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Hermitian Nonlinear Wave Mixing Controlled by a PT-Symmetric Phase Transition
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While non-Hermitian systems are normally constructed through incoherent coupling to a larger
environment, recent works have shown that under certain conditions coherent couplings can be used to
similar effect. We show that this new paradigm enables the behavior associated with the PT-symmetric
phase of a non-Hermitian subsystem to control the containing Hermitian system through the coherent
couplings. This is achieved in parametric nonlinear wave mixing where simultaneous second harmonic
generation replaces the role of loss to induce non-Hermitian behavior that persists through a full exchange
of power within the Hermitian system. These findings suggest a new approach for the engineering of
dynamics where energy recovery and sustainability are of importance that could be of significance for

photonics and laser science.
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Over the past two decades, the unique physics that emerge
from open non-Hermitian systems have enabled a multitude
of new device capabilities that overcome the limitations of
their closed Hermitian equivalents [1-4]. These capabilities
arise largely through the dynamics that emerge near excep-
tional points in the non-Hermitian system eigenspectra,
at which both eigenvalues and eigenvectors coalesce and
regions of broken and unbroken PT symmetry are demar-
cated under conditions of balanced gain and loss. Many
device functionalities including single-mode lasing [5],
unidirectional invisibility [6,7], asymmetric mode switching
[8—10], exceptional point enhanced sensitivity [11-13], and
improved efficiency and bandwidth of parametric amplifi-
cation [14-17] have been proposed or realized through
careful engineering of gain and loss.

However, the need for incoherent gain and loss creates
practical limitations in non-Hermitian devices. It limits
efficiency, creates inflexibility in the gain and loss bands,
and produces undesirable signal-to-noise characteristics
near exceptional points [18-20]. To circumvent these
limitations, recent works have investigated coherent inter-
actions that can be used to the same effect. For instance,
nonlinear parametric wave-mixing processes—where there
is coupling between modes of different frequency or
polarization—can be used to coherently add and remove
energy from bosonic subsystems, thereby inducing non-
Hermitian behavior without an incoherent exchange of
energy with the medium [21-27]. In these works, strong
laser fields act as a reservoir of photons that can be
exchanged with a subsystem. While these interactions
usually take place in an approximately linear regime, in
which the reservoir is effectively unperturbed, they have
recently been extended to the nonlinear gain saturation
regime where appreciable energy is added or removed from
the strong driving fields [26,27].
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Here we investigate the backaction of non-Hermitian
subsystems on the behavior of the coherently coupled
driving fields in such systems and find new phenomena.
Our platform is simply parametric three-wave mixing
(TWM) hybridized with second harmonic generation
(SHG) [Fig. 1(a)], where the SHG provides an effective
loss channel on one of the fields, a platform recently
explored theoretically [28] and experimentally [29] in
the context of frequency conversion applications. In this
Hermitian, four-mode, nonlinear wave-mixing system, we
find a two-mode subsystem that exhibits a P7-symmetric
phase transition in analogy to coupled waveguides with
unbalanced loss [Fig. 1(b)]. Like that well-known linear
non-Hermitian system [30], we find the two-mode sub-
system within our investigated four-mode Hermitian non-
linear platform exhibits passive PT-symmetry breaking
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FIG. 1. (a) A Hermitian system consisting of hybridized TWM

and SHG can be represented by a two-mode subsystem with an
effective loss channel. This subsystem behaves analogously to
(b) a non-Hermitian linear two-mode system (e.g., coupled
waveguides) with unbalanced loss. Mathematical transformation
to a gauge with balanced gain and loss (c),(d) reveals PT-
symmetry breaking and an exceptional point.
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FIG. 2. Left: virtual energy level diagrams depicting (right) laboratory-frame energy-conserving photon exchanges with only two of
the fields a, b, and ¢ seeded (indicated by the arrows) for (a) phase-matched conventional TWM, where an oscillatory exchange of
power occurs, and (b),(c) when SHG 2w, = w,) is simultaneously phase matched. In (b), SHG is weak compared to TWM leading to a
damped oscillatory conversion with asymptotic transfer to fields b and d. In (c), SHG is strong compared to TWM, inhibiting SFG and
leading to a unidirectional transfer of energy to fields b and d. The PT-symmetric phase parameter 7, is held constant across columns in

each row.

after a gauge transformation to a frame with balanced gain
and loss [Figs. 1(c) and 1(d)]. Furthermore, within the four-
mode Hermitian platform, we observe that backaction on
the enclosing system results in all modes evolving accord-
ing to the subsystem PT-symmetric phase. This discovery
offers exciting new avenues for extending applications of
non-Hermitian physics to systems where high efficiency
and energy conservation is desired—a regime precluded for
non-Hermitian devices due to their inherent lossy nature
and/or requirement of an external gain source. In this case,
breaking the cyclic nature of TWM allows for a unidirec-
tional flow of photons that enables efficient frequency
conversion.

Conventional TWM interactions can be described as a
cyclic exchange of photons between a higher frequency
field at w, with two fields at lower frequencies w;, and o,
such that w, = w;, + w,. This one-to-two photon exchange
is mediated by the quadratic nonlinear polarizability of a
noncentrosymmetric medium and is energy conserving
when all frequencies are far from any material resonances
[31]. SHG is the degenerate case of TWM where the two
lower frequencies are equal. In this Letter, we consider
the process w. + . = w,. For an efficient exchange of
photons between fields, coherence between propagating
and nonlinear polarization fields of the material must
be maintained at each frequency. This occurs when the
wave vector mismatch, Al?abc = 7{21 - l;b - 7€C for TWM
and Alzdcc = l?d - 2126 for SHG, vanishes (known as perfect
phase matching) [32].

For monochromatic plane waves, this hybrid system of
TWM and simultaneous SHG can be modeled by four
coupled evolution equations derived from Maxwell’s equa-
tions. Hybridization is made possible by perfect phase

matching of both processes. Since k; = n(w;)w;/c, this
requires a proper choice of refractive indices, which can be
achieved through birefringent phase matching [28,29,33] or
by multiprocess quasiphase matching (see, e.g., Ref. [34]),
resulting in

dyutg(2) = il apetty(2)uc(z), (1a)

dzup(2) = ilapctta(2)ug(2), (1b)

duc(2) = ilapetta(2)u(2) + 20 gecua(2)uc(z),  (Ic)
d ug(z) = iCqeeu (2). (1d)

The u;(z) are nondimensional electric field amplitudes
for j € {a, b, c,d}. T, and T, are the drive strengths of
the TWM and SHG processes, respectively. Definitions in
terms of complex electric field amplitudes A;(z) and re-

fractive indices, n;: u;(z) = \/2n;eqc/hw;FyA;(z), where

Fo=Y_;2n;60c|A;(z=0)|*/hw; is the total initial photon

flux. I = W(Z) (wi;wj;wk)/l’] \/flwiijkFo/zninjnk€oC3,
where p relates to the degeneracy of the process (p = 1 for
TWM and p = 2 for SHG). y®(w;; ®;;w;) is the tensor
element of the quadratic electric susceptibility for the
specific polarizations of fields i, j, and %.

Conventional TWM of waves with Gaussian transverse
(spatial or temporal) mode profiles is depicted in Fig. 2(a),
which takes place when |Ak,;,.| =0 and |Aky..| > 0. In
this case, Eqs. (I1c) and (1d) reduce to d,u, = il u,u;
and d,u, = 0. For any combination of two fields initially
nonzero, we observe evolution that cycles between the
processes of difference frequency generation (DFG)
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(w, > wp,w,) and sum frequency generation (SFG)
(wy,, . = @,). Because of the nonlinear dependence on
field amplitudes in Egs. (1), the periodicity of the con-
version cycle varies across the transverse coordinate,
leading to inhomogeneous conversion dynamics and a
fundamental limitation on the conversion efficiency of
the device [28].

When SHG is coupled to one of the lower frequency
fields by satisfying Ak,.. =0, SFG is inhibited and
two distinct phases of dynamics are observed [Figs. 2(b)
and 2(c)]. In both phases, we observe that asymptotically
full conversion from modes a and ¢ to b and d takes place
independent of the initial local intensity, effectively homog-
enizing the modal transfer between the input and output
fields. However, when TWM is strong in comparison to
SHG [Fig. 2(b)], the TWM is characterized by damped
oscillations, and in contrast, when SHG is strong compared
to TWM [Fig. 2(c)], SFG is fully inhibited and the
conversion is monotonic. Fastest convergence to the steady
state occurs when SHG and TWM are equally strong (not
shown). In the following, we show analytically how the
behavior of this closed Hermitian system emerges from the
same underlying non-Hermitian physics as coupled sys-
tems with real loss [Figs. 1(b) and 1(d)].

To begin our analysis, we note that phase-matched SHG
differs from most TWM interactions, in that the conversion
dynamics are not cyclic. The displacement of photons to
the second harmonic (SH) field is monotonic and irrevers-
ible, thus sharing a primary feature of loss due to contact
with a thermal bath. This was pointed out in the context of
parametric amplification [28], in which SHG was observed
to induce behavior normally associated with loss [14-17].
Yet, unlike a heat bath, coupling between a wave and its SH
is coherent, and unidirectional conversion is a consequence
of a vanishing polarization field at both the fundamental
and SH frequencies. Moreover, since the growth of the SH
field is quadratic in the fundamental field [Eq. (1d)], the
irreversibility of flow is insensitive to z-phase modulations
in the fundamental field [28]. This enables a unidirectional
flow of energy to the SH field even as the fundamental field
undergoes conversion cycles in the hybridized process
[Figs. 2(b) and 2(c)]. Thus, even when taken to full
conversion, the SHG provides a loss channel for the
TWM system from which we now investigate the emer-
gence of non-Hermitian physics.

We start by analyzing a set of equations that describes the
rate at which photons are added and removed from each
field by TWM or SHG. These are derived from Eqs. (1) by
computing derivatives of n; = |u;|* which are the photon
flux densities of the jth field normalized by the total initial
photon flux density:

dzna (Z) = —Pabc (Z)v (2a)

dznb(z) = pabc<z)’ (Zb)

dznc(z) = pabc’(Z) - 2pdcc<z)’ (20)
dng(z) = pace(2)s (2d)

where Pabc (Z) - 2FabcIm{uZ (Z)ub (Z)MC(Z>} and pdcc(z) =
2T g Im{uy(z)(ui(z))?} are the photon exchange rates for
TWM and SHG, respectively. We have chosen the sign
convention such that p,,.(z) > 0 represents DFG and
Pave(z) <0 represents SFG. py..(z) >0 since SHG is
unidirectional. From Eqgs. (2), the Manley-Rowe relations
that define conserved quantities in terms of photon flux are
easily derived:

Nl =Ngo + Npo = na(z) + I’lb(Z), (321)
Ny = ng + neg + 2n49 = ny(z) +ne(z) +2n,4(z),  (3b)

where nj, =n;(z=0). (ng =0 for the system under
consideration.) Thus, as the fields evolve, the number of
photons in the a — b and a — ¢ — d subsystems are con-
strained by the initial fractional photon flux density of the
seeded fields. From this constraint and the unidirectionality
of SHG, we can infer n,(z — 00) = Ny and ny(z - o) =
N,/2 while n,(z - o) = n.(z = o) = 0 which captures
the asymptotic behavior seen in Figs. 2(b) and 2(c).

We now seek to understand the intermediate dynamics
seen in Figs. 2(b) and 2(c) in terms of non-Hermitian
physics. We investigate the non-Hermitian a-c subsystem,
which loses photons by SHG [Eq. (3b)], and later connect
its behavior to the full system. Typically, an investigation of
non-Hermitian physics involves computation of the eigens-
pectra for a linearly coupled subsystem with gain and loss.
While nonlinear TWM systems have long been investigated
in approximately linear regimes by way of undepleted
field approximations or adiabatic elimination, here we take
a new approach that allows us to investigate the non-
Hermitian features in the fully nonlinear regime without
approximation. This analysis requires a priori knowledge
of the evolution of fields » and d by first solving the wave-
mixing equations [Egs. (1)] numerically. We can intuitively
think of field b as contributing to a propagation varying
coupling constant x,.(z) = I'yp.up(z) for fields a and ¢
while y..(z) = Tyec|uy(z)| represents a monotonically
growing two-photon loss on field ¢. We then cast the
a-c subsystem [Egs. (1a) and (1c)] in a frame where the
loss on mode c¢ is balanced by equivalent gain on mode
a by performing the gauge transformation [ul,u)] =

[u, ua]eﬁ; 747 Over length scales where |Ak ez
and |Akg..z| < &, we find this transformation provides a
powerful analytic tool for identification of parameters that
dictate the occurrence of phase transitions within the
nonlinear system.
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Substituting these coordinates into Egs. (1a) and (lc),
we can write the coupled a-c subsystem equations in the
simplified Hamiltonian form:

d {u@(zq ) [mC(z)

R P R e

The propagation-dependent Hamiltonian of this system is
given by H,.(z) = §(z) -6, where §(z) = [Re{x,(2)},
Im{k,.(2)},iyc.(z)] expresses the coupling and loss of
the system and & is the Pauli vector. This Hamiltonian is
non-Hermitian except in the y..(z) = 0 case, which rep-
resents conventional TWM without SHG. It is also easy to
check H,.(z) commutes with the parity-time operator by
computing [H ,.(z), PT] = 0 with parity inversion of fields
a and c given by P =0, and time reversal given by
complex conjugation (TuT~! = u*).

A local eigenspectra analysis of H,.(z) yields propa-

gation-dependent eigenvalues 4. (z) = ++/4(z) - g(z) =

+/|kae(2)]> = |7ee(z)|?, where an exceptional point
occurs when loss by SHG and coupling by TWM act
with equal strength on the subsystem. To quantify this,
we introduce the PT-symmetric phase parameter
1(2) = |7ee(2)]/ k4 (z)|- We find the local right eigenvec-
tors depend solely on this new parameter: v (z) =
1/V2[1,in(z) £ /1 —n(z)?]". An exceptional point exists
atn = 1, where the eigenvalues and local right eigenvectors
coalesce. When 7(z) < 1, coupling by TWM is the dom-
inant process and the subsystem is P7 symmetric with
purely real eigenvalues. When 7(z) > 1, loss of photons by
SHG is dominant and PT symmetry is broken, resulting in
purely imaginary eigenvalues. Whether the system con-
verges to the broken or unbroken PT-symmetric phase
is determined by the steady state parameter 7,=
n(z = ) =Tyee/Taper/N2/2N,. For values of 7., < 1,
fields a and ¢ will forever engage in bidirectional power
exchange via SFG-DFG conversion cycles [Figs. 3(a)
and 3(b)]. When 7, > 1, PT symmetry is broken at finite
z, leading to a complete elimination of the bidirecti-
onal exchange of power between fields a and c that is
characteristic of TWM [Figs. 3(e) and 3(f)]. Thus, the
conditions for PT-symmetry breaking are determined by
the relative drive strengths of the SHG and TWM processes
and by the initial conditions through the conserved
quantities of Egs. (3). We note that 7y o T'yeo/Tape
b(<2> (a)d; (OFH a)c)/)(<2)(wu; Wp; a)L)] Vv a)cwd/wua)h’ and thus
can be controlled experimentally by choice of mode
frequencies and by multiprocess quasiphase matching [34].

So far, we have revealed how non-Hermitian physics
emerges in the a-c subsystem of any TWM process as a
consequence of simultaneously phase-matched SHG. Our
approach also allows an exact analysis over the full range
of power exchange dynamics, rather than employing a
linearized model that excludes the coherence between the
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FIG. 3. Numerical solutions for a-c subsystem dynamics in the

gauge-transformed frame for (a),(b) 1, < 1, having power
oscillations and purely real eigenvalues for all z, (c),(d)
Ne = 1, in which fields a and c¢ coalesce as the system
asymptotically approaches the exceptional point (EP), and (e),
(f) ne > 1, showing exponential growth and a transition from
purely real to purely imaginary eigenvalues at the exceptional
point. All cases: n,y = 107 and n,9 = 1 — ny.

subsystem and external fields. Thus, we can analyze
another interesting feature: the backaction of the non-
Hermitian a-c subsystem on the external fields » and d.
In the following analysis, we investigate how the abrupt
transition in PT-symmetric phase in the non-Hermitian
two-mode a-c subsystem imprints on the four-mode
Hermitian system, leading to the dynamics in Fig. 2.

A compact representation of the four-mode system dyna-
mics is given by the real parameter p(z) =pec(2)/Pape(2) =

ny/n./n,. Its magnitude quantifies the relative rate of
photons being exchanged by SHG versus TWM. At its
extrema, [p(z)| € {0,00}, only TWM or SHG occurs,
respectively. The sign of p(z) represents the direction of
TWM photon exchange, with p(z) > 0 (< 0) correspond-
ing to DFG (SFG). This gauge-invariant parameter can be
used to interpret both the two-mode a-c subsystem and the
full four-mode system dynamics.

Figure 4 depicts the photon exchange dynamics for the
three representative cases of TWM. Each exhibits an abrupt
phase transition in the dynamics of the closed Hermitian
system. The phase transition is demarcated by the white
dashed line at arctan(n,) = 7/4 (i.e., 7, = 1). When
0 < arctan(n,,) < z/4, the a-c subsystem always remains
PT symmetric and there is a perpetual oscillation in the
relative rates of SHG and TWM with the TWM periodically
switching between DFG and SFG, as seen in Fig. 2(b).
However, when z/4 < arctan(#,,) < 7/2, the exceptional
point is crossed at finite z and SFG is inhibited, leading to
monotonic growth of fields » and d, as seen in Fig. 2(c).
The resulting steady state ratio of DFG and SHG rates,
p(z = ) = 5% — /% — %, depends only on the a-c
subsystem state parameter 7., and is independent of the
initial behavior of the TWM system. Additionally, in this
phase, we see that increasing SHG actually slows the
conversion to field d because field ¢ is diminished before
making a substantial contribution to the TWM polarization
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FIG. 4. Gauge-invariant parameter p(z) (color map, truncated at +1 for clarity) for initial conditions corresponding to DFG with
(a) fields a and b seeded, (b) fields a and ¢ seeded, and (c) SFG with fields b and ¢ seeded. The dashed line, corresponding to , = 1,
demarcates a sudden transition in behavior corresponding to the PT-symmetric phase of the a-c subsystem.

field [Egs. (1)]. The parameter p(z — oo) takes on its
maximal steady state value of unity when 5., = 1, indicat-
ing that the fastest approach to a full power exchange
occurs when the system settles near the exceptional point
(dashed lines in Fig. 3), i.e., when the strengths of TWM
and SHG are balanced.

Thus, we have revealed how the abrupt transition in the
PT-symmetric phase of the non-Hermitian two-mode
subsystem is imprinted on the dynamical behavior of an
enclosing Hermitian four-mode system, even through a full
nonlinear power exchange. It has been established that
spatiotemporal mode conversion can be homogenized by
introducing non-Hermiticity in nonlinear wave-mixing
systems, linearizing the input-output behavior and solving
the long-standing problem of inefficient frequency con-
version [14—17]. That this can be achieved without any real
loss or coupling to a thermal bath—enabled rather by
coherent coupling to a copropagating wave—can circum-
vent other problems. Thermal loading can be avoided
[28,29] and phase noise improved [26,27], and the loss
band can be chosen by phase-matching technique rather
than being tied to material or structural resonances [28].
Moreover, in our system, the photons displaced from the
enclosed subsystem are preserved in a coherent field that
can be used in subsequent applications. All of these are
significant capabilities for advancing frequency conversion
technology that can be important for laser science and
integrated photonics. More generally, the use of non-
Hermitian physics to explicitly control an enclosing
Hermitian system, as shown here, may have broader
applicability and importance where energy efficiency and
sustainability are of concern.

Underlying data are available at Ref. [35].
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