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The Diabatic Rossby Vortex: Growth Rate, Length Scale and the Wave-Vortex Transition

Matthieu Kohl and Paul A. O’Gorman
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT: In idealized simulations of moist baroclinic instability on a sphere, the most unstable mode transitions from a periodic
wave to an isolated vortex in sufficiently warm climates. The vortex mode is maintained through latent heating and shows the principle
characteristics of a diabatic Rossby vortex (DRV) which has been found in a range of different simulations and observations of the current
climate. Currently, there is no analytical theory for DRVs or understanding of the wave-vortex transition that has been found in warmer
climates. Here, we introduce a minimal moist two-layer quasigeostrophic model with tilted boundaries capable of producing a DRV mode,
and we derive growth rates and length scales for this DRV mode. In the limit of a convectively-neutral stratification, the length scale of
ascent of the DRV is the same as that of a periodic moist baroclinic wave, but the growth rate of the DRV is 54% faster. We explain the
isolated structure of the DRV using a simple potential vorticity (PV) argument, and we create a phase diagram for when the most unstable
solution is a periodic wave versus a DRV, with the DRV emerging when the moist static stability and meridional PV gradients are weak.
Finally, we compare the structure of the DRV mode to DRV storms found in reanalysis and to a DRV storm in a warm-climate simulation.

SIGNIFICANCE STATEMENT: Past research has
identified a special class of midlatitude storm, dubbed the
Diabatic Rossby Vortex (DRV), which derives its energy
from the release of latent heat associated with condensa-
tion of water vapor, and as such goes beyond the traditional
understanding of midlatitude storm formation. DRVs have
been implicated in extreme and poorly predicted forms of
cyclogenesis along the east coast of the US and the west
coast of Europe with significant damage to property and
human life. The purpose of this study is to develop a math-
ematical theory for the intensification rate and length scale
of DRVs in order to gain a deeper understanding of the
dynamics of these storms in current and future climates.

1. Introduction

In small-amplitude calculations of moist baroclinic in-
stability over a wide range of climates in an idealized GCM,
O’Gorman et al. (2018) found that the most unstable mode
transitions from a quasi-periodic wave to an isolated vortex
at a midlatitude surface air temperature of roughly 292K.1
The structure of the vortex mode that emerged in warm
climates (Fig. 1a) consists of a dipole of interlocking po-
tential vorticity (PV) anomalies above the boundary layer:
cyclonic in the lower free troposphere and anticyclonic in
the upper troposphere. Warm air advection to the east of
the cyclonic anomaly and to the west of the anticylonic
anomaly leads to ascent and diabatic PV generation from
latent heat release in the form of a dipole. We note that
because the mode is found for warm-climate simulations,
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1The most unstable modes were calculated in O’Gorman et al. (2018)

through repeated rescaling of perturbations to small amplitude, assuming
upward motion to be saturated, and using a basic state equal to the zonal
and time-mean of a fully nonlinear simulation for that climate.

the diabatic generation extends higher in the atmosphere
than it would in the current climate.

The constellation of PV anomalies and diabatic PV gen-
eration is such that the anomalies are amplified and main-
tained against the background shear flow. The resulting
vortex mode bears the principle characteristic of a diabatic
Rossby vortex (DRV) which has been found in a range of
different simulations and observation. Its emergence as
the fastest growing mode within the moist baroclinic in-
stability calculations of O’Gorman et al. (2018) points to
the profound modifying influence that latent heating has
on the structure of fast growing disturbances in a warming
climate.

DRVs first emerged as an alternative mode of insta-
bility in idealized studies of moist baroclinic instability.
The presence of moisture greatly enriches the dynamics of
unstable modes due to the fact that condensation and pre-
cipitation are strongly associated with ascending but not
descending motion, and hence an additional nonlinearity
is introduced into the thermodynamic equation (O’Gorman
2011). Emanuel et al. (1987) represented condensational
heating in Eady and two-level semigeostrophic models by
assuming saturated moist-adiabatic ascent. This assump-
tion leads to a nonlinear factor 𝑟 (𝑤) that is a function of the
vertical velocity 𝑤 and reduces the potential vorticity (or
static stability in quasigeostrophic (QG) models) by a factor
𝑟 < 1 in updrafts while leaving it unchanged in downdrafts
(𝑟 = 1). While this parameterization is a simplification, it
captures the essential asymmetry that is introduced through
the irreversible fall-out of condensate during precipitation,
and 𝑟 may be calculated from the observed temperature and
pressure distributions in the atmosphere. The effect of this
condensational heating was to increase the growth rates
and decrease the area of ascent of growing modes with re-
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Fig. 1. PV anomalies (shading) and diabatic generation of PV due to latent heating (contours) for (a) the DRV mode at latitude 44 ◦ in a calculation
of small-amplitude moist baroclinic instability on a sphere in a warm climate (global mean surface temperature 311 K) using an idealized GCM
(O’Gorman et al. 2018), and (c) a DRV storm at latitude 61 ◦ in the corresponding macroturbulent (i.e., finite amplitude) simulation at statistical
equilibrium in the same GCM. (b,d) are the same as (a,c) except that they show the generalized diabatic generation of PV calculated according to
Eq. (30) which includes both diabatic PV generation and diabatic vertical advection of PV, where the only diabatic process considered is latent
heating. Potential vorticity (PV) is calculated using the hydrostatic approximation to Ertel’s PV, and PV anomalies are with respect to the zonal
mean. The contour interval is 9.2×10−5 pvu h−1 in (a,c) and 0.07 pvu h−1 in (b,d). The zero contour is not plotted. Note that since the DRV mode
in (a,c) was calculated using repeated rescaling of amplitude, the overall amplitude of its fields are arbitrary.

spect to dry waves, results that are borne out well by moist
baroclinic life cycle studies with shallow water models
(Lambaerts et al. 2012) or more comprehensive forecast-
ing models (Booth et al. 2015). When moist instability
calculations were done with a more realistic reduction fac-
tor 𝑟 (𝑧) that varied vertically, the short wavelength cut-off
of the Eady model disappeared (Whitaker and Davis 1994;
Moore and Montgomery 2004). A new mode of instabil-
ity emerged at shorter wavelengths which could intensify
without the presence of upper level forcing (Montgomery
and Farrell 1991, 1992; Whitaker and Davis 1994; Moore
and Montgomery 2004). This mode now grew through
the interaction of a surface potential temperature anomaly
and an interior PV anomaly, rather than primarily through
an interaction of anomalies of potential temperature at the
surface and lid, and the budget of eddy available potential

energy was dominated by diabatic rather than baroclinic
generation.

Subsequent three-dimensional simulations with a
mesoscale model by Moore and Montgomery (2005)
showed that this alternative diabatic growth mechanism
could generate isolated coherent PV-dipole structures con-
sisting of a phase locked low-level cyclonic anomaly and
a midtropospheric anticyclonic anomaly starting from an
initial moist baroclinic environment without upper level
forcing. The isolated and diabatic character of such a
growing disturbance without upper level forcing led Moore
and Montgomery (2004) to classify it as ‘Diabatic Rossby
Vortex’ (DRV) - a term we adopt in this paper. More
recently, idealized channel simulations of cyclone devel-
opment using a weather forecasting model (Tierney et al.
2018) showed signs of break-up into “jagged diabatic” PV
structures reminiscent of a DRV at sufficiently warm tem-
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peratures, in line with the results of O’Gorman et al. (2018).
Finally, going beyond initial value problems, turbulent sim-
ulations on a beta plane using moist two-layer QG or shal-
low water equations showed a transition from a smooth
large-scale jet flow, to a jet-flow disrupted by the pres-
ence of small-scale vortices, that rapidly intensify through
moist-dynamical feedbacks in the strongly precipitating
regime of the simulation (Lapeyre and Held 2004,Bem-
benek et al. 2020). In Bembenek et al. (2020) these vor-
tices were explicitly likened to DRVs. We have also found
growing DRVs in the fully nonlinear warm-climate simu-
lations of O’Gorman et al. (2018). An example of such a
DRV is shown in Fig. 1c, and it exhibits considerable simi-
larity with the DRV mode calculated by repeated rescaling
to small amplitude (Fig. 1a), although the positive PV
anomaly extends higher into the atmosphere and the neg-
ative PV anomaly and diabatic PV generation are more
concentrated at the upper tropopause.

DRVs have also been invoked to account for the initial
phase prior to explosive growth of certain cyclones in in
operational analyses and realistic simulations. Both the
European extreme storm ‘Lothar’ in 1999 (Wernli et al.
2002) and the explosive east-coast winter storm in 2005
(Moore et al. 2008) were shown to propagate and intensify
moderately through diabatic effects without upper level
forcing before intensifying explosively through upper-level
interactions in a secondary growth process. In this paper,
we will remain focused on the initial phase of diabatic
self-amplification/propagation without considering upper
interactions. While the isolated and vortical structure of
the east-coast winter storm led Moore et al. (2008) to clas-
sify it as a DRV following the terminology of Moore and
Montgomery (2004), the rapid propagational character of
‘Lothar’, faster than the ambient winds, led Wernli et al.
(2002) to classify it as a ‘Diabatic Rossby Wave’ (DRW)
with the positive diabatic PV generation to the east of the
low level cyclonic PV anomaly playing the role of merio-
dional PV advection in a classic dry Rossby wave as dis-
cussed in Parker and Thorpe (1995). Both DRV and DRW
refer to the same phenomena, but neither name is fully
satisfactory since such storms are isolated like vortices but
propagate through PV generation like a wave (Boettcher
and Wernli 2013). The upper-level negative PV anomaly
is found to be relatively weak in observed storms, and some
uncertainty exists in the literature as to when latent heating
leads to growth through interaction of the positive low-
level PV anomaly with a self-induced negative upper PV
anomaly, or rather just leads to propagation of the low-level
PV anomaly. The importance of diabatic effects in individ-
ual case studies of rapid cyclogenesis, led Boettcher and
Wernli (2013) to study DRVs more systematically by com-
piling a 10-year (2001-2010) climatology of DRV tracks
for the North Pacific and North Atlantic. DRVs occurred
at an average rate of 81 systems per year over the North Pa-
cific and 43 system per year over the North Atlantic. In line

with the case studies of ‘Lothar’ and the east-coast winter
storm, DRVs in the current climate were found to propa-
gate with moderate intensification before interacting in a
second phase with a pre-existing upper level PV anomaly
or jet stream.

It is clear from the literature that DRVs constitute an
alternative diabatic growth mechanism that relies both on
sufficient baroclinicity and moisture, and which produces
relatively small scale modes that can self-amplify expo-
nentially even without the presence of upper level forcing.
Currently, there is no theory for the growth rate and length
scale of DRVs or the wave-vortex transition that occurs
at higher temperatures in moist baroclinic instability sim-
ulations. Analytically tractable models of dry and moist
baroclinic instability (Eady 1949; Charney 1947; Phillips
1954; Emanuel et al. 1987; Zurita-Gotor 2005) form much
of the basis of our theoretical understanding of cyclones
due to their ability to isolate the mechanism of cyclone
formation in a conceptually simple model and to relate
growth rate and length scale of cyclones to atmospheric
parameters in a quantitative way. Given the importance
of diabatic effects in cyclogenesis both in the current and
future climate, it seems desirable to develop an equivalent
conceptually simple model for a DRV.

To this end, we introduce in this paper a minimal moist
two-layer QG model with tilted upper and lower boundaries
and show that it is capable of producing a DRV mode. La-
tent heating is represented by an assumption of saturated
ascent in updrafts following previous work (Emanuel et al.
1987; Fantini 1995; Zurita-Gotor 2005). We tilt the model
boundaries at a slope equal to that of the mean isentropes to
make the two-layer model an analog of the interior of the
Eady model in which dry-baroclinic instability has been
shut off but any moist instability retained. This allows us
to transition to a pure DRV solution within a conceptu-
ally simple model. We note that this model is similar in
spirit to the unbounded balanced shear flow studied by Sny-
der and Lindzen (1991) to demonstrate the possibility of
growth through diabatically generated interior anomalies
in a setup which is dry modally stable. However, Snyder
and Lindzen (1991) allowed for negative latent heating in
descent regions and so obtained periodic wave solutions
rather than an isolated DRV.

We begin in section 2 by formulating the tilted two-layer
model and showing that it produces a DRV mode. We then
study its PV budget and derive the dispersion relation of
the DRV mode analytically, a significant novelty of this
paper. Asymptotic solutions for the growth rate and ascent
area of the DRV are found in the limit of small 𝑟. We also
solve the dispersion relation for the infinite domain numer-
ically by root-finding for the whole range of 𝑟. In section
3, we study the emergence of DRV modes in the more
general case that includes non-zero meridional PV gradi-
ents. We first introduce a simple PV argument to explain
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the wave-vortex transition observed to occur as latent heat-
ing becomes dominant in the moist baroclinic instability
simulations of O’Gorman et al. (2018). We then generate
a phase diagram for when the most unstable mode in a
partially tilted two-layer model is a periodic wave versus a
DRV as a function of the PV gradients and 𝑟 . In section 4,
we compare the warm-climate DRV mode and DRV storm
from the idealized GCM simulations of O’Gorman et al.
(2018) to two storms in the present climate that have been
previously been found to have the characteristics of DRVs.
Lastly, in section 5 we summarize our results and discuss
their implications.

2. A Simple Model for a DRV

a. Model formulation

We seek a minimal model that can capture the inter-
nal interactions of diabatically generated PV anomalies
characteristic of a DRV. We start from the moist quasi-
geostrophic equations on an f-plane:

𝜕𝑡∇2𝜓 + 𝐽 (𝜓,∇2𝜓) − 𝑓 𝑤𝑧 = 0, (1)

𝜕𝑡𝜓𝑧 + 𝐽 (𝜓,𝜓𝑧) +
𝑁2

𝑓
𝑟 (𝑤)𝑤 =

𝑁2

𝑓
𝑟 (𝑤)𝑤, (2)

where𝜓 is the streamfunction, 𝑤 is the vertical velocity, 𝑁2

is the constant static stability, 𝑓 is the Coriolis parameter,
𝐽 (𝐴, 𝐵) = 𝐴𝑥𝐵𝑦 −𝐵𝑦𝐴𝑥 is the Jacobian, and (...) is a hor-
izontal domain average. Equations (1,2) are equivalent to
Eqs. 16 and 17 of Fantini (1995) except for the addition of
the the term 𝑁2

𝑓
𝑟 (𝑤)𝑤 on the right hand side of the thermo-

dynamic equation Eq. (2) which acts as a spatially uniform
radiative cooling to ensure that the domain-mean temper-
ature remains constant even though there is latent heating.
The effects of latent heating on the dynamics are encapsu-
lated in the spirit of simple moist theories (Emanuel et al.
1987; Fantini 1995) by the nonlinear factor

𝑟 (𝑤) =
{
𝑟, 𝑤 ≥ 0
1, 𝑤 < 0

(3)

which reduces the static stability by a factor 𝑟 in regions of
ascent. Under an assumption of saturated moist-adiabatic
ascent, 𝑟 = 𝜃

𝜃∗
Γ𝑚
Γ𝑑

(
𝜕𝜃∗

𝜕𝑧

)
/
(
𝜕𝜃
𝜕𝑧

)
(see Eq.(7) of Fantini 1995),

where 𝜃 and 𝜃∗ are the potential and saturated equivalent
potential temperature, respectively, and Γ𝑑 and Γ𝑚 are the
dry-adiabatic and moist-adiabatic lapse rates, respectively.
The reduction factor in the ascent region varies strongly in
the vertical. In cyclones with strong diabatic heating, 𝑟 can
go all the way to zero in the interior and tend towards 1 as
the tropopause is reached. Averaged in the vertical, 𝑟 = 0.1
is a typical value for the current climate and 𝑟 = 0.01 for
the warm climate GCM simulations in O’Gorman et al.

(2018). Physically the nonlinear factor 𝑟 (𝑤) represents the
fact that whilst moist ascending air releases latent heat upon
condensation and feels a locally reduced static stability,
the descending air is subsaturated (after irreversible fall-
out of condensate by precipitation) and thus feels the full
static stability. Moist thermodynamics thus introduces an
additional nonlinearity into the equations which greatly
enriches the dynamics.

We simplify the dynamics further by discretizing the
equations in the vertical into two equal layers of height
(Fig. 2), anticipating that the two layers will be sufficient to
represent the PV-dipole structure of the DRV. We introduce
a barotropic stream function 𝜙 =

𝜓1+𝜓2
2 and a baroclinic

stream function 𝜏 =
𝜓1−𝜓2

2 where 1 refers to the upper
layer and 2 refers to the lower layer. The layer interface
height is 𝜂 = − 𝑓

𝑔′ (𝜓1−𝜓2), with 𝑔′ = 𝑔
𝜃1−𝜃2
𝜃0

where 𝑔 is the
gravitational constant, 𝜃1 and 𝜃2 are potential temperatures
in each layer, and 𝜃0 is a reference potential temperature.

We assume small perturbations about a basic state 𝜏0 =
−𝑈𝑦 corresponding to a flow 𝑢1 = −𝜓1𝑦 =𝑈 in the upper
layer and 𝑢2 = −𝜓2𝑦 = −𝑈 in the lower layer. The small
amplitude of the perturbations allow us to linearize the
advection terms, but the thermodynamic equation remains
nonlinear because of the latent heating term.

Finally, the key novelty of our model is that we tilt
the top and bottom boundaries, ℎ1 (𝑦) and ℎ2 (𝑦), re-
spectively, to have slopes in the meridional direction of
ℎ1𝑦 = ℎ2𝑦 = 𝜂𝑦 = − 2 𝑓

𝑔′ 𝜏0𝑦 so as to match the slope of the
basic-state layer interface 𝜂 (Fig. 2b) in contrast to the stan-
dard untilted two-layer model (Fig. 2a). This makes our
two-layer model an analogue of the interior of the Eady-
model with zero meridional PV-gradients 𝑞1𝑦 = 𝑞2𝑦 = 0 in
the basic state. The dry modal instability through inter-
locking Rossby-waves is thus shut-off, but any instability
solely due to the moist processes is retained. The equa-
tions for the perturbations about the basic state are derived
in section a of the appendix in the limit of small-amplitude
perturbations and are given here in nondimensional form:

𝜕𝑡𝜙𝑥𝑥 + 𝜏𝑥𝑥𝑥 − 𝜏𝑥 = 0, (4)
𝜕𝑡𝜏𝑥𝑥 +𝜙𝑥𝑥𝑥 −𝜙𝑥 +𝑤 = 0, (5)

𝜕𝑡𝜏−𝜙𝑥 + 𝑟 (𝑤)𝑤 = 𝑟 (𝑤)𝑤, (6)

where 𝜏, 𝜙 and 𝑤 are now perturbations about the ba-
sic state.2 Finally, we note that a dry two-layer model with
sloping upper and lower boundaries was already introduced

2Equations (4-5) are identical to the two-layer moist QG equations
(Zurita-Gotor 2005) except for the addition of the terms −𝜏𝑥 and -𝜙𝑥

in Eq. (4) and Eq. (5), respectively, which arise because of the tilted
boundaries, and except for the presence of the mean radiative cooling
term 𝑟 (𝑤)𝑤 in Eq.6. Zurita-Gotor (2005) studied the stability of moist
waves by combining the equations into a single equation for 𝑤 in which
case any mean radiative cooling term drops out for an untilted model.
We will see shortly, however, that the mean radiative cooling does not
drop out when forming the 𝑤 equation for the tilted model.
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Fig. 2. Schematic of the (a) untilted and (b) tilted two-layer model with basic-state interface height 𝜂, boundary slopes ℎ1𝑦 = ℎ2𝑦 = 𝜂𝑦 , and
basic-state PV-gradients 𝑞1𝑦 and 𝑞2𝑦 . Also shown is the basic-state zonal wind profile which is the same for the tilted and untilted models.

by Bretherton (1966) to allow independent variation of PV
gradients and vertical shear in an investigation of the short-
wavelength cut-off of baroclinic instability. Evidently, the
reason for introducing the tilted boundaries here is differ-
ent, as we are interested in eliminating the basic-state PV
gradients all together.

b. Numerical Simulation

We first solve the tilted model equations numerically
to isolate and study the fastest growing mode for a given
static-stability reduction factor 0 ≤ 𝑟 ≤ 1. To this end, we
discretize the equations using second-order central finite
differences in a periodic domain in 𝑥.

We integrate the barotropic and baroclinic vorticity
equations (Eqs. 4,5) forward in time for the variables
Φ = 𝜙𝑥𝑥 and 𝑇 = 𝜏𝑥𝑥 . Timestepping is performed with
matlab’s ode45 function, which is based on an explicit
Runge-Kutta (4,5) formula with an adaptive time step.

The system of equations is closed by calculating the
vertical velocity 𝑤 at each time step from the nonlinear
omega equation,

(𝑟 (𝑤)𝑤)𝑥𝑥 −𝑤 = 2𝜙𝑥𝑥𝑥 −𝜙𝑥 , (7)

which is formed by eliminating the time derivatives be-
tween Eq. (5) and (6). By using the omega equation, time
stepping of Eq. (6) is not needed. The nonlinearity in the
omega equation arises from 𝑟 (𝑤) and requires an iterative
approach to finding the solution. We solve it iteratively at
each time step as (𝑟 (𝑤𝑛)𝑤𝑛+1)𝑥𝑥 −𝑤𝑛+1 = 𝑅𝐻𝑆, where 𝑛

is the iteration step. We start the iteration from a random
guess for 𝑤 to define the initial 𝑟 (𝑤), and we iterate until
the root-mean-square (rms) of (𝑤𝑛+1 −𝑤𝑛) is smaller than
10−12.

We start the timestepping from random initial conditions
for Φ and 𝑇 . At each time step, we invert Φ = 𝜙𝑥𝑥 and
𝑇 = 𝜏𝑥𝑥 to obtain 𝜙 and 𝜏 by imposing that 𝜙 and 𝜏 have
zero mean. We then solve for𝑤 using the iterative approach
to the omega equation described above, and we then update
Φ and 𝑇 using Eqs. (4) and (5). We rescale the amplitudes
of the vectorsΦ and𝑇 by a factor of 100 each time rms(x) >

10, where x = [𝑇,Φ], to avoid large numbers which could
cause problems with the numerical representation. We
integrate until the nondimensional time is 𝑡 = 200 when we
find that the solution has converged to a normal mode.

The vertical velocity (at time 𝑡 = 200) for 𝑟 = 0.01 is
shown in Fig.3a where we have used a grid spacing of
Δ𝑥 = 0.025 and a domain size of 8𝜋 . Remarkably, the so-
lution evolves into a DRV with a single spatially localized
peak in vertical velocity just like in the warm limit of the
idealized GCM calculations of O’Gorman et al. (2018),
their Figs. 1f and 2f. The isolated solution is in stark con-
trast to the spatially periodic structure of moist baroclinic
waves. The solution is exponentially growing and fixed
in space because the basic-state zonal wind is equal and
opposite in each layer, but the DRV would propagate zon-
ally with a more realistic vertical wind profile. We have
repeated the calculations using a linear drag on the relative
vorticity in the lower layer with a damping time scale of
either 10 days (weak drag) or 2.5 days (strong drag). Iso-
lated DRV solutions persist even with drag included, with
similar length scale but reduced growth rate compared to
the default case with no drag (not shown).

We next analyze the PV dynamics of the DRV mode.
The PV budget in the lower layer was obtained by rewrit-
ing the 𝑟 (𝑤)𝑤 term as 𝑟 (𝑤)𝑤 = 𝑤 − (1− 𝑟 (𝑤))𝑤 in the
thermodynamic equation (Eq. 6), eliminating the 𝑤 term
using the baroclinic vorticity equation (Eq. 5) and adding
the barotropic vorticity equation (Eq. 4) to give

𝜕𝑞2
𝜕𝑡

= 𝜎𝑞2 = 𝑞2𝑥 + (1− 𝑟 (𝑤))𝑤 + 𝑟 (𝑤)𝑤, (8)

where 𝑞2 = 𝜙𝑥𝑥 − 𝜏𝑥𝑥 + 𝜏 is the lower-layer PV, 𝜎 is
the growth rate, 𝑞2𝑥 is zonal advection, and ¤𝑞2,diab =

(1− 𝑟 (𝑤))𝑤 + 𝑟 (𝑤)𝑤 is the diabatic generation rate. A
similar equation may be derived for the upper-layer PV
anomaly 𝑞1 = 𝜙𝑥𝑥 + 𝜏𝑥𝑥 − 𝜏 which has diabatic generation
given by ¤𝑞1,diab = −(1−𝑟 (𝑤))𝑤−𝑟 (𝑤)𝑤. The DRV mode
is made up of a positive PV anomaly in the lower layer
and a negative PV anomaly in the upper layer that are both
growing through diabatic PV generation (Fig. 3b). Note
that meridional PV advection does not appear in the PV
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Fig. 3. (a) Vertical velocity, (b) PV anomalies (solid) and diabatic PV generation rate (dashed), and (c) total meridional winds (solid) and
meridional winds induced by PV anomalies in the same layer (dashed). All quantities are plotted versus 𝑥 for the fastest growing mode of the tilted
model equations at 𝑟 = 0.01 which is a DRV. In (b-c), quantities in the upper layer are show in blue and quantities in the lower layer are shown in
red. The domain size is 𝐿 = 8𝜋 and the grid spacing is Δ𝑥 = 0.025. All quantities are non-dimensional and the overall magnitude of the DRV is
arbitrary. The results in (b,c) have been zoomed in around the location of ascending motion to better show the structure of the fields since the DRV
occupies only a small fraction of the domain.
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Fig. 4. Terms in the lower-layer PV budget versus 𝑥 for the fastest
growing mode of the tilted model equations at 𝑟 = 0.01 which is a DRV.
The domain size is 𝐿 = 8𝜋 and the grid spacing is Δ𝑥 = 0.025. The
terms in the PV budget that are shown are the total tendency (blue) and
the contributions from zonal advection (red dashed), and latent heating
(black dashed dotted). The PV tendency from radiative cooling is a small
constant with a value of 𝑟 (𝑤)𝑤 = −0.011 (not shown). All quantities
are non-dimensional and the overall magnitude of the DRV is arbitrary.
The PV budget has been zoomed in around the location of ascending
motion since the DRV occupies only a small fraction of the domain.

budget because the meridional PV gradients are zero by
construction in the tilted model, but for completeness, we
also show the meridional winds (Fig. 3c). Exploration of
the parameter space of 𝑟 shows that the basic PV structure
remains similar for all values of 0 ≤ 𝑟 < 1 , although the
growth rate and horizontal length scale of the ascent re-
gion do change when 𝑟 is varied. At 𝑟 = 1 the system is dry
and stable because there are no contributions from latent
heating, and by construction there are no meridional PV
gradients to otherwise support baroclinic instability.

We calculate the growth rate of the mode by assuming
exponential growth of the rms of x = [Φ,𝑇] over each
time-step Δ𝑡 to give 𝜎 = log

(
rms(x(t))

rms(x(t−𝚫t))

)
/Δ𝑡. Note that

the time-stepping is adaptive and the step size Δ𝑡 can vary.
We then average 𝜎 over the end period of the calculation
(𝑡 = 195−200).

From Fig. 4 we see that within the narrow region of
ascent the growth of the positive PV anomaly is due to dia-
batic PV generation through latent heating that is partially
offset by zonal advection. In the region of descending
motion to the west, the PV generation due to latent heat-
ing is zero and the growth of the PV anomaly is due to
zonal advection over a more extended spatial scale. The
PV tendency from radiative cooling is spatially constant
with a value of 𝑟 (𝑤)𝑤 = −0.011. In the region of descent
to the east, all the terms in the lower-layer PV budget are
zero except for the time tendency and the small term due
to radiative cooling. The PV budget in the upper layer is
the same as in the lower layer except that the signs of the
terms are flipped and they are mirrored about the axis of
maximum ascent.

Now that we have isolated the DRV solution within a
simplified model, it is possible to develop analytical solu-
tions for its characteristics.

c. Analytic Theory

We now derive the growth rate and horizontal length
scale of the DRV mode. In the modal regime, the DRV
satisfies the equations

𝜎𝜙𝑥𝑥 + 𝜏𝑥𝑥𝑥 − 𝜏𝑥 = 0, (9)
𝜎𝜏𝑥𝑥 +𝜙𝑥𝑥𝑥 −𝜙𝑥 +𝑤 = 0, (10)

𝜎𝜏−𝜙𝑥 + 𝑟 (𝑤)𝑤 = 𝑟 (𝑤)𝑤. (11)

We eliminate the stream functions and combine the equa-
tions into a single equation for 𝑤

(𝑟𝑤)𝑥𝑥𝑥𝑥 − (2+𝜎2) (𝑟𝑤)𝑥𝑥 +𝑤𝑥𝑥 + (𝑟 +𝜎2 −1)𝑤 = 𝑟𝑤,

(12)
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Fig. 5. Schematic of the solution of the 𝑤 equation (see Eq. 12) for

the DRV mode. For 0 ≤ 𝑥 ≤ 𝑏 we have ascending motion 𝑤 = 𝑤↑ > 0
and 𝑟 < 1, and for 𝑥 > 𝑏 we have descending motion 𝑤 = 𝑤↓ < 0 and
𝑟 = 1. 𝑥 = 𝑏 is the location of the boundary between ascent and descent
that must be found as part of the solution.

as shown in section b of the appendix. This equation
is similar to the equation for 𝑤 derived for moist baro-
clinic modes in an untilted two-layer model (compare with
Eq.12 in Zurita-Gotor 2005) except for the two extra terms
−2(𝑟𝑤)𝑥𝑥 and (𝑟 −1)𝑤 on the left-hand side of the equa-
tion, and the radiative cooling term 𝑟 (𝑤)𝑤 on the right-
hand side which is constant in space but varies in time.
As we will see shortly, the extra terms on the left-hand
side are responsible for producing exponentially decaying
rather than periodic solutions in the descent area which are
characteristic of an isolated DRV.

We look for symmetric solutions about the peak in 𝑤

since that is what was obtained in the numerical solutions
and since the equation for 𝑤 is symmetric under 𝑥 →−𝑥.
We put the peak in 𝑤 at 𝑥 = 0, and by symmetry we need
only consider the half of the domain 𝑥 ≥ 0, where w is
ascending between 0 ≤ 𝑥 ≤ 𝑏 and descending for 𝑥 > 𝑏 (see
Fig. 5). Here 𝑏 is the location of the boundary between
ascent and descent that must be solved for.

Eq. 12 is readily solved separately in the descending and
ascending region. In the descending region, the solution is
given by

𝑤↓ =
𝑎

𝜎2 + 𝑑1𝑒
−(𝑥−𝑏) + 𝑑2𝑒

−𝜎 (𝑥−𝑏) , (13)

where 𝑎 = 𝑟 (𝑤)𝑤, and we have discarded exponential solu-
tions that become unbounded as 𝑥→∞ assuming growing
solutions 𝜎 ≥ 0. In the ascending region, the solution is
symmetric about 𝑥 = 0 and is given by

𝑤↑ =
𝑎

𝑟 +𝜎2 −1
+ 𝑐1 cos(𝑘1𝑥) + 𝑐2 cos(𝑘2𝑥), (14)

with wavenumbers

𝑘1 =
1

√
2𝑟

√︂
1− 𝑟 (2+𝜎2) +

√︃(
1− 𝑟 (2+𝜎2)

)2 −4𝑟 (𝜎2 + 𝑟 −1)

(15)

𝑘2 =
1

√
2𝑟

√︂
1− 𝑟 (2+𝜎2) −

√︃(
1− 𝑟 (2+𝜎2)

)2 −4𝑟 (𝜎2 + 𝑟 −1)

(16)

that are functions of 𝑟 and 𝜎.
We define the domain half-size to be 𝐿 and then take

the limit of an infinite domain 𝐿 → ∞. Mass conserva-
tion expressed as

∫ 𝐿

0 𝑤𝑑𝑥 = 0 allows us to rewrite 𝑎 =

1
𝐿

∫ 𝐿

0 𝑟𝑤𝑑𝑥 = 1
𝐿

∫ 𝐿

0 (𝑟 −1)𝑤𝑑𝑥 = 1
𝐿

∫ 𝑏

0 (𝑟 −1)𝑤↑𝑑𝑥, which
implies that 𝑎→ 0 as 𝐿→∞ if we want solutions for which
𝑏 and 𝑤↑ remain bounded. We need additional constraints
to determine the constants 𝑐1, 𝑐2, 𝑑1, 𝑑2,𝜎, and 𝑏. We im-
pose that 𝑤↑ = 𝑤↓ = 0 at 𝑥 = 𝑏, continuity of (𝑟𝑤)𝑥 and
(𝑟𝑤)𝑥𝑥 at 𝑥 = 𝑏 and mass conservation. The continuity
conditions follow from the continuity of 𝜙, 𝜏 and the exis-
tence of the derivatives in the governing Eqs. 9-11. The
constraint that 𝑤↓ = 0 at 𝑥 = 𝑏 gives

𝑑1 = −𝑑2 −
𝑎

𝜎2 . (17)

Furthermore, the amplitude of the 𝑤 solution is arbitrary
which allows us to fix one of the amplitudes without loss
of generality. We choose 𝑑2 = 1 when 𝜎 > 1 and 𝑑2 = −1
when 𝜎 < 1 to ensure that 𝑤↓ < 0. In the limit of 𝐿 →∞
and 𝑎 → 0, the resulting equations are:

𝑐1 cos(𝑘1𝑏) + 𝑐2 cos(𝑘2𝑏) = 0, (18)

𝑐1𝑘1 sin(𝑘1𝑏) + 𝑐2𝑘2 sin(𝑘2𝑏) = 𝑑2
𝜎−1
𝑟

, (19)

𝑐1𝑘
2
1 cos(𝑘1𝑏) + 𝑐2𝑘

2
2 cos(𝑘2𝑏) = 𝑑2

1−𝜎2

𝑟
, (20)

𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏) = 𝑑2
𝜎(𝜎−1)
𝜎2 + 𝑟 −1

, (21)

expressing 𝑤↑ = 0 at 𝑥 = 𝑏, continuity of (𝑟 (𝑤)𝑤)𝑥 , con-
tinuity of (𝑟 (𝑤)𝑤)𝑥𝑥 , and mass conservation respectively.
The limit of 𝐿 →∞ and 𝑎 → 0 in the mass conservation
equation must be taken carefully, a subtle point that is
discussed in section c of the appendix.

Eliminating the constants 𝑐1, 𝑐2, which also gets rid of
the arbitrary constant 𝑑2 (see section d of the appendix),
we obtain two equations

tan(𝑘1𝑏) =
𝑟𝑘1𝑘2
𝜎 +1

(
− 1
𝑟𝑘2

+ 𝜎𝑘2

𝜎2 + 𝑟 −1

)
, (22)

tan(𝑘2𝑏) =
𝑟𝑘1𝑘2
𝜎 +1

(
− 1
𝑟𝑘1

+ 𝜎𝑘1

𝜎2 + 𝑟 −1

)
, (23)
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which along with the definitions of 𝑘1 and 𝑘2 (Eqs. 15,16)
yield the dispersion relationship for the growth rate 𝜎 and
half-ascent length 𝑏 as a function of the static-stability
reduction factor 𝑟, a key novel result of this paper.

In general, this dispersion relationship needs to be solved
numerically, but in the limit of a convectively neutral strat-
ification 𝑟 → 0 it is possible to show analytically that at
leading order the growth rate is

𝜎 =
1+

√
5

2
= 1.62, (24)

and the half-ascent length is

(25)

𝑏 =
𝜋

2
√
𝑟, (26)

(see section e of the appendix).3 For comparison, the
growth rate (𝜎) and half-ascent length (equal to 𝑏 for the
DRV) for the fastest growing modes in an untilted dry two-
layer model (Phillips 1954) and moist two-layer model
(Emanuel et al. 1987) are given in Table 1. Note that the
half-ascent length is just quarter the wavelength for the dry
mode, and that the results in Emanuel et al. (1987) need to
be rescaled by a factor

√
2 to agree with our nondimension-

alization. The DRV grows about four times faster than the
dry wave, and 1.5 times faster than the moist wave in the
small 𝑟 limit, consistent with the fact that the DRV emerges
as the fastest growing solution in the warm climate simu-
lations of moist baroclinic instability in O’Gorman et al.
(2018). The ascent length of the DRV and moist wave
are the same in the small 𝑟 limit, and about fifteen times
smaller than that of a dry wave for 𝑟 = 0.01.

To obtain 𝜎 and 𝑏 for the full range of 𝑟 , we solve the
dispersion equations numerically. Equations (22) and (23)
are solved using matlab’s fsolve. We start by solving at
𝑟 = 10−3 with initial guess 𝜎 = 1.53 and 𝑏 = 0.06 for the
first two values of 𝑟, and we use linear extrapolation for the
initial guesses at each subsequent value of 𝑟. The results
are compared to the time-marching solutions of Eqs. 4,5
and 7 for a finite domain with periodic boundary conditions
in Fig. (6), where we use a larger domain 𝐿 = 32𝜋 with
Δ𝑥 = 0.084 for all values of 𝑟 to resolve the large and weakly
growing solutions as 𝑟 → 1. Note that the time-marching
solution at 𝑟 = 1 is not growing and is not shown in Fig. (6).
The growth rates from the time-marching and dispersion-
relation approaches are in good agreement for values below
a critical value of 𝑟 = 0.38, whereas the ascent lengths are
in good agreement only for values of 𝑟 less than roughly
0.2. A sample vertical-velocity profile at 𝑟 = 0.01 (Fig. 7)
confirms that the 𝑤 profiles from the time-marching and

3The dimensional growth rate for 𝑟 → 0 is 1.62
√

2𝑈 𝑓 /(𝑁𝐻) and
the dimensional half-ascent length is 𝜋

√
𝑟/(2

√
2)𝑁𝐻/ 𝑓 , where 𝐻 is

the depth of one layer and the vertical shear is 2𝑈/𝐻.

dispersion relations are in very good agreement at small 𝑟.
As the critical value of 𝑟 = 0.38 is approached, the root-
finding solution for 𝑏 tends to large numbers. For values of
𝑟 > 0.38, we only find solutions to the dispersion relation
for which the half-ascent length 𝑏 < 0. These solutions are
unphysical and can be discarded.

Mathematically, the breakdown of the solution on an
infinite domain at 𝑟 = 0.38 can be traced to the point at
which 𝜎2 + 𝑟 −1 = 0 and the right-hand sides of Eqs. (22-
23) diverge to infinity. Empirically we find that as this
point is approached, both 𝑘1 and 𝑘2 also go to zero, such
that 𝑏 → ∞ is needed to balance a diverging right-hand
side. Setting 𝑘1 = 𝑘2 = 0 we obtain 𝑟 =

(
3−

√
5
)
/2 = 0.38

and 𝜎 =

√︃
(
√

5−1)/2 = 0.79 for the breakdown point in
good agreement with the numerical results. Beyond this
point 𝜎2 + 𝑟 −1 < 0, which implies from Eqs. (15-16) that
𝑘2 becomes imaginary while 𝑘1 remains real. Hence, tan
in Eq. (23) switches to tanh while the right-hand side of
Eq. (23) becomes negative. To satisfy the equation for
growing modes, this requires 𝑏 < 0 which is unphysical.

Thus, while DRV solutions continue to exist for 𝑟 >

0.38 on a finite domain with periodic boundary conditions,
isolated DRV solutions on an infinite domain cease to exist.

3. The role of meridional PV gradients and the wave-
vortex transition

So far we have discussed the emergence of DRVs in
a moist two-layer model with zero meridional PV gradi-
ents in which PV is generated purely from diabatic effects.
While such a setup is a useful idealization for a DRV mode,
we are interested in studying how the occurrence of DRVs
generalizes to a more realistic situation with PV gradients.
We start by considering a qualitative PV argument for how
the dynamics changes as diabatic effects become dominant
over meridional PV advection, and we then extend our
tilted two-layer model to include meridional PV gradients.

a. PV dynamical perspective on the wave-vortex transition

The transition from a periodic wave to an isolated vortex
mode in simulations of moist baroclinic instability in which
diabatic effects become dominant can be interpreted ele-
gantly within the PV framework of a moist two-layer model
(see Fig. 8). Focusing on the lower layer (the upper layer
is analogous), we start from the initial condition of a PV
wave train consisting of positive and negative anomalies
(Fig. 8a).

In a regime in which PV gradients are dominant, merid-
ional advection of the negative background PV gradient
in the lower layer would generate a positive PV tendency
to the east of a positive PV anomaly, and a negative PV
tendency to its west. These advective PV tendencies give
rise to a eastward propagating Rossby wave that can phase
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Table 1. Comparison of the nondimensional and dimensional growth rate 𝜎, and half-ascent length in two-layer models for the most unstable
dry wave (Phillips 1954), moist wave (Emanuel et al. 1987) and DRV. The half-ascent length is given by quarter the wavelength for the dry wave,
and by half the length of the region of ascent for the DRV and moist wave (for the DRV it is 𝑏). Dimensional values for the growth rate (𝜎 𝑈

𝐿𝐷
)

and ascent length (𝑏𝐿𝐷) are calculated using typical scales 𝐿𝐷 = 𝑁𝐻√
2 𝑓

= 1000 km/
√

2, and 𝑈 = 10 m s−1. The factor of
√

2 in 𝐿𝐷 follows from
our choice of nondimensionalization. Growth rates for the moist wave and DRV are presented in the limit of a convectively neutral stratification
(𝑟 → 0). Half-ascent lengths for the moist wave and DRV are presented as the small-𝑟 asymptotic expressions for the non-dimensional results, and
evaluated at 𝑟 = 0.01 (representative of a warm climate) for the dimensional results, since the ascent length would be zero for 𝑟 → 0.

Growth rate Growth rate (day−1) Half-Ascent length Half-Ascent length (km)
𝑟 → 0 𝑟 → 0 𝑟 ≪ 1 𝑟 = 0.01

Dry wave
√

2−1 = 0.41 0.50 𝜋

2
√√

2−1
1726

Moist wave 1.05 1.28 𝜋
2
√
𝑟 111

DRV 1
2 (1+

√
5) = 1.62 1.98 𝜋

2
√
𝑟 111

 Growth Rate
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Fig. 6. (a) Growth rate 𝜎 and (b) half-ascent length 𝑏 from the time-marching solutions of the tilted model equations (Eqs. 4,5 and 7) in a finite
periodic domain 𝐿 = 32𝜋 with Δ𝑥 = 0.084 (solid red), and from the root-finding of the dispersion Eqs. (22-23) for an infinite domain (dashed blue).
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Fig. 7. Comparison of the vertical velocity versus 𝑥 for 𝑟 = 0.01
from the time-marching solution (Eqs. 4,5 and 7) in a finite periodic
domain (solid red), and from the root-finding of the dispersion relation
(Eqs. 22-23) for an infinite domain (dashed blue).

lock and grow by interacting with a counter-propagating
Rossby wave in the upper layer.

If instead we are in a regime in which the diabatic gen-
eration of PV is dominant, ascent to the east of a positive

PV anomaly causes latent heat release that generates a pos-
itive PV tendency in the lower layer, whereas descent to its
west does not generate latent heating and thus there is no
negative PV tendency in the lower layer. Thus, only posi-
tive PV anomalies survive in the lower layer (with repeated
amplitude rescaling to calculate the growing mode) due to
the asymmetry in diabatic PV generation (Fig. 8b).

However, a series of positive PV anomalies have weaker
meridional flow between them (because of cancellation of
the induced flow from neighboring PV anomalies; Fig.
8b) as compared to the meridional flow surrounding an
isolated single PV anomaly. Thus one PV anomaly is
a faster growing mode of the system when diabatic PV
generation is dominant over meridional PV advection (Fig.
8c).

b. Including PV gradients in the two-layer tilted model

A range of PV gradients can be easily included in our
two-layer model by tilting the top and bottom boundaries
at variable slopes ℎ1𝑦 = 𝛼1 and ℎ2𝑦 = 𝛼2. We retain the
basic state 𝜏0 = −𝑦 (nondimensionalized) and 𝜙0 = 0 cor-
responding to a shear flow in thermal wind balance. The
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Fig. 8. PV perspective on the transition from a periodic wave to an
isolated vortex in simulations of moist baroclinic instability. Cyclonic
PV anomalies are shown in red pluses and anticylonic PV anomalies are
shown in blue minuses. Blue arrows illustrate the direction of horizontal
winds induced by the anomalies. Starting from an initial condition
consisting of (a) a wave train of PV anomalies in the lower layer, (b) only
positive anomalies survive due to the asymmetry in diabatic generation.
However, a series of positive anomalies have weaker meridional flow
between them which leads to weaker diabatic PV generation as compared
to an isolated anomaly, and thus (c) one anomaly is a faster growing mode
of the system.

perturbation equations around this basic state are derived
in section a of the appendix and take the form

𝜕𝑡𝜙𝑥𝑥 + 𝜏𝑥𝑥𝑥 −
1
2
(𝛼1 −𝛼2)𝜙𝑥 −

1
2
(𝛼1 +𝛼2)𝜏𝑥 = 0,

(27)

𝜕𝑡𝜏𝑥𝑥 +𝜙𝑥𝑥𝑥 −
1
2
(𝛼1 −𝛼2)𝜏𝑥 −

1
2
(𝛼1 +𝛼2)𝜙𝑥 +𝑤 = 0,

(28)

𝜕𝑡𝜏−𝜙𝑥 + 𝑟 (𝑤)𝑤 = 𝑟 (𝑤)𝑤,
(29)

with PV gradients 𝑞1𝑦 = 1−𝛼1 and 𝑞2𝑦 = −1+𝛼2.
We solve the equations numerically for given values of

𝑟, 𝛼1 and 𝛼2 using time marching as in section b. We
use a domain size of 𝐿 = 8𝜋, but to calculate solutions
for a large parameter space we use a larger grid spacing
of Δ𝑥 = 0.13 than before. We classify the most unstable
solution as either an isolated DRV (single local maximum
in 𝑤) or a periodic wave (multiple local maxima in 𝑤) or
stable. Local maxima in𝑤 for which𝑤 < 0 are not counted.
Cases that are stable or very weakly growing (𝜎 < 0.09)
are counted as stable. The results of this classification are
shown in Fig. 9 along with the growth rate 𝜎 in Fig. 9 a-c
and half-ascent length 𝑏 in Fig. 9 d-f.

We begin by focusing on the equally-tilted case 𝛼1 =

𝛼2 = 𝛼 for which 𝑞1𝑦 = −𝑞2𝑦 = 1−𝛼. We let 0 ≤ 𝛼 ≤ 2
which includes the classic untilted regime with 𝑞1𝑦 = 1 and
𝑞2𝑦 = −1 at 𝛼 = 0, the no PV gradient regime 𝑞1𝑦 = 𝑞2𝑦 = 0

from the previous section at 𝛼 = 1, and a reversed PV
gradient regime 𝑞1𝑦 = −1 and 𝑞2𝑦 = 1 at 𝛼 = 2. For
𝛼 < 1, a DRV emerges as the fastest growing solution when
the magnitudes of the upper and lower PV gradients are
weaker than a threshhold 𝑞𝑦𝑐𝑟𝑖𝑡 of roughly 0.7 such that
𝑞1𝑦 = −𝑞2𝑦 < 𝑞𝑦𝑐𝑟𝑖𝑡 as shown in Fig. 9a.4 When instead
the magnitudes of the upper and lower PV gradients are
greater than the critical threshold (𝑞1𝑦 = −𝑞2𝑦 > 𝑞𝑦𝑐𝑟𝑖𝑡 ),
the periodic wave emerges as the fastest growing solution
for all values of 𝑟 . For the cases with 𝛼 > 1 where the
PV gradients are reversed from their usual directions, a
DRV is the fastest growing solution but it is necessary
for 𝑟 to be sufficiently low for the solution to be unstable,
consistent with the dry solutions (𝑟 = 1) being Fjørtoft sta-
ble (Fjørtoft 1950, Pedlosky 1964) due to the mismatch
between the directions of the shear and PV gradients. Evi-
dently, this mismatch is also sufficient to inhibit the growth
of the moist modes unless 𝑟 is sufficiently low such that the
dynamics is dominated by latent heating. Overall, these
results confirm that the emergence of isolated DRV modes
in the tilted model is not an artifact of having exactly zero
PV gradients — though this is a useful limit to consider
for theory — but rather generalizes to more realistic con-
figurations that do include PV gradients. Again, we have
repeated the calculations using a linear drag acting on the
relative vorticity in the lower layer with a damping time
scale of either 10 days (weak drag) or 2.5 days (strong
drag). The wave-vortex transition persists, with the pre-
cise boundary largely unaffected by drag. Length scales
are similar, but the growth rates are reduced (not shown).

Surprisingly, Fig. 9a suggests that the transition from
wave to DRV regime in the two-layer model with equal and
opposite PV gradients is independent of 𝑟 (the boundary
at 𝑞𝑦𝑐𝑟𝑖𝑡 is entirely horizontal) but does rely on weaken-
ing or reversing the PV gradients compared to the classic
untilted two-layer model. We investigate this result further
by repeating the calculations with PV gradients that are
not equal and opposite, but rather allowed to vary inde-
pendently from each other, for two example values of 𝑟

(Fig. 9 b, c). We observe that lowering of 𝑟, as expected
in a warmer climate whose stratification is closer to moist
adiabatic, does make a difference since it produces DRVs
as the fastest growing solution for a larger range of PV
gradients, particularly away from the diagonal line where
the PV gradients are exactly equal and opposite. We also
recall from the analytical solutions the existence of an up-
per bound on 𝑟 for DRVs to occur in an infinite domain
when the PV gradients are zero (Fig. 6). Overall, we find

4Note that the solutions classified as DRVs at 𝑟 = 1 could instead be
considered to be waves. From the dry dispersion relation, the wavelength
of these most unstable dry modes becomes infinite (not shown), and thus
one maximum in 𝑤 is found numerically in the domain no matter how
large of a domain is chosen. Note also that the pure DRV solution with
𝑞1𝑦 = 𝑞2𝑦 = 0 at 𝑟 = 0.9 is shown to be stable but would grow weakly
on a larger domain.
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Fig. 9. Phase diagram showing whether the most unstable mode of the tilted two-layer model is a periodic wave (blue) or a DRV (red) or stable
(white) for a setup where (a,d) the PV gradients are equal and opposite in strength 𝑞1𝑦 = −𝑞2𝑦 for multiple values of 𝑟 , and for a setup where the
PV gradients vary independently from each other and (b,e) 𝑟 = 0.1 or (c,f) 𝑟 = 0.01. Dashed lines in (a-c) show the growth rate and dashed lines in
(d-f) show the half-ascent length 𝑏. The domain length is 𝐿 = 8𝜋 and the grid spacing is Δ𝑥 = 0.13. Note that the standard two-layer configuration
has positive upper-layer PV gradient (𝑞1𝑦 > 0) and negative lower-layer PV gradient (𝑞2𝑦 < 0) which corresponds to the upper-left quadrants in
(b,c,e, and f).

that both weak PV gradients and weak moist static stability
(small r) can favor DRVs.

4. Comparison to storms at finite amplitude

Our two-layer theory for DRV modes and the warm-
climate DRV mode in the idealized GCM calculation of
O’Gorman et al. (2018) are both based on an assump-
tion of small amplitude disturbances. In this section, we
analyze DRV storms in reanalysis and a warm-climate sim-
ulation of the idealized GCM to see how finite amplitude
affects storm structure. We are particularly interested in
the question of whether finite-amplitude effects can weaken
the upper-level anticyclonic PV anomaly and possibly lead
to DRVs that propagate but do not grow strongly due to
the lower PV anomaly not having a strong enough upper
PV anomaly with which to interact. Differences in the
vertical structure of PV anomalies are expected at finite
amplitude for two reasons. First, diabatic PV generation is
weaker at finite amplitude in anticyclonic regions, an effect
that is captured in semigeostrophic models (Hoskins 1975;
Emanuel et al. 1987). Second, vertical advection of PV at
finite amplitude can significantly offset negative diabatic
generation at upper levels because positive PV anomalies
at lower levels are advected upwards.

We compare the structure of the warm climate DRV
mode (Fig. 1a) to a finite-amplitude DRV storm in the
same idealized GCM and climate (Fig. 1c) and to two
finite-amplitude storms from reanalysis. The first storm
from reanalysis is the east-coast winter storm (Fig. 10a),
that was identified as a propagating and moderately grow-
ing DRV by Moore et al. (2008). It later experienced
explosive growth through interaction with a prexisting up-
per PV anomaly, but we consider the earlier diabatic phase.
The second storm from reanalysis is an example midlati-
tude summer cyclone (Fig. 10 c) from an updated version
of the DRV climatology of Boettcher and Wernli (2013)
that is based on ERA5 reanalysis (Hersbach et al. 2020).
It was identified as a DRV by a tracking algorithm, select-
ing for substantial baroclinicity, sufficient moisture, fast
propagation, and weak upper-level forcing. These exam-
ple storms are meant to illustrate some of the variations in
the constellation of PV anomalies and diabatic generation
in observed DRVs.

Ertel PV anomalies are defined with respect to a zonal
mean for the idealized GCM (using once daily fields for
the mode and 6 hourly for the macroturbulent state) and
with respect to a 4-day moving average for the 6-hourly
fields from ERA5 reanalysis forecasts. The forecast mode
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Fig. 10. PV structure and PV generation rate due to latent heating of the (a,b) 2005 winter storm (latitude 37 ◦ at 0000UTC 25 Feb 2005)
which was identified as a DRV in Moore et al. (2008), and (c,d) an example summer cyclone (latitude 41.25 ◦ at 0500UTC 10 Jul 2009) which was
identified as a DRV in the climatology of Boettcher and Wernli (2013). Shading shows PV anomalies with respect to a 4-day moving average (using
6-hourly fields). Contours show (a,c) the diabatic PV generation (the first term on the right-hand-side of Eq. (31)) and (b,d) the generalized diabatic
PV generation including both diabatic PV generation and diabatic vertical advection as in Eq.(30). In all cases only diabatic effects from latent
heating are included. Red contours are positive and blue contours are negative, and the contour interval is 0.44 pvu h−1 for (a,b) and 0.10 pvu h−1 for
(c,d). The zero contour line is not shown. All fields are calculated from ERA5 reanalysis, and PV is calculated using the hydrostatic approximation
to Ertel’s PV.

is chosen because it provides the temperature tendencies
necessary for the calculation of latent heating. The fields
are first interpolated from model to pressure levels, for both
GCM and reanalysis fields, prior to calculating the PV and
PV generation rates.

In addition to considering the usual diabatic PV gen-
eration rate, we also consider the diabatic source of PV
in isentropic coordinates according to Eq.(74a) in Hoskins
et al. (1985)

¤𝑄diab =𝑄2 𝜕 ( ¤𝜃𝑄−1)
𝜕𝑝

(
𝜕𝜃

𝜕𝑝

)−1
(30)

which we refer to as the generalized PV generation. Here
𝑄 is the potential vorticity, 𝜃 is the potential temperature,
¤𝜃 is the potential temperature tendency, and we have re-
expressed the vertical derivatives with respect to pressure
rather than potential temperature. Equation 30 may also

be written as

¤𝑄diab =𝑄
𝜕 ¤𝜃
𝜕𝑝

(
𝜕𝜃

𝜕𝑝

)−1
− ¤𝜃 𝜕𝑄

𝜕𝑝

(
𝜕𝜃

𝜕𝑝

)−1
, (31)

which shows that the generalized PV generation combines
diabatic PV generation (first term on the right hand side)
and diabatic vertical advection of PV (second term on the
right hand side).5 Including vertical advection of PV is
important because it can strongly offset diabatic PV gener-
ation (Büeler and Pfahl 2017, Lackmann 2002, Martínez-
Alvarado et al. 2016, Stoelinga 1996, Persson 1995, Pfahl
et al. 2015, Wernli and Davies 1997), and its inclusion
clearly improves the match between the vertical structures

5An alternative approach of including vertical advection of PV in
pressure coordinates (rather than diabatic vertical advection) gives simi-
lar results except that there can be additional vertical advection of PV in
the upper troposphere and stratosphere in regions where latent heating
is small.
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of PV anomalies and PV generation for the small-amplitude
DRV mode in the idealized GCM (compare Fig. 1a,b). In
addition, considering diabatic vertical advection as part of
the diabatic source of PV makes a closer connection to our
QG theory in which the pseudo-PV is not advected in the
vertical.

We only consider diabatic effects due to latent heat-
ing. For the idealized GCM, we have confirmed that there
is no convective precipitation in the region of the finite-
amplitude DRV storm, and ¤𝜃 was inferred from the large-
scale condensation tendency of specific humidity which
was saved as an output field. For the reanalysis fields, ¤𝜃
was calculated from the ERA5 temperature tendency from
all parameterizations in the forecast mode minus the contri-
butions from longwave and shortwave radiation. Radiative
contributions to PV generation were separately evaluated
and found to be negligible.

The finite-amplitude DRVs from reanalysis (Fig. 10)
do not extend as high in the atmosphere as the DRV in
the warm climate of the idealized GCM, and this is as
expected given that they occur in the current climate in
which tropopause is lower and latent heating occurs lower
in the troposphere. The generalized diabatic PV gener-
ation (contours in Fig. 10b,d) is noticeably smaller in
magnitude for the upper-level negative generation rates as
compared to lower-level positive generation rates. From
the point of view of Eq. (31), the magnitude of diabatic
PV generation is reduced in the upper anticylonic region
as compared to the lower cyclonic region in which 𝑄 is
larger, an effect that has been seen before in the context
of warm conveyor belts (Joos and Wernli 2012), and the
negative diabatic PV generation is also offset by upward
diabatic advection of positive PV from the positive PV
anomaly lower in the atmosphere. Alternatively, from the
point of view of Eq. (30), the factor of𝑄2 tends to be much
smaller in magnitude in anticyclonic regions as compared
to cylonic regions of a finite-amplitude storm. As a result,
the upper-level negative PV anomaly is weaker in magni-
tude than the lower-level positive PV anomaly, especially
in the case of the winter storm in which it is difficult to
clearly identify a negative upper-level PV anomaly that is
diabatically generated.

The reason the winter storm has a greater asymmetry
between lower and upper PV anomalies as compared to
the summer storm seems to be because it is a stronger
storm (which emphasizes the finite amplitude effects) but
also because of more subtle effects related to its vertical
profile of ¤𝜃 being more bottom heavy. The absence of a
clear upper-level negative PV anomaly in the winter storm
may reduce its growth rate at this point in its evolution,
but further work would be needed to definitively link the
observed growth rates and PV structures, especially given
that moist baroclinic waves in the semigeostrophic Eady
model have weak upper-level negative PV anomalies but
can still grow strongly (Emanuel et al. 1987).

The finite-amplitude DRV in the warm-climate simula-
tion of the idealized GCM (Fig. 1c,d) shows some sim-
ilarities to the corresponding small amplitude mode (Fig.
1a,b), although the upper-level negative PV anomaly and
the generalized diabatic PV generation are considerably re-
duced in the storm compared to the mode for vertical levels
between 300hPa and 500hPa and the positive PV anomaly
extends higher, both as a result of diabatic vertical ad-
vection of PV. Negative generation of PV is nonetheless
strong in the upper troposphere near the tropopause, and
this seems to be because of diabatic vertical advection up
the mean vertical PV gradient at those levels.

Overall, our analysis of finite-amplitude DRV storms
shows that finite-amplitude effects must be taken into ac-
count to relate the structure of PV anomalies and diabatic
generation in observed DRVs particularly for the upper-
level PV anomalies. Our results also show the value of
combining diabatic PV generation and diabatic vertical ad-
vection in a generalized diabatic PV generation diagnostic
(following Hoskins et al. (1985)), especially when trying
to connect to simpler QG models and modal solutions.

5. Conclusions

We have analyzed a moist two-layer QG model with con-
ditional latent heating and tilted boundaries and shown that
it is capable of producing a DRV mode. The emergence of
a DRV solution in a minimal model retaining the essential
physics of baroclinicity and moisture clarifies the physi-
cal mechanisms involved and allows us to derive the first
analytical expressions for the growth rate and horizontal
length scale of DRVs.

A key step in our approach is the tilting of the model
boundaries at a slope equal to the mean isentropes which
makes the two-layer model an analog of the interior of the
Eady model in which dry-baroclinic instability has been
shut off but moist instabilities are still possible. This
allowed us to obtain a pure DRV solution within a con-
ceptually simple two-layer model. PV-budget analysis re-
vealed two distinct dynamical regimes. In the ascending
branch, growth of the anomalies was maintained by dia-
batic heating partly offset by zonal advection, while in the
descending branch growth was maintained solely by zonal
advection.

We went on to derive the analytical dispersion relation
for the growth rate and horizontal length scale of a DRV on
an infinite domain, a significant novelty of this paper. The
governing equation for the vertical velocity in the DRV is
similar to the equation for the vertical velocity of moist
baroclinic waves (Emanuel et al. 1987; Zurita-Gotor 2005)
except for the presence of two extra terms which lead to
isolated rather than periodic solutions – a distinctive char-
acteristic of the DRV. Analytic solutions to the dispersion
equations were found in the limit of small static-stability
reduction factor (i.e., in the limit in which the stratification
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is neutral to moist convection). While the ascent length re-
mains the same for the DRV as for the moist wave solutions
of Emanuel et al. (1987) in this limit, the DRV grows faster
by 54% as compared to the moist wave. This faster growth
is consistent with the fact that the DRV emerged as the
fastest growing solution in the moist baroclinic instability
simulations of O’Gorman et al. (2018) in a warm climate
with small moist static stability. Root-solving of the dis-
persion equations for a larger range of 𝑟 values showed that
physical solutions cease to exist when 𝑟 > 0.38. This is
an indication that isolated DRV disturbances cannot exist
on an infinite domain when the moist static stability is not
small enough.

Including non-zero meridional PV gradients in the tilted
two-layer model and varying their strengths and varying the
moist static stability (as represented by the reduction factor
𝑟), we showed that isolated DRV solutions emerge even in
more realistic model setups and are not an artifact of the
assumption of zero PV gradients in our simplest version of
the tilted two-layer model. The most unstable mode transi-
tions from periodic waves to isolated DRVs when the mag-
nitude of the PV gradients is weakened or entirely reversed
compared to the standard two-layer setup. This suggests
that the vertical structure of meridional PV gradients may
be an important additional factor that helps to determine
DRV genesis zones in addition to small moist static sta-
bility. Weak QG PV gradients can be found particularly
at polar latitudes in the current climate, which could help
strengthen the links that have been previously established
between the growth mechanism of DRVs and polar lows
(Montgomery and Farrell 1991, Montgomery and Farrell
1992, Moore and Montgomery 2005, Moreno-Ibáñez et al.
2021).

The stark transition from periodic wave solutions to iso-
lated DRV disturbances when diabatic heating becomes
more important than meridional PV advection was also ex-
plained qualitatively using ‘PV-thinking’: in a diabatically
dominated regime, the asymmetry of the diabatic heating
regenerates only positive PV anomalies in the lower layer
and negative PV anomalies in the upper layer. However, a
series of like-signed PV anomalies in each layer leads to
weaker meriodional flow between the PV anomalies than
occurs for a single PV dipole consisting of one anomaly in
each layer. Thus the single PV dipole has stronger ascent
and latent heating and emerges as the fastest growing mode
of the system.

Finally, we compared the structure of small-amplitude
DRV modes with finite-amplitude storms from reanalysis
in winter and summer and from a warm-climate simu-
lation in an idealized GCM. The finite-amplitude storms
have similarities with the small-amplitude DRV modes but
also some differences. In the storms from reanalysis, the
upper-level negative PV anomaly is substantially weaker
than the lower-level positive PV anomaly. This asymmetry

arises because diabatic PV generation is weaker in anticy-
clonic regions at finite amplitude, and also because upward
PV advection from the positive PV anomaly at lower lev-
els can offset the upper-level negative PV anomaly. For
the finite-amplitude DRV in the warm climate of the ide-
alized GCM, vertical advection of the mean vertical PV
gradient near the tropopause meant there was still a strong
upper-level negative PV anomaly. In the case of the winter
storm, the upper-level PV anomaly was sufficiently weak
that it was difficult to identify, and we hypothesize that
a weak upper-level PV anomaly may explain why some
DRV storms in the current climate propagate but do not
grow strongly. This hypothesis could be tested in future
work with a semigeostrophic model that has sufficient ver-
tical levels to accurately resolve vertical PV advection, and
by tracking DRVs across a range of climates in idealized
GCM simulations to study the relationship between growth
rates and the structure of the PV anomalies.

Future work could also investigate whether a DRV solu-
tion and wave-vortex transition can also be isolated within
a continous Eady model in which dry baroclinic instabil-
ity is eliminated by removing the upper lid. This setup is
likely no longer tractable analytically (because solutions
are no longer separable in the presence of nonlinear heat-
ing (Zurita-Gotor 2005)), but a numerical analysis would
make for a useful extension of this work, in which real-
istic features such as near surface temperature advection,
vertically dependent drag and vertically dependent static
stability reduction factor could be more readily incorpo-
rated.
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APPENDIX

a. Derivation of the Tilted Two-Layer Model

We discretize the moist-quasigeostrophic equations on
an f-plane (Eqs. 1,2) in the vertical taking into account
the tilted boundaries ℎ1 (𝑦) and ℎ2 (𝑦) through a modified
boundary condition on 𝑤 at the top and bottom (Fig. A1).
For the vorticity equations in the two layers we obtain

𝜕𝑡∇2𝜓1 + 𝐽 (𝜓1,∇2𝜓1) −
𝑓

𝐻
(𝐽 (𝜓1, ℎ1) −𝑤) = 0, (A1)

𝜕𝑡∇2𝜓2 + 𝐽 (𝜓2,∇2𝜓2) −
𝑓

𝐻
(𝑤− 𝐽 (𝜓2, ℎ2)) = 0. (A2)

Adding and subtracting gives vorticity equations in terms
of the barotropic streamfunction 𝜙 and baroclinic stream-
function 𝜏

𝜕𝑡∇2𝜙+ 𝐽 (𝜙,∇2𝜙) + 𝐽 (𝜏,∇2𝜏) − 𝑓

2𝐻
𝐽 (𝜙, ℎ1 − ℎ2)

− 𝑓

2𝐻
𝐽 (𝜏, ℎ1 + ℎ2) = 0,

(A3)

𝜕𝑡∇2𝜏 + 𝐽 (𝜙,∇2𝜏) + 𝐽 (𝜏,∇2𝜙) + 𝑓

𝐻
𝑤− 𝑓

2𝐻
𝐽 (𝜙, ℎ1 + ℎ2)

− 𝑓

2𝐻
𝐽 (𝜏, ℎ1 − ℎ2) = 0.

(A4)

Discretizing the thermodynamic equation in the vertical,
we obtain

𝜕𝑡𝜏 + 𝐽 (𝜙, 𝜏) +
𝑁2𝐻

2 𝑓
𝑟 (𝑤)𝑤 =

𝑁2𝐻

2 𝑓
𝑟 (𝑤)𝑤. (A5)

We non-dimensionalize using 𝑥, 𝑦 ∼ 𝐿𝐷 where 𝐿𝐷 = 𝑁𝐻√
2 𝑓

is the deformation radius with individual layer height H,
𝑧 ∼ 𝐻, 𝑢, 𝑣 ∼ 𝑈, 𝑤 ∼ 𝑈2𝐻

𝑓 𝐿2
𝐷

, 𝜙 = 𝜏 ∼ 𝑈𝐿𝐷 , 𝑡 ∼ 𝐿𝐷

𝑈
, and

ℎ1, ℎ2 ∼ 𝑈𝐻
𝑓 𝐿𝐷

to obtain

𝜕𝑡∇2𝜙+ 𝐽 (𝜙,∇2𝜙) + 𝐽 (𝜏,∇2𝜏) − 1
2
𝐽 (𝜙, ℎ1 − ℎ2)

− 1
2
𝐽 (𝜏, ℎ1 + ℎ2) = 0,

(A6)

𝜕𝑡∇2𝜏 + 𝐽 (𝜙,∇2𝜏) + 𝐽 (𝜏,∇2𝜙) +𝑤− 1
2
𝐽 (𝜙, ℎ1 + ℎ2)

− 1
2
𝐽 (𝜏, ℎ1 − ℎ2) = 0,

(A7)

𝜕𝑡𝜏 + 𝐽 (𝜙, 𝜏) + 𝑟 (𝑤)𝑤 = 𝑟 (𝑤)𝑤 (A8)

where all variables are now non-dimensional. We next
assume small amplitude perturbations about the basic state
𝜏0 = −𝑦 and 𝜙0 = 0 corresponding to a shear flow 𝑢1 = 1
and 𝑢2 = −1, such that the advection terms are linearized.
Note however that the thermodynamic equation remains
nonlinear because of the nonlinear dependence of 𝑟 (𝑤) on
𝑤. Finally, using the tilted boundary conditions ℎ1 = ℎ2 = 𝑦

and assuming that the perturbations are independent of 𝑦
gives the perturbation Eqs. (4-6). If instead we assume
ℎ1 = 𝛼1𝑦 and ℎ2 = 𝛼2𝑦, we obtain the perturbation Eqs.
(27-29).

b. Derivation of the equation for w

Starting from Eqs. (9-11), we first take two derivatives
of Eq. (11) and subtract Eq. (10) to get

(𝑟 (𝑤)𝑤)𝑥𝑥 −𝑤 = 2𝜙𝑥𝑥𝑥 −𝜙𝑥 . (A9)

Multiplying Eq. (9) by 𝜎 and taking one derivative, and
substituting for 𝜏𝑥𝑥 and 𝜏𝑥𝑥𝑥𝑥 using Eq. (10) we find

𝑤−𝑤𝑥𝑥 +𝜎2𝜙𝑥𝑥𝑥 −𝜙𝑥𝑥𝑥𝑥𝑥 +2𝜙𝑥𝑥𝑥 −𝜙𝑥 = 0, (A10)

where the last two terms 2𝜙𝑥𝑥𝑥 − 𝜙𝑥 can be substituted
using Eq. (A9) to give

(𝑟 (𝑤)𝑤)𝑥𝑥 −𝑤𝑥𝑥 = 𝜙𝑥𝑥𝑥𝑥𝑥 −𝜎2𝜙𝑥𝑥𝑥 . (A11)

Double integration of Eq. (A11) yields the relation

𝑟 (𝑤)𝑤−𝑤 = 𝜙𝑥𝑥𝑥 −𝜎2𝜙𝑥 + 𝑟 (𝑤)𝑤, (A12)

where we have used mass conservation (𝑤 = 0) to choose
the integration constant (this relation will be necessary as
a substitution at the end of the derivation). Taking two
derivatives of Eq. (A9) and subtracting Eq. (A11) twice
gives
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Fig. A1. Schematic of the tilted two-layer model in the x-z plane.

(𝑟 (𝑤)𝑤)𝑥𝑥𝑥𝑥 −2(𝑟 (𝑤)𝑤)𝑥𝑥 +𝑤𝑥𝑥 = 2𝜎2𝜙𝑥𝑥𝑥 −𝜙𝑥𝑥𝑥 .

(A13)

Subtracting Eq. (A9) multiplied by 𝜎2 from Eq. (A13) we
get

(𝑟 (𝑤)𝑤)𝑥𝑥𝑥𝑥 − (2+𝜎2) (𝑟 (𝑤)𝑤)𝑥𝑥 +𝑤𝑥𝑥 +𝜎2𝑤

= −𝜙𝑥𝑥𝑥 +𝜎2𝜙𝑥 .
(A14)

Using Eq. (A12) allows us to substitute the last 𝜙 terms in
Eq. (A14) to finally obtain Eq. (12) which is an equation
in 𝑤 only.

c. Mass conservation for a DRV on an infinite domain

Imposing mass conservation
∫ 𝐿

0 𝑤𝑑𝑥 = 0 on the solution
defined by Eqs. (13) and (14) and using Eq. (17) yields

𝑎𝑏

𝑟 +𝜎2 −1
+ 𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏)

+ 𝑎

𝜎2 (𝐿− 𝑏) + 𝑎

𝜎2 (𝑒
−(𝐿−𝑏) −1)

+ 𝑑2

(
− 1
𝜎
(𝑒−𝜎 (𝐿−𝑏) −1) + (𝑒−(𝐿−𝑏) −1)

)
= 0.

(A15)

We are interested in the infinite-domain limit 𝐿 →∞. It
is important that we took the integral in 𝑥 to obtain Eq.
(A15) prior to taking the limit 𝐿 → ∞ (i.e., taking the
limit of the statement of mass conservation) because the
order of taking the limit and integral affects the result. As
shown in section 2c, the definition of 𝑎 together with mass
conservation implies that 𝑎 = 1

𝐿

∫ 𝑏

0 (𝑟 − 1)𝑤↑𝑑𝑥 such that
𝑎 → 0 if we want solutions for which 𝑏 and 𝑤↑ remain
bounded. This leaves us with the indeterminate term 𝑎𝐿

in the mass conservation equation (Eq. A15). We can
eliminate this term by using

𝑎𝐿 =

∫ 𝑏

0
(𝑟 −1)𝑤↑𝑑𝑥

= (𝑟 −1)
(

𝑎𝑏

𝑟 +𝜎2 −1
+ 𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏)
)
,

(A16)

to arrive at a form of the mass conservation condition that
does not involve 𝑎𝐿:

𝑎𝑏

𝜎2 + 𝑟 −1
+ 𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏)

+ 𝑟 −1
𝜎2

(
𝑎𝑏

𝜎2 + 𝑟 −1
+ 𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏)
)

− 𝑎𝑏

𝜎2 + 𝑎

𝜎2

(
𝑒−(𝐿−𝑏) −1

)
+ 𝑑2

(
− 1
𝜎
(𝑒−𝜎 (𝐿−𝑏) −1) + (𝑒−(𝐿−𝑏) −1)

)
= 0.

(A17)

We can now take the limit 𝐿 →∞ and 𝑎 → 0 to arrive at
Eq. (21) in the main text. For completeness we note that
by substituting Eq. (21) into Eq. (A16), and taking the
limit 𝐿 →∞ and 𝑎 → 0, we obtain the expression

𝑎𝐿 = 𝑑2
(𝑟 −1)𝜎(𝜎−1)

𝑟 +𝜎2 −1
. (A18)

d. Derivation of the dispersion relation

To derive the dispersion relation from the constraints
(Eqs. 18-21), we write the constraints solely in terms of
equations for 𝑐1 and 𝑐2. Writing Eq. (18) and (20) as
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(
1 1
𝑘2

1 𝑘2
2

) (
𝑐1 cos(𝑘1𝑏)
𝑐2 cos(𝑘2𝑏)

)
= 𝑑2

(
0

1−𝜎2

𝑟

)
, (A19)

and inverting, we obtain

(
𝑐1 cos(𝑘1𝑏)
𝑐2 cos(𝑘2𝑏)

)
=

𝑑2

𝑘2
2 − 𝑘2

1

(
𝑘2

2 −1
−𝑘2

1 1

) (
0

1−𝜎2

𝑟

)
. (A20)

Similarly, writing Eq. (19) and (21) as

(
𝑘1 𝑘2

1/𝑘1 1/𝑘2

) (
𝑐1 sin(𝑘1𝑏)
𝑐2 sin(𝑘2𝑏)

)
= 𝑑2

(
𝜎−1
𝑟

𝜎 (𝜎−1)
𝜎2+𝑟−1

)
, (A21)

and inverting, we obtain

(
𝑐1 sin(𝑘1𝑏)
𝑐2 sin(𝑘2𝑏)

)
=
𝑑2𝑘1𝑘2

𝑘2
1 − 𝑘2

2

(
1/𝑘2 −𝑘2
−1/𝑘1 𝑘1

) (
𝜎−1
𝑟

𝜎 (𝜎−1)
𝜎2+𝑟−1

)
(A22)

Dividing the equations for 𝑐𝑖 sin 𝑘𝑖𝑏 and 𝑐𝑖 cos 𝑘𝑖𝑏, with
𝑖 = 1,2, by each other, we obtain the two tan equations that
form the dispersion relation (Eqs. 22 and 23) in section 2c.

e. Asymptotic expressions for growth rate and half-ascent
length

In the limit 𝑟 ≪ 1, the wavenumbers can be simplified
to 𝑘1 = 1√

𝑟
+𝑂 (

√
𝑟) and 𝑘2 =

√
𝜎2 −1 +𝑂 (𝑟) where we

assume that 𝜎 = 𝜎0 is an 𝑂 (1) quantity to be determined.
Plugging these expressions into the two tangent Eqs. (22-
23) that form the dispersion relation we obtain to leading
order:

tan
(
𝑏
√
𝑟

)
= − 1

√
𝑟 (1+𝜎0)

, (A23)

tan
(
𝑏

√︃
𝜎2

0 −1
)
=

√︃
𝜎2

0 −1(1−𝜎2
0 +𝜎0)

(1+𝜎0) (𝜎2
0 −1)

. (A24)

The right-hand side of Eq. (A23) tends to minus infinity
as 𝑟 becomes small. To balance it, we use the ansatz
𝑏√
𝑟
= 𝜋

2 + 𝜖 where 𝜖 → 0 as 𝑟 → 0, from which we obtain
that

tan
( 𝜋
2
+ 𝜖

)
≈ −1/𝜖 = − 1

√
𝑟 (1+𝜎0)

, (A25)

which gives 𝜖 =
√
𝑟 (1+𝜎0) and 𝑏 = 𝜋

2
√
𝑟 + 𝑟 (1+𝜎0) such

that to leading order

𝑏 =
𝜋

2
√
𝑟. (A26)

Linearizing the tangent in Eq. (A24) we obtain:

𝑏 =
1−𝜎0 (𝜎0 −1)
(1+𝜎0) (𝜎2

0 −1)
. (A27)

Since 𝑏 is 𝑂 (
√
𝑟) but the right-hand side of Eq. (A27) is

𝑂 (1), the right hand side must vanish. Thus 1−𝜎0 (𝜎0 −
1) = 0, which implies for growing solutions 𝜎0 > 0 that

𝜎0 =
1+

√
5

2
= 1.62. (A28)
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