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Abstract

Phylogenies provide direct accounts of the evolutionary trajectories
behind evolved artifacts in genetic algorithm and artificial life
systems. Phylogenetic analyses can also enable insight into
evolutionary and ecological dynamics such as selection pressure
and frequency-dependent selection. Traditionally, digital evolution
systems have recorded data for phylogenetic analyses through
perfect tracking where each birth event is recorded in a centralized
data structure. This approach, however, does not easily scale
to distributed computing environments where evolutionary
individuals may migrate between a large number of disjoint
processing elements. To provide for phylogenetic analyses in these
environments, we propose an approach to enable phylogenies to be
inferred via heritable genetic annotations rather than directly tracked.
We introduce a “hereditary stratigraphy” algorithm that enables
efficient, accurate phylogenetic reconstruction with tunable, explicit
trade-offs between annotation memory footprint and reconstruction
accuracy. In particular, we demonstrate an approach that enables
estimation of the most recent common ancestor (MRCA) between
two individuals with fixed relative accuracy irrespective of lineage
depth while only requiring logarithmic annotation space complexity
with respect to lineage depth. This approach can estimate, for
example, MRCA generation of two genomes within 10% relative
error with 95% confidence up to a depth of a trillion generations
with genome annotations smaller than a kilobyte. We also simulate
inference over known lineages, recovering up to 85.70% of the
information contained in the original tree using 64-bit annotations.

Introduction

In traditional serially-processed digital evolution experiments,
phylogenetic trees can be tracked perfectly as they progress
(Bohm et al., 2017; Wang et al., 2018; Lalejini et al., 2019) rather
than reconstructed afterward, as must be done in most biological
studies of evolution. Such direct phylogenetic tracking enables
experimental possibilities unique to digital evolution, such as
perfect reconstruction of the sequence of phylogenetic states
that led to a particular evolutionary outcome (Lenski et al., 2003;
Dolson et al., 2020). In a shared-memory context, it is not difficult
to maintain a complete phylogeny by ensuring that offspring
retain a permanent reference to their parent (or vice versa). As
simulations progress, however, memory usage would balloon
if all simulated organisms were stored permanently. Garbage
collecting extinct lineages and saving older history to disk greatly
ameliorates this issue (Bohm et al., 2017; Dolson et al., 2019).
If sufficient memory or disk space can be afforded to log all
reproduction events, recording a perfect phylogeny in a distributed

context is also not especially difficult. Processes could maintain
records of each reproduction event, storing the parent organism
(and its associated process) with all generated offspring (and their
destination processes). As long organisms are uniquely identified
globally, these “dangling ends” could be joined in postprocessing
to weave a continuous global phylogeny. Of course, for the huge
population sizes made possible by distributed systems, such stitch-
ing may become a demanding task in and of itself. Additionally,
even small amounts of lost or corrupted data could fundamentaly
degrade tracking by disjoining large tree subsections.

However, if memory and disk space are limited, distributed
phylogeny tracking becomes a more burdonsome challenge. A
naive approach might employ a server model to maintain a central
store of phylogenetic data. Processes would dispatch notifications
of birth and death events to the server, which would curate (and
gabage collect) phylogenetic history much the same as current
serial phylogenetic tracking implementations. Unfortunately,
this server model approach would present scalability challenges:
burden on the server process would worsen in direct proportion
to processor count. This approach would also be similarly brittle
to any lost or corrupted data.

A more scalable approach might record birth and death events
only on the process(es) where they unfold. However, lineages that
went extinct locally could not be safely garbage collected until the
extinction of their offspring’s lineages on other processors could
be confirmed. Garbage collection would thus require extinction
notifications to wind back across processes each lineage had
traversed. Again, this approach would also be brittle to loss or
corruption of data.

In a distributed context — especially, a distributed, best-effort
context — phylogenetic reconstruction (as opposed to tracking)
could prove simpler to implement, more efficient at runtime, and
more robust to data loss while providing sufficient information to
address experimental questions of interest. However, phylogenetic
reconstruction from genomes with a traditional model of
divergence under grandual accumulation of random mutations
poses its own difficulties, including

e accounting for heterogeneity in evolutionary rates (i.e., the
rate at which mutations accumulate due to divergent mutation
rates or selection pressures) between lineages (Lack and Van
Den Bussche, 2010),

* performing sequence alignment (Casci, 2008),
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* mutational saturation (Hagstrom et al., 2004),

* appropriately selecting and applying complex reconstruction
algorithms (Kapli et al., 2020), and

 computational intensity (Sarkar et al., 2010).

The computational flexibility of digital artificial life experi-
ments provides a unique opportunity to ovecome these challenges:
designing heritable genome annotations specifically to ensure
simple, efficient, and effective phylogenetic reconstruction. For
maximum applicability of such a solution, these annotations
should be phenotypically neutral heritable instrumentation (Stanley
and Miikkulainen, 2002) that can be applied to any digital genome.

In this paper, we present “hereditary stratigraphy,” a novel
heritable genome annotation system to facilitate post-hoc
phylogenetic inference on asexual populations. This system allows
explicit control over trade-offs between space complexity and
accuracy of phylogenetic inference. Instead of modeling genome
components diverging through a neutral mutational process, we
keep a record of historical checkpoints that allow comparison of
two lineages to identify the range of time in which they diverged.
Careful management of these checkpoints allows for a variety
of trade-off options, including:

* linear space complexity and fixed-magnitude inference error,

* constant space complexity and inference error linearly
proportional to phylogenetic depth, and

* logarithmic space complexity and inference error linearly
proportional to time elapsed since MRCA (which we suspect
will be the most broadly useful trade-off).

In Methods we motivate and explain the hereditary stratigraphy
approach. Then, in Results and Discussion we simulate post-hoc in-
ference on known phylogenies to assess the quality of phylogenetic
reconstruction enabled by the hereditary stratigraphy method.

Methods

This section will introduce intuition for the strategy of our
hereditary stratigraph approach, define the vocabulary we
developed to describe aspects of this approach, overview
configurable aspects of the approach, present mathematical
exposition of the properties of space complexity and inference
quality under particular configurations, and then recap digital
experiments that demonstrate this approach in an applied setting.

Hereditary
Strata and the Hereditary Stratigraphic Column

Our algorithm, particularly the vocabulary we developed to
describe it, draws loose inspiration from the concept of geological
stratigraphy, inference of natural history through analysis of succes-
sive layers of geological material (Steno, 1916). As an introductory
intuition, suppose a body of rock being built up through regular,
discrete events depositing of geological material. Note that in such
a scenario we could easily infer the age of the body of rock by
counting up the number of layers present. Next, imagine making a
copy of the rock body in its partially-formed state and then moving
it far away. As time runs forward on these two rock bodies,
independent layering processes will cause consistent disparity in
the layers forming on each forwards from their point of separation.

To deduce the historical relationship of these rock bodies, we
could simply align and compare their layers. Layers from their
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Figure 1: Inferring the generation of the most-recent common
ancestor (MRCA) of two hereditary stratigraphic columns “A”
and “B”. Columns are aligned at corresponding generations. Then
the first generation with disparate “fingerprints” is determined.
This provides a hard upper bound on the generation of the MRCA:
these strata must have been deposited along separate lines of
descent. Searching backward for the first commonality preceding
that disparity provides a soft lower bound on the generation of the
MRCA: these strata evidence common ancestry but might collide
by chance. Some strata mmay have been eliminated from the
columns, as shown, in order to save space at the cost of increasing
uncertainty of MRCA generation estimates.
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base up through the first disparity would correspond to shared
ancestry; further disparate layers would correspond to diverged
ancestry. Figure 1 depicts the process of comparing columns for
phylogenetic inference.

Shifting now from intuition to implementation, a fixed-length
randomly-generated binary tag provides a suitable “fingerprint”
mechanism mirroring our metaphorical “rock layers.” We call this
“fingerprint” tag a differentia. The width of this tag controls the
probability of spurious collisions between independently generated
instances. At 64 bits wide the tag effectively functions as a UID:
collisions between randomly generated tags are so unlikely (p <
5.42 x 10~29) they can essentially be ignored. At the other end
of the spectrum, collision probability would be 1/256 for a single
byte and 1/2 for a single bit. In the case of narrow differentia, in or-
der to set a lower bound for the MRCA generation, you would have
to backtrack common strata from the last commonality until the
probability of that many successive spurious collisions was enough
to satisfy your desired confidence level (e.g., 95% confidence).
Even then, there would be a possibility of the the true MRCA
falling before the estimated lower bound. Note, however, that no
matter the width of the differentia the generation of the first discrep-
ancy provides a hard upper bound on the generation of the MRCA.

In accordance with our geological analogy, we refer to the
packet of data accumulated each generation as a stratum. This
packet contains the differentia and, although not employed in this
work, could hold other arbitrary user-defined data (i.e., simulation
timestamp, phenotype characteristics, etc.). Again in accordance
with the geological analogy, we refer to the chronological stack of
strata that accumulate over successive generations as a hereditary
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stratigraphic column.

Stratum Retention Policy

As currently stated, strata in each column will accumulate
proportionally to the length of evolutionary history simulated. In
an evolutionary run with thousands or millions of generations,
this approach would soon become intractable — particularly
when columns are serialized and transmitted between distributed
computing elements. To solve this problem, we can trade
off precision for compactness by strategically deleting strata
from columns as time progresses. Figure 2 overviews how
stratum deposit and stratum elimination might progress over two
generations under the hereditary stratigraphic column scheme.

Different patterns of deletion will lead to different trade-offs,
both in terms of the scaling relationship of column size to
generations elapsed and in terms of the arrangement of inference
precision over evolutionary history (i.e., focusing precision on
more recent evolutionary history versus spreading it evenly over
the entire history).

We refer to the rule set used to selectively eliminate strata over
time as the “‘stratum retention policy.” We explore several different
retention policy designs here, and implement our software to
allows for free, modular interchange of retention policies.

Our software allows specification of a policy as either a “pred-
icate” or a “generator.” The predicate method requires a function
that takes the generation of a stratum and the current number of
strata deposited and returns whether that stratum should be retained
at that point in time. The generator method requires a function that
takes the current number of strata deposited and yields the set of
generations that should be deleted at that point in time. Although
the predicate form of a policy is useful for analyzing and proving
properties of policies, the generator form is generally more effi-
cient in practice. We provide equivalent predicate and generator
implementations for each stratum retention policy discussed here.

Strata elimination causes a stratum’s position within the
column data structure to no longer correspond to the generation
it was deposited. Therefore, it may seem necessary to store the
generation of deposit within the stratum data structure. However,
for all deterministic retention policies a perfect mapping exists
backwards from column index to recover generation deposited
without storing it. We provide this formula for each stratum
retention policy surveyed here. Finally, for each policy we provide
a formula to calculate the exact number of strata retained under
any parameterization after n generations.

The next subsections introduce several stratum retention
policies, explain the intuition behind their implementation, and
elaborate their space complexity and resolution properties. For
each policy, patterns of stratum retention are illustrated in Figure
3. The formulas for number of strata retained after n generations,
the formulas to calculate stratum deposit generation from column
index, and the retention predicate specifications of each policy are
available in Supplementary Listing 5 (Moreno et al., 2022). The
generator specification of each policy is available in Supplementary
Listing 1 (Moreno et al., 2022). For tapered depth-proportional
resolution and recency-proportional resolution, the accuracy
of MRCA estimation can also be explored via an interactive
in-browser web applet at ht tps://hopth.ru/bi.

Fixed Resolution Stratum Retention Policy

The fixed resolution retention policy imposes a fixed absolute
upper bound  on the spacing between retained strata. The strategy
is simple: permanently retain a stratum every 7th generation. (For
arbitrary reasons of implementation convenience, we also require
each stratum to be retained during at least the generation it is
deposited). See top panel of Figure 3.

This retention policy suffers from linear growth in a column’s
memory footprint with respect to number of generations elapsed:
every rth generation generation a new stratum is permanently
retained. For this reason, it is likely not useful in practice except
potentially in scenarios where the number of generations is small
and fixed in advance. We include it here largely for illustrative
purposes as a gentle introduction to retention policies.

Depth-Proportional
Resolution Stratum Retention Policy

The depth-proportional resolution policy ensures spacing between
retained strata will be less than or equal to a proportion 1/r
of total number of strata deposited n. Achieving this limit on
uncertainty requires retaining sufficient strata so that no more
than n/r generations elapsed between any two strata. This policy
accumulates retained strata at a fixed interval until twice as many
as r are at hand. Then, every other retained stratum is purged
and the cycle repeats with a new twice-as-wide interval between
retained strata. See second from top panel of Figure 3.

When comparing stratigraphic columns from different
generations, the resolution guarantee holds in terms of the number
of generations experienced by the older of the two columns.
Because this retention policy is deterministic, for two columns
with the same policy, every stratum that is held by the older
column is also guaranteed to be present in the younger column
(unless it hasn’t yet been deposited on the younger column).
Therefore, the strata that would enable the desired resolution when
comparing two columns of the same age are guaranteed to be
available, even when one colummn has elapsed more generations.

Because the number of strata retained under this policy is
bounded as 2r+1, space complexity scales as O(1) with respect
to the number of strata deposited. It follows that the MRCA
generation estimate uncertainty scales as O(n) with respect to
the number of strata deposited.

Tapered Depth-Proportional
Resolution Stratum Retention Policy

This policy refines the depth-proportional resolution policy to
provide a more stable column memory footprint over time. The
naive depth-proportional resolution policy builds up strata until
twice as many are present as needed then purges half of them
all at once. The tapered depth-proportional resolution policy
functions identically to the depth-proportional policy except that
it removes unnecessary strata gradually from back to front as new
strata are deposited, instead of eliminating them simultaneously.
See third from top panel of Figure 3.

The column footprint stability of this variation makes it easier to
parameterize our experiments to ensure comparable end-state col-
umn footprints for fair comparison between retention policies, in
addition to making this policy likely better suited to most use cases.
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when a hereditary stratigraphic column is inherited
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4 45 | G “fingerprint.” This “fingerprint” distinguishes strata that
e 0 i i were generated along disparate lines of descent (e.g.,
iz eliminate 8 3 0xdOla for 3rd Generation A and Oxe74a for3rd
“z‘ generation B). Then, the column’s configured stratum
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1.0x10%2 | 64 102 177 396 stratum will have been preserved across all previous timepoints.
Why does this work? Consider a sequence where all elements

are spaced out by strictly nonincreasing powers of 2. Consider

Table 1: Number strata retained after one thousand, one the first element of the list. All multiples this first element will be

million, one billion, and one trillion generations under the
recency-proportional resolution stratum retention policy. Four
different policy parameterizations are shown, the first where
MRCA generation can be determined between two extant columns
with a guaranteed relative error of 100%, the second 25%, the
third 10%, and the fourth 1%. A column’s memory footprint
will be a constant factor of these retained counts based on the
fingerprint differentia width chosen. For example, if single byte
differentia were used, the column’s memory footprint in bits
would be 8x the number of strata retained.

By design, this policy has the same space complexity and MRCA
estimation uncertainty scaling relationships with number gener-
ations elapsed as the naive depth-proporitonal resolution policy.

MRCA-Recency-Proportional
Resolution Stratum Retention Policy

The MRCA-recency-proportional resolution policy ensures
distance between the retained strata surrounding any generation
point will be less than or equal to a user-specified proportion 1/r
of the number of generations elapsed since that generation.

This policy can be constructed recursively. So, to begin, let’s
consider setting up just the first generation g of the stratum after the
root ancestor we will retain when 7 generations have elapsed. A
simple geometric analysis reveals that providing the guaranteed res-
olution for the worst-case generation within the window between
generation 0 and generation g (i.e., generation g— 1) requires

g< |n/(r+1)).

We now have an upper bound for the generation of the first

stratum generation we must retain. However, we must guarantee

included in the list. So, when we ratchet up g to 2¢ as n increases,
we are guaranteed that 2g has been retained. This principle
generalizes recursively down the list. This is a similar principle to
the approach of strictly-doubling interval sizes used in the Depth-
Proportional Resolution stratum retention policies described above.

This step of truncating to the nearest less than or equal to power
of 2 affects our recursive step size is at most halved. So, because
step size is a constant fraction of remaining generations 7 (at worst
ﬁ), the number of steps made (and number of strata retained)
scales as O(log(n)) with respect to the number of strata deposited.
Table 1 provides exact figures for the number of strata retained
under different parameterizations of the recency-proportional
retention policy between one thousand and one trillion generations.

As for MRCA generation estimate uncertainty, in the worst
case it scales as O(n) with respect to the greater number of strata
deposited. However, with respect to estimating the generation of
the MRCA for lineages diverged any fixed number of generations
ago, uncertainty scales as O(1).

How does space complexity scale with respect to the policy’s
specified resolution r? Through extrapolation from OEIS
sequences A063787 and A056791 via guess and check (OEIS,
2021b,a), we posited the exact number of strata retained after n
generations as

HammingWeight(n)+ Z [logy(|n/r])]+1.
1

This expression has been unit tested extensively to ensure
perfect reliability. Approximating and applying logarithmic
properties, this policy’s space complexity can be calculated within
a constant factor as
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Figure 3: Comparison of stratum retention policies. Policy visualizations show retained strata in black. Time progresses along the y-axis
from top to bottom. New strata are introduced along the diagonal and then “drip” downward as a vertical line until eliminated. The
set of retained strata present within a column at a particular generation g can be read as intersections of retained vertical lines with a
horizontal line with intercept g. Policy visualizations are provided for two parameterizations for each policy: the first where the maximum
uncertainty of MRCA generation estimates would be 512 generations and the second where the maximum uncertainty of MRCA generation
estimates would be 128 generations.
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Computational Experiments

In order to assess the practical performance of the hereditary
stratigraph approach in an applied setting, we simulated the
process of stratigraph propagation over known “ground truth”
phylogenies extracted from pre-existing digital evolution simu-
lations (Hernandez et al., 2022). These simulations propagated
populations of between 100 and 165 bitstrings between 500 and
5,000 synchronous generations under the NK fitness landscape
model (Kauffman and Weinberger, 1989). In order to ensure
coverage of a variety of phylogenetic conditions, we sampled
a variety of selection schemes that impose profoundly different
ecological regimens (Dolson and Oftia, 2018),

* EcoEA Selection (Goings et al., 2012),

¢ Lexicase Selection (Helmuth et al., 2014),

¢ Random Selection, and

* Sharing Selection (Goldberg et al., 1987).

Supplementary Table 7 provides full details on the conditions
each ground truth phylogeny was drawn from. The phylogenies
themselves are available with our supplementary material (Moreno
et al., 2022).

For each ground truth phylogeny, we tested combinations of
three configuration parameters:

* target end-state memory footprints for extant columns (64, 512,
and 4096 bits),

e differentia width (1, 8, and 64 bits), and

e stratum retention policy (tapered depth-proportional resolution
and recency-proportional resolution).

Stratum retention policies were parameterized so that the
maximum number of strata possible were present at the end of
the experiment without exceeding the target memory footprint.
If the target memory footprint is exceeded by the sparsest possible
parameterization of a retention policy, then that sparsest possible
parameterization was used. Supplementary Tables tables 2 to 6

provide the calculated paramaterizations and memory footprints
of extant columns (Moreno et al., 2022).

In order to assess the viability of phylogenetic inference using
hereditary stratigraphic columns from extant organisms, we used
the end-state stratigraphs to reconstruct an estimate of the actual
ground truth phylogenetic histories. The first step to reconstructing
a phylogenetic tree for the history of an extant population at the end
of an experiment is to construct a distance matrix by calculating
all pairwise phylogenetic distances between extant columns. We
defined phylogenetic distance between two extant columns as the
sum of each extant organism’s generational distance back to the
generation of their MRCA, estimated as the mean of the upper and
lower 95% confidence bounds. Supplementary Figure 6 provides
a cartoon summary of the process of calculating phylogenetic
distance between two extant columns (Moreno et al., 2022).

We then used the unweighted pair group method with arithmetic
mean (UPGMA) reconstruction tool provided by the BioPython
package to generate estimate phylogenetic trees (Cock et al., 2009;
Sokal, 1958). After generating the reconstructed tree topology,
we performed a second pass to adjust branch lengths so that each
internal tree node sat at the mean of its estimated 95% confidence
generation bounds.

Software and Data

As part of this work, we published the hstrat Python library
with a stable public-facing API intended to enable incorporation
in other projects with extensive documentation and unit testing on
GitHub at https://github.com/mmore500/hstrat
and on PyPLIn the near future, we intend to complete and publish
a corresponding C++ library.

Supporting  software materials can be found on
GitHub at https://github.com/mmore500/
hereditary-stratigraph-concept Supporting
computational notebooks are available for in-browser use via
BinderHub at https://hopth.ru/bk (Ragan-Kelley and
Willing, 2018). Our work benefited from many pieces of open
source scientific software (Sukumaran and Holder, 2010; Virtanen
et al.,, 2020; Hunter, 2007; Virtanen et al., 2020; Waskom,
2021; Bostock et al., 2011; Meurer et al., 2017; Smith, 2020b;
Paradis et al., 2004; Ushey et al., 2022; Wickham et al., 2022).
The ground truth phylogenies used in this work as well as
supplementary figures, tables, and text are available via the Open
Science Framework at https://osf.io0/4sm72/ (Foster
and Deardorff, 2017; Moreno et al., 2022). Phylogenetic data
associated with this project is stored in the Alife Community Data
Standards format (Lalejini et al., 2019).

Results and Discussion

In this section, we analyze the quality of reconstructions of
known phylogenetic trees using hereditary stratigraphy. Figure 4
compares an example reconstruction from columns using tapered
depth-proportional stratum retention, an example reconstruction
using recency-proportional stratum retention, and the underlying
ground truth phylogeny. Interactive in-browser visualizations
comparing all reconstructed phylogenies to their corresponding
ground truth are available at https://hopth.ru/bi.
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Figure 4: Example phylogeny reconstructions of ground-truth lexicase selection phylogeny from inference on extant hereditary stratigraphic
columns. Shaded error bars on reconstructions indicate 95% confidence intervals for the true generation of tree nodes. Arbitrary color

is added to enhance distinguishability.

Reconstruction Accuracy

Measuring tree similarity is a challenging problem, with many
conflicting approaches that all provide different information
(Smith, 2020a). Ideally, we would use a metric of reconstruction
accuracy that 1) is commonly used so that there exists sufficient
context to understand what constitutes a good value, 2) behaves
consistently across different types of trees, and 3) behaves
reasonably for the types of trees common in artificial life data.
Unfortunately, these objectives are somewhat in conflict. The
primary source of this problem is multifurcations, nodes from
which more than two lineages branch at once. In reconstructed
phylogenies in biology, multifurcations are generally assumed to
be the result of insufficient information. It is thought that the real
phylogeny had multiple bifurcations that occurred so close together
that the reconstruction algorithm is unable to separate them. In
artificial life phylogenies, however, we have the opposite problem.
When we perfectly track a phylogeny, it is common for us to know
that a multifurcation did in fact occur. However, it is challenging
for our reconstructions to properly identify multifurcations,
because it requires perfectly lining up multiple divergence times.
Many of the most popular tree distance metrics interpret the
difference between a multifurcation and a set of bifurcations as
a dramatic change in topology. For some use cases, this change
in topology may indeed be meaningful, although research on the
extent of this problem is limited. Nevertheless, we suspect that
for the majority of use cases, the tiny branch lengths between
the internal nodes will make this source of error relatively minor.

To overcome this obstacle, we have measured our reconstruc-
tion accuracy using multiple metrics. We will primarily focus on
Mutual Clustering Information (as implemented in the R TreeDist
package) (Smith, 2020a), which is a direct measure of the quantity
of information in the ground truth phylogeny that was successfully
captured in the reconstruction. It is relatively unaffected by the
failure to perfectly reproduce multifurcations. For the purposes of
easy comparison to the literature, we also measured the Clustering
Information Distance (Smith, 2020a).

Across ground truth phylogenies, we were able to reconstruct
the phylogenetic topology with between 47.75% and 85.70% of
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Figure 5: Proportion of information present in the ground-truth
ftness sharing phylogeny that was captureed by our reconstruction,
across various retention policies. High is better (1 is perfect). RPR
is recency-proportional resolution policy and TDPR is tapered
depth-proportional resolution policy.

the information contained in the original tree using a 64-bit column
memory footprint, between 47.75% and 80.36% using a 512-bit
column memory footprint, and between 51.13% and 83.53% using
a 4096-bit column memory footprint. While the Clustering Infor-
mation Distance reached its maximum possible score (1.0) for the
heavily-multifurcated EcoEA phylogeny, it agreed with the Mutual
Clustering Information score for less multifurcated phylogenies,
such as fitness sharing. Using the Recency Proportional Resolution
retention policy and a 4096-bit column memory footprint, we were
able to reconstruct a fitness sharing phylogeny with a Clustering
Information Distance of only 0.2923471 from the ground truth.
For context, that result is comparable to the distance between
phylogenies reconstructed from two closely-related proteins in
H3N2 flu (0.25) (Jones et al., 2021). To build further intution, we
strongly encourage readers to refer to our interactive web recon-
struction. Figure 5 summarizes error reconstructing the fitness
sharing selection phylogeny in terms of the mutual clustering infor-
mation metric (Smith, 2022). The phylogenies reconstructed from
the EcoEA condition performed comparably, with lexicase and
random selection faring somewhat worse (Moreno et al., 2022).
In the case of random selection, we suspect that this reduced
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performance is the result of having many nodes that originated
very close together at the end of the experiment. As expected, we
did observe overall more accurate reconstructions from columns
that were allowed to occupy larger memory footprints.

Differentia Size

Among the surveyed ground truth phylogenies and target column
footprints, we consistently found that smaller differentia were
able to yield more or as accurate phylogenetic reconstructions.
The stronger performance of narrow differentia was particularly
apparent in low-memory-footprint scenarios where overall
phylogenetic inference power was weaker. Overall, single-bit
differentia outperformed 64-bit differentia under 20 condtions, and
were indistinguishable under 7 conditions, and were worse under
3 conditions. Full results are available in Supplementary Section
. Although narrower differentia have less distinguishing power
on their own, their smaller size allows more to be packed into
the memory footprint to cover more generations, which seems to
help reconstruction power. We must note that narrower differentia
can pack more thoroughly into the footprint caps we imposed on
column size, so their extant columns tended to have slightly more
overall bits. However, this was a small enough imbalance (in most
cases < 10%) that we believe it is unlikely to fully account for
the stronger performance of narrow-differentia configurations.

Retention Policy

Across the surveyed ground truth phylogenies and target column
memory footprints, we found that the recency-proportional
resolution stratum retention policy generally yielded better
phylogenetic reconstructions. Phylogenetic reconstruction quality
was better in 28 conditions, equivalent in 14 conditions, and worse
in 3 conditions. Again, this effect was most apparent in the small-
stratum-count scenarios where overal inference power was weaker.
Full results are available in Supplementary Section . The stronger
performance of recency-proportional resolution is likely due to
the denser retention of recent strata under the recency-proportional
metric, which help to resolve the more numerous (and therefore
typically more tightly spaced) phylogenetic events in the near
past (Zhaxybayeva and Gogarten, 2004). Recency-proportional
resolution tended to be able to fit fewer strata within the prescribed
memory footprints (except in cases where it could not fit within
the footprint) so its stronger performance cannot be attributed
to more retained bits in the end-state extant columns.

Conclusion

To our knowledge, this work provides a novel design for
digital genome components that enable phylogenetic inference
on asexual populations. This provides a viable alternative to
perfect phylogenetic tracking, which is complex and possibly
cumbersome in distributed computing scenarios, especially with
fallible nodes. Our approach enables flexible, explicit trade-offs
between space complexity and inference accuracy. Hereditary
stratigraphic columns are efficient: our approach can estimate,
for example, the MRCA generation of two genomes within 10%
error with 95% confidence up to a depth of a trillion generations
with genome annotations smaller than a kilobyte. However, they
are also powerful: we were able to achieve tree reconstructions

recovering up to 85.70% of the information contained in the
original tree with only a 64-bit memory footprint.

This and other methodology to enable decentralized observation
and analysis of evolving systems will be essential for artificial
life experiments that use distributed and best-effort computing
approaches. Such systems will be crucial to enabling advances
in the field of artificial life, particularly with respect to the
question of open-ended evolution (Ackley and Cannon, 2011;
Moreno et al., 2021b,a) Mork work is called for to further enable
experimental analyses in distributed, best-effort systems while
preserving those systems’ efficiency and scalability. As parallel
and distributed computing becomes increasingly ubiquitous and
begins to more widely pervade artificial life systems, hereditary
stratigraphy should serve as a useful technique in this toolbox.

Important work extending and analyzing hereditary stratigraphy
remains to be done. Analyses should be performed to expound
MRCA resolution guarantees of stratum retention policies when
using narrow (i.e., single-bit) differentia. Constant-size-complexity
stratum retention policies that preferentially retain a denser
sampling of more-recent strata should be developed and analyzed.
Extensions to sexual populations should be explored, including
the possibility of annotating and tracking individual genome
components instead of whole-genome individuals. An alternate
approach might be to define a preferential inheritance rule so
that at each generation slot within a column, a single differentia
sweeps over an entire interbreeding population. Optimization of
tree reconstruction from extant hereditary stratigraphs remains an
open question, too, particularly with regard to properly handling
multifurcations. It would be particularly valuable to develop
methodology to annotate inner nodes of trees reconstructed from
hereditary stratigraphs with confidence levels.

The problem of designing genomes to maximize phylogenetic
reconstructability raises unique questions about phylogenetic
estimation. Such a backward problem — optimizing genomes
to make analyses trivial as opposed to the usual process of op-
timizing analyses to genomes — puts questions about the genetic
information analyses operate on in a new light. In particular,
it would be interesting to derive upper bounds on phylogenetic
inference accuracy given genome size and generations elapsed.
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