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Abstract. In this paper we elaborate on the interplay between energy optimization, positive
definiteness, and discrepancy. In particular, assuming the existence of a K-invariant measure
µ with full support, we show that conditional positive definiteness of a kernel K is equivalent
to a long list of other properties: including, among others, convexity of the energy functional,
inequalities for mixed energies, and the fact that µ minimizes the energy integral in various
senses. In addition, we prove a very general form of the Stolarsky Invariance Principle on com-
pact spaces, which connects energy minimization and discrepancy and extends several previously
known versions.
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1. Introduction

1.1. Energy Minimization. Let Ω be a compact metric space and let the kernel K : Ω×Ω→ R
be continuous and symmetric, i.e. K(x, y) = K(y, x) for all x, y ∈ Ω. We denote byM(Ω) the set
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of finite regular signed Borel measures on Ω, and by P(Ω) the set of Borel probability measures
on Ω. Given µ, ν ∈M(Ω), we define their mixed K-energy as

(1.1) IK(µ, ν) =

∫
Ω

∫
Ω

K(x, y) dµ(x)dν(y),

and the K-energy (also referred to as energy integral or energy functional) of µ to be

(1.2) IK(µ) := IK(µ, µ) =

∫
Ω

∫
Ω

K(x, y) dµ(x)dµ(y).

We are interested in finding the optimal (maximal or minimal, depending on K) values of
IK(µ) over all µ ∈ P(Ω), as well as extremal measures for which these values are achieved, i.e.
equilibrium measures with respect to K.

For a measure µ ∈ P(Ω), the potential UµK of µ with respect to K, defined as

(1.3) UµK(x) :=

∫
Ω

K(x, y) dµ(y), x ∈ Ω,

plays an important role in the study of energy minimization, see, e.g., Theorem 2.14.
It is well known that energy minimization is closely connected to the positive definiteness of

the kernel. In Section 2 we further explore this property and its variants, such as conditional
positive definiteness and positive definiteness up to an additive constant. We discuss various
relations between these properties and energy minimization, as well as inequalities for mixed
energies, convexity of the energy functional, Hilbert–Schmidt operators, potential theory, etc.
A synopsis of the main results presented in Section 2 may be found right before the beginning
of §2.1. This section contains mostly background material (although several results do seem to
be new) and is completely self-contained.

In Section 3, we restrict our attention to the case when there exists a reasonable candidate
for an energy minimizer - namely, a K-invariant measure (i.e., a measure whose potential UµK
with respect to K is constant on Ω). This is a very natural class of measures which includes,
for example, the uniform (Lebesgue) surface measure on the sphere Sd−1 when the kernel K is
rotationally invariant. Assuming the existence of an invariant measure, much more can be said
about the topics of Section 2. In particular, conditional positive definiteness of K is equivalent
to the fact that µ minimizes IK over all signed measures of mass one (Theorem 3.5), conditional
positive definiteness and positive definiteness up to an additive constant are equivalent, which
is not true in general (Lemma 3.7), and local minimizers are necessarily global (see §3.5). Many
of the proofs in this section rely on a simple yet crucial identity (3.2) of Lemma 3.3.

Finally, in Section 4, we further focus on the situation when there exists a K-invariant measure
with full support. These assumptions really tie the discussion together: Theorem 4.1 states that
in this case, conditional positive definiteness is equivalent to nine other natural properties, such
as various versions of (local or global) convexity, mixed energy bounds, and minimization of IK
by µ. Similar statements are provided for positive definiteness and conditional strict positive
definiteness (Theorems 4.2 and 4.3).

Admittedly, some portion of the results discussed above are well known in the field, see, for
example, an excellent discussion in [BHS]. However, we undertook an extensive study of the
literature, and it appears that many of the implications are in fact new (we carefully point those
out in the text), while some others are scattered in the literature. This paper presents a unified,
comprehensive, and self-contained discussion of both known and new connections, which results
in an impressively long list of equivalent characterizations of conditional positive definiteness
provided in Theorem 4.1.
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Section 5 introduces an application of these results to discrepancy theory (see §1.2 below),
while Section 6 specializes the prior discussion to the sphere, i.e. the case when Ω = Sd−1 and
K(x, y) = F (〈x, y〉) is a rotationally invariant kernel. In this setting, our results recover and
generalize various well known results.

1.2. Energy and Discrepancy: the Stolarsky Invariance Principle. Discrepancy is a
classical way to assess the quality of a finite point distribution ωN = {z1, . . . , zN} ⊂ Ω by
comparing its empirical measure to some chosen (usually uniform) measure µ on some test sets.
Vast literature exists on discrepancy theory [BC,Ma,KN].

Discrepancy is closely connected to energy minimization. One of the first and most famous
examples of this connection is given by the Stolarsky Invariance Principle [St], see (5.4), which
connects the classical L2 discrepancy with respect to spherical caps and the sum of Euclidean
distances, i.e. the discrete energy with the kernel K(x, y) = ‖x − y‖, showing that maximizing
the latter is equivalent to minimizing the former. There has been increased interest in this
principle in the recent years, including several new proofs and extensions to various settings and
kernels, see, e.g., [BrD,BDM,Sk1,Ba]. A more detailed discussion can be found in the beginning
of Section 5.

In Theorem 5.1, we prove a very general form of the Stolarsky Invariance Principle on an
arbitrary compact space Ω which connects the (continuous or discrete) energy with a positive
definite kernel K to a notion of L2 discrepancy based on the convolution square root of K, whose
existence is equivalent to positive definiteness of K (Proposition 2.20). This generalizes several
prior versions of this principle.

1.3. Notation and conventions. We shall always assume that Ω is a compact metric space,
although our discussion up to and including Theorem 2.14 applies also to general topological
measure spaces. As defined earlier, the class of signed finite regular Borel measures on Ω will
be denoted by M(Ω) and, in addition to the class P(Ω) of Borel probability measures, we shall

consider the following subclasses ofM(Ω): the class P̃(Ω) of all signed measures of total mass one
and Z(Ω) – the class of all signed measures ν ∈ M(Ω) with mean zero, i.e.

∫
Ω dν = ν(Ω) = 0.

We shall say that two measures are equal if they coincide on all Borel subsets of Ω; likewise,
inequalities between measures will be understood to hold on the Borel subsets of Ω.

While a substantial portion of the theory applies to more general kernels, in the present text
we restrict our attention just to continuous functions. Therefore, we shall say that K is a kernel
on Ω × Ω if K : Ω × Ω → R is continuous and symmetric. This ensures that the energy IK(µ)
in (1.2) is well defined for any measure µ ∈M(Ω).

While we will be interested in local and global minimizers over different sets of measures,
whenever we say a measure µ is a minimizer of IK without any additional information, we mean
that µ is a global minimizer of IK over P(Ω), i.e. for all ν ∈ P(Ω), IK(µ) ≤ IK(ν). Unless
explicitly stated otherwise, local minimizers will be understood in the directional sense, see
Definition 2.15. The shorthand µxB will denote the restriction of µ to a set B, i.e. a measure
defined by µxB(A) = µ(A ∩B).

The Euclidean sphere in Rd will be denoted by Sd−1 and σ will denote the uniform (Lebesgue)
measure on Sd−1 normalized so that σ(Sd−1) = 1.

2. Positive Definite Kernels and Energy Minimization

Positive definite kernels play an extremely important role in various areas of mathematics, such
as partial differential equations, machine learning, and probability theory. In this discussion, we
will focus on their relation to energy minimization problems, but an exposition on their role in
other areas can be found, e.g., in [A,F,Me].
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We now state the relevant definition in the form, which is most convenient for applications to
energy optimization over Borel measures.

Definition 2.1. A kernel K : Ω2 → R is called conditionally positive definite if for every
ν ∈ Z(Ω) (i.e. finite signed Borel measures satisfying ν(Ω) = 0), IK(ν) ≥ 0.

If, moreover, IK(ν) ≥ 0 for every finite signed Borel measure, i.e. ν ∈M(Ω), then we call K
positive definite.

We call a kernel strictly positive definite or conditionally strictly positive definite if
it is positive definite or conditionally positive definite, respectively, and IK(ν) = 0 only if ν = 0.

If there exists some C ∈ R such that K + C is a (strictly) positive definite kernel, we call K
(strictly) positive definite modulo an additive constant (or up to an additive con-
stant).

A more standard way of defining positive definiteness of a kernel K : Ω2 → R is by requiring

that, for every N ∈ N and {zi}Ni=1 ⊂ Ω, the matrix
[
K
(
zi, zj

)]N
i,j=1

is positive semidefinite, i.e.

for any sequence {ci}Ni=1 ⊂ R, the kernel K satisfies the inequality

(2.1)
N∑

i,j=1

cicjK
(
zi, zj

)
≥ 0.

Since the kernel K is continuous, this is clearly equivalent to Definition 2.1 due to the weak∗

density of discrete measures in M(Ω). Similarly, conditional positive definiteness is equivalent
to (2.1) with the additional condition

∑
ci = 0. We finally remark that such an equivalence

does not hold for the strict version of these properties.
A constant positive kernel, i.e. K(x, y) = c > 0 for all x, y ∈ Ω, is necessarily positive definite,

hence such kernels always exist. Moreover, the class of positive definite kernels is easily seen to
be closed under addition, multiplication (a result known as the Schur product theorem), and
limits of uniformly convergent sequences.

Lemma 2.2. If K and L are positive definite kernels on Ω, then so are K + L and KL. If
K1,K2, ..., are positive definite and limn→∞Kn = K uniformly, then K is positive definite.
The statements regarding the sum and limit (but not the product) hold if we replace positive
definiteness with conditional positive definiteness.

For a continuous function φ : Ω→ R, the kernel φ(x)φ(y) is obviously positive definite, since∫
Ω

∫
Ω

φ(x)φ(y) dµ(x)dµ(y) =

(∫
Ω

φ(x)dµ(x)

)2

≥ 0.

Therefore, Lemma 2.2 provides a rich class of examples of positive definite kernels.

Lemma 2.3. For j ∈ N0, let λj ≥ 0 and φj : Ω→ R be continuous. Then if the series converges
absolutely and uniformly, the kernel

(2.2) K(x, y) =

∞∑
j=0

λjφj(x)φj(y)

is positive definite.

In fact, the well-known Mercer’s Theorem (see Theorem 2.18 in Section 2.5) demonstrates
that the representation (2.2) actually provides a characterization of positive definite kernels, see
Corollary 2.19.
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In what follows, we provide various results which connect properties of the kernel K, the en-
ergy functional IK , and the minimizers of this energy integral. While some of these results have
previously appeared in the literature, a number of them seem to be new (we shall specifically
point them out in the exposition below). In addition, it seems that even the known results have
not all appeared simultaneously in a single text (perhaps the most complete prior exposition of
this kind is the discussion of lower semi-continuous kernels on compact sets in [BHS, Chapter
4]). Moreover, the general results of this section form a basis for the long list of equivalences
provided in Theorems 4.1, 4.2, and 4.3 under some additional assumptions. Therefore, for the
sake of making our presentation self-contained and coherent, we have decided to include all the
relevant background information (not just the new results) in this section.

In Section 2.1, we explore the relation between conditional positive definiteness and positive
definiteness up to an additive constant. We show that the latter implies the former (Lemma
2.4), but not vice versa (Example 2.5). This relation will be revisited in Section 3.4, where the
converse implication is established under additional assumptions (Lemma 3.7).

Section 2.2 discusses the equivalence of conditional positive definiteness and the arithmetic-
mean inequality for mixed energies (Lemma 2.6), as well as the similar equivalence between
positive definiteness and the geometric-mean inequality, Lemma 2.7. While the fact that (condi-
tional) positive definiteness implies such inequalities is well-known, we did not find the converse
implication in the literature.

In Section 2.3, we concentrate on the interplay between conditional positive definiteness of the
kernel K and the convexity of the corresponding energy functional IK . In particular, Proposition
2.11 demonstrates that the two notions are equivalent. Again, only one direction seems to have
appeared in the literature before.

Section 2.4 reviews some basic facts about the potential of the global and local minimizers
of the energy integral IK (Theorem 2.14 and Corollary 2.16, respectively): if µ is a (local)
minimizer of IK , then UµK is constant on supp(µ).

In Section 2.5, we recall the connection between the positive definiteness of the kernel K and
the properties of the generated Hilbert–Schmidt operator TK,µ. Lemma 2.17 demonstrates the
equivalence between positive definiteness of K and positivity of TK,µ, while Mercer’s Theorem
(Theorem 2.18) provides the absolutely and uniformly convergent expansion of a positive definite
kernel in term of the eigenfunctions of the associated Hilbert–Schmidt operator.

In Section 2.6, we demonstrate the existence of the “convolution square root” of a positive
definite kernel (see (2.16) in Proposition 2.20). In the case Ω = Sd−1, this fact has been observed
in [BD,BDM], but the general case presented here is new.

Finally, Section 2.7 explores the relation between energy minimizers and Hilbert–Schmidt
operators. In particular, Lemma 2.21 shows that if µ minimizes IK , then the associated operator
TK,µ is positive, which leads to an important fact (Lemma 2.22): if µ is a (local) minimizer of
IK , then K is positive definite (up to a constant) on the support of µ. Similar results have
appeared in various papers on energy minimization, e.g. [CFP,FS].

2.1. Conditional Positive Definiteness and Positive Definiteness up to a Constant.
Since adding a constant to a kernel obviously does not affect the minimizers, it is natural
to consider kernels that are (strictly) positive definite modulo a constant. However, adding
a constant also never changes conditional (strict) positive definiteness, as for all C ∈ R and
ν ∈ Z(Ω),

IK+C(ν) = IK(ν) + (ν(Ω))2C = IK(ν).

Since (strict) positive definiteness implies conditional (strict) positive definiteness, we arrive at
the following lemma.
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Lemma 2.4. If K is (strictly) positive definite modulo a constant, then K is conditionally
(strictly) positive definite.

In Section 3 (Lemma 3.7), we will demonstrate that the converse of Lemma 2.4 can hold
under certain conditions. However, it does not hold in general:

Example 2.5. Consider K : Sd−1×Sd−1 → R defined by K(x, y) = x1 + y1, where x1 = 〈x, e1〉.
Then K is conditionally positive definite, but not positive definite modulo a constant.

Proof. For all ν ∈ Z(Sd−1),

IK(ν) = 2

∫
Sd−1

∫
Sd−1

x1 dν(x)dν(y) = 0,

so K is conditionally positive definite.
Now we show there is no constant C such that K + C is positive definite. If C < 0, then

IK+C(σ) = 2

∫
Sd−1

x1dσ(x) + C = C < 0.

Suppose that C ≥ 0 and let µ = (C + 1)δ−e1 − Cδe1 ∈M(Sd−1). Then

IK+C(µ) = 2µ(Sd−1)

∫
Sd−1

x1 dµ(x) + C(µ(Sd−1))2

= 2(−2C − 1) + C = −3C − 2 < 0.

The proof is now complete. �

2.2. Positive Definiteness and Inequalities for Mixed Energies. We first make the ob-
servation that the (conditional) positive definiteness of the kernel can be characterized by the
inequalities for mixed energies in terms of arithmetic or geometric means. While the validity of
such inequalities for positive definite kernels is well known, see, e.g., [BHS, Chapter 4], their suf-
ficiency doesn’t seem to have appeared in previous literature. We summarize these facts in the
following two lemmas. The first one connects conditional positive definiteness to the arithmetic
mean inequality.

Lemma 2.6. Suppose K is a kernel on Ω× Ω. Then the following conditions are equivalent:

(1) K is conditionally positive definite.
(2) For every pair of Borel probability measures µ1 and µ2 on Ω, the mutual energy IK(µ1, µ2)

satisfies

(2.3) IK(µ1, µ2) ≤ 1

2

(
IK(µ1) + IK(µ2)

)
.

(3) Inequality (2.3) is satisfied for any pair of signed Borel measures of total mass one.

In addition, conditional strict positive definiteness of K is equivalent to the fact that the
inequality in (2.3) is strict unless µ1 = µ2.

Proof. Suppose that K is conditionally positive definite. Then for any µ1, µ2 ∈ P̃(Ω), µ1 − µ2 ∈
Z(Ω), so

0 ≤ IK(µ1 − µ2) = IK(µ1)− 2IK(µ1, µ2) + IK(µ2),

which proves (2.3). Thus, (1) implies (3), which in its turn obviously implies (2).
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Now assume condition (2), i.e. that (2.3) holds for all µ1, µ2 ∈ P(Ω). For any µ ∈ Z(Ω), there
exists c ≥ 0 and probability measures µ1, µ2 ∈ P(Ω) such that µ = c(µ1 − µ2). We then have
that

(2.4) IK(µ) = IK
(
c(µ1 − µ2)

)
= c2

(
IK(µ1)− 2IK(µ1, µ2) + IK(µ2)

)
≥ 0,

so K must be conditionally positive definite.
If K is conditionally strictly positive definite and the measure µ1 − µ2 is nonzero, then

IK(µ1−µ2) > 0, making inequality (2.3) strict. Conversely, if (2.3) is strict whenever µ1−µ2 6= 0,
then equality in (2.4) can hold only if µ1 = µ2 or c = 0, i.e. K is conditionally strictly positive
definite. �

The second lemma is very similar: it shows that positive definiteness is equivalent to the
geometric mean inequality for the mixed energy.

Lemma 2.7. Suppose K is a kernel on Ω × Ω. Then K is positive definite if and only if
IK(P(Ω)) ⊂ [0,∞) and for all µ1, µ2 ∈ P(Ω), the mutual energy IK(µ1, µ2) satisfies

(2.5) IK(µ1, µ2) ≤
√
IK(µ1)IK(µ2),

K is strictly positive definite if and only if the inequality in (2.5) is strict unless µ1 = µ2.

Observe that the proof below shows that, just like in Lemma 2.6, we could replace P(Ω)

with P̃(Ω). Heuristically, this statement says that the bilinear form IK(µ1, µ2) defines an inner
product on measures if and only if K is positive definite, and (2.5) is just the Cauchy–Schwarz
inequality.

Proof. Suppose that K is positive definite. For any t ∈ R and µ1, µ2 ∈ P(Ω), we define

g(t) := t2IK(µ1)− 2tIK(µ1, µ2) + IK(µ2) = IK(tµ1 − µ2) ≥ 0.

Thus the discriminant 4IK(µ1, µ2)2−4IK(µ1)IK(µ2) of the quadratic polynomial g(t) is nonpos-
itive, which yields (2.5). If K is strictly positive definite, g(t) = 0 has a root only if tµ1−µ2 = 0,
which implies t = 1 and µ1 = µ2.

Suppose instead that (2.5) holds for all probability measures. For any µ ∈M(Ω), there exists
a, b ≥ 0 and µ1, µ2 ∈ P(Ω) such that µ = aµ1 − bµ2. We then have that

IK(µ) = a2IK(µ1)− 2abIK(µ1, µ2) + b2IK(µ2) ≥ (a
√
IK(µ1)− b

√
IK(µ2))2 ≥ 0,

implying that K is positive definite. If (2.5) is strict unless µ1 = µ2, then the inequality above
is strict unless µ = 0, i.e. K is strictly positive definite. �

2.3. Positive Definiteness and Convexity of the Energy Functional. Convexity plays
an important role in optimization problems, and so do various versions of positive definiteness.
Therefore, it is not surprising that the two notions are related. In fact, as we shall see, in many
settings, they are equivalent.

Such equivalences, in different forms, have previously appeared in the literature [BFGMPV,
CSh,DPZ,Mec,P,PZ,ZDP]. This connections appears to be common knowledge in some refer-
ences, but is largely overlooked in many other. In this subsection, we take a deeper look at this
phenomenon.

Definition 2.8. Let K : Ω×Ω→ R be a kernel. We say that IK is convex at µ ∈ P(Ω) if for
every ν ∈ P(Ω) there exists some tν ∈ (0, 1] such that for all t ∈ [0, tν)

(2.6) IK((1− t)µ+ tν) ≤ (1− t)IK(µ) + tIK(ν).

We say IK is convex on P(Ω) if inequality (2.6) holds for every µ, ν ∈ P(Ω) and all t ∈ [0, 1];
it is said to be strictly convex, if the inequality is strict for all t ∈ (0, 1) unless µ = ν.
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Similarly to the above definition, we consider (strict) convexity on P̃(Ω) and M(Ω). Unless
noted otherwise, convexity is understood on P(Ω).

We observe that convexity of IK on P(Ω) is equivalent to the fact that IK is convex at all
µ ∈ P(Ω). Indeed, if (2.6) fails for some µ, ν ∈ P(Ω) and some t ∈ (0, 1), then the quadratic
polynomial f(t) = IK((1 − t)µ + tν) is not convex on the interval [0, 1], i.e. f ′′(t) < 0 for all
t ∈ [0, 1] and IK fails to be convex at µ.

We first show that convexity is equivalent to the arithmetic mean inequality (2.3) for mixed
energies.

Lemma 2.9. The energy functional IK is convex at µ ∈ P(Ω) if and only if for all ν ∈ P(Ω),

(2.7) IK(µ, ν) ≤ 1

2

(
IK(µ) + IK(ν)

)
.

Consequently, IK is convex on P(Ω) if and only if inequality (2.7) holds for all µ, ν ∈ P(Ω).
In addition, strict convexity of IK is equivalent to the above inequality being strict unless

µ = ν.

Proof. Let ν ∈ P(Ω) and assume that the arithmetic-mean inequality (2.7) holds. Then for all
t ∈ [0, 1],

(2.8) IK((1− t)µ+ tν) = (1− t)2IK(µ) + 2(1− t)tIK(µ, ν) + t2IK(ν) ≤ (1− t)IK(µ) + tIK(ν).

So IK is indeed convex at µ.
For the converse direction, assume that IK is convex at µ. Then for any ν ∈ P(Ω) and t > 0

sufficiently small, inequality (2.8) holds, so

2(1− t)tIK(µ, ν) ≤ t(1− t)(IK(µ) + IK(ν)).

Dividing by t(1− t), we obtain the arithmetic mean inequality (2.7). Lastly, for strictly convex
IK , the proof is the same, with all inequalities strict unless µ = ν. �

Observe that one can easily replace P(Ω) with P̃(Ω) in Lemma 2.9. At the same time, according

to parts (2)-(3) of Lemma 2.6, the validity of (2.7) on P(Ω) is equivalent to its validity on P̃(Ω).
Hence we obtain the following corollary.

Corollary 2.10. IK is (strictly) convex on P(Ω) if and only if it is (strictly) convex on P̃(Ω).

Lemmas 2.6 and 2.9 together clearly imply the desired equivalence between convexity and
conditional positive definiteness:

Proposition 2.11. Let K : Ω×Ω→ R be a kernel. The kernel K is conditionally (strictly) pos-
itive definite if and only if the energy functional IK is (strictly) convex on P(Ω) (or, equivalently,

on P̃(Ω)).

This equivalence between convexity of IK on P(Ω) and conditional positive definiteness of
K has been observed, e.g. in [BFGMPV, CSh, P, PZ]. In fact, it admits a short direct proof
(see Proposition 2.13 and the discussion thereafter). We chose to prove Lemma 2.9 first (an
approach taken in a recent paper of the authors, joint with A. Glazyrin, D. Ferizović, and
J. Park [BFGMPV]), since it also allows us to establish equivalences between local versions of
properties, which will be important later, see e.g. parts (7) and (9) of Theorem 4.1.

Corollary 2.12. Suppose that K is conditionally strictly positive definite. Then IK has a unique

minimizer (either in P(Ω) or in P̃(Ω)).
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Proof. According to Lemmas 2.6 and 2.9, strict conditional positive definiteness of K implies

strict convexity of IK on both P(Ω) and P̃(Ω). To conclude, observe that these measure spaces
are themselves convex. �

Finally, we note that convexity of IK on the entire space M(Ω) is equivalent to positive
definiteness of the kernel. More precisely, we have the following.

Proposition 2.13 ([P, Lemma 4]). The functional IK is (strictly) convex on M(Ω) if and only
if K is (strictly) positive definite on Ω.

We include a simple proof of this proposition for the sake of completeness.

Proof. Simply observe that for any t ∈ (0, 1), the inequality

IK((1− t)µ+ tν) = (1− t)2IK(µ) + 2t(1− t)IK(µ, ν) + t2IK(ν) ≤ (1− t)IK(µ) + tIK(ν)

is equivalent to

t(1− t)
(
IK(µ)− 2IK(µ, ν) + IK(ν)

)
= t(1− t)IK(µ− ν) ≥ 0,

from which the statement easily follows. �

We note that this argument also gives an alternative proof of Proposition 2.11, since any
measure with mass zero can be represented as a multiple of the difference of two measures with
mass one.

2.4. Minimizing Measures: Basic Potential Theory. It is well known that the behavior of
the minimizing measures is closely connected to the behavior of the potential of the minimizing
measure with respect to the kernel. For a detailed account of the topic, we refer the reader to
Chapter 4 of [BHS]. The following simple statement is classical, see, e.g., [Bj]. We provide its
proof for completeness.

Theorem 2.14. Suppose that µ is a minimizer of IK over P(Ω). Then UµK(x) = IK(µ) on
supp(µ) and UµK(x) ≥ IK(µ) on Ω.

Proof. Let ν ∈ Z(Ω) be such that µ + εν ≥ 0 for all 0 < ε ≤ ε0 with some positive ε0. This
clearly means that µ+ εν ∈ P(Ω), so

(2.9) IK(µ) ≤ IK(µ+ εν) = IK(µ) + 2εIK(µ, ν) + ε2IK(ν).

Thus, for 0 ≤ ε ≤ ε0,

0 ≤ ε (2IK(µ, ν) + εIK(ν)) ,

implying IK(µ, ν) ≥ 0.
Suppose that there exist c1, c2 ∈ R, z ∈ supp(µ) and y ∈ Ω such that

c1 = UµK(y) < UµK(z) = c2.

Let Bz be a ball centered at z, so small that minx∈Bz U
µ
K(x) > (c1 + c2)/2. Define

(2.10) ν := µ(Bz) · δy − µxBz .

Then ν ∈ Z(Ω) and satisfies µ+ εν ≥ 0 for any 0 ≤ ε ≤ 1. On the other hand,

IK(µ, ν) = µ(Bz) · UµK(y)−
∫
Bz

UµK(x) dµ(x) ≤ µ(Bz) · c1 − µ(Bz) ·
c1 + c2

2
< 0,

which is a contradiction. Thus, necessarily UµK(y) ≥ UµK(z) for y, z as above. Since y can belong
to supp(µ) and

∫
Ω U

µ
K(x) dµ(x) = IK(µ), both claims of the theorem follow. �
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Notice that if µ has full support, i.e. supp(µ) = Ω, the conclusion of Theorem 2.14 states
that the potential UµK(x) is constant on Ω. Measures with constant potentials will be further
explored in Section 3.

Definition 2.15. We shall say that µ is a local minimizer of IK in P(Ω) with respect to a
given metric d(·, ·) on M(Ω) if it is a local minimizer in the topology induced by this metric,
in other words, if there exists εµ > 0, such that for all ν ∈ P(Ω) satisfying d(µ, ν) ≤ εµ, we have

IK(µ+ ν) ≥ IK(µ).

We shall say that µ is a directional local minimizer of IK in P(Ω) if it is a local minimizer
in every direction, i.e., if for each ν ∈ P(Ω), there exists τν ∈ (0, 1] such that for all t ∈ [0, τν ]
we have

IK
(
(1− t)µ+ tν

)
≥ IK(µ).

The difference between the two definitions above is similar to that between the Gateaux and
Fréchet derivatives.

Observe that, if Ω is a compact metric space, convergence in total variation implies conver-
gence in Wasserstein Wp metric for 1 ≤ p < ∞. Thus, a local minimizer in one of Wp is also a
local minimizer with respect to the total variation distance.

In turn, for µ, ν ∈ P(Ω), we have
(
(1 − t)µ + tν

)
− µ = t(ν − µ), and the total variation

norm satisfies ‖t(ν − µ)‖TV ≤ 2t < εµ for t small enough. Therefore, local minimizers in total
variation are directional local minimizers (but not vice versa). This is summarized below:

(2.11)

(
local minimizer in
Wp, 1 ≤ p <∞

)
=⇒

(
local minimizer in

total variation

)
=⇒

(
directional

local minimizer

)
.

In this text, unless explicitly specified otherwise, the words “local minimizer” in the assumption
of a statement will mean the directional minimizer, as this is the weakest assumption, and thus
corresponding results will also hold for the other types of local minimizers mentioned in (2.11).

Analyzing the proof of Theorem 2.14, we find that for ν defined in (2.10), we can write
µ+εν = (1−ε)µ+εν̃ with ν̃ = µ+ν ∈ P(Ω). Hence, inequality (2.9) holds with sufficiently small
ε even if µ is just a directional local minimizer (and therefore, also if it is a local minimizer in
total variation or in the Wasserstein distance Wp, 1 ≤ p <∞), and one arrives at a contradiction
in the same way.

Corollary 2.16. The statement of Theorem 2.14 remains true if we only assume that µ is a
local (not global) minimizer of IK (in either of three senses: directional, in total variation, or
in Wasserstein Wp metric, 1 ≤ p <∞).

As we shall see in Theorem 3.11, under some additional conditions, in particular, if K is
conditionally positive definite, the statement of Theorem 2.14 can be reversed.

2.5. Positive Definiteness and Hilbert–Schmidt Operators. Let µ be a Borel probability
measure on Ω and let K be a continuous function on Ω × Ω. We shall consider the operator
TK,µ associated to K on the space of real-valued functions on Ω that are square-integrable with
respect to µ, L2(Ω, µ). This is a linear integral operator with kernel K defined by

(2.12) TK,µψ(x) =

∫
Ω

K(x, y)ψ(y) dµ(y).

Lemma 2.17. Let Ω̃ = supp(µ). The operator TK,µ is self-adjoint and Hilbert–Schmidt, and the

eigenfunctions of TK,µ corresponding to non-zero eigenvalues are continuous on Ω̃. The kernel

K is positive definite on Ω̃ if and only if TK,µ is a positive operator on L2(Ω, µ).
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Proof. Self-adjointedness immediately follows from the fact that K(x, y) is symmetric. Since Ω

is compact (and hence Ω̃ is also) and K continuous, we know that∫
Ω

∫
Ω

|K(x, y)|2 dµ(x)dµ(y) <∞,

which implies that TK,µ is Hilbert–Schmidt.
Now, suppose that TK,µφ = λφ for λ 6= 0. Then the representation

φ(x) =
1

λ

∫
Ω

K(x, y)φ(y) dµ(y)

implies that φ is continuous on Ω̃.
We now show that the positive definiteness of K and the positivity of TK,µ are equivalent. If

K is positive definite on Ω̃, then for any ψ ∈ L2(Ω, µ) ⊂ L1(Ω, µ),

〈ψ, TK,µψ〉L2(Ω,µ) =

∫
Ω

∫
Ω

K(x, y)ψ(x)ψ(y) dµ(x)dµ(y) = IK(ψ(·)µ) ≥ 0,

so TK,µ is indeed positive.
Assume instead that TK,µ is positive. Observe that measures, which are absolutely continuous

with respect to µ and have bounded density, i.e. measures of the form dν = f dµ, where f is a

bounded Borel measurable function on Ω̃, are weak∗ dense in M(Ω̃). To show this, notice that

for each ball B(z, r) of radius r > 0 centered at the point z ∈ Ω̃, we have µ(B(z, r)) 6= 0, and
therefore, the functions fr(x) = 1

µ(B(z,r))1B(z,r)(x) are well-defined and bounded. Obviously, the

measures νr defined by dνr = fr dµ converge weak∗ to δz as r → 0, which suffices due to weak∗

density of discrete measures.
Then for all such measures of the form dν = f dµ, since bounded functions are in L2(Ω, µ),

we have

IK(ν) = 〈TK,µf, f〉 ≥ 0,

and by weak∗ density, it follows that K is positive definite on Ω̃. �

Moreover, since TK,µ is a Hilbert-Schmidt operator, it is in fact a compact operator. Hence, we

may apply the Spectral Theorem to establish that there exists an orthonormal basis {φj}dim(L2(Ω,µ))
j=1

of L2(Ω, µ) consisting of eigenfunctions of TK,µ, i.e. TK,µφj = λjφj , where the sequence of eigen-
values satisfies |λj | ≥ |λj+1| and limj→∞ λj = 0 if dim(L2(Ω, µ)) = ∞. Moreover, the Spectral
Theorem tells us that, for any continuous function K, in the L2 sense,

(2.13) K(x, y) =

dim(L2(Ω,µ))∑
j=1

λjφj(x)φj(y).

When K is positive definite, TK,µ is positive, i.e. λj ≥ 0 for all j ≥ 1. Mercer’s Theorem then
strengthens the information about convergence in (2.13). We include its proof for completeness.

Theorem 2.18 (Mercer’s Theorem). Assume that the kernel K on Ω × Ω is positive definite.
Fix a measure µ ∈ P(Ω) with supp(µ) = Ω. Let λj ≥ 0 be the eigenvalues and φj be the
eigenfunctions of the associated Hilbert–Schmidt operator TK,µ. Then

(2.14) K(x, y) =

dim(L2(Ω,µ))∑
j=1

λjφj(x)φj(y),
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where the series converges absolutely and uniformly.

Remark: Here, as well as in Proposition 2.20, we assume that supp(µ) = Ω. If supp(µ) 6= Ω,

then the expansion (2.14) holds for x, y ∈ Ω̃ = supp(µ).

Proof. As mentioned above, the fact that (2.14) holds in the L2 sense follows from the Spectral
Theorem for compact operators, hence, only uniform and absolute convergence in the case
dim(L2(Ω, µ)) =∞ need to be proven.

Consider the remainder of the series, i.e. the continuous function

RN (x, y) = K(x, y)−
N∑
j=1

λjφj(x)φj(y).

The corresponding Hilbert-Schmidt operator defined by TRN ,µψ(x) =
∫
Ω

RN (x, y)ψ(y) dµ(y) is

clearly bounded and positive: if ψ =
∑∞

j=1 ψ̂jφj , then

〈TRN ,µψ,ψ〉 =

∞∑
j=N+1

λj
∣∣ψ̂j∣∣2 ≥ 0.

For a positive Hilbert–Schmidt operator, the kernel is non-negative on the diagonal, i.e.
RN (x, x) ≥ 0 for each x ∈ Ω. Indeed, assume that for some x ∈ Ω we have RN (x, x) < 0.
Then we can choose a neighborhood U of x so that RN is negative on U × U , so

〈TRN ,µ1U ,1U 〉 =

∫
U

∫
U

RN (x, y) dµ(x)dµ(y) < 0,

which is a contradiction.

Thus, RN (x, x) ≥ 0 for each x ∈ Ω, i.e. for any N ≥ 1 we have
N∑
j=1

λjφ
2
j (x) ≤ K(x, x), and

thus
∞∑
j=1

λjφ
2
j (x) ≤ K(x, x).

Invoking the Cauchy–Schwarz inequality, we find that∣∣∣∣ ∞∑
j=1

λjφj(x)φj(y)

∣∣∣∣ ≤ ∞∑
j=1

λj
∣∣φj(x)φj(y)

∣∣ ≤ ( ∞∑
j=1

λjφ
2
j (x)

)1/2( ∞∑
j=1

λjφ
2
j (y)

)1/2

≤ K1/2(x, x)K1/2(y, y) ≤ sup
x∈Ω

K(x, x) <∞.

Therefore, the series in (2.14) converges absolutely and uniformly, by Dini’s theorem. �

As a simple corollary of Mercer’s Theorem, we find that∫
Ω

K(x, x) dµ(x) =
∑
j≥1

λj

∫
φ2
j dµ =

∑
j≥1

λj ,

and thus

(2.15)

dim(L2(Ω,µ))∑
j=1

λj <∞.
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By combining Mercer’s Theorem with Lemma 2.3 we arrive at a characterization of all positive
definite kernels.

Corollary 2.19. The kernel K on Ω×Ω is positive definite if and only if for some sequence of
functions φj : Ω→ R and real numbers λj ≥ 0, the kernel K

K(x, y) =
∑
j≥1

λjφj(x)φj(y)

where the sum converges absolutely and uniformly.

2.6. The Existence of Convolution Square Root. We now supply another way to char-
acterize positive definite functions, which is similar to the existence of the “square root” for
positive semidefinite matrices. A similar statement for the rotation-invariant kernels on the
sphere has been obtained in [BD,BDM]. Here we prove a general version of this representation.

Proposition 2.20. Fix any µ ∈ P(Ω) with supp(µ) = Ω. A kernel K on Ω × Ω is positive
definite if and only if there exists some k ∈ L2(Ω× Ω, µ× µ) such that for all x, y ∈ Ω,

(2.16) K(x, y) =

∫
Ω

k(x, z)k(z, y) dµ(z).

We again remind the reader that if Ω̃ = supp(µ) ( Ω, then the conclusion of Proposition 2.20

holds on Ω̃.

Proof. Assume that K is positive definite and define the function k : Ω× Ω→ R by setting

(2.17) k(x, y) =
∑
j≥1

√
λj φj(x)φj(y),

where λj ≥ 0 are eigenvalues and φj are eigenfunctions of TK,µ. The sequence {φj(x)φj(y)} is
orthonormal in L2(Ω× Ω, µ× µ), hence k ∈ L2(Ω× Ω, µ× µ), since

‖k‖2L2(Ω×Ω,µ×µ) =
∑
j≥1

λj <∞

according to (2.15).
Moreover, for each x ∈ Ω, we have that k(x, y) ∈ L2(Ω, µ) as a function of y. Indeed, using

Mercer’s theorem and applying Plancherel’s theorem with respect to dµ(y) to (2.17), we can
compute the L2 norm

‖k(x, ·)‖2L2(Ω,µ) =
∑
j≥1

∣∣√λjφj(x)
∣∣2 =

∑
j≥1

λjφ
2
j (x) = K(x, x) <∞.

Similarly, since k ∈ L2(Ω, µ) in each variable, we have, for any x, y ∈ Ω,∫
Ω

k(x, z)k(z, y) dµ(z) = 〈k(x, ·), k(y, ·)〉L2(Ω,µ) =
∑
j≥1

√
λjφj(x)

√
λjφj(y) = K(x, y),

due to Mercer’s Theorem, which proves (2.16).
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Alternatively, if we assume that (2.16) holds, then for any finite point configuration ωN =
{z1, ..., zN} in Ω and c1, ..., cN ∈ R, we have

N∑
j=1

N∑
i=1

K(zj , zi)cicj =
N∑
j=1

N∑
i=1

cjci

∫
Ω

k(zj , z)k(z, zi) dµ(z)

=

∫
Ω

( N∑
j=1

cjk(zj , z)
)2
dµ(z) ≥ 0.

Thus, K is clearly positive definite. �

Remark: Observe that the choice of the “square root” k is not unique. Indeed, instead of (2.17)
one could take any

k(x, y) =
∑
j≥1

κjφj(x)φj(y),

with the property that κ2
j = λj for all j ≥ 1, i.e. κj = ±

√
λj for an arbitrary choice of signs,

yielding uncountably many functions k satisfying (2.16).

2.7. Energy Minimizers and Hilbert–Schmidt Operators. There is a close relation be-
tween energy minimizers and the properties of the associated Hilbert–Schmidt operator TK,µ on
L2(Ω, µ). We have the following statement.

Lemma 2.21. Let K be a kernel on Ω × Ω and assume that µ ∈ P(Ω) is a global or local
minimizer of IK with IK(µ) ≥ 0. Then the Hilbert–Schmidt operator TK,µ is positive.

Proof. We start by observing that if µ is a (global or local) minimizer of IK , then the constant
function 1Ω is an eigenfunction of TK,µ in L2(Ω, µ). Indeed, according to Theorem 2.14 or
Corollary 2.16, for each x ∈ supp(µ),

(2.18) TK,µ1Ω(x) =

∫
Ω

K(x, y) dµ(y) = UµK(x) = IK(µ)1Ω(x).

Assume, indirectly, that TK,µ is not positive. By Lemma 2.17, TK,µ is compact and self-adjoint,
so there exists an eigenfunction φ such that TK,µφ = λφ with λ < 0. Since φ is continuous, and
therefore bounded, on supp(µ), we have that for sufficiently small t > 0, the measure

µt = (1 + tφ)µ

is positive. As we noted above, 1Ω is an eigenfunction of TK,µ corresponding to the eigenvalue
IK(µ) ≥ 0. Clearly, then, 1Ω and φ are orthogonal, so

µt(Ω) =

∫
Ω

(1 + tφ(x)) dµ(x) = µ(Ω) = 1,

and

IK(µt) =

∫
Ω

∫
Ω

K(x, y)(1 + tφ(x))
(
1 + tφ(y)

)
dµ(x)dµ(y)

= IK(µ) + λt2
∫
Ω

|φ(x)|2dµ(x) < IK(µ),

which contradicts the (local) minimality of µ over probability measures. �
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Recall that according to Lemma 2.17, the operator TK,µ is positive if and only if K is positive
definite on the support of µ. If the condition IK(µ) ≥ 0 in Lemma 2.21 is not satisfied, we
can replace K by K ′(x, y) = K(x, y) − IK(µ), which does not affect energy minimizers. Then
IK′(µ) = 0, and hence, Lemma 2.21 applies. Therefore TK′,µ is positive, i.e. K ′ is positive

definite on Ω̃ = supp(µ). In other words, K is positive definite up to an additive constant, as a

kernel on Ω̃× Ω̃. We arrive at the following important fact.

Lemma 2.22. Let K be a kernel on Ω×Ω. Suppose that µ is a local minimizer of IK over P(Ω).
Then the kernel K must be positive definite modulo a constant on supp(µ), i.e. as a kernel on
supp(µ)× supp(µ). If IK(µ) ≥ 0, then K is positive definite on supp(µ).

Various statements of this type are known in the literature [CFP, FS]. Lemma 2.22 clearly
implies the following localization statement:

Corollary 2.23. Assume the the kernel K on Ω × Ω is not positive definite up to an additive
constant. Then any (local or global) minimizer µ of IK must be supported on a proper subset of
Ω, i.e. supp(µ) ( Ω.

3. Invariant Measures

As suggested in Section 2.4, measures with constant potentials are particularly interesting
from the point of view of energy minimization. They also naturally arise in metric geometry, in
connection with the so-called “rendezvous numbers” [CMY], and we draw the term “invariant”
from this literature. These applications and various interesting properties warrant a separate
discussion of such measures.

3.1. Definition, Examples, and Comments. We start with the following definition.

Definition 3.1. Let K be a kernel on Ω×Ω. We say that a measure µ ∈ P(Ω) is K-invariant
on Ω if the potential of this measure with respect to K is constant on Ω, i.e.

(3.1) UµK(x) = IK(µ) for every x ∈ Ω.

We shall see shortly that these measures have an array of remarkable properties. Notice that
the definition does not require that µ has full support: the majority of statements in this section
hold even in the absence of this assumption.

Before proceeding to these properties we shall provide some examples, showing that K-
invariance is a rather rich notion. Observe that most of the examples below have full support.
All statements that we shall prove for K-invariant measures will apply, in particular, to these
natural examples.

• If µ (locally) minimizes IK and has full support, then according to Theorem 2.14 and
Corollary 2.16 , the measure µ is K-invariant.
• Let Ω = Sd−1 and assume that K is rotationally invariant, i.e. K(x, y) = F (〈x, y〉). Then

the normalized uniform surface measure is K-invariant, since the potential UσF (x) =∫
Sd−1

F (〈x, y〉) dσ(y) is obviously independent of x ∈ Sd−1.

• If, moreover, the function F from the previous example is a polynomial of degree M ,
and ωN = {z1, ..., zN} ⊂ Sd−1 is a spherical M -design, then µ = 1

N

∑N
i=1 δzi is also

K-invariant.
• Similarly, assume that Ω is a compact two-point homogeneous space, K is invariant with

respect to the group of isometries, and η is the normalized uniform measure on Ω. Then
η is K-invariant. This equally applies to connected (e.g., projective spaces) and discrete
(e.g., Hamming cube) two-point homogeneous spaces.
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• If Ω is a compact topological group, µ is its normalized Haar measure, and K is invariant
with respect to the group operation, i.e. K(x, y) = F (y−1x), then µ is K-invariant.
• A pair K, µ as in the above example can be constructed as follows. Suppose G is a

compact group acting on Ω transitively, ν is the Haar measure on G, and µ – a G-
invariant measure on Ω. Then for any function f ∈ L2(Ω, µ), the kernel

K(x, y) =

∫
G
f(τx)f(τy) dν(τ)

is positive definite and µ is K-invariant. Indeed, K is an average of positive definite func-
tions f(τx)f(τy); also, UµK is a G-invariant function on Ω and, since G acts transitively,
must be constant there (see e.g. [CSFSV] for further properties of such K).
• Let Ω = [−1, 1] and K(x, y) = |x− y|. Then the measure µ = 1

2(δ0 + δ1) is K-invariant.
Notice that this example (as well as spherical designs) provides an invariant measure
which does not have full support.
• More generally, if Ω = Bd is the closed unit ball in Rd and K(x, y) = ‖x− y‖−(d−2) (or
K(x, y) = − log ‖x− y‖ for d = 2) is the Newtonian potential, then the uniform surface
measure σ on Sd−1 is the equilibrium measure for IK and is K-invariant on Bd [BHS,L],
which is known as the Faraday cage effect. For d = 1, one gets exactly the previous
example, while for d ≥ 2, the kernels are discontinuous (and thus are partially beyond
the scope of our discussion).
• Still more general form of the Faraday’s effect applies to Ω ⊂ R3 that is given by a

finite union of disjoint closed domains with smooth boundaries, for K(x, y) = ‖x−y‖−s,
1 ≤ s < 3: there exists a probability measure with potential constant on Ω [Fr, Section
17].

Despite an abundance of examples, the existence of a K-invariant measure is possible only
under certain restrictions on the geometry of the domain Ω and the structure of the kernel K.
For example, the following statement is true [CMY].

Lemma 3.2. Assume that Rd is endowed with a strictly convex norm | · |, i.e. |x+ y| < |x|+ |y|
unless x and y ∈ Rd have the same direction. Let Ω ⊂ Rd be compact and set K(x, y) = |x− y|.
If there exists a K-invariant measure on Ω, then either Ω is a line segment or no three points
of Ω are collinear.

For the case when K(x, y) = ‖x−y‖ is the Euclidean distance, this lemma shows, for example,
that an invariant measure doesn’t exist for the unit ball, while, as we know, it does exist for the
sphere.

Finally, we make the remark that if a measure µ is K-invariant, it implies that a constant
function is an eigenfunction of the Hilbert–Schmidt operator TK,µ in L2(Ω, µ) with eigenvalue
λ = IK(µ), which is implied by (2.18).

3.2. A Crucial Identity. The following simple relation provides a powerful direct link between
energy minimization and (conditional) positive definiteness and will play a decisive role in many
results of this section. It is also an important first step in the proof of the Generalized Stolarsky
principle (Theorem 5.1). In a nutshell, this lemma states that, while IK is a quadratic functional,
it behaves linearly around a K-invariant measure.

Lemma 3.3. Let K be a kernel on Ω×Ω and let µ be a K-invariant measure, i.e. UµK(x) = IK(µ)

for all x ∈ Ω. Then for any ν ∈ P̃(Ω),

(3.2) IK(ν − µ) = IK(ν)− IK(µ).



POSITIVE DEFINITENESS AND THE STOLARSKY INVARIANCE PRINCIPLE 17

More generally, if µ ∈ P(Ω) satisfies UµK(x) ≥ IK(µ), with equality on supp(µ), then for any
ν ∈ P(Ω)

(3.3) IK(ν − µ) ≤ IK(ν)− IK(µ),

and equality (3.2) holds for any measure ν ∈ P̃(Ω) with supp(ν) ⊆ supp(µ).

Proof. If µ is K-invariant, then for any ν ∈ P̃(Ω),

(3.4) IK(µ, ν) =

∫
Ω

UµK(x) dν(x) =

∫
Ω

IK(µ) dν(x) = IK(µ).

Therefore

IK(ν − µ) = IK(ν)− 2IK(µ, ν) + IK(µ) = IK(ν)− IK(µ).

For the second part of our claim, observe that for any ν ∈ P(Ω), instead of equality (3.4), one
has the inequality IK(µ, ν) ≥ IK(µ), and thus,

IK(ν − µ) = IK(ν)− 2IK(µ, ν) + IK(µ) ≤ IK(ν)− IK(µ).

Finally, the last statement follows from the first one by replacing Ω with supp(µ). �

Theorem 2.14 and Corollary 2.16 show that if µ is a global (or at least local) minimizer of IK ,
it satisfies the the conditions of the second statement in Lemma 3.3, and if in addition µ has
full support, it also satisfies the first condition, i.e. µ is K-invariant. Thus Lemma 3.3 applies
to (local) energy minimizers, which results in the following corollary:

Corollary 3.4. Let K be a kernel on Ω× Ω and µ be a (local) minimizer of IK . Then for any
ν ∈ P(Ω)

(3.5) IK(ν − µ) ≤ IK(ν)− IK(µ).

For any ν ∈ P̃(Ω) such that supp(ν) ⊆ supp(µ), then

(3.6) IK(ν − µ) = IK(ν)− IK(µ).

3.3. Conditional Positive Definiteness and Energy Minimization. Identity (3.2) of Lemma
3.3 provides a link between energy minimization and conditional positive definiteness. We would
like to emphasize that relation (3.2) holds not just for probability measures ν, but for arbitrary

signed measures of total mass one, i.e. ν ∈ P̃(Ω). Therefore, one can immediately deduce the
following equivalence.

Theorem 3.5. Let K be a kernel on Ω×Ω and assume that µ is K-invariant. Then µ minimizes

IK over the set P̃(Ω) of normalized signed Borel measures if and only if K is conditionally positive
definite.

Moreover, µ uniquely minimizes IK over P̃(Ω) if and only if K is conditionally strictly positive
definite.

Proof. Suppose that K is conditionally positive definite. Then for any ν ∈ P̃(Ω), equality (3.2)
holds and, since (ν − µ)(Ω) = 0, we have

IK(ν)− IK(µ) = IK(ν − µ) ≥ 0,

which shows that µ minimizes IK over P̃(Ω). If K is conditionally strictly positive definite, then
IK(ν) = IK(µ) only if ν − µ = 0, i.e. µ is the unique minimizer.
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Assume conversely that IK(µ) ≤ IK(ν) for each ν ∈ P̃(Ω). Consider an arbitrary signed

measure γ ∈ Z(Ω). Define ν = µ + γ, then ν(Ω) = 1, i.e. ν ∈ P̃(Ω). Thus, applying (3.2) once
again, we find that

IK(γ) = IK(ν − µ) = IK(ν)− IK(µ) ≥ 0,

hence K is conditionally positive definite. If µ is the unique minimizer, then the expression
above equals zero only for γ = 0, i.e. K is conditionally strictly positive definite. �

Obviously, one of the implications holds for minimizers over probability measures P(Ω).

Corollary 3.6. Let K be a kernel on Ω × Ω and assume that µ is K-invariant. If K is
conditionally (strictly) positive definite, then µ (uniquely) minimizes IK over the set P(Ω) of
Borel probability measures.

This corollary is well known, see, e.g., Theorem 4.2.11 in [BHS], but the equivalence in
Theorem 3.5 appears to be new.

Some remarks are in order. We would like to remind the reader that in some specific cases,
such as the sphere with the uniform surface measure (or more generally, two-point homogeneous
spaces with the corresponding uniform measures), the relation between energy minimization
and some form of positive definiteness of the kernel is well known [Sch, BDM]. However, it is
usually demonstrated using the representation theory of the underlying space and the associated
orthogonal polynomial (Gegenbauer, Jacobi, Krawtchouk) expansions. In fact, Theorem 3.5
can be viewed as a generalization of the so-called mean inequality due to Kabatianskii and
Levenshtein [CS, Theorem 5, Chapter 9.3], in which K is an invariant positive definite kernel on
a 2-point homogeneous space. The Theorem is thus a blanket statement that covers all of these
examples and beyond. Moreover, it relies only on the completely elementary identity (3.2), thus
simplifying the known proofs in all of the specific cases. In the spherical case, a similar approach
has been recently employed in [BDM].

3.4. Conditional Positive Definiteness and Positive Definiteness up to a Constant
(Revisited). As we have observed in the previous discussions, two properties, which are some-
what weaker than positive definiteness, play an important role in energy minimization: namely,
conditional positive definiteness and positive definiteness up to an additive constant. We have
already demonstrated in Lemma 2.4 that the latter always implies the former, and the converse
implication is not true in general. We shall now show that the converse implication also holds,
i.e. conditional positive definiteness implies positive definiteness up to an additive constant, if
we additionally assume the existence of a K-invariant measure. Moreover, the statement also
holds for the “strict” version of these properties.

Lemma 3.7. Let K be a kernel on Ω×Ω and assume that K is conditionally (strictly) positive
definite. Suppose also that there exists a K-invariant measure µ ∈ P(Ω). Then K is (strictly)
positive definite up to an additive constant.

Proof. Let K be conditionally (strictly) positive definite. Set C = −IK(µ) + 1. Then K + C is
still conditionally (strictly) positive definite, µ is (K+C)-invariant, and IK+C(µ) = (µ(Ω))2 = 1.
For any signed measure ν with ν(Ω) = 1, identity (3.2) implies that

IK+C(ν)− IK+C(µ) = IK+C(ν − µ) = IK(ν − µ) ≥ 0.

Therefore, IK+C(ν) ≥ 1 > 0.
Now consider an arbitrary measure γ ∈M(Ω). If γ(Ω) = 0, then IK+C(γ) ≥ 0 by conditional

positive definiteness (and IK+C(γ) > 0 for γ 6= 0 for the “strict” version if γ 6= 0).

If γ(Ω) = c 6= 0, we can write γ = cν for some ν ∈ P̃(Ω). Therefore, IK+C(γ) = c2IK+C(ν) ≥
c2 > 0. Hence K + C is (strictly) positive definite. �
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Lemmas 2.4 and 3.7 together show that in the presence of a K-invariant measure, conditional
positive definiteness and positive definiteness modulo an additive constant are equivalent notions.
This is the case, for example, for rotationally invariant kernels K on the sphere, since the uniform
surface measure σ is K-invariant for all such kernels.

3.5. Local and Global Minimizers. Under some additional assumptions, local minimizers of
IK are necessarily global minimizers. Some facts of this type have been observed in the papers
of the authors with D. Ferizović, A. Glazyrin, J. Park [BFGMPV, BGMPV]. Here we prove a
variety of more general statements with the same flavor.

In this subsection, the words “local minimizer” in the assumptions mean “directional local
minimizer” in the sense of Definition 2.15. Thus these results are also valid for local minimizers
in total variation or in the Wasserstein distance Wp with 1 ≤ p <∞, according to (2.11).

Proposition 3.8. Suppose that µ is a local minimizer of IK and any of the following two
conditions holds:

(1) the measure µ is K-invariant, i.e. UµK(x) = IK(µ) for all x ∈ Ω;
(2) K is conditionally positive definite.

Then µ is a global minimizer of IK .

Recall that, according to Corollary 2.16, condition (1) is automatically satisfied if µ has full
support (and so is condition (2), due to Lemmas 2.4 and 2.22). Notice also that, unlike Corollary
3.6, part (2) does not require K-invariance of µ, but assumes instead that µ is a local minimizer.

Proof. Assume that (1) holds. Then for any ν ∈ P(Ω), since µ is a local minimizer, applying
equation (3.2) of Lemma 3.3 for small t > 0 gives

0 ≤ IK((1− t)µ+ tν)− IK(µ) = IK
(
t(ν − µ)

)
= t2IK(ν − µ) = t2

(
IK(ν)− IK(µ)

)
.

Thus IK(µ) ≤ IK(ν), i.e. µ is a global minimizer of IK in P(Ω).
Now assume that (2) holds. Then for each ν ∈ P(Ω), the measure ν − µ has total mass zero.

According to conditional positive definiteness of K and inequality (3.5) of Corollary 3.4,

(3.7) IK(ν)− IK(µ) ≥ IK(ν − µ) ≥ 0.

Therefore, in this case, µ also minimizes IK . �

Observe that if µ isK-invariant, then, according to part (1) of Proposition 3.8, the implications
of (2.11) may be reversed, i.e. three definitions of local minimizers (directional, in total variation,
and in the Wasserstein distance Wp, 1 ≤ p <∞) are equivalent, since in either of the cases the
minimizer is necessarily global.

Corollary 3.9. Assume that µ ∈ P(Ω) is K-invariant. Then the following conditions are
equivalent:

• µ is a directional local minimizer of IK ;
• µ is local minimizer of IK with respect to the total variation norm;
• µ is local minimizer of IK with respect to the Wasserstein distance Wp, 1 ≤ p < ∞ (if

Ω is a metric space);
• µ is a global minimizer of IK on P(Ω).

When µ is a local minimizer with full support, both conditions (1) and (2) of Proposition 3.8
hold simultaneously, and an even stronger conclusion can be drawn.

Proposition 3.10. Let µ be a local minimizer of IK with supp(µ) = Ω. Then µ is a global

minimizer of IK over P̃(Ω), the set of all signed Borel measures with total mass one.
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Proof. As discussed above, if µ is a local minimizer with full support, then both K-invariance
of µ and conditional positive definiteness of K immediately follow, from Corollary 2.16 and

Lemmas 2.4 and 2.22, respectively. Theorem 3.5 then shows that µ minimizes IK over P̃(Ω). �

Finally, another version of the local-to-global minimization principle may be proved under the
assumption that IK is convex at µ, which according to Lemma 2.9, is equivalent to the fact that
the arithmetic mean inequality (2.7) holds for any measure ν ∈ P(Ω). We have the following
statement.

Theorem 3.11. Suppose that K is a kernel on Ω× Ω and that for some µ ∈ P(Ω) there exists
a constant M ∈ R such that UµK(x) ≥ M , with equality on supp(µ). If IK is convex at µ, then
µ is a global minimizer of IK over P(Ω).

Before proving this statement we observe that its first assumption is satisfied in either of
the following two cases: (a) if µ is a local minimizer, according to Corollary 2.16; (b) if µ
is K-invariant. Thus we have two immediate corollaries. The first one is the aforementioned
local-to-global principle.

Corollary 3.12. Let K be a kernel on Ω × Ω and let µ ∈ P(Ω) be a local minimizer of IK . If
IK is convex at µ, then µ is a global minimizer of IK over P(Ω).

Observe that, if convexity at µ were replaced with convexity of IK on P(Ω), then in view of
Proposition 2.11, this would be equivalent to the conditional positive definiteness of K. Thus,
Corollary 3.12 recovers and strengthens part (2) of Proposition 3.8.

The second corollary will provide a crucial implication in Theorem 4.1.

Corollary 3.13. Let K be a kernel on Ω × Ω and let µ ∈ P(Ω) be a K-invariant measure. If
IK is convex at µ, then µ is a global minimizer of IK over P(Ω).

Proof of Theorem 3.11. Observe first that the constant M is necessarily equal to IK(µ):

IK(µ) =

∫
Ω

UµK(x) dµ(x) =

∫
supp(µ)

Mdµ(x) = M.

For any ν ∈ P(Ω), we have that

IK(µ, ν) =

∫
Ω

UµK(x) dν(x) ≥ IK(µ).

Convexity of IK at µ, according to Lemma 2.9, is equivalent to the arithmetic mean inequality
(2.7). Thus,

IK(µ) ≤ IK(µ, ν) ≤ 1

2
IK(µ) +

1

2
IK(ν),

so IK(ν) ≥ IK(µ). �

4. Invariant Measures and Minimizers with Full Support

It is now time to summarize the results of the previous sections. It may not be yet obvious,
but we have proven (sometimes quite surprising) equivalences between many different notions.
We shall restrict our attention to the case when the measure µ is K-invariant (i.e. has constant
potential) and has full support. As we have discussed before, these conditions are satisfied by
many natural candidates (the uniform measure on the sphere or other two-point homogeneous
spaces, the Haar measure on a compact topological group, etc). Though a majority of the
implications are valid even just for K-invariant measures without the full support assumption,
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assuming that µ has full support truly ties the picture together. We shall carefully trace which
of the conclusions require this condition.

We start with the following long list of equivalences.

Theorem 4.1. Let K be a kernel on Ω × Ω. Assume that there exists a measure µ ∈ P(Ω),
which is K-invariant and has full support, i.e. UµK(x) = IK(µ) for all x ∈ Ω and supp(µ) = Ω.

Then the following conditions are equivalent:

(1) K positive definite modulo a constant.
(2) K is conditionally positive definite.
(3) µ is a local minimizer of IK .
(4) µ is a global minimizer of IK over P(Ω).

(5) µ is a global minimizer of IK over P̃(Ω).

(6) IK is convex on P(Ω) (or, equivalently, on P̃(Ω)).
(7) IK is convex at µ.
(8) The arithmetic mean inequality (2.3) holds for all µ1, µ2 ∈ P(Ω) (or, equivalently for all

µ1, µ2 ∈ P̃(Ω)).
(9) The arithmetic mean inequality (2.3) holds when µ1 = µ.

(10) The kernel K can be represented as

K(x, y) =

dim(L2(Ω,µ))∑
j=1

λjφj(x)φj(y)

where the series converges uniformly and absolutely, the function φ1 is constant, and
λj ≥ 0 for j ≥ 2.

1

2

3

4

5

6

7

8

9

10

Figure 1. Implications in the proof of Theorem 4.1: solid arrows are im-
plications that hold without additional assumptions; wavy arrows require K-
invariance, but not full support; dashed arrows represent the implications which
do require the assumption of full support.

Proof. For the reader’s convenience the implications proving this theorem are summarized in
Figure 1.
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We open with a list of the implications that do not require any assumptions on µ. It is obvious
that (5) implies (4), which in turn implies (3). Also, (6) implies (7), and similarly, (8) implies
(9).

The equivalence between (2), (6), and (8) is proved in Lemmas 2.6 and 2.9 together with
Proposition 2.11. Lemma 2.9 also establishes the equivalence between (7) and (9). Lemma 2.4
shows that (1) implies (2).

The following implications rely on the fact that µ is K-invariant, but do not require µ to have
full support. Lemma 3.7 demonstrates that (2) implies (1). Theorem 3.5 yields the equivalence
of (2) and (5). Corollary 3.13 shows that (4) follows from (7). Finally, part (1) of Proposition
3.8 guarantees that (3) implies (4).

The equivalence between (1) and (10) is discussed in Lemma 2.3 and Mercer’s Theorem
(see Theorem 2.18), or more specifically Corollary 2.19. Condition (1) implies (10) due to the
fact that the constant function 1Ω is an eigenfunction of the Hilbert–Schmidt operator TK,µ in
L2(Ω, µ) for any K-invariant measure µ, and the expansion in Mercer’s Theorem is valid on all
of Ω, since supp(µ) = Ω. The implication (10) ⇒ (1) holds without any additional assumptions,
according to Lemma 2.3.

In conclusion, we observe that Lemma 2.22 demonstrates that (4) implies (1), which closes
the loop of implications – and, except for the standalone equivalence between (1) and (10), this
is the only implication in our proof where the fact that supp(µ) = Ω is used. Indeed, Lemma
2.22 only guarantees that the kernel K is positive definite (up to constant) on the support of
the minimizer. Observe also that due to Theorem 2.14, if (4) holds and µ has full support, then
µ is automatically K-invariant. �

To reiterate, this theorem reveals several interesting novel properties of a K-invariant measure
(with full support):

• Equivalence between minimization over the set P(Ω) of probability measures and the set

P̃(Ω) of all signed measures of mass one. This effect has been observed for rotationally
invariant kernels on the sphere and the surface measure σ by two of the authors and
F. Dai [BDM]. This is not necessarily the case in other settings. In particular, for the
integral over the unit ball Bd∫

Bd

∫
Bd

‖x− y‖ dµ(x)dµ(y),

according to [Bj], the unique maximizer over both P(Bd) and P(Sd−1) is σ. According

to the aforementioned equivalence, σ is also a maximizer over P̃(Sd−1), while in the case
of signed measures on the ball, the maximizer does not exist [HNW]. Observe, that one

cannot expect such minimizers to exist in general, since P̃(Ω) is not weak∗ compact.
• Equivalence between being a local and global energy minimizer. This effect, in a slightly

less general form, has been observed by the authors and their collaborators in [BFGMPV,
BGMPV].
• Equivalence between other local and global properties: e.g., the energy functional IK is

convex on the whole set of probability measures if and only if it is convex just at the
special measure µ.
• Equivalence between conditional positive definiteness of the kernel and positive definite-

ness up to constant, which is not true in general.
• We also note that, due to Corollary 3.9, any of the three notions of local minimizers

(directional, in total variation, and in the Wasserstein distance Wp, 1 ≤ p < ∞, for
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metric spaces Ω) may be assumed in part (3) of Theorem 4.1, as they are equivalent for
K-invariant measures.

We now formulate similar theorems for kernels which have the “strict” version of the properties
and for positive definite kernels. We start with the latter.

Theorem 4.2. Suppose that K is a kernel on Ω×Ω and that there exists a measure µ ∈ P(Ω),
which is K-invariant and has full support, i.e. UµK(x) = IK(µ) for all x ∈ Ω and supp(µ) = Ω.
Then the following conditions are equivalent:

(1) The kernel K is positive definite.
(2) The geometric mean inequality (2.5) and IK(µ1) ≥ 0 hold for all µ1, µ2 ∈ P(Ω).
(3) The measure µ is a global minimizer of IK and satisfies IK(µ) ≥ 0.
(4) IK is convex on M(Ω).
(5) The kernel K can be represented as

K(x, y) =

dim(L2(Ω,µ))∑
j=1

λjφj(x)φj(y)

where the series converges uniformly and absolutely, and λj ≥ 0 for j ≥ 1.
(6) There exists some symmetric k ∈ L2(Ω× Ω, µ× µ) such that for all x, y ∈ Ω,

K(x, y) =

∫
Ω

k(x, z)k(z, y) dµ(z).

Proof. Lemma 2.7, Proposition 2.13, Corollary 2.19, and Proposition 2.20 show the equivalence
of (1), (2), (4), (5), and (6). Positive definiteness, i.e. condition (1), guarantees that IK(µ) ≥ 0,
and that µ is a minimizer, due to Theorem 4.1. Conversely, Lemma 2.22 shows that (3) implies
(1), finishing our proof. Observe also that according to Theorem 4.1 it does not matter whether

we mean global minimization over P(Ω) or P̃(Ω) in condition (3). �

Theorem 4.3. Suppose that K is a kernel on Ω× Ω and that there exists a measure µ ∈ P(Ω)
which is K-invariant, i.e. UµK(x) = IK(µ) for all x ∈ Ω. Then the following conditions are
equivalent:

(1) K is conditionally strictly positive definite.
(2) K is strictly positive definite modulo a constant.

(3) µ is the unique minimizer of IK over P̃(Ω).

(4) IK is strictly convex on P(Ω) (or, equivalently, on P̃(Ω)).

If in addition supp(µ) = Ω, i.e. µ has full support, then each of the conditions (1)–(3) implies
the following

(5) The kernel K can be represented as

K(x, y) =

dim(L2(Ω,µ))∑
j=1

λjφj(x)φj(y)

where {φj} is the orthonormal basis consisting of eigenfunctions of the Hilbert–Schmidt
operator TK,µ in L2(Ω, µ), the function φ1 is a constant, the series converges uniformly
and absolutely, and λj > 0 for j ≥ 2.

Moreover, if the span of {φj} is dense in C(Ω), then (5) also implies conditions (1)–(3).
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Proof. Lemma 2.4 shows that (2) implies (1), while Lemma 3.7 provides the converse implication.
The equivalence of (3) and (1) is proved in Theorem 3.5. For equivalence of (1) and (4), see the
discussion after Proposition 2.11.

Before we turn to dealing with condition (5), recall that K-invariance of µ implies that a
constant is an eigenfunction of the operator TK,µ, so we shall assume that φ1 = 1Ω.

Now we show that (3) implies (5). Since µ minimizes IK and has full support, by Theorem 4.1,
K is positive definite up to a constant, and since φ1 = 1, by Mercer’s Theorem, the expansion
in part (5) holds with some λj ∈ R, such that λj ≥ 0 for j ≥ 2, and with the series converging

uniformly and absolutely. Suppose, indirectly, that µ is the unique minimizer of IK over P̃(Ω),
but there exists some l ≥ 2 such that λl = 0. Let dν(x) = (1 + φl(x)) dµ(x). Orthogonality

implies that
∫
Ω

φl(x) dµ(x) = 0, therefore ν ∈ P̃(Ω). Then we obtain

IK(ν) =

∫
Ω

∫
Ω

K(x, y)(1 + φl(x))(1 + φl(y)) dµ(x)dµ(y)

= IK(µ) + 2〈TK,µφl,1Ω〉L2(Ω,µ) + 〈TK,µφl, φl〉L2(Ω,µ)

= IK(µ) + 2λl〈φl,1Ω〉L2(Ω,µ) + λl‖φl‖2L2(Ω,µ) = IK(µ),

which contradicts the fact that µ is the unique minimizer over P̃(Ω).
Finally, we show that (5) implies (2) under the aforementioned additional assumption. Let

K ′(x, y) = K(x, y)− λ1 + 1 and ν ∈M(Ω). Then

IK′(ν) =

∫
Ω

∫
Ω

K ′(x, y) dν(x)dν(y)

= (ν(Ω))2 +

dim(L2(Ω,µ))∑
j=2

∫
Ω

∫
Ω

λjφj(x)φj(y) dν(x)dν(y)

= (ν(Ω))2 +

dim(L2(Ω,µ))∑
j=2

λj

(∫
Ω

φj(x) dν(x)
)2
≥ 0.

Clearly, the only way that IK′(ν) = 0 is if
∫
Ω

φj(x) dν(x) = 0 for all j ≥ 1. By the density of

span{φj}j≥1 in C(Ω), we can conclude that this implies ν = 0, so K ′ must be strictly positive
definite, which completes the proof. �

We conclude with the remark that the additional condition imposed for the sufficiency of
condition (5) is not very restrictive in practice. For example in the case of rotationally invariant
kernels on the sphere and µ = σ, the eigenfunctions φj are simply spherical harmonics, which
span all polynomials on the sphere and thus their span is dense in the space continuous functions.

5. The Generalized Stolarsky Principle on Compact Spaces

Discrepancy theory analyzes discrete point configurations by comparing their distribution
to some fixed (usually uniform) measure µ on a class of test sets. More precisely, the local
discrepancy of a finite configuration ωN = {z1, . . . , zN} ⊂ Ω with respect to a set A ⊆ Ω is
defined as

(5.1) D(ωN , A) =
1

N

N∑
i=1

1A(zi)− µ(A).
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One then takes the supremum over some class A of test sets A (extremal discrepancy) or a
certain average, if the class A admits a natural measure (quadratic averages lead to the so-
called L2 discrepancy). These quantities provide important information about the distribution
of the discrete set ωN [BC,Ma,KN].

Discrepancy is closely related to discrete energy

(5.2) EK(ωN ) :=
1

N2

∑
x,y∈ωN

K(x, y).

The definitions of discrete (5.2) and continuous (1.2) energies are compatible in the sense that

(5.3) EK(ωN ) = IK(µωN ), where µωN =
1

N

∑
x∈ωN

δx.

Similarly, the definition of discrepancy may be extended to the continuous setting by replacing

the empirical measure µωN (A) = 1
N

∑N
i=1 1A(zi) by an arbitrary measure ν ∈ P̃(Ω).

The foundational example of the connection between energy and discrepancy is given by the
classical Stolarsky Invariance Principle [St] which states that

(5.4) cdD
2
L2,cap(ωN ) =

∫
Sd−1

∫
Sd−1

||x− y|| dσ(x) dσ(y) − 1

N2

N∑
i,j=1

||zi − zj ||,

where DL2,cap(ωN ) is the L2 spherical cap discrepancy

(5.5) D 2
L2,cap(ωN ) =

1∫
−1

∫
Sd−1

∣∣∣∣ 1

N

N∑
j=1

1C(x,h)(zj)− σ
(
C(x, h)

)∣∣∣∣2dσ(x) dh

and C(x, h) denotes a spherical cap of height h ∈ [−1, 1] centered at x ∈ Sd−1, i.e. C(x, h) =
{z ∈ Sd−1 : 〈z, x〉 > h}. This principle shows that minimizing the L2 spherical cap discrepancy
is equivalent to an energy optimization problem – maximizing the pairwise sum of Euclidean
distances. Observe that by setting K(x, y) = 1− c−1

d ‖x− y‖, one can rewrite (5.4) as

(5.6) D 2
L2,cap(ωN ) = IK(ν)− IK(σ)

with ν = µωN , and the right-hand side of this relation is familiar to the reader from identity
(3.2) of Lemma 3.3.

In the recent years, numerous authors (including the first two authors of this paper) revis-
ited this fascinating fact, extended it, and applied it to various problems of discrete geometry
and optimization: new proofs of the original Stolarsky Invariance Principle have been given in
[BrD, BDM, HBZO], it has been extended to geodesic distances and other rotationally invari-
ant kernels on the sphere [BD, BDM], to compact, connected, two-point homogeneous spaces
[Sk1, Sk2] and to the Hamming cube [Ba, BS], and applied to two problems of Fejes Tóth on
sums of various distances on the sphere and in projective spaces [BDM,BM].

In this paper, we prove a general version of this principle on arbitrary compact spaces which
extends some of the versions mentioned above and does not use any structural information about
the underlying domain. Let Ω be a compact topological space and let us fix a measure µ ∈ P(Ω)
– this will usually be an energy minimizing (equilibrium) measure or an invariant measure of full
support (its role is similar to that of σ in the spherical case). We now define the L2 discrepancy
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of an arbitrary probability measure ν ∈ P(Ω) (or even a signed measure ν ∈ P̃(Ω)) relative to
the measure µ with respect to the function k : Ω× Ω→ R by the identity

(5.7)

D 2
L2,k,µ(ν) =

∫
Ω

∣∣∣∣ ∫
Ω

k(x, y) dν(y)−
∫
Ω

k(x, y) dµ(y)

∣∣∣∣2dµ(x)

=

∫
Ω

∣∣∣∣ ∫
Ω

k(x, y) d
(
ν − µ

)
(y)

∣∣∣∣2dµ(x).

When ν is the equal-weight discrete measure associated to the N -point set ωN = {z1, ..., zN} ⊂ Ω,

i.e. ν =
1

N

N∑
i=1

δzi , this becomes the discrepancy of the set ωN with respect to k:

(5.8) D 2
L2,k,µ(ωN ) = D 2

L2,k,µ

( 1

N

N∑
i=1

δzi

)
=

∫
Ω

∣∣∣∣ 1

N

N∑
i=1

k(x, zi)−
∫
Ω

k(x, y) dµ(y)

∣∣∣∣2dµ(x)

Notice that, in the spherical case, setting k(x, y) = 1{〈x,y〉>h} = 1C(x,h)(y), one finds that (5.8) is
equal to the inner integral in (5.5) with the integrand of the form (5.1). Therefore, this definition
is indeed an extension of the classical notion of discrepancy with arbitrary functions k in place
of indicators of test sets.

We can now obtain the following general version of the Stolarsky Invariance Principle:

Theorem 5.1 (Generalized Stolarsky Principle). Let K be a positive definite (modulo an ad-
ditive constant C) kernel on Ω × Ω. Let us assume that µ ∈ P(Ω) is a K-invariant measure
with full support, i.e. UµK(x) = IK(µ) for all x ∈ Ω and supp(µ) = Ω. Then for every measure

ν ∈ P̃(Ω), we have the following identity.

(5.9) IK(ν)− IK(µ) = D 2
L2,k,µ(ν),

where the function k ∈ L2(Ω×Ω, µ× µ) is as in part (6) of Theorem 4.2 applied to the positive
definite kernel K + C.

In particular, for a discrete set ωN = {z1, ..., zN} ⊂ Ω,

(5.10) EK(ωN )− IK(µ) = D 2
L2,k,µ(ωN ).

This theorem has the following immediate corollary:

Corollary 5.2. Let K be a kernel on Ω×Ω. Assume that µ ∈ P(Ω) is a global minimizer of the

energy functional IK over P(Ω) with supp(µ) = Ω̃ ⊆ Ω. Then identity (5.9) holds for any signed

measure ν with total mass one, whose support is contained in the support of µ, i.e. ν ∈ P̃(Ω̃).

Similarly, relation (5.10) holds for any point set ωN = {z1, ..., zN} ⊂ Ω̃.

Proof. If µ is a global minimizer of IK , by Theorem 2.14, the potential UµK is constant on Ω̃,

i.e. µ is K-invariant and has full support if viewed as an element of P(Ω̃). Moreover, according

to Lemma 2.22, the kernel K is positive definite (modulo a constant) on Ω̃. Therefore, the

statement follows directly from Theorem 5.1 applied to Ω̃ in place of Ω. �

We now turn to the proof of the generalized Stolarsky principle:

Proof of Theorem 5.1. Without loss of generality, we can assume that K is positive definite, since
adding a constant to K affects neither the invariance of µ nor the difference IK(ν)− IK(µ). We
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can now use the crucial identity (3.2) of Lemma 3.3, as well as part (6) of Theorem 4.2, to obtain

IK(ν)− IK(µ) = IK(ν − µ) =

∫
Ω

∫
Ω

K(x, y)d
(
ν − µ

)
(x)d

(
ν − µ

)
(y)

=

∫
Ω

∫
Ω

∫
Ω

k(x, z)k(z, y) dµ(z)d
(
ν − µ

)
(x)d

(
ν − µ

)
(y)(5.11)

=

∫
Ω

∣∣∣∣ ∫
Ω

k(x, z)d
(
ν − µ

)
(x)

∣∣∣∣2 dµ(z) = D 2
L2,k,µ(ν).

�

Remark: Observe that, for k ∈ L2(Ω×Ω, µ×µ), it is not technically obvious that the definition
of D2

L2,k,µ(ν) in (5.7) is properly justified: we do not know a priori that k is integrable with

respect to ν, only with respect to µ. (This problem does not occur in the discrete case since we
know that k(·, zi) ∈ L2(Ω, µ) for each i = 1, ..., N .) However, the proof of Stolarsky principle
(5.9) demonstrates that the L2 discrepancy D2

L2,k,µ is well-defined for any Borel measure ν.

Indeed, the inner integral with respect to dµ(z) in (5.11) is defined according to part (6) of
Theorem 4.2, and, moreover, produces the function K(x, y), which is continuous and therefore
integrable with respect to the finite Borel measure (ν − µ)× (ν − µ) on Ω× Ω. Hence Fubini’s
theorem applies and∫

Ω

∫
Ω

k(x, z)k(y, z)d
(
ν − µ

)
(x)d

(
ν − µ

)
(y) =

∣∣∣∣ ∫
Ω

k(x, z)d
(
ν − µ

)
(x)

∣∣∣∣2
is finite for µ-a.e. z and is integrable with respect to dµ(z), i.e. D2

L2,k,µ(ν) is well-defined.

6. The Spherical Case

We end with a brief discussion of the results of prior sections in the particular case when
the domain is the sphere in Euclidean space. More specifically, let Ω = Sd−1 and let K be a
rotationally invariant kernel on the sphere, i.e. K(x, y) = F (〈x, y〉) for each x, y ∈ Sd−1, where
F ∈ C[−1, 1]. By a slight abuse of notation, we shall also call the kernel F and the energy IF .

We immediately observe that σ, the normalized surface measure on Sd−1, is an F -invariant
measure with full support. Therefore, all of the results of Sections 2–4 apply. In particular,
Theorem 4.1 holds with µ = σ. Some of its conclusions are interesting even in this classical case.
We do not completely restate Theorems 4.1 and 4.2 for Ω = Sd−1, but simply summarize some
interesting facts.

For any function F ∈ C[−1, 1] which generates a kernel F (〈x, y〉) on Sd−1 × Sd−1,

(i) conditional positive definiteness of F on the sphere is equivalent to positive definiteness up
to an additive constant;

(ii) the facts that σ minimizes in three different ways IF (locally, globally over probability
measures, globally over signed measures of total mass one) are all equivalent to each other;

(iii) in turn, the fact that σ minimizes IF is equivalent to conditional positive definiteness of F
on the sphere.

Some results of part (ii) have been observed in [BDM, BGMPV] and part (iii) is well known,
see, e.g., [BDM] (but heuristically it goes back to [Sch]).

Further considerations are connected to the Gegenbauer expansions of positive definite kernels.
The Gegenbauer polynomials {Cλn}n≥0 form an orthogonal basis of the space L2([−1, 1], wλ) of
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functions on [−1, 1], which are square integrable with respect to the weight wλ(t) = (1− t2)λ−
1
2 .

These functions are closely related to harmonic analysis on the sphere, see e.g. [DX] for details,
when λ = d−2

2 (which we assume for the rest of the section).
The kernel F can be expanded in Gegenbauer series

(6.1) F (t) =

∞∑
n=0

F̂ (n, λ)
n+ λ

λ
Cλn(t)

in the sense of L2([−1, 1], wλ). In addition, the Funk–Hecke formula, which states that

(6.2)

∫
Sd−1

F (〈x, y〉)Yn(y) dσ(y) = F̂ (n, λ)Yn(x)

whenever Yn is a spherical harmonic of degree n on Sd−1, demonstrates that the spherical
harmonics are exactly the eigenfunctions of the Hilbert–Schmidt operator TF,σ, with the corre-
sponding Gegenbauer coefficients as eigenvalues. Thus, equivalence between positivity of TF,σ
and positive definiteness of F , recovers the seminal result of Schoenberg [Sch] which asserts that
positive definiteness on the sphere is equivalent to non-negativity of Gegenbauer coefficients.

Moreover, if {Yn, k}dim(Hd
n)

k=1 is an orthonormal basis of the space Hdn of spherical harmonics of

degree n on Sd−1, then the addition formula

(6.3)

dim(Hd
n)∑

j=1

Yn,j(x)Yn,j(y) =
n+ λ

λ
Cλn(〈x, y〉) for all x, y ∈ Sd−1,

together with Mercer’s Theorem, Theorem 2.18, implies that for positive definite F the following
series converges absolutely and uniformly

F (〈x, y〉) =
∞∑
n=0

F̂ (n, λ)

dim(Hd
n)∑

k=1

Yn,k(x)Yn,k(y) =
∞∑
n=0

F̂ (n, λ)
n+ λ

λ
Cλn(〈x, y〉),

and hence the Gegenbauer expansion of a function F ∈ C[−1, 1], which is positive definite on the
sphere, must be absolutely and uniformly convergent. Absolute convergence of the Gegenbauer
expansions of positive definite functions has been observed before [G,BD] using special properties
of Gegenbauer polynomials – here we see that this fact is a consequence of general spectral theory.
Part (5) of Theorem 4.2 and part (10) of Theorem 4.1 may be restated as follows:

(iv) The kernel F is (conditionally) positive definite on the sphere if and only if the Gegenbauer

coefficients satisfy F̂ (n, λ) ≥ 0 for all n ≥ 0 (n ≥ 1). Moreover, in this case, the Gegenbauer
expansion (6.1) converges uniformly and absolutely.

Similarly, one obtains the characterization in terms of the “convolution square root”, as in part
(6) of Theorem 4.2:

(v) positive definiteness of F on the sphere is equivalent to the existence of the function
f ∈ L2([−1, 1], wλ) such that

(6.4) F (〈x, y〉) =

∫
Sd−1

f(〈x, z〉)f(〈z, y〉) dσ(z), x, y ∈ Sd−1.

This equivalence had been stated in [BD] and the construction of the function f from the kernel
F is almost identical to that of the function k from the kernel K in Proposition 2.20: one chooses

the Gegenbauer coefficients of f so that (f̂(n, λ))2 = F̂ (n, λ), which is mimicked in (2.17). In
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addition, (6.4) was used to prove a general Stolarsky Principle on the sphere [BDM, BM]: for
each ν ∈ P(Sd−1),

(6.5) IF (ν)− IF (σ) = D 2
L2,f,σ(ν),

which we have generalized to arbitrary compact domains in Theorem 5.1.

We finish by mentioning that our results similarly apply to the setting of two-point homo-
geneous compact spaces, both connected (e.g., projective spaces) and discrete (e.g., Hamming
cube) with the corresponding uniform measure, as well as compact topological groups with the
Haar measure, although we do not pursue these directions in this paper.
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