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ARTICLE INFO ABSTRACT

Keywords: Spontaneous neural activity in human as assessed with resting-state functional magnetic resonance imaging
cCAP (fMRI) exhibits brain-wide coordinated patterns in the frequency of < 0.1 Hz. However, understanding of fast
EEG brain-wide networks at the timescales of neuronal events (milliseconds to sub-seconds) and their spatial, spec-

Brain states

Global co-(de)activations
Dynamics

Long-range transitions

tral, and transitional characteristics remain limited due to the temporal constraints of hemodynamic signals. With
milli-second resolution and whole-head coverage, scalp-based electroencephalography (EEG) provides a unique
window into brain-wide networks with neuronal-timescale dynamics, shedding light on the organizing princi-
ples of brain functions. Using the state-of-the-art signal processing techniques, we reconstructed cortical neural
tomography from resting-state EEG and extracted component-based co-activation patterns (cCAPs). These cCAPs
revealed brain-wide intrinsic networks and their dynamics, indicating the configuration/reconfiguration of rest-
ing human brains into recurring and transitional functional states, which are featured with the prominent spatial
phenomena of global patterns and anti-state pairs of co-(de)activations. Rich oscillational structures across a wide
frequency band (i.e., 0.6 Hz, 5 Hz, and 10 Hz) were embedded in the nonstationary dynamics of these functional
states. We further identified a superstructure that regulated between-state immediate and long-range transitions
involving the entire set of identified cCAPs and governed a significant aspect of brain-wide network dynamics.
These findings demonstrated how resting-state EEG data can be functionally decomposed using cCAPs to reveal
rich dynamic structures of brain-wide human neural activations.

nals using functional magnetic resonance imaging (fMRI) (Fox and
Raichle 2007; Logothetis 2008). It has been assumed that inter-regional

1. Introduction

Spontaneous fluctuations are a hallmark of neural signals, which
have been observed in electrophysiological (Leopold et al., 2003;
Hipp et al., 2012), hemodynamic (Biswal et al., 1995; Fox et al., 2005),
and optical imaging studies (Arieli et al., 1996), in various species un-
der different behavioral conditions (Fox et al., 2006; Larson-Prior et al.,
2009). These spontaneous fluctuations exhibit inter-regional functional
connectivity at multiple spatial scales ranging from function-specific
resting state networks (RSNs) (Smith et al., 2009) to functional net-
work connectivity (FNC) (Allen et al., 2014) to whole-brain networked
activities (Yousefi et al., 2018; Raut et al., 2020; Takeda et al., 2021)
defining a collection of distinctly structured brain-wide patterns. Spa-
tial and dynamic structures of these brain-wide intrinsic networks have
been observed with abnormalities in almost all major neuropsychiatric
disorders (Greicius 2008), indicating their significant clinical value.

Brain-wide functional networks have been predominantly probed
through noninvasive measurement of spontaneous hemodynamic sig-

correlations observed in hemodynamic signals, reflecting spatial orga-
nizations of brain-wide intrinsic networks and their state-dependent
changes, are converted from coordinated large-scale spatiotemporal
dynamics of spontaneous neural activity via neurovascular coupling
(Logothetis et al., 2001; Shmuel and Leopold 2008). Numerous stud-
ies have reported the linkage between individual fMRI RSNs and elec-
troencephalography (EEG) oscillations (Sadaghiani et al., 2022), e.g.,
the attention network with EEG alpha power and the default mode net-
work with EEG beta power (Laufs et al., 2003). More recently, all major
RSNs reported previously with fMRI data have been independently iden-
tified in magnetoencephalography (MEG) (Brookes et al., 2011) and EEG
data (Britz et al., 2010; Yuan et al., 2016), which show spatial similari-
ties to fMRI RSNs. Simultaneous EEG-fMRI studies have further demon-
strated strong temporal correlations between corresponding RSNs re-
vealed in EEG and fMRI beyond their spatial similarities (Yuan et al.,
2016). While the evidence of neural origins for fMRI RSNs are accu-
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mulating, the knowledge of neural underpinnings for more brain-wide
functional networks, e.g., FNC and whole-brain networks, are scarce, es-
pecially in human. To date, multiple heterogeneous dynamics of large-
scale spontaneous neural networks have been reported in animals us-
ing optical imaging (Huang et al., 2010; Stroh et al., 2013) and neuro-
physiological studies (Steriade et al., 1993; Luczak et al., 2007), based
on observations of propagational patterns from recordings of limited
spatial coverage, i.e., restricted imaging areas (Ferezou et al., 2007;
Stroh et al., 2013) and/or a few selected but largely-separated recording
sites (Crunelli and Hughes 2010). In human, a scalp-based EEG study has
suggested a long-range anteroposterior propagation (Massimini et al.,
2004). These studies, while indirect and limited, attest to the existence
of brain-wide neural networks, beyond RSNs, in humans that underlie
brain-wide hemodynamic networks. More importantly, while brain net-
works may be best defined spatially by fMRI in terms of their anatomy,
to investigate their temporal organization patterns, it requires high tem-
poral resolution data such as EEG or MEG (e.g., 1000 Hz) over fMRI
(~1 Hz).

The gap between brain-wide neural and hemodynamic networks
is intrinsically tied to the difference between neuronal and vascular
structures. It is largely unknown how observed large-scale heteroge-
neous dynamics among neurons, e.g., traveling wave (Massimini et al.,
2004; Stroh et al., 2013) and spiral wave (Huang et al., 2010), are
converted into the dynamics of vascular networks (Allen et al., 2014).
Motivated to understand this gap, a strategy shift of fMRI data analy-
sis from traditional correlation-based approaches to the ones integrat-
ing amplitudes has revealed several new brain-wide network patterns.
This includes transient co-activation patterns (CAPs) (Liu and Duyn
2013; Karahanoglu and Van De Ville 2015; Liu et al., 2018; Gutierrez-
Barragan et al., 2019) among a subset of anatomically connected cor-
tical areas, i.e., a prominent feature similarly observed in hemody-
namic correlation structures, and brain-wide propagational transitions
(Mitra et al., 2015; Matsui et al., 2016; Gutierrez-Barragan et al., 2019),
bridging more toward neuronal waves. A novel wide-field optical imag-
ing study concurrently monitoring calcium signals reflecting neuronal
spiking activity and hemodynamic signals in mice (Matsui et al., 2016)
indicates that transient neural CAPs, representing instantaneous brain
states, are embedded in brain-wide propagations, characterizing dy-
namic transitions among various brain states. This observation suggests
that these two new brain-wide patterns are associated, and brain-wide
transitions might play a critical role in formulating hemodynamic cor-
relation structures of brain-wide patterns.

Currently, optical imaging systems sensitive to neural activities
cannot effectively penetrate human skulls (Grienberger and Konnerth
2012), preventing human studies from directly reporting and visualiz-
ing cortical-level brain-wide coordinated neural electrical phenomena
and dynamics. The present study was conducted to identify such pat-
terns on the human cortex from classical EEG data using an advanced
computational framework developed based on the state-of-the-art signal
processing techniques. Our data indicate that brain-wide CAPs could be
probed from high-density scalp-based EEG data, and their cortical con-
structs could be directly visualized in the form of reconstructed tomo-
graphies. Our data further indicate rich dynamic structures in identi-
fied brain states, i.e., CAPs, at multiple time scales, including recurring,
transitional, and oscillatory patterns. Finally, we report a superstruc-
ture involving all identified brain states that regulates between-state
spatial, temporal, and transitional relationships and leads to the charac-
teristic long-range transitional patterns coordinated by a pair of global
co-(de)activation brain states identified in all individuals.

2. Methods
2.1. Dataset and preprocessing

The experiment of the main dataset was approved by the Institu-
tional Review Board at the University of Oklahoma Health Science Cen-
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ter (OUHSC), and written informed consents were obtained from all
healthy participants. Resting-state EEG data (Dataset 0: 10 min long,
n = 34, 10 females, age: 24+5 years) with eye-closed were recorded at
a sample frequency of 1000 Hz using the 128-channel Amps 300 ampli-
fier (Electrical Geodesics Inc., OR, USA). No sleep was noted as moni-
tored by experimenters and/or reported by participants. Structural MRI
was collected for each participant on a GE MR750 scanner at OUHSC
MRI facility, using GE’s "BRAVO" sequence: FOV = 240 mm, axial slices
per slab = 180, slice thickness = 1 mm, image matrix = 256 x 256,
TR/TE = 8.45/3.24 ms. In addition, EEG sensor positions and three land-
mark fiducial locations (i.e., nasion, left and right pre-auricular points)
were digitized by the Polhemus Patriot system. Two other datasets (see
details in Supplementary Note 1) from healthy participants of our pre-
vious studies were included to validate the findings from Dataset O.
Briefly, dataset 1 (Shou et al., 2017) had eye-closed resting-state EEG
data (5 min long, 128 channels, and sampled at 512 Hz; n = 19, 13
females, age: 13+6 years) and no individual structural MRI, where age-
appropriate MRI templates were used (Richards et al., 2016). Dataset 2
(Ding et al., 2014) had eye-closed resting-state EEG data (5 min long,
126 channels, and sampled at 1000 Hz; n = 20, all females, age: 49+7
years) and individual structural MRI data. These three datasets exhib-
ited a significant age difference across groups (F;) = 208, p < le-
6). All three EEG datasets were first filtered by a notch filter at 58
to 62 Hz and a band-pass filter at 0.5-100 Hz. Noisy channels in-
terpolation and ICs removal related to ocular, muscular and cardiac
activities were conducted using the EEGLAB toolbox (Delorme and
Makeig 2004). Finally, EEG data were down-sampled to 250 Hz and
re-referenced to the common average. It is noted that no EEG segments
were rejected to maintain the continuity of data for subsequent dynamic
analysis.

2.2. Cortical source imaging: cortical current tomography

Cortical source imaging was performed individually to reconstruct
cortical sources from scalp-level EEG signals (Fig. 1A). FreeSurfer
(Fischl 2012) was used to segment individual MRI data to extract the
surfaces of the scalp, skull, and brain for volume conduction model, and
the interface between white and gray matters for cortical current den-
sity (CCD) source model. The surfaces of volume conduction model were
each tessellated into triangular elements of 10,242 nodes and 20,480
triangles, while the surface of the CCD model was tessellated into tri-
angular elements of 20,484 nodes and 40,960 triangles. On the CCD
model, the nodes on the medial wall adjoining the corpus callosum,
basal forebrain, and hippocampus were excluded, and the total number
of source nodes was reduced to 18,715. Each of these nodes was assigned
with a dipole with its orientation set as the normalized vector sum of
the normal directions of all triangles sharing the node. The electrical
conductivities of the scalp, skull, and brain were assigned as 0.33/Qm,
0.0165/Qm, and 0.33/Qm, respectively. EEG sensor locations were reg-
istered on the scalp surface by aligning three landmark fiducial points
from both EEG and MRI recordings. Based on these models, the bound-
ary element method (Hamalainen and Sarvas 1989) was used to build
the forward relationship: ®(t) = L-S(t), where L is the lead field matrix;
®(t) and S(t) are functions of time for scalp EEGs and dipole amplitudes,
respectively. The minimum-norm estimate (Hamalainen and Ilmoniemi
1994) was used to reconstruct dipole amplitudes on the cortical surface:
S(t) = LT(L-LT+AD~1-®(t), where A was the regularization parameter
and selected via the generalized cross validation method (Golub et al.,
1979) and I was the identity matrix. To control the quality of recon-
structed cortical sources, the selected A values beyond three standard
deviations of all values in each participant were considered as outliers
and interpolated with the neighboring ones. Based on these adjusted 4
values, cortical current tomography was reconstructed as a function of
time for each participant for subsequent analysis.



L. Ding, G. Shou, Y.-H. Cha et al.

Neurolmage 260 (2022) 119461

Statistical regression tomography

(A) .r P34 <)
IC time ¢ N
SoLIses To obtain participlzglt level spatial maps
‘Ypha | -° X
Group-level ICA) #. [ eBd L of RSNs: AR(B) + regression
ol Xpq L] #sources #ICs
o time @ 3 #sources
b o[ P3T time 5 y o 3
3 ] i P1 =3 X0 Spq
O o [ ) H () o !
SW sl oy | Source time Dawhsampling o @
’g_ 3 — C.%irie? _ ammlita;éa:s?%:;t'on To obtain participant-level time
o @b o ) -1 YP34 piitu imat courses of RSNs: regression
o Individual cortical 4| time #ICs
source imagin @ [ ] T 2
ging )g Yor - 3t 3| time
[} . o o] H |
8 c 1 = S X 6 1P
7 5 1 31°p G
8 o) ]
time 2 @ -
+ i Life time i i
(B) o _tlme Cortical spatlal maps of cCAPs
e 3 [0 - 1) LIRS | ' “ %
» Juuaagag
K-means One-step transition K ’
i clustering Averaging -L'} -q
2 Q ]”H ”"
Long range .
I+ transition Al A
TP1 Q . -- iw II ‘F

Interval time

Fig. 1. Schematic illustration of the method. (A) Spatial definitions of cortical RSNs and their dynamics calculated using a statistical dual-regression analysis
between the instantaneous amplitudes of sensor-level IC time courses and cortical-level source time courses. IC time courses are calculated from a group-level ICA
on preprocessed EEG data temporally concatenated across all participants. Cortical source time courses are calculated by cortical source imaging from EEG and MRI
data of individual participants. (B) Recurring brain states and their dynamic transitions captured and classified by clustering timeframe data of cortical RSNs into
short-lived spatially congruent patterns (i.e., cCAPs) using the k-means algorithm. Four temporal and transitional measures, i.e., lifetime, interval time, one-step

transition, and long-range transition, are illustrated. P: participant; T: timecourse.

2.3. Group-level ICA: scalp-level representations of RSNs

A group-level ICA was used to decompose preprocessed scalp EEG
data into multiple ICs (Ding et al., 2014; Shou et al., 2017). Briefly,
individual EEG data were normalized to z values and temporally con-
catenated. A short-time Fourier transform was then performed on seg-
mented 1-s epoch data without overlap to obtain time-frequency repre-
sentations of EEG data on channels, which were the input for the time-
frequency ICA model (Bingham and Hyvarinen 2000; Shou et al., 2012).
The Fourier transform modulated rhythmic neural activities that were
usually Gaussian distributed into more super-Gaussian to be better de-
tected from artifacts (Bingham and Hyvarinen 2000; Shou et al., 2012).
Here, the Fourier spectrum data were selected in the range of 1 to 100 Hz
at a resolution of 1 Hz, which were individually normalized to account
for the 1/f distribution over the spectrum. The ICA model was run for
each model order from 25 to 64 with 64 finally being selected as the or-
der of the ICA model for subsequent analyses, as it gave the best spatial
patterns in identifying major RSNs. To obtain IC time courses, original
EEG data were projected using the demixing matrix calculated from the
group-level ICA. Thereafter, ICs showing neural activation characteris-
tics in both of their spatial and spectral patterns, as compared to the
ones reported in the literature (Brookes et al., 2011; Shou et al., 2012;
Yuan et al., 2016; Shou et al., 2020), were selected as the scalp-level
representations of cortical RSNs.

2.4. Statistical regression tomography: cortical representations of RSNs

For each participant, the cortical representation of each RSN was es-
timated via a statistical dual-regression analysis between time courses
of individual cortical dipoles and the time courses of the selected ICs
(Fig. 1A). First, both time courses were down-sampled to 100 Hz and
their instantaneous amplitudes (Sandoval and De Leon 2015) were cal-
culated via the Hilbert transform (Baker et al., 2014; Coquelet et al.,
2022). Second, to obtain cortical maps of RSN, the first regression was
performed with amplitude time courses of all selected ICs as the regres-
sors and amplitude time courses of individual cortical dipoles as the
response data. Considering highly autocorrelated nature of EEG signals
(Nunez 1981), an autoregression (AR) model with the order of 6 was
used to reduce the autocorrelation effect on regression, similar to the
practice in reported fMRI studies (Woolrich et al., 2001). The order of
the AR model was selected after testing three different values (i.e., 1, 6,
and 15), which found that the AR (6) model could significantly reduce
the autocorrelation effect to the similar level as the AR (15) model more
than the AR (1) model. Third, the second regression was performed to re-
construct time courses of cortical RSNs with cortical RSN maps obtained
from the first regression analysis as the regressors and timeframe-wise
spatial maps of cortical dipoles as the response data. As a result, corti-
cal tomographies of RSNs were defined with their corresponding spatial
and temporal patterns in individuals.
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Fig. 2. A set of spatially-structured functional states with brain-wide patterns, i.e., cCAPs, from the resting human brain. (A) Cortical maps of the cCAPs identified
at the group level in which both cCAPs 7 and 8 show global co-(de)activation patterns. Red-yellow colors indicate co-activations (i.e., high neuronal currents),
and blue indicates co-deactivations (i.e., low neuronal currents). (B) The weight vectors, i.e., columns, of the cluster centers of all cCAPs. Colors indicate weight
amplitudes (with + signs) of individual RSNs at the cluster centers of cCAPs and numbers indicates the amplitude ranks (no signs) of same individual RSNs across
all cCAPs. DMN: Default mode network. (C) The distance map of the weight vectors of all cCAPs projected into a 3D space. Same-color dots: anti-state pairs and
hemisphere-symmetric pair; red dots: two polarized states, i.e., cCCAPs 7 and 8, connected by the dashed line; blue lines: connecting brain states that are structurally
closest to two polarized states (see more in Supplementary Fig. 3A); gray circular plane: halfway between two polarized states. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

2.5. Identifying component-based CAPs: a K-means clustering analysis

Time courses of cortical RSNs obtained above were subject to a K-
means clustering analysis to identify distinct recurring patterns that
were characterized by different levels of co-(de)activations among dif-
ferent ICs (Fig. 1B), which was termed as component-based CAPs
(cCAPs). The clustering analysis was performed at the group level on
matrix data, i.e., number of time points from all participants X num-
ber of RSNs. To account for different variances in different RSNs and
participants, each time course was normalized as zero-mean and unit-
variance per participant before the clustering analysis. In the clustering
model, the L1-norm distance was used as the metric to measure the
similarity among timeframe-wise data and, therefore, the co-activation
here was defined on amplitudes (rather than temporal correlation) sim-
ilar to reported fMRI CAP studies (Allen et al., 2014; Karahanoglu and
Van De Ville 2015; Gutierrez-Barragan et al., 2019). After calculating
the model order in a range from 2 to 20 for clustering, we chose the
model order of 8 using the metrics of percentage of variance explained
and average within-cluster sum of squares (see Supplementary Fig. 2)
to report our results. We further examined the spatial patterns of cCAPs
obtained for the model orders between 6 and 10, which were highly
similar (Supplementary Fig. 2C). The output of the clustering analysis
labeled each timeframe data of cortical RSNs to a unique cCAP (Fig. 1B).
Thereafter, the cluster centers of individual cCAPs were obtained as the
vectors of weights of selected RSNs via averaging original values of cor-
tical RSN timeframe data (before normalization) with the same corre-
sponding labels (Fig. 1B). The weights in these center vectors were fur-
ther numerically ranked, i.e., from 1 to 8 in their absolute values, for
each RSN across all eight cCAPs to illustrate relative activation levels of
each RSN among all cCAPs. The distances between these center vectors
were calculated and projected into a 3D space (Fig. 2C) using a multidi-
mensional scaling tool from MATLAB (i.e., cmdscale.m) to examine the
spatial relationship among all cCAPs. Finally, the cortical tomography
of each cCAP was built for individual participants as the weighted sum
of cortical tomographies of RSNs from individual participants with the
corresponding center vector (Fig. 1B). Using the same means, cortical to-
mographies of all cCAPs at each timeframe were similarly reconstructed

with instantaneous weights of RSNs from their time courses (Fig. 5 and
Supplementary Movies 1-4).

2.6. Temporal metrics of cCAPs

Multiple temporal metrics (Fig. 1B) were calculated on data from in-
dividuals and then summarized to generate group-level statistics, e.g.,
means, standard deviations, and histograms. The metric of lifetime was
defined as the duration of each occurrence of a cCAP. A transition hap-
pened when two neighboring timeframes were labeled with different
cCAPs. The interval time of a cCAP was defined as the time difference
between its two consecutive occurrences from the end of the early one
to the beginning of the late one. To probe temporal long-scale relation-
ship between the occurrences among all eight cCAPs, an alignment anal-
ysis was developed, where one cCAP was selected as a reference cCAP
and then the occurrence probabilities of all cCAPs at certain distances
in the time axis were calculated with respect to the reference cCAP.
Specifically, the epochs of all occurrences of the reference cCAP were
extracted with 5 s before the start of and 5 s after the end of an occur-
rence. Within the total 10 s for each epoch, the occurrences of all eight
cCAPs at each time instant were calculated in individual participants
and then divided by the total number of epochs to obtain their occur-
ring probabilities, each presented as a function of time centered toward
the reference cCAP (see Fig. 3D).

2.7. Transitional patterns among cCAPs

To investigate the transition structures among cCAPs, two analyses
focusing on different time scales were performed on individual partici-
pant data. First, one-step transition probabilities of a cCAP (at time t) to
other cCAPs (at time t + 1) defined as the numbers of transitions from
the cCAP to other cCAPs (i.e., outflow) or from other cCAPs to the cCAP
(i.e., inflow), divided by the total number of occurrences of the cCAP.
These probability data were used to form the outflow/inflow matrices
with the current cCAP state at time t in the vertical direction and the
next cCAP state at time t + 1 in the horizontal direction, in which the en-
tries in any row of the outflow matrices summed to one and the entries
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Fig. 3. Temporal characteristics of recurring functional brain states, i.e., cCAPs. (A) Occurrence rates of cCAPs (mean+SEM) where cCAPs 7 and 8 show significantly
lower occurrences than others (p < 0.05, FDR corrected). (B) Mean (+SEM) values (left) and histograms (right) of interval times of cCAPs. Note that cCAPs 7 and 8
have significantly longer mean interval time than others (p < 0.05, FDR corrected). All histograms show two peaks (around 60 ms and 170 ms) and the occurrences
of cCAPs 7 and 8 become higher than other cCAPs beyond the interval time of 650 ms (the inset). (C) Mean (+SEM) values (left) and histograms (right) of lifetimes
of cCAPs. Note that cCAPs 7 and 8 have significantly longer mean lifetime than others (p < 0.05, FDR corrected). The occurrences of cCAPs 7 and 8 become higher
than other cCAPs beyond the lifetime of 60 ms (the inset). (D) Occurrence probabilities of all cCAPs as functions of time distances toward all occurrences of the
target cCAP 7 (top) and cCAP 8 (bottom). See other cCAPs as the target cCAP in Supplementary Figs. 5B-C. SEM: standard error of mean.

in any column of the inflow matrices summed to one, known as percent-
age outflow/inflow rates of cCAPs (see Fig. 4). Second, we studied the
transitions between two polarized brain states (i.e., cCAPs 7 & 8), which
exhibit distinct spatial, temporal, and transitional patterns as compared
to all other cCAPs (see Figs. 2-4). The 3D distance map (Fig. 2C) further
indicates that cCAPs 7 & 8 represent two polarized brain states on the
opposite boundary of the entire repertoire of brain states identified in
the present study. Therefore, the events of visiting one polarized brain
state (e.g., cCAP 7) after visiting another (then cCAP 8) and vice versa
via other non-polarized brain states (from cCAP 1 to cCAP 6) were of

investigational interests, termed as the long-range transitions and noted
as cCAP 7—8 and cCAP 8-7, respectively. Multiple temporal metrics
were calculated on long-range transition data per participant and sta-
tistically compared using repeated measures ANOVA (rmANOVA) and
t-test when appliable (Fig. 6) with all participants as metric data sam-
ples. These temporal metrics include occurrences (Fig. 6A), means and
histograms of transition durations in continuous timeframes (Fig. 6B),
numeric counts of total non-polarized cCAPs visited (counting repeated
visits) and different non-polarized cCAPs visited (not counting repeated
visits) during long-range transitions (Fig. 6C), and occurrence rate his-
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tograms of two types of transitions (i.e., cCAP 7—8 and cCAP 8-7) as
a function of number of different cCAPs visited (Fig. 6C). To study the
roles of the six non-polarized cCAPs in each type of long-range tran-
sitions, we calculated the occurrence rates of the transitions with the
visit to a specific non-polarized cCAP (i.e., cCAPs 1-6) out of total num-
ber of the same-type long-range transitions (Fig. 6D). We also broke
down total occurrence data according to the number of different non-
polarized cCAPs visited in each type of long-range transitions and cal-
culated the occurrence rates of the transitions involving a specific non-
polarized cCAP at different numeric counts of brain states visited during
each type of long-range transitions (Fig. 6E). After that, two reference
transitions (i.e., cCCAP 7—7 and cCAP 8—8) involving cCAP 7 or 8 only
(i.e., successive visits of one of two polarized states without visiting an-
other) were introduced and their temporal metrics were assessed simi-
larly. Note that these two reference transitions were not the long-range
transitions defined in the present study, but their temporal metric val-
ues were used as references to evaluate distinct patterns of the same
metric values from two long-range transitions. To investigate whether
the long-range transition patterns coordinated by cCAPs 7 and 8 were
unique, similar long-range transitions and reference transitions based
on two pseudo-polarized states made by all other possible pairs (total
27 pairs) of the eight cCAPs were examined and all above-mentioned
calculations were repeated. Unless specified, p values were corrected by
Bonferroni method.

3. Results

3.1. Brain-wide EEG component clustering analysis reveals a set of
spatially-structured functional brain states

Using concatenated high-density EEG resting-state data from 34
participants (128 channels, sampled at 1000 Hz, Dataset 0), mapped
onto participant-specific models of cortical surfaces from FREESURFER
(Fischl 2012) by our newly developed computational framework
(Fig. 1), we identified eight reproducible CAP patterns from EEG com-
ponent signals (component-based CAPs, cCAPs, Fig. 2A), where these
component signals have been related to the definitions of electrophysi-
ological resting state networks (RSNs, Supplementary Fig. 1A) in previ-
ous studies (Brookes et al., 2011; Yuan et al., 2016; Shou et al., 2020).
Essentially, this framework finds, in a completely data-driven way, re-
current states of networked activities (i.e., cCAPs) in human brains with
structured spatiotemporal properties. Spatially, almost all cCAPs (with
the exception of cCAP 3 relatively focusing on the cingulate cortex) sug-
gest brain-wide patterns of co-(de)activations in both their cortical maps
(Fig. 2A) and activity levels of involved RSNs (Fig. 2B and Supplemen-
tary Note 2). These facts indicate that identified cCAPs activate anatom-
ically connected and functionally related neural substrates in the dy-
namic behaviors of the resting human brain. Two cCAPs (cCAPs 7 and 8)
indicate global co-activation and co-deactivation patterns, respectively,

1 2 3 4 5 6 7 8
cCAP at t+1
(B) pear only to be the ones that are spatially close
to two polarized states (Fig. 2C).

the columns (in A) and rows (in B), in which the
5% cCAPs with the largest outflow or inflow val-
ues that are significantly higher than the sec-
ond largest values are labeled (‘+: p < 0.001,
Bonferroni adjusted, “*’: p < 0.05, unadjusted).
These identified cCAPs (labeled as ‘+’ or “*”) ap-

as all RSNs reach their own top (or close to top) levels of positive or
negative magnitude of activity, which are further supported by their
cortical maps. Moreover, default mode networks (DMNs, Supplemen-
tary Fig. 1A) and task-positive networks (TPNs, RSNs other than DMNs)
reveal opposite co-activation patterns where high-magnitude DMN ac-
tivations are accompanied by relatively low-magnitude TPN activations
in cCAPs 2, 5 and 6 (Fig. 2B) and vice versa in cCAPs 1, 3, and 4.
As a notable feature of CAPs identified in fMRI, the configuration into
anti-state pairs is characterized by opposing patterns of functional co-
(de)activations (Gutierrez-Barragan et al., 2019). We conducted a se-
quential search for such pairs based on the metric of vectorized spa-
tial correlation coefficients. Apart from the hemisphere-mirrored pair
(cCAP 2-6), the anti-state characteristic is especially prominent in the
cCAP 7-8 pair (r = —0.90+0.05), but also apparent in the cCAP 1-4 pair
(r = —0.41+0.23) and the cCAP 3-5 pair (r = —0.27+0.18). The spa-
tial distances among all eight cCAPs in the 3D space (see Methods) re-
veal a well-structured spatial relationship among the entire set of cCAPs
(Fig. 2C), in which cCAPs 7 and 8 are positioned as two poles with the
longest distance and the other six cCAPs are clustered halfway between
them. Furthermore, cCAP 5 is significantly closer to cCAP 8 while both
cCAPs 2 and 6 are significantly closer to cCAP 7 than other cCAPs (Sup-
plementary Note 2). The vectorized spatial correlation coefficients of
eight cCAPs between those identified in individual participants and the
group-level ones indicate that these cCAPs can be reliably detected in
individual participants (Supplementary Fig. 3C). In particular, cCAPs 7
and 8 have the highest spatial correlations (only two r > 0.5) (Supple-
mentary Fig. 3B).

3.2. Recurring patterns of cCAPs support the spatial structure formulated
by the set of brain states

We then investigated cCAP dynamics with the goal of finding evi-
dence to support the observation of multi-level spatial structures for-
mulated by the eight cCAPs. We report the occurrence rates of individ-
ual cCAPs that are within a range of 9% and 15% (Fig. 3A), close to
the equal opportunity of occurrence (i.e., 12.5% for eight cCAPs). The
lifetime of each cCAP occurrence was in the range between 25 and 35
milliseconds for mean values (Fig. 3C). Both data suggest all cCAPs are
recurring states that can be reliably detected at both group and indi-
vidual levels as their variabilities among individuals are low comparing
with their group-level mean values, which are consistent with individu-
ally reproducible cCAP spatial patterns discussed above. The cCAPs 7-8
pair reveals significantly lower occurrence rate (p < 0.0005, FDR cor-
rected), longer lifetime (p < 0.00005, FDR corrected), and longer inter-
val time between successive occurrences (p < 0.005, FDR corrected) than
all other cCAPs. The two anti-state pairs (cCAP 1-4 and cCAP 3-5) that
are spatially close (Fig. 2C) share similar data for these temporal met-
rics. The hemisphere-mirrored cCAP pair (cCAP 2-6) have occurrence
rates higher than the two polarized states (p < 0.005, FDR corrected)
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Fig. 5. Representative occurrences for two long-range transitions and two reference transitions between two polarized functional brain states (Fig. 2) on the inflated
cortical surface from a participant: cCAP 7—7, cCAP 7—8, cCAP 8—8 and cCAP 8—7. Each map represents the averaged cortical pattern of an occurred cCAP over
all timeframes within its lifetime window (labeled above) during the sequenced transition. See Supplementary Movies 1-4 for corresponding videos in continuous
timeframes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

but lower than the four anti-states (p < 0.0005, FDR corrected). Their
interval times are lower than the two polarized states (p < 0.05, FDR cor-
rected) but higher than the four anti-states (p < 0.0005, FDR corrected).
The lowest occurrence rates and longest interval times of cCAPs 7 and 8
are consistent with these two states being at the boundaries of distance
maps (Fig. 2C), exhibiting low chances to be visited during between-
state transitions (see Figs. 4 and 5). Other states are more likely to be
visited since they are closer to each other. In summary, the consistencies
observed between cCAP spatial and temporal patterns at three different
levels, i.e., individual cCAPs, cCAP pairs, and the entire set of all eight
cCAPs, suggest that these observations are manifested from the same
underlying source, i.e., dynamically coordinated and networked brain-
wide activations.

3.3. Individual cCAPs show intrinsic temporal dynamics and cCAPs 7-8
further indicate coordinated large-scale fluctuations

The histograms of cCAP interval times (Fig. 3B) exhibit two char-
acteristic peaks (~10 Hz and ~5 Hz, Supplementary Note 2) on top of
exponentially decreasing curves. The wide ranges of interval times il-
lustrated in the decreasing curves indicate that the occurrences of these
recurring brain states are nonstationary, while two peaks reveal weak
but observable intrinsic dynamic rhythms in cCAPs. These are consis-
tently detected in data from individual participants (Supplementary Fig.
4A). Note that the significantly longer interval times of cCAP 7-8 are
achieved via having fewer short intervals and more long intervals (the
inset, Fig. 3B) without lengthening the characteristic peaks. The same
mechanism is also observed in cCAP 26 for their moderately but statisti-
cally significantly longer interval times (p < 0.0005, FDR corrected), as
well as for longer lifetimes of cCAPs 7, 8, 2, and 6 (Fig. 3C). These obser-
vations suggest that both lifetimes and interval times of cCAPs are poten-
tially modulated by some unrevealed mechanisms with longer temporal
scales (Gutierrez-Barragan et al., 2019). To this end, we next examined
long-scale temporal dynamics beyond interval times using an alignment

analysis on occurrences of a target cCAP at different time distances to-
ward all occurrences of a reference cCAP (see Methods). We observe
two oscillatory phenomena elevated from the baseline of 12.5% (i.e.,
equal opportunity for eight cCAPs) that are exponentially decayed over
the distance to the reference cCAP (Fig. 3D and Supplementary Fig. 5A).
The short-scale oscillations have an inter-peak distance of ~100 ms, cor-
responding to the 10 Hz frequency component in Fig. 3B. The long-scale
oscillations show an inter-peak distance of ~1.6 s, corresponding to a
frequency of < 1 Hz. These elevated oscillatory phenomena could be re-
liably detected at both the group and individual participant levels (Sup-
plementary Fig. 5B) but mainly when the target and reference cCAPs are
same. One notable exception is the cCAPs 7-8 pair, in which elevated
oscillations in one of them lead to symmetric but depressed oscillations
in the other. This coordination between cCAPs 7 and 8, together with
other data distinguishing them from the other cCAPs (Figs. 2 and 3A-C),
suggests their important roles in modulating temporal dynamics of the
resting human brain activity encoded in all cCAPs of brain-wide spatial
patterns.

3.4. Immediate transition patterns across cCAPs support spatial structures
formulated by cCAPs

We then moved on to study between-state transitions via firstly in-
vestigating one-step transitions among cCAPs. The outflow matrix in-
dicates patterns of lower transitions from all cCAPs to cCAPs 7 and 8
(last two columns, Fig. 4A) than to the other 6 cCAPs. Similarly, the in-
flow matrix indicates lower transitions from cCAPs 7 and 8 to all other
cCAPs (last two rows, Fig. 4B). More prominently, the immediate tran-
sitions between cCAP 7 and 8 for both outflow and inflow are almost
zero (<0.5%). All these observations support cCAP 7/8 as a polarized
state similarly suggested in their distance maps and recurring patterns
(Figs. 2-3). To find which one(s) from other six cCAPs have more imme-
diate transitions to cCAP 7/8, percentage outflow rates (i.e., elements of
a column, Fig. 4A) and percentage inflow rates (i.e., elements of a row,
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Fig. 4B) for each of these six cCAPs were compared, respectively, as ac-
tual outflow/inflow data biased by their occurrence rates (Fig. 3). cCAPs
2 and 6 show the maximal and significantly higher (as compared with
the corresponding second largest) outflow rates (9% and 23% larger,
respectively, both p < 0.05, corrected) and inflow rates (14%, p < 0.05,
and 41% larger, p < 0.05, corrected, respectively) towards cCAP 7. cCAP
5 shows the maximal and significantly higher outflow rates (15% larger,
p < 0.05, corrected) and inflow rates (24% larger, p < 0.05, corrected)
towards cCAP 8. All other three cCAPs (i.e., 1, 3, and 4) show no signif-
icant differences between the largest and second largest outflow/inflow
rates. These observations are consistent with the distance map (Supple-
mentary Note 2) where cCAPs 2/6 are closest to cCAP 7 and cCAP 5 is
closest to cCAP 8.

3.5. Unique characteristic patterns in long-range transitions between global
co-activation and co-deactivation states

Driven by the observations in above results about the existence of
large-scale spatial (Fig. 2C) and temporal structures (Fig. 3D and Sup-
plementary Fig. 5A) among the entire set of CAPs, we further investi-
gated large-scale dynamics of transitional structures, beyond a pair of
CAPs (Fig. 4), involving the entire set of CAPs. When visually inspect-
ing movies of spontaneous cCAPs (Supplementary Movies 1-4 in con-
tinuous timeframes), we noticed that the long-range transitions usually
took longer times and visited more non-polarized brain states (as well
as more different non-polarized brain states) than the reference tran-
sitions. Quantitatively, we observe that the long-range transitions be-
tween cCAPs 7 and 8 occur significantly lower (>85% lower, p < 1e-6,
corrected, Fig. 6A), take about 1.6 times longer (p < 0.0005, corrected,
the inset in Fig. 6B), and visit over 1.2 times more states (p < le-4, cor-
rected, the inset in Fig. 6C) than the reference transitions (see more in
Supplementary Note 3). The breakdown data according to the transi-
tion duration (Fig. 6B) showed exponential decreasing patterns for both
long-range and reference transitions and more occurrences of cCAP 87
and 7—8 for the durations over 100 ms (post-hoc t tests: p < 0.01 and
consecutive durations>5), and less occurrences for the durations below
100 ms than the reference transitions (post-hoc t tests: p < 0.01 and con-
secutive durations>5). A characteristic peak for both cCAP 8—7 and
7—8 appears around this point of separation (i.e., 100 ms) indicating
that the shift towards longer durations is needed in order to visit more
brain states (the inset in Fig. 6C). The extremely low short-duration tran-
sitions (i.e., 10 ms and 20 ms) in cCAP 8—7 and 7—8 is consistent with
the largest distance (Fig. 2) and almost zero one-step transitions (Fig. 4)
between cCAPs 7 and 8.

It is further suggested that the long-range transitions between cCAPs
7 and 8 not only visit more other states, but also visit more differ-
ent states (Fig. 6C). Percentage-wise, significantly more cCAP 8—7 and
7—8 than the reference transitions (rmANOVA: p < le-10, corrected;
post-hoc t tests: p < 0.001, corrected) happen when the numbers of dif-
ferent states visited are high (i.e., 4, 5, and 6). When only one other
state is visited, significantly less cCAP 8—7 and 7—8 (p < le-10, cor-
rected) happen than the reference transitions. We further studied the
occurrence rates of other six non-polarized cCAPs in these four transi-
tions (Fig. 6D). It appears that these six cCAPs are visited significantly
more during most long-range transitions than the reference transitions
(p < 0.01, corrected). Moreover, cCAPs 1, 3, and 4 show similar occur-
rences between two reference transitions, while cCAPs 2, 5, and 6 show
different patterns. High occurrences of cCAP 2/6 during cCAP 8—8 and
cCAP 5 during cCAP 7—7 once again confirm the affinities of cCAP 2/6
toward cCAP 8 and cCAP 5 towards cCAP 7 as in Figs. 2-4. On the other
hand, significantly lowered occurrences of cCAP 5 during cCAP 8—8 and
cCAP 2/6 during cCAP 7—-7 (p < 0.001, corrected) as compared with oc-
currences of other non-polarized cCAPs in either cCAP 8—8 or cCAP 2/6
during cCAP 7—7 suggest that these lowered occurrences might be the
reasons behind no transition between cCAPs 7 and 8 during time win-
dows of two reference transitions. When the occurrence data of long-
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range transitions involving a specific non-polarized cCAP are broken
down according to the number of different states visited (Fig. 6E), sig-
nificantly lowered occurrences of cCAP 5 in cCAP 8—8 and cCAP 2/6 in
cCAP 7—7 (at least p < 0.05, corrected) than two reference transitions in
all conditions are similarly observed. No other cCAPs show consistently
significant different occurrences over five different numbers of different
states visited (Supplementary Fig. 7).

Long-range transition data based on 27 pairs of pseudo-polarized
states (Supplementary Note 4) reveal, in comparison to similarly gen-
erated reference transition data, no similar patterns to the cCAP 7-8
pair on metrics of occurrence (Supplementary Fig. 8), duration (Supple-
mentary Figs. 9-10), state visit (Supplementary Figs. 11-12), and state-
specific occurrence (Supplementary Fig. 13). The long-range transitions
between the two global co-(de)activation states were thus unique.

3.6. Reproducibility

We repeated the exact same analyses on other two datasets, which
were independently collected (i.e., Datasets 1 and 2), and reproduced
almost all phenomena reported from Dataset O (see Supplementary Note
1). These phenomena include a set of cCAPs each showing distinct
hemispherically-symmetric spatial pattern, a pair of polarized cCAPs
with global co-(de)activation patterns, anti-state cCAP pairs (Fig. 7A),
recurring temporal patterns and their differences among different cCAPs
(especially the significantly lower occurrences in two polarized cCAPs,
Fig. 7B), oscillations at <1 Hz, 5 Hz, and 10 Hz, one-step transition pat-
terns, and long-range transition patterns coordinated by two polarized
cCAPs (Fig. 7C). The only exception is the <1 Hz oscillation, which was
detected in both Datasets 0 and 1, but not obvious in Dataset 2 (having
the oldest participants out of three datasets). It is important to note that
the superstructure among the entire set of cCAPs is identified in both
Datasets 1 and 2. This superstructure is spatially supported by the dis-
tance map (Fig. 7A), where brain states closer to two polarized cCAPs
are also identified similarly as in Dataset O (i.e., cCAPs 1 and 5 close
to the polarized cCAP 2, and cCAP 6 close to the polarized cCAP 7 in
Dataset 1; cCAP 1 close to the polarized cCAP 2 and cCAP 4 close to
the polarized cCAP 8 in Dataset 2), revealing the fine spatial constructs
within eight cCAPs beyond two polarized cCAPs. The superstructure and
its fine spatial constructs are then supported by one-step transition data
and long-range transition patterns (Fig. 7C).

4. Discussion

Using an advanced computational framework, we reconstructed and
visualized spatial maps of brain-wide intrinsic functional states and their
dynamics in resting human brains from electrophysiological signals. Our
results collectively indicate that spontaneous human brain neural activ-
ity is a nonstationary phenomenon, involving reconfiguration into re-
curring and dynamically transitional functional states, which replicate
and extend previous discoveries from optical imaging studies in animals
(Matsui et al., 2016; Gutierrez-Barragan et al., 2019). Such recurring and
transitional spontaneous neural activity results in synchronous neural
co-(de)activations across hemispherically-symmetric and functionally-
connected brain areas, including the prominent phenomena of global
patterns (Mitra et al., 2015; Yousefi et al., 2018) and anti-state pairs of
co-(de)activations (Liu and Duyn 2013; Karahanoglu and Van De Ville
2015; Gutierrez-Barragan et al., 2019) in their spatial tomographies.
This view is further expanded by reporting that time-varying patterns of
spontaneous resting-state EEG signals are governed by a limited number
of functional states showing rich organized dynamic structures across a
wide frequency band, i.e., multi-scale oscillations from fast (5 Hz and
10 Hz) to slow (0.6 Hz) rates. In parallel to oscillatory structures, we
further found a superstructure among the identified entire set of func-
tional states that regulates between-state one-step transitions and long-
range transitions mediated by two unique states with opposite global
co-(de)activation spatial patterns.
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Fig. 6. Patterns of transitions between two polarized functional brain states of cCAPs 7 and 8. (A) Occurrences of two long-range transitions: cCAP 7—8 and cCAP
8-7, and two reference transitions: cCAP 7—7 and cCAP 8—8. (B) Boxplots (inset) of mean durations and histograms of durations (SEM: shaded areas) as functions
of time for four types of transitions. (C) Occurrence rates of four types of transitions (SEM: shaded areas) as functions of the number of different cCAPs (the six
non-polarized cCAPs) visited per occurrence. Inset: Participant-level means (+xSEM) of numbers of different cCAPs (left y-axis and boxplots with solid-fills) and total
numbers of cCAPs (right y-axis and boxplots with no-fills) visited per occurrence. Post-hoc t tests indicate significant differences (p < 0.01, adjusted) when the
number of different cCAPs equals to 1, 4, 5, and 6 between two long-range transitions and two reference transitions. (D) Occurrence rates of the six non-polarized
cCAPs within each type of transition. (E) Occurrence rates of cCAPs 2, 6 and 5 within each type of transition as functions of number of different cCAPs visited per
occurrence. See Supplementary Fig. 7 for cCAPs 1, 3, and 4. The condition of number of cCAPs as 6 is omitted since all occurrence rates are 100% by the definition

of this metric.

These findings advance our understanding of the principles underly-
ing spontaneous neural networks in multiple directions. First, our results
directly visualize large-scale brain-wide intrinsic functional states on the
cortex based on electrical signals generated by the human brain, which
have been mainly reported in human hemodynamic signals (Allen et al.,
2014; Karahanoglu and Van De Ville 2015; Yousefi et al., 2018) but
limited in EEG/MEG signals (Baker et al., 2014; Vidaurre et al., 2018;

Coquelet et al., 2022). Such visual constructs confirm hypothesized
brain-wide networked dynamics based on electrical recordings from a
limited number brain sites (Massimini et al., 2004). As several cortical-
level spatial prominent features of identified functional states resem-
ble those from recent reports of human fMRI data (Karahanoglu and
Van De Ville 2015; Yousefi et al., 2018), our greater temporal resolu-
tion of electrophysiological recordings extends those observations and
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Fig. 7. Reproduced key results of brain-wide functional states and their spatial, temporal, dynamic patterns from Datasets 1 and 2. (A) Spatial maps of two polarized
global co-(de)activation brain states, i.e., cCAPs 2 and 7 in Dataset 1 and cCAPs 3 and 8 in Dataset 2, and the 3D distance maps among all cCAPs. Same-color dots:
anti-state pairs; red dots: two polarized states connected by the dashed line; blue lines: connecting brain states that are structurally closest to two polarized states;
gray circular plane: halfway between two polarized states (see Fig. 2). (B) Occurrence rates of cCAPs (see Fig. 3). (C) Occurrence rates of four types of transitions as
a function of the number of cCAPs visited per occurrence (see Fig. 6 for more details).

provides novel mechanistic understanding of neural determinants of
brain-wide hemodynamic structures. Second, the use of signal ampli-
tude as the basis for clustering similarities and identifying differences
among moment-to-moment cortical activation tomographies provides
a means to discover brain-wide co-activation patterns in population-
level electrical signals. In contrast, correlation-based methods applied to

10

resting-state EEG/MEG signals have led to largely regionally activated
neural patterns (Brookes et al., 2011; Hipp et al., 2012; Shou et al.,
2020) as compared to distributed network patterns seen in correspond-
ing correlation-based fMRI studies. Finally, in contrast to the slow re-
sponse in hemodynamic signals to be <0.1 Hz (Logothetis et al., 2001;
Shmuel and Leopold 2008; Gutierrez-Barragan et al., 2019), our present



L. Ding, G. Shou, Y.-H. Cha et al.

results have revealed rich frequency-specific phenomena in the classi-
cal range of EEG between 0.1 Hz and 50 Hz (Fig. 3), similar to previous
EEG/MEG based brain state studies (Britz et al., 2010; Baker et al., 2014;
Michel and Koenig 2018). Future studies can expand observations on
both ends of the spectrum (i.e., <0.1 Hz and >50 Hz) to investigate more
frequency-specific neuronal communications as well as cross-frequency
mechanisms (Canolty and Knight 2010).

Our results indicate that the number of functional states (i.e., 8)
that explain most resting-state EEG temporal dynamics is considerably
lower than the common number of RSNs (e.g., 15-50) identified as
spatial independent sources (ICs) using ICA from resting-state fMRI
(Damoiseaux et al., 2006). Meanwhile, the dynamic states arising from
these spatial sources have been suggested to be typically small (e.g., 4-
8) in resting-state fMRI from both humans (Calhoun et al., 2014) and
animals (Gutierrez-Barragan et al., 2019). Our eight recurring functional
states (Fig. 2) are in fact constructed from 14 RSN components (Supple-
mentary Fig. 1). This is consistent with the suggestion that ICs present a
spatial parcellation of the brain rather than distinct states of functional
connectivity (Liu et al., 2013), which has been used to identify function-
based parcellations of the human brain (Smith et al., 2013). Therefore,
our observations suggest, together with previous studies on dynamic
states (Shou et al., 2020), that, under resting conditions, most of these
spatial independent sources may be concomitantly engaged in coordi-
nated patterns of co-(de)activations. Co-(de)activations of these distinct
spatial sources then inevitably generate brain-wide cortical patterns in-
dicating involvement of distributed neural network systems that gener-
ate moment-to-moment dynamics as suggested by fMRI data (Fox et al.,
2005; Allen et al., 2014), which reveal phenomena that have or have
not been revealed via exploring data correlation structures before as
discussed below.

First, the identified states exhibit brain-wide co-activations both
across anatomically homologous areas between hemispheres and across
functional brain regions that are spatially separated, e.g., along the
anterior-posterior direction. Strong hemisphere-mirrored symmetries
(observed in ¢cCAPs 1, 3, 4, 5, 7, 8, and the cCAP 2-6 pair) are the hall-
mark of RSNs (Smith et al., 2009) and resting-state functional connectiv-
ity in fMRI (Gutierrez-Barragan et al., 2019). Electrophysiological and
optical studies have also suggested such hemispheric symmetries dur-
ing the propagation of brain waves in both animals (Stroh et al., 2013)
and humans (Mitra and Raichle 2016; Raut et al., 2020; Takeda et al.,
2021). The pattern in cCAP 2 recapitulates the cardinal feature of DMN
organization from the anterior brain, i.e., medial prefrontal cortex, to
the posterior brain, i.e., posterior cingulate cortex and temporo-parietal
junction (Buckner et al., 2008). These anterior-posterior structured acti-
vations, together with temporal lobe activations, reflect a full distributed
membership of cortical nodes for DMN as established in human fMRI
data. Similar DMN patterns have been revealed in human MEG data but
with missing posterior nodes using spatial ICA (Brookes et al., 2011)
or more lateralized distributions using seed-based correlation methods
(de Pasquale et al. 2010; Hipp et al., 2012). As spatial ICs are more rel-
evant to anatomic parcellations and correlation methods are stationary,
the differences in characterizing DMN of our present results and pre-
vious EEG/MEG studies support the prevailing notion of time-varying
functional connectivity across brain regions reported in previous stud-
ies (Allen et al., 2014; Calhoun et al., 2014; Liu et al., 2018; Gutierrez-
Barragan et al., 2019). Second, the opposing co-activations between
DMN and various constituents of TPN revealed in cCAPs 1, 2, 3, 4,
and 5 (Fig. 2B) corroborate the presence of a tight inverse coupling be-
tween these two systems (Popa et al., 2009). The widely reported brain-
wide anticorrelated functional networks characterized using hemody-
namic signals (Fox et al., 2005) are believed to be manifestations of
this inverse coupling at the spatial scale of the entire cortex, while no
studies, to the best of our knowledge, have reported their brain-wide
presence in neural electrical signals. This phenomenon supports the no-
tion that large-scale hemodynamic correlation-based network structures
are converted from large-scale spatiotemporal dynamics of spontaneous
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neural activity (Tagliazucchi et al., 2012). Finally, global co-activations
as indicated in cCAPs 7 and 8 in our results have only been reported
when human hemodynamic signals are analyzed beyond the correla-
tion structure (Mitra et al., 2015; Yousefi et al., 2018). For example,
the presence of strong correlated DMN and TPN, that usually lead to
global co-activation patterns, has been discovered in human hemody-
namic signals under the influence of global signal (Liu et al., 2017) us-
ing a quasiperiodic pattern searching algorithm (Yousefi et al., 2018).
Transient global co-activations have been observed in searching glob-
ally propagating waves in both hemodynamic and neural signals from
rodents (Matsui et al., 2016). Furthermore, slow oscillations (<1 Hz) of
membrane potential are characterized with global traveling waves of
both depolarizing and hyperpolarizing components (Stroh et al., 2013),
which support the existence of transient global co-activations with op-
posite patterns.

Lifetimes and interval times between visits of these short-lived brain
states exhibit large value ranges (Fig. 3B-C), which suggest that cortical
networks in wakefulness are predominantly asynchronous. As a matter
of fact, awake behaving states are traditionally called “desynchronized
EEG” in contrast to large-amplitude slow oscillations observed in quiet
sleep (Steriade et al., 1993). These asynchronous behaviors follow ex-
ponentially decreasing patterns as the scale increases, suggesting scale-
free properties (Van de Ville et al. 2010), which are consistent with ob-
servations in brain states reported from microstate (Michel and Koenig
2018; Coquelet et al., 2022) and hidden Markov model (HMM) studies
(Baker et al., 2014; Vidaurre et al., 2018). On top of scale-free phenom-
ena, weak and selective coherences are presented with evidence for both
slow (0.6 Hz) and fast oscillations (5 Hz and 10 Hz). Frequency-specific
oscillatory synchronizations are essential mechanisms for efficient neu-
ronal coordination across the entire brain (Siegel et al., 2012). Both 5 Hz
and 10 Hz oscillations have been well established in EEG literature as
theta (Kahana et al., 1999) and alpha rhythms (Halgren et al., 2019).
The <1 Hz oscillation has been discovered as an overriding EEG pattern
during non-REM sleep (Steriade et al., 1993; Crunelli and Hughes 2010),
while recent experimental evidence indicates that slow-wave-like activ-
ity is also present in awake animals (Vyazovskiy et al., 2011). These
intermittently recurring oscillations are similarly manifested in all iden-
tified brain states, although their occurrence patterns (e.g., occurrence
rates) indicate statistically significant differences. Therefore, our obser-
vations suggest, on top of largely nonstationary dynamics, the presence
of rich multi-scale ongoing intrinsic neural rhythms under awake resting
conditions, which are independent from each other and not constrained
towards specific brain states. It is important to note that several recent
studies have started to investigate brain states defined with spectral pa-
rameters (Vidaurre et al., 2018) and on band-specific signals (Li et al.,
2022) (rather than wideband signals considered in the present study),
while asynchronous behaviors have not been separately considered. Fu-
ture studies are needed to further clarify whether such brain-wide states
are of both scale-free and poly-rhythmic nature or asynchronous and
various oscillatory signals should be characterized separately with dif-
ferent brain-wide states.

Beyond asynchronous and oscillatory temporal behaviors, brain-
wide functional states characterized by cCAPs in the present study
further share other similarities in dynamic parameters to brain states
obtained from microstate (Michel and Koenig 2018; Coquelet et al.,
2022) and hidden Markov model (HMM) analyses (Baker et al., 2014;
Vidaurre et al., 2018) in EEG/MEG literature, which include small num-
ber of brain states (~10) and transient nature (tens to hundreds mil-
liseconds). It is therefore tempting to know whether the brain states
from cCAPs in the present study are same as classical sensor-based mi-
crostates. Our results of reconstructed sensor-level EEG topographies
based on timeframes for individual cCAP brain states (see Supple-
mentary Fig. 14) indicate that they are different from classical mi-
crostate topographies reported in literature (Michel and Koenig 2018;
Coquelet et al., 2022), despites their similarities in several dynamic fea-
tures. These dynamic similarities might be explained due to universal
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features of transient brain events, where, for example, small number
of brain states and scale-free dynamics have been observed in differ-
ent neuroimaging data (Tagliazucchi et al., 2012; Calhoun et al., 2014)
and in different species (Gutierrez-Barragan et al., 2019). On the con-
trary, several steps in our proposed computational framework (Fig. 1)
might alter the variance spatial structure of data for clustering, as com-
pared with the data on the sensor domain, leading to the identifications
of brain states different from microstates. For example, cortical source
imaging deconvolutes the volume conductor effect on mixing and al-
tering brain signals from different brain regions, and normalizing time
courses of ICA latent variables reduces the bias on clustering due to their
potential different strength levels. In the literature, spatial sources of
EEG microstates have been reported with regional patterns (Custo et al.,
2017) (rather than brain-wide spatial patterns) and show similar spatial
distributions as individual RSNs (similar to those in Supplementary Fig.
1) as compared with fMRI RSNs (Britz et al., 2010; Yuan et al., 2016) and
MEG RSNs obtained via ICA (Brookes et al., 2011). It is also noted that
brain states identified with microstate and HMM analyses have been
indicated with significantly different spatial patterns (Coquelet et al.,
2022). The use of different analytic approaches leading to different def-
initions of brain states have been widely reported in other neuroimaging
data, e.g., fMRI (Calhoun et al., 2014). It remains to be seen in future
studies about the relationship between different sets of brain states iden-
tified with different analytic choices since they are from same raw data
of same human brains and if “optimal” analytics are available in defin-
ing brain states or the selection of analytics is problem dependent.

One of the most intriguing and novel findings of our present is the
identification of a superstructure that governs the spatial, temporal, and
transitional relationships among the identified brain states, which de-
scribes an important aspect in the dynamic control of states of brain
functions under wakeful resting conditions. The superstructure, built
with two polarized states and six intermediate states, is first established
via visualizing spatial distances (Fig. 2C) among these states and then
supported by the occurrence data, which indicate statistically signifi-
cantly fewer visits to two polarized states (Fig. 3A). Single-step tran-
sition data (Fig. 4) further suggest close-to-zero direct transitions be-
tween two polarized states. Finally, long-range transitions between two
polarized states, mediated by other states, take statistically longer times
(Fig. 6A) and more visits to intermediate states (Fig. 6C) than no transi-
tions between two polarized states. These consistent data from multiple
different facets support the genuine existence of such a superstructure,
which have been replicated in two independently collected datasets
(Fig. 7), and no similarly structured transitional patterns exist in sim-
ulations using pseudo-polarized states (Supplementary Figs. 8-13). The
generation of the superstructure is believed to be driven by structured
brain-wide transitions among identified brain states coordinated by two
polarized states with global co-(de)activation patterns. Beyond them,
six intermediate states further exhibit layered structures in which some
states are more affined to two polarized states (i.e., cCAP 5 to cCAP 8;
cCAP 2/6 for cCAP 7) than others in terms of both spatial distance and
transition probability.

The cellular mechanism and physiological significance of this super-
structure of co-activations remains an open question. Our results indi-
cate many similarities between the identified superstructure and the
slow-wave oscillation of membrane potentials (Steriade et al., 1993),
including their transitional nature, occurring frequency, and correspon-
dence between the pairs of global co-activations and the UP and DOWN
states of slow-wave oscillations (Jercog et al., 2017). Moreover, the
mean lifetimes of identified brain states forming the superstructure are
in the similar time scale of atomic wavelet events on membrane po-
tentials during both slow-wave depolarization and hyperpolarization
(i.e., 20-35 ms) (Steriade et al., 1993). However, there are still sig-
nificant gaps of knowledge in how these cellular neuronal phenom-
ena are manifested in the phase-locked behaviors of neural populations
recorded in EEG (Wang 2010), and how neuronal waves recorded at spa-
tially discrete locations are converted into structured dynamics of brain-

12

Neurolmage 260 (2022) 119461

wide spatial patterns (He et al., 2008). It is possible that other types
of neuronal processes underlie such structured co-activations, such as,
massive activations of cortical regions during episodic high-frequency
field-potential oscillations in hippocampus (Logothetis et al., 2012) and
potential neural activity associated with certain conscious processes,
e.g., mind wandering, occurred during wakefulness. As animal studies
(Matsui et al., 2016; Schwalm et al., 2017) have convincingly linked the
transitions among brain-wide functional states from concurrent hemo-
dynamic and neural recordings, future concurrent EEG and fMRI studies
in humans (Yuan et al., 2016) to directly study such a linkage might pro-
vide evidence on the cellular mechanisms of the identified superstruc-
ture, and shed new light on the link between fast, sub-second EEG brain-
wide dynamics and infra-slow fMRI brain-wide dynamics (Wirsich et al.,
2020). Regarding its physiological significance, a close relationship to
RSNs and slow-wave oscillations may already indicate its importance to
understanding brain-wide memory consolidation (Tambini et al., 2010).
As several fMRI studies have reported functional connectivity changes
after task learning (Lewis et al., 2009) and the relationship between
global co-activations and global BOLD signals, it is of great interest for
future works to study how behavioral context influences the dynamics
of these structured co-activations.

A methodological advancement that needs further innovative ideas
is how to best compare tomographic, dynamic, and transitional co-
activation patterns across different datasets, different conditions, and/or
different brain signals. Leveraging the reproducibility of our identified
co-activations, we have demonstrated its detections in three indepen-
dent EEG datasets. However, linking co-activation patterns identified
from different brain signals, e.g., EEG and fMRI, will require other algo-
rithms. For example, the clustering algorithm used in our present study
assumes all snapshots from individual time points belong to one of eight
clusters, which is different from assumptions made in searching algo-
rithms for transient events in fMRI (Liu et al., 2013; Karahanoglu and
Van De Ville 2015). The adoption of our current algorithm is due to the
noisy nature of EEG recordings, the complexity of computational pro-
cesses in reconstructing brain-wide co-activations (see Methods), and
the potential of much more complicated dynamic patterns in humans
compared to small animals (Mitra and Raichle 2016). The important as-
pects of future research are to develop more advanced computational
processes on potentially less noisy data from new sensors (Boto et al.,
2018; Aghaei-Lasboo et al., 2020) to perform such comparisons and de-
sign analytical approaches accordingly. Finally, while the present study
examined brain-wide functional states on wideband signals (i.e., 0.5-
50 Hz), investigations of brain-wide states on narrow-band oscillatory
signals and even asynchronous signals are needed in future studies as
discussed above. One challenge (and the limitation of the present cCAP
study) is to accurately estimate instantaneous amplitude of wideband
signals, which would need more advanced algorithms (Nakhnikian et al.,
2016; Munia and Aviyente 2019) than the Hilbert transform.

Data and code availability statement

The data that support the findings of this study are avail-
able on request from the corresponding author (L.D.) through a
data use agreement. The data are not publicly available due to
them containing information that could compromise research par-
ticipant privacy or consent. EEG preprocessing was performed
using EEGLAB toolbox (https://eeglab.org) and FASTER plugin
(https://sourceforge.net/projects/faster/). The segmentation and
modeling were performed using FREESURFER (https://surfer.nmr.
mgh.harvard.edu). Clustering analysis was conducted using the
MATLAB kmeans function (https://www.mathworks.com/help/stats/
kmeans.html). Group independent component analysis was per-
formed using Fourier ICA code (https://www.cs.helsinki.fi/group/
neuroinf/code/fourierica/html/fourierica.html). Codes for minimum-
norm estimate in cortical source imaging and regression analysis in
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statistical regression tomography were implemented using MATLAB
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