  ne os os os
CNV-mediated GE 100) p & P pos—p
networks CNV-mediated GE network (GSE31800, n =
49)
mRNA co-expression network (GSE28582, n = os os o5 os os
mRNA co-expression 100) P P P P p
networks mRNA co-expression network (GSE31800, n =
19) neg neg neg neg neg - pos
mRNA co-expression ~ mRNA co-expression network in LUAD
- - - - neg - pos

networks in Xu's
LUAD tumors and
NATSs

tumors (n =51)

mRNA co-expression network in LUAD

NATs (n =49) pos  pos pos pos pos pos neg

mRNA-mediated mRNA-mediated protein expression network

protein expression
networks in Xu’s
LUAD tumors and
NATs

in LUAD tumors (1 = 51) pos pos neg pos pos  pos  pos

mRNA-mediated protein expression network

in LUAD NATSs (1 = 49)

Protein co-expression

networks in Xu’s
LUAD tumors and
NATSs

Protein co-expression network in LUAD

tumors (n = 103) pos  pos  pos  pos - pos -

Protein co-expression network in LUAD

NATSs (n=103) pos pos pos  pos - pos _

Next, we assessed the association between multi-omics network centrality and
NSCLC proliferation. In genome-scale CRISPR-Cas9/RNAi screening, hub genes in CNV-
CNYV networks were associated with higher dependency scores, i.e., anti-proliferative po-
tential (Tables 4 and 5), consistent with a lower protein expression in tumors and putative
tumor-suppressive potential (Table 3). In contrast, hub genes in CNV-mediated GE net-
works, mRNA co-expression networks, and mRNA-mediated protein expression net-
works in both tumors and NATs correlated with lower dependency scores, i.e., prolifera-
tion, across different NSCLC patient cohorts in CRISPR-Cas9/RNAi screening (Tables 4
and 5). It is noteworthy that regulated genes represented with higher in-degree centrality
were associated with proliferative potential, whereas regulatory genes represented with
higher out-degree centrality were associated with anti-proliferative potential in CNV-me-
diated GE networks and mRNA-mediated protein expression networks. Hub genes in
protein co-expression networks in NATs, measured with multiple metrics, appeared to be
more proliferative in human NSCLC cell lines (Tables 4 and 5), consistent with their pu-
tative oncogenic potential observed in Tables 2 and 3.
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Table 4. Correlations of seven centrality metrics of selected networks with CRISPR-Cas9 depend-
ency scores. pos: Pearson’s correlation coefficient » > 0 and p < 0.05; neg: r < 0 and p < 0.05; -: not
significant. The numbers in parentheses showed the number of NSCLC cell lines with a significant
correlation coefficient. The blue color indicates concordant positive correlations. The orange color
indicates concordant negative correlations.

£ £ 3 3 S g g
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CNV-CNV network pos pos pos pos (9/94) pos pos neg
CNV-CNV networks (GSE28582, nn =100) (61/94)  (61/94)  (61/94) (94/94)  (39/94)  (93/94)
CNV-CNV network pos pos pos pos pos pos neg
(GSE31800, n =271) (94/94)  (94/94)  (94/94)  (94/94)  (94/94)  (94/94)  (94/94)
CNV-mediated GE network neg neg pos neg neg neg
CNV-mediated GE (GSE28582, n =100) (40/94)  (94/94)  (72/94)  (94/94) i (91/94)  (43/94)
networks CNV-mediated GE network pos neg pos neg pos neg neg
(GSE31800, nn =49) (90/94)  (72/94)  (94/94)  (76/94)  (15/94)  (92/94)  (21/94)
mRNA co-expression network  neg neg neg neg neg neg pos
mRNA co-expression (GSE28582, n =100) (94/94)  (94/94)  (94/94)  (94/94)  (12/94)  (94/94)  (94/94)
networks mRNA co-expression network neg pos neg
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mRNA co-expression mRNA co-expression network  neg neg neg neg neg
networks in Xu’s in LUAD tumors (1 = 51) (64/94)  (64/94)  (64/94)  (91/94) pos (6/94) (76/94) i
LUAD tumors and mRNA co-expression network  neg neg neg neg neg neg pos
NATs in LUAD NATs (n =49) (94/94)  (94/94)  (94/94)  (94/94)  (38/94) = (94/94)  (92/94)

mRNA-mediated
protein expression
networks in Xu's
LUAD tumors and
NATs

mRNA-mediated protein
expression network in LUAD
tumors (1 = 51)

neg neg pos neg neg neg neg
(94/94)  (94/94)  (94/94)  (94/94)  (94/94)  (94/94)  (94/94)

mRNA-mediated protein

expression network in LUAD neg neg pos neg neg neg neg

(94/94)  (94/94)  (94/94)  (94/94)  (94/94)  (94/94)  (30/94)

NATSs (n=49)
Protein co-expression Protein co-expression network neg
networks in Xu’s in LUAD tumors (1 = 103) i ) ) ) ) i (21/94)
LUAD tumors and  Protein co-expression network  neg neg neg neg neg
NATs in LUAD NATs (n =103) (93/94)  (93/94)  (93/94)  (94/94) i (75/94) i
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Table 5. Correlations of seven centrality metrics of selected networks with RNAi dependency
scores. pos: Pearson’s correlation coefficient » > 0 and p < 0.05; neg: r < 0 and p < 0.05. The numbers
in parentheses showed the number of significant NSCLC cell lines.
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CNV-CNV networks (GSE28582, n =100) (17/92)  (17/92)  (17/92) (88/92) P (91/92)
CNV-CNV network pos pos pos pos pos pos (5/92)
(GSE31800, n =271) (66/92)  (66/92)  (66/92)  (70/92)  (82/92)  (67/92) 8
CNV-mediated GE network neg neg pos neg ) neg
CNV-mediated GE (GSE28582, n =100) (27/92)  (92/92)  (11/92)  (92/92) (91/92)
networks CNV-mediated GE network neg neg
1/92 1/92 1/92
(GSE31800, 7 = 49) pos (1/92) (12/92) pos (9/92) neg (9/92) pos (1/92) (65/92) pos (1/92)
mRNA co-expression network  neg neg neg neg neg neg pos
mRNA co-expression (GSE28582, n =100) (92/92)  (92/92)  (92/92)  (92/92)  (80/92)  (92/92)  (92/92)
networks mRNA co-expression network ~ neg neg neg neg neg
(GSE31800, 1 = 49) Qa/92)  (4/92) (4/92) (74/92) POV gy on) POS(6192)
mRNA co-expression mRNA co-expression network ) . ) neg (1/92) pos i neg
networks in Xu’s in LUAD tumors (n =51) & (33/92) (27/92)
LUAD tumors and mRNA co-expression network  neg neg neg neg neg neg pos
NATs in LUAD NATSs (n =49) (92/92)  (92/92)  (92/92)  (92/92) @ (82/92)  (92/92)  (78/92)
RNA-mediated protei
mRNA-mediated o fmeciated protein neg neg pos neg neg neg neg

expression network in LUAD
tumors (n = 51)
mRNA-mediated protein

(92/92)  (92/92)  (92/92)  (92/92)  (92/92)  (92/92)  (89/92)

protein expression
networks in Xu’s

LUAD tumors and . . neg neg pos neg neg neg
expression network in LUAD neg (1/92)
NATs NATSs (1 = 49) (92/92)  (92/92)  (92/92)  (92/92)  (88/92)  (92/92)
Protein co-expression Protein co-expression network ) ) ) neg (1/92) ) neg
networks in Xu’s in LUAD tumors (n =103) (10/92)
LUAD tumors and  Protein co-expression network  neg neg neg neg neg (1/92) neg
NATs in LUAD NATs (n =103) (32/92)  (32/92)  (32/92)  (65/92) (14/92)

The association between network centralities and NSCLC patient survival was also
examined. Hazard ratios in univariate Cox modeling of combined TCGA-LUAD (1 =515)
and TCGA-LUSC (n = 501) were used in the genome-wide evaluation. Hub genes in
mRNA co-expression networks, mRNA-mediated protein expression, and protein co-ex-
pression networks were associated with higher hazard ratios in multiple patient cohorts,
suggesting they are survival hazard genes (Table 6). These results are consistent with the
oncogenic and proliferative potential of hub genes described above. Regulatory genes
with higher out-degree centralities in mRNA-mediated protein expression networks in
tumors and NATSs in Xu’s LUAD cohort [39] were associated with lower hazard ratios in
TCGA patients. These results are consistent with the anti-proliferative potential of regu-
latory genes (Tables 4 and 5). The association of VoteRank in mRNA co-expression net-
works tumors and NATs in Xu’s Chinese patient cohort was inconsistent with those of
other centrality metrics in GSE31800 and GSE28582. Overall, hub genes in multi-omics
networks tend to be associated with increased survival hazards, i.e., poor prognosis, in
NSCLC patients (Table 6).
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Table 6. Correlations of seven centrality metrics of selected networks with hazard ratios in univari-
ate Cox modeling of combined TCGA-LUAD (n = 515) and TCGA-LUSC (n = 501). pos: Pearson’s
correlation coefficient r > 0 and p < 0.05; neg: r <0 and p < 0.05. The blue color indicates concordant
positive correlations. The orange color indicates concordant negative correlations.

Patient Survival —Hazard Ratio in Combined TCGA-LUAD (n =
515) and TCGA-LUSC (n =501)

Degree Centrality
In-degree Centrality
Out-Degree Centrality
Eigenvector Centrality
Betweenness Centrality
Closeness Centrality
VoteRank Centrality

CNV-CNYV networks

CNV-CNV network (GSE28582, n = 100) - - - - - - -

CNV-CNV network (GSE31800, n = 271) neg neg neg neg neg neg  pos

CNV-mediated GE network (GSE28582, n =

CNV-mediated GE - pos - pos - - -
networks 100)
w
CNV-mediated GE network (GSE31800, n =49) neg - neg - - - -
mRNA co-expression network (GSE28582, n = os os o8 o8 i .
mRNA co-expression 100) P p p p P &
networks mRNA co-expression network (GSE31800, n =
pos pos Ppos  Ppos - pos -

49)

mRNA co-expression

networks in Xu’s

mRNA co-expression network in LUAD

tumors (1 = 51) neg neg neg neg neg neg pos

LUAD tumors and mRNA co-expression network in LUAD NATs

NATs

(n = 49) ] ] ] ] ] T Pos

mRNA-mediated mRNA-mediated protein expression network

protein expression
networks in Xu's

in LUAD tumors (1 = 51) pos pos— neg  pos  pos  pos -

mRNA-mediated protein expression network

LUAD t d -
umors an in LUAD NATSs (1 = 49) pos pos neg pos pos  pos
NATs
Protein co- Protein co-expression network in LUAD

expression networks
in Xu’s LUAD
tumors and NATSs

tumors (n =103) ) ) ) pos ) i )

Protein co-expression network in LUAD NATSs

(n=103) pos pos pos  pos pos Ppos neg

3.3. Distributions of Multi-Omics Network Centrality Metrics of Therapeutic Targets

Having substantiated the association between multi-omics network centralities and
NSCLC tumorigenesis, proliferation, and patient survival, we sought to investigate the
potential of hub genes as therapeutic targets. Here, we examined four established immune
checkpoint inhibitors (ICIs) for NSCLC immunotherapy, including PD1, PDL1, CD27, and
CTLA4. The percentile of these ICIs was determined for the seven centrality metrics of
twelve constructed multi-omics networks. Figure 2 showed the rank of centrality metrics
of CD27, CTLA4, PD1, and PDL1 that were within the top 10th percentile in our con-
structed multi-omics networks. These ICIs were top hub genes in CNV-mediated gene
expression networks in GSE28582 and GSE31800, mRNA co-expression networks in tu-
mors from GSE28582, GSE31800, and Xu’s LUAD patient cohort [39], and mRNA-medi-
ated protein expression network of tumors in Xu’s LUAD patient cohort [39]. These ICls
were not ranked within the top 10th percentile of the examined centrality metrics in CNV—
CNV networks or protein co-expression networks constructed in this study. These results
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imply that established therapeutic targets in immunotherapy are often top-ranked hub
genes in multi-omics networks in tumors across NSCLC patient cohorts.
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Figure 2. Distributions of centrality metrics in multi-omics networks with CD27, CTLA4, PD1, or
PDL1 ranked within the top 10th percentile. Each subplot represented a centrality metric. (A) Degree
centrality. (B) In-degree centrality. (C) Out-degree centrality. (D) Eigenvector centrality. (E) Be-
tweenness centrality. (F) Closeness centrality. (G) VoteRank centrality. Each violin plot showed the
distribution of the centrality metric in one specific network: I. CNV-mediated gene expression net-
work in GSE28582; II. mRNA co-expression network in GSE28582; III. CNV-mediated gene expres-
sion network in GSE31800; IV. mRNA co-expression network in GSE31800; V. mRNA-mediated
protein expression network in tumors of Xu’s LUAD patient cohort [39]; VI. mRNA co-expression
network in tumors of Xu’s LUAD patient cohort [39].

3.4. Clinical Relevance of Multi-Omics Network Centrality

We utilized Boolean implication networks and identified two multi-omics networks
implicated in NSCLC proliferation, prognosis, and drug sensitivity in our previous stud-
ies [27,28]. Both multi-omics networks led to discovery of novel therapeutic targets for
treating NSCLC [27,28]. Here, we examined if these two clinically relevant multi-omics
networks had higher network centralities in the genome-scale compared with 1000
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random networks with the same number of genes. Both networks utilized CNV and GE pro-
files. The genes included in these two networks were provided in Supplementary File S4.

The results showed that, in genome-scale CNV-CNV networks in GSE28582 and
GSE31800, the genes from network A and network B did not have significantly higher
average centrality measurements than randomly selected gene sets. In CNV-mediated GE
networks in GSE28582 and GSE31800, the genes from network A and network B both had
significantly (p < 0.05) higher average in-degree centrality, closeness centrality, and be-
tweenness centrality values than randomly selected sets of genes. In gene co-expression
networks in GSE28582 and GSE31800, the genes from network A and network B had sig-
nificantly (p < 0.05) higher averaged centralities than randomly selected sets of genes in
almost all the evaluated metrics (Figure 3). These results show that multi-omics networks
with clinical relevance tend to contain more hub genes than randomly selected gene sets
from genome-scale CNV-mediated GE networks and gene co-expression networks.
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Figure 3. The comparison of centrality metrics of two published multi-omics networks vs. randomly
selected networks with the same number of genes. Network A contains 30 genes in the CD27, PD1,
and PDLI multi-omics network in NSCLC tumors [28]. Network B contains 66 genes in the multi-
omics network of the 7-gene prognostic signature in NSCLC tumors [27]. The p values showed the
percentage of randomly selected genes having a larger averaged centrality (except VoteRank) than
networks A and B. The p value of VoteRank centrality showed the percentage of randomly selected
genes having a lower averaged rank (one-tailed Wilcoxon rank sum test, p < 0.05) than networks A
and B. Each column showed a centrality metric: I. degree centrality; II. in-degree centrality; III. out-
degree centrality; IV. eigenvector centrality; V. closeness centrality; VI. betweenness centrality; VII.
VoteRank centrality.

3.5. Important Hub Genes in NSCLC

To select hub genes important in NSCLC, we first extracted the genes that ranked
within the top 10th percentile for all seven evaluated centrality metrics in at least one of
the 12 multi-omics networks. Then, the measurements of tumorigenesis (f statistics of
mRNA and protein differential expression in tumors vs. NATs in Xu’s LUAD cohort [39])
and patient survival (hazard ratios in univariate modeling of mRNA expression in TCGA
NSCLC patients) were extracted for each gene. The genes that were significant (p < 0.05)
in at least one measurement were shown in Supplementary File S1.

Table 7 showed the hub genes that were significant and concordant in all measure-
ments of tumorigenesis and patient survival. These genes had significantly higher mRNA
and protein expression in tumors compared with NATs and had an increased hazard ratio
(>1) in patient survival. These genes are potential oncogenes in NSCLC. Among these
genes, BUB3, DNMI1L, EIF251, KPNB1, NMT1, PGAM1, and STRAP had a significant
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dependent score in at least 41 human NSCLC cell lines tested in CRISPR-Cas9 or RNAi
screening, indicating they are also proliferation genes. Venn diagrams of gene associations
involving these seven genes in NSCLC regulatory networks were provided in Supple-
mentary File S5. Among these NSCLC regulatory networks, CDC6 and DIAPH3 had sig-
nificant mRNA co-expression (p < 0.05, z tests) with all seven genes in both GSE28582
[36,37] and Xu’s LUAD tumors [39] (Figure 4). Twenty proteins had significant co-expres-
sion (p <0.05, z tests) with the protein expression of all seven genes (Figure 4). Significantly
enriched cytobands and gene families of this network were obtained with ToppFun and
were listed in Supplementary File S6.

Table 7. Selected hub genes that were significant in all measurements of tumorigenesis and patient
survival. LUAD: Xu’s LUAD cohort [39]. DE: differential expression. Fold change: tumor/NATs. The
percentage in proliferation results represented the number of cell lines with a dependency score <
-0.5 divided by the total number of tested human NSCLC cell lines in CRISPR-Cas9/RNAi screen-
ing. CI: confidence interval.
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BUB3 10.45 1.78 12.50 1.05 94/94 2/92 1.26 [1.02,1.55]
DNMIL 3.10 1.29 14.21 1.08 50/94 41/92 1.17  [1.01, 1.37]

EIF2S1 5.84 1.60 15.79 1.04 94/94 70/92 124  [1.03, 1.5]
GALNT2 6.50 1.92 15.87 1.10 0/94 0/92 1.28 [1.12,1.47]
KPNB1 9.56 1.80 14.58 1.04 94/94 73/92 1.24 [1.01,1.52]
NMT1 8.36 1.46 17.63 1.10 62/94 0/92 1.31 [1,1.71]

PFKP 6.09 251 16.59 1.10 1/94 0/92 1.21 [1.09, 1.34]
PGAM1 3.81 1.48 20.62 1.09 94/94 1/92 117 [1.01, 1.35]
PTGES3 5.79 1.49 17.46 1.10 3/94 0/92 1.24 [1.03,1.49]
STRAP 5.61 1.66 18.41 1.09 84/94 8/92 1.17  [1.02,1.35]
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Figure 4. Gene and protein co-expression network of selected seven genes (BUB3, DNM1L, EIF2S1,
KPNB1, NMT1, PGAM1, and STRAP) in NSCLC tumors.

4. Discussion

NSCLC is the leading cause of cancer-related deaths due to its complex etiology. Use
of small-molecule tyrosine kinase inhibitors (TKIs) and immunotherapy has clinically
benefited selected NSCLC patients [55]. Nevertheless, the overall cure and survival rates
of NSCLC remain low. Novel biomarkers and drug targets are needed to improve patient
care outcomes. The availability of multimodal data offers emerging opportunities for the
discovery of biomarkers and therapeutic targets for better cancer outcomes in broader
patient populations.

The molecular machinery in a tumor and its microenvironment involves complicated
interactions among genes and proteins functioning in epithelial, immune, and stromal
cells as well as other systemic host factors [56]. Given this intricacy, multi-omics networks
that integrate these elements should be elucidated to better understand tumor biology and
molecular mechanisms for development of novel therapeutic strategies. Recent multi-om-
ics studies identified several hub genes as cancer biomarkers and drug targets, including
NSCLC [29,30]. Nevertheless, it is not unknown if molecular network centralities are as-
sociated with tumorigenesis, proliferation, and patient survival in NSCLC in an unbiased,
systematic evaluation.

A barrier to evaluating genome-scale network centralities lies in that current compu-
tational methods have certain limitations in modeling multi-omics networks. Correlation
networks (relevance networks) [57] cannot integrate continuous expression variables with
discrete data, such as CNV. Bayesian networks are topologically acyclic and cannot model
cyclic molecular interactions [58]. More importantly, probabilistic graphical models, in-
cluding Bayesian networks and Markov networks [59], describe joint probability distribu-
tion and have exponential complexity [60], making it impossible to model genome-scale
networks. Other Boolean networks [61] use Fisher’s exact tests or y2-square tests to ana-
lyze binary variables in quadrants that do not present multivariate biological states.

This study utilized our developed Boolean implication networks to construct ge-
nome-scale multi-omics networks. Our Boolean implication network algorithm is based
on prediction logic and overcomes the theoretical limitations of these models, with its ca-
pability to efficiently analyze multivariate biological data, cyclic molecular interactions,
and discrete and continuous multi-omics data in seamless integration [27,28]. Our Boolean
implication networks revealed more biologically relevant molecular interactions in
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NSCLC tumors than other Boolean networks, Bayesian networks, and correlation net-
works in comprehensive evaluation using MSigDB [32]. Using our Boolean implication
networks, novel gene signatures co-expressed with major NSCLC signaling hallmarks
were identified as prognostic of NSCLC survival outcomes, which outperformed the ex-
isting gene signatures in the same patient data [13]. Furthermore, a prognostic and pre-
dictive seven-gene panel was discovered from these identified candidate genes and was
confirmed in qRT-PCR [14], RNA-sequencing data of TCGA [27], and proteomic profiles
in more than 1600 NSCLC patients, including a clinical trial JBR.10.

This study conducted a landscape evaluation of the biological and clinical relevance
of multi-omics Boolean implication network centralities rigorously quantified with graph
theory metrics in NSCLC tumors. Our results across multiple patient cohorts showed that
hub genes in CNV-mediated GE networks, mRNA co-expression networks, mRNA-me-
diated protein expression networks, and protein co-expression networks in NSCLC tu-
mors had oncogenic and proliferative potential and were associated with poor patient
prognosis. Hub genes in protein co-expression networks in NATSs also seemed to be more
proliferative and oncogenic in NSCLC. Regulated genes represented with higher in-de-
gree centrality in multi-omics networks were associated with proliferative potential and
worse patient survival, whereas regulatory genes represented with higher out-degree cen-
trality were associated with anti-proliferative potential and better patient survival. The
results on CNV co-occurrence networks were different from those on multi-omics net-
works involving gene/protein expression; hub genes with more co-occurrences of CNV in
NSCLC tumors appeared to have tumor-suppressive and anti-proliferative potential.

Our previous studies identified two CNV-mediated GE networks containing prolif-
erative and prognostic gene signatures, capable of providing accurate patient stratifica-
tion in more than 1000 NSCLC patients [27,28]. One multi-omics network contains 66
genes, including the prognostic and predictive seven-gene panel [27], and the other one
with 30 genes involves PD1, PDL1, and CD27 [28]. In the TCGA consortium, the seven
marker genes and major ICIs have more CNV aberrations than mutations in NSCLC tu-
mors. In addition to their prognostic capacity, these two multi-omics networks can deter-
mine drug sensitivity to 10 therapeutic regimens in 135 human NSCLC cell lines [27,28].
Further analysis of these two multi-omics networks led to the discovery of novel targeted
therapies as new or repositioning drugs for treating NSCLC [27,28]. Both networks had
significantly higher average centrality than random networks selected in genome-wide
CNV-mediated GE networks and gene co-expression works. These results substantiate
that clinically relevant multi-omics networks have more hub genes than random net-
works. In addition, NSCLC immunotherapy targets, including PD1, PDL1, CTLA4, and
CD27, also ranked as top hub genes in most multi-omics networks constructed in this
study. To show the relevance of network centrality and therapeutic targets, Figure 2 in-
cluded immunotherapy targets that are either used for treating NSCLC patients (includ-
ing PD1, PDL1, and CTLA4) or showed promising results in phase I/II clinical trials
(CD27). Many NSCLC biomarkers, including CD151, that have not been substantiated in
clinical trials were not included in Figure 2. CD151, a cancer driver and tumor metastasis
promoter [62-66], was ranked as a top hub gene within the 10th percentile of degree cen-
trality in the CNV-mediated gene expression network in GSE28582 [36,37] and mRNA-
mediated protein expression network in Xu’s LUAD NATs [39]. These results further sup-
port the importance of hub genes in NSCLC therapeutics.

This study also identified important hub genes in NSCLC tumor cell proliferation
and oncogenic processes. BUB3 is within the spindle assembly checkpoint (SAC) complex.
The BUB3 protein is essential in activation of the SAC complex, which, in turn, regulates
meiosis and causes mitotic arrest [67]. BUB3 up-regulation was found in multiple human
cancers, including NSCLC, and was linked to poor prognoses [67]. The DNM1L gene en-
codes dynamin-related protein 1 (DRP1), which regulates mitochondria fission [68].
DRP1, highly expressed in Kras-mutant NSCLC, is critical in tumor cell proliferation
through utilization of lactate in the metabolic reprogramming of NSCLC [69]. Inhibition
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of DRP1 and NRF?2 restored cisplatin sensitivity and stopped the spread of cancer cells in
a mouse model of metastatic breast cancer cells latent in the lung soft tissue [70]. Stabili-
zation of oncoprotein EIF2S1 diminished the efficacy of EGFR TKIs in NSCLC treatment
through binding of IncRNA LCETRL4 [71]. KPNB1 promoted NSCLC proliferation by me-
diating nuclear translocation of PDL1 via the Gas6/MerTK signaling pathway [72]. Down-
regulation of KPNBI induced by PLK1 inhibition caused apoptosis in lung adenocarci-
noma [73]. NMT1 was overexpressed in spheroid cells, NSCLC tumors, and patients with
poor survival outcomes [74]. NMT1 promoted stemness in NSCLC via activating the
PI3K/AKT pathway. NMT1 also accelerated NSCLC tumor metastasis and resistance to
cisplatin [74]. Oncogenic STRAP [75] inhibits E-cadherin and P21(CIP1) through modula-
tion of transcription factor SP1, contributing to tumor progression [76]. GALNT?2 functions
as an oncogenic driver in NSCLC proliferation, migration, and invasion in vitro, and its
knockdown restrained tumor formation in vivo [77]. PFKP, involved in metabolism, is a
suggested oncogene in lung cancer [78]. PTGES3 correlates with poor patient prognosis
and immune infiltrates in lung adenocarcinoma [79] and is an oncogenic driver within a
10-gene metabolic panel in NSCLC [80]. Overall, the literature supports that the 10 hub
genes (Table 7) identified in this study are potential oncogenes in NSCLC. This study
shows that multi-omics network centrality can be used as a prioritization method in se-
lection of biomarkers and therapeutic targets. Hub genes can be candidate genes for de-
velopment of clinical diagnostic tests. The final determination of inclusion of the candi-
date genes in clinical tests will be made based on the assay optimization and validation
results in multiple patient cohorts according to REMARK guidelines [81,82].

5. Conclusions

To the best of our knowledge, this study is the first systematic revelation of the asso-
ciation between multi-omics network centralities and NSCLC tumorigenesis, prolifera-
tion, and patient survival. Hub genes in multimodal networks involving gene/protein ex-
pression tended to be more oncogenic, proliferative, and hazardous for patient survival.
Hub genes with more co-occurrences of CNV aberrations appeared to be tumor-suppres-
sive and anti-proliferative. Regulated genes in hubs were associated with proliferative
potential and worse patient survival, whereas regulatory genes in hubs were associated
with anti-proliferative potential and better patient survival. Immunotherapy targets, in-
cluding PD1, PDL1, CTLA4, and CD27, were top hub genes in the majority of the con-
structed multi-omics networks in NSCLC tumors. BUB3, DNM1L, EIF2S1, KPNB1, NMT1,
PGAM1, and STRAP were discovered as important hub genes in NSCLC proliferation
with oncogenic potential. These results contributed to a better understanding of NSCLC
tumor biology and underlying mechanisms. This study showed that gene centrality met-
rics in multi-omics networks can be used in prioritization of candidates for biomarkers
and drug targets. The Al/big data technology presented in this study can be applied to
many other human cancers.

6. Patents

Our Al technology using Boolean implication networks for discovery of biomarkers
and therapeutic targets is included in patent PCT/US22/75136.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biom12121782/s1, Supplementary Files S1 to S4. Supplemen-
tary File S1: Hub genes of 12 multi-omics networks; Supplementary File S2: Measurements used for
tumorigenesis, proliferation, and survival; Supplementary File S3: Categorized data as input to gen-
erate multi-omics networks; Supplementary File S4: Two multi-omics networks from our previously
published papers. Supplementary File S5: The following Venn diagrams showed the relationships
among the seven genes in each network. Supplementary File S6: ToppFun enrichment analysis re-
sults of the gene and protein co-expression network of selected seven gene in Figure 4.
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