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Brain-wide patterns in resting human brains, as either structured functional connectivity (FC) or recurring brain
states, have been widely studied in the neuroimaging literature. In particular, resting-state FCs estimated over
windowed timeframe neuroimaging data from sub-minutes to minutes using correlation or blind source sepa-
ration techniques have reported many brain-wide patterns of significant behavioral and disease correlates. The
present pilot study utilized a novel whole-head cap-based high-density diffuse optical tomography (DOT) tech-
nology, together with data-driven analysis methods, to investigate recurring transient brain-wide patterns in
spontaneous fluctuations of hemodynamic signals at the resolution of single timeframes from thirteen healthy
adults in resting conditions. Our results report that a small number, i.e., six, of brain-wide coactivation patterns
(CAPs) describe major spatiotemporal dynamics of spontaneous hemodynamic signals recorded by DOT. These
CAPs represent recurring brain states, showing spatial topographies of hemispheric symmetry, and exhibit highly
anticorrelated pairs. Moreover, a structured transition pattern among the six brain states is identified, where two
CAPs with anterior-posterior spatial patterns are significantly involved in transitions among all brain states. Our
results further elucidate two brain states of global positive and negative patterns, indicating transient neuronal
coactivations and co-deactivations, respectively, over the entire cortex. We demonstrate that these two brain
states are responsible for the generation of a subset of peaks and troughs in global signals (GS), supporting the
recent reports on neuronal relevance of hemodynamic GS. Collectively, our results suggest that transient neuronal
events (i.e., CAPs), global brain activity, and brain-wide structured transitions co-exist in humans and these phe-
nomena are closely related, which extend the observations of similar neuronal events recently reported in animal
hemodynamic data. Future studies on the quantitative relationship among these transient events and their rela-
tionships to windowed FCs along with larger sample size are needed to understand their changes with behaviors
and diseased conditions.

Rosenberg et al., 2016, Kelly et al., 2008) as well as clinical ab-
normalities in major neuropsychiatric disorders (Fox and Greicius,
2010).

Resting-state FCs are observed primarily as patterns of covaria-

1. Introduction

Spontaneous fluctuations in neural signals of both electrical and
hemodynamic forms are characterized with brain-wide functional con-

nectivity (FC) in mammalian brains at rest, known as resting-state net-
works, RSNs (Fox and Raichle, 2007). These networks have been re-
ported in data acquired by various imaging modalities, including func-
tional magnetic resonance imaging (fMRI) (Beckmann et al., 2005,
Biswal et al., 1995), electroencephalography (EEG) (Yuan et al., 2016),
magnetoencephalography (MEG) (Brookes et al., 2011), and optical
imaging (Eggebrecht et al., 2014). It has been extensively reported
that these resting-state FCs exhibit consistencies across participants
(Damoiseaux et al., 2006, Yeo et al., 2011), and show significant
behavioral correlates (Allen et al., 2014, Hutchison et al., 2013b,

tions between brain regions calculated with either Pearson’s correla-
tion (Biswal et al., 1995) or blind source separation techniques, e.g.,
spatial independent component analysis (ICA) (Beckmann et al., 2005).
However, the exact neurophysiological mechanisms underlying these
correlations remain elusive. In fMRI, increasing evidence have been
documented that such resting-state FCs are nonstationary over a scan
(Preti et al., 2017, Allen et al., 2014, Chang and Glover, 2010). In con-
trast to static FCs over the entire scanning window, estimations of FCs
over sequential sliding-time windows (either partially overlapped or
non-overlapped) within a scan have led to the so-called dynamic FCs
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(dFC). Similarly, dFCs have been observed in other brain signals, e.g.,
EEG (Shou et al., 2020). It has been further suggested that dFCs poten-
tially have higher sensitivities than static FCs for correlating with be-
havioral and disease conditions (Damaraju et al., 2014, Hutchison et al.,
2013a). The fact that FCs are time-varying has motivated numerous ef-
forts of animal and human studies to identify potential neurophysio-
logical events responsible for correlation-based FCs observed in various
brain signals, leading to several candidate hypotheses.

Brain-wide propagating activity, characterized by wave-like recur-
ring patterns (at mesoscopic and macroscopic levels), is one of these hy-
potheses behind FCs (Muller et al., 2018). Propagating wave dynamics of
large-scale spontaneous neural networks have been reported in animals
(Huang et al., 2010, Stroh et al., 2013, Steriade et al., 1993, Luczak et al.,
2007) and humans (Halgren et al., 2019, Gu et al., 2021, Raut et al.,
2021, Massimini et al., 2004). For example, globally-distributed cortical
waves have been recorded using optical imaging in mice at a timescale
of seconds (Matsui et al., 2016). Similarly, lateral-to-medial propagating
waves in rats (Majeed et al., 2011, Majeed et al., 2009) and global wave
patterns in humans (Raut et al., 2021) have been reported in blood-
oxygen-level-dependent (BOLD) signals. In humans, more types of prop-
agating activities have been observed, including alternating activation
waves between the default mode network (DMN) and task-positive net-
works (TPNs) (Majeed et al., 2011, Yousefi et al., 2018) and direction-
ally constrained waves along the spatial axis representing the cortical
hierarchical organization (Gu et al., 2021). These waves may be the un-
derpinnings of correlational structures in resting-state FCs (Matsui et al.,
2019), or at least critical in shaping the dynamics in resting-state FCs
(Gu et al., 2021), and potentially with novel information about brain
functional organizations in parallel to correlational FCs (Majeed et al.,
2011).

The second hypothesis proposes that resting-state FCs are driven
by short-lived coactivation patterns (CAPs) (Liu and Duyn, 2013).
These CAPs are obtained via a point process analysis focusing on se-
lected fMRI frame data surrounding regional peaks (Tagliazucchi et al.,
2011, Cifre et al., 2020). Strong correspondences between these tran-
sient events and resting-state FCs are reflected in their spatial patterns
(Liu et al., 2013), and CAPs account for significant variances describing
resting-state FCs (Tagliazucchi et al., 2016). Recent clustering studies
on the entire fMRI frame data further indicate that similar coactivation
patterns exist beyond local peaks of fMRI activity in predefined regions-
of-interests, leading to the detection of the so-called manifold recurring
brain-wide CAPs (Gutierrez-Barragan et al., 2019), while their relation-
ship to resting-state FCs is yet to be established. Moreover, CAPs have
been recently reported in neuronal electrical signals in both animals
(Matsui et al., 2019) and humans (Ding et al., 2021). An obvious ad-
vantage of CAP-based analysis is to allow interrogation of dFCs at fine
temporal scales down to single timeframes (Liu et al., 2018b), eliminat-
ing the need for a priori selected sliding windows as typically required
in correlational methods. Moreover, CAP studies have shown clinical
relevance (Liu et al., 2018b, Yang et al., 2021, Marshall et al., 2020,
Rey et al., 2021, Kaiser et al., 2019, Zhuang et al., 2018).

The third hypothesis is global brain activity, which is linked to a
well-known phenomenon in fMRI data analysis that is currently still un-
der debate (Liu et al., 2017), i.e., global signal (GS). The anticorrelated
DMN and TPNs, for example, have shown strongly positive correlation
under the influence of GS, resulting in global brain activity patterns
(Yousefi et al., 2018). Furthermore, global brain activity has been ob-
served as transient brain states during brain-wide propagating waves
(Matsui et al., 2019). GS is defined as the time series of intensity aver-
aged across imaging voxels in fMRI, which is usually regressed out in
the preprocessing of fMRI data (Desjardins et al., 2001, Aguirre et al.,
1998), as it is believed that physiological noises substantially contribute
to it (Liu et al., 2017). However, recent studies have demonstrated that
GS contains neuronally relevant information (Murphy and Fox, 2017,
Scholvinck et al., 2010) and is primarily modulated by the fluctuating
state of arousal (Wong et al., 2013, Liu et al., 2018a). While GS is known
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for affecting FC analysis (Murphy et al., 2009, Murphy and Fox, 2017,
Fox et al., 2009), it also drives dFC patterns (Chang et al., 2009). All
these facts support the potential role of global brain activity in generat-
ing resting-state FCs.

It is important to note that these three phenomena (i.e., propagat-
ing waves, CAPs, and global brain activity) have shown linkages among
each other. As discussed above, propagating waves are of global nature
(Stroh et al., 2013). Manifold recurring brain-wide CAPs have been sug-
gested to be phase-locked to GS in rodents (Gutierrez-Barragan et al.,
2019, Ma et al., 2020). Furthermore, a recent mice study (Matsui et al.,
2016) using a wide-field optical imaging concurrently monitoring cal-
cium and hemodynamic signals indicates all three phenomena in both
neuronal spiking and hemodynamic data in which transient CAPs are
embedded in globally propagating waves. While these three phenom-
ena have been studied separately in both animals and humans, stud-
ies indicating their potential connections have been largely performed
in animal models (Gutierrez-Barragan et al., 2019, Matsui et al., 2016,
Ma et al., 2020) and the understanding of their interactions in humans
remains sparse. To further investigate these structured neurophysio-
logical phenomena that are possibly responsible for the formation of
correlation-based FCs in the human brain, the present study utilized a re-
cently proposed brain-wide diffuse optical tomography (BW-DOT) tech-
nique (Khan et al., 2021b) to map spatiotemporal structures in hemo-
dynamic signals recorded with a cap-based whole-head continuous-
wave functional near-infrared spectroscopy (f{NIRS) system (Zhang et al.,
2021).

DOT has a higher sampling rate than fMRI, which exempts DOT
hemodynamic measurements from aliasing noises caused by breathing
and systematic fluctuations in circulation (Lowe et al., 1998, Tong et al.,
2011). Moreover, DOT technology is relatively robust to head motions
(Aslin and Mehler, 2005), which have shown considerable impacts on
FCs estimated from BOLD fMRI (Laumann et al., 2017). Advanced from
the previous patch-based DOT systems in reconstructing regional RSNs
and/or regional nodes of distributed RSNs (Wheelock et al., 2019), our
recent study has demonstrated that this new brain-wide DOT, with its
whole-head optode placements providing a field-of-view (FOV) covering
most of the cortex (i.e., 109 long-separation channels), can reconstruct
a collective set of brain-wide RSNs (Khan et al., 2021b). The whole-
head coverage provides an ability to study brain-wide transient events,
e.g., CAPs and global propagating waves, and a means for estimating
GS that is not available in patch-based DOT systems. We reasoned that
these capacities of BW-DOT, together with other denoising approaches
(e.g., 8 short-separation channels), would also improve our ability in
characterizing temporal dynamics of these neuronal events and better
distinguishing those of neuronal or non-neuronal origins.

The present pilot study investigated the spatiotemporal structures in
DOT data from thirteen healthy participants. We firstly estimated corti-
cal RSNs based on deoxygenated hemoglobin (HbR), using participant-
specific MRI head models and state-of-the-art algorithms for data pre-
processing and reconstructions. We then adopted a framewise cluster-
ing approach on participant-level spatiotemporal RSN data to obtain
CAPs with and without the GS regression. We further analyzed the spa-
tial, temporal, and transitional properties of detected CAPs. Lastly, we
investigated the differences of global CAPs (indicating global activity)
obtained with and without the GS regression regarding their plausible
neural relevance and their relationship to GS time series.

2. Materials and methods
2.1. Participants and experimental protocols

The study was approved by IRB at the University of Oklahoma, and
written informed consent was obtained from every participant before
the study. A total of 20 participants were recruited for the study with-
out any neurological or neuropsychiatric disorders. Three participants
were not able to complete all data recordings. In addition, resting-state
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data from four participants were excluded from the present study due
to poor data quality (primarily excessive motions). Thereafter, resting-
state data from thirteen participants (31.7 + 9.3 years, five females,
eight males) were included in the present study. Other analyses have
been conducted on the same resting-state data and reported (Khan et al.,
2021b), as well as on motor task data performing hand-clenching that
were collected with resting data in the same protocol (see descriptions
below) and reported (Zhang et al., 2021), which excluded data from
additional 3 participants due to excessive motions only during tasks.

Structural head MRI of each participant was acquired at OU Health
Sciences Center, using a GE Discovery MR750 whole-body 3-Tesla MRI
scanner (GE Healthcare, Milwaukee, WI, USA). The scanning parameters
were: FOV = 240 mm, axial slices per slab = 180, slice thickness =1 mm,
image matrix = 256 x 256, TR/TE = 8.45/3.24 ms. Data were acquired
from two sessions on the same day, each consisting of a block of resting
state (6 min) and a block of a motor task of hand-clenching (5.5 min,
these data were not analyzed in the present study). In each resting-state
block, the participants sat upright on a comfortable chair in a dark and
sound-damped room and were instructed to rest with their eyes open
and fixated on a cross mark shown on a computer screen and to stay
as still as they could to avoid motion-induced artifacts. E-Prime (Psy-
chology Software Tools, Sharpsburg, PA) software was used to program
visual cues and instructions displayed on an LCD monitor located about
90 cm from the participant. Data from fNIRS optodes, auxiliary sen-
sors, and EEG electrodes were captured simultaneously in all sessions,
but EEG recordings were not analyzed in the present study. fNIRS data
were gathered at a sampling rate of 6.25 Hz using a dual-wavelength
(760/850 nm) continuous-wave fNIRS device (NIRx GmbH, Germany).
The fNIRS system included 34 LED sources, 31 avalanche photodetec-
tors, and 8 short-separation (SS) detectors (inter-optode distance, IOD:
8 mm), resulting in 109 long-separation (LS) and 8 SS channels. The op-
todes were attached to an elastic cap (EASYCAP GmbH, Herrsching, Ger-
many) designed with the 10-5 system for electrode/optode placements
(Oostenveld and Praamstra, 2001). To maximize FOV while retaining
the high-density coverage, the optodes were uniformly placed over the
entire scalp (IOD mean+std: 3.65 + 0.44 cm, min: 2.98 cm, max: 4.56
cm). The pneumatic respiratory belt, a triaxial accelerometer, and a pho-
toplethysmography sensor were worn on the belly, forehead, and left
index finger, respectively, to capture chest movements, head motions,
and cardiac beats at a sampling rate of 500 Hz using an EEG amplifier
(Brain Vision, NC, USA). The Polhemus Patriot handheld electromag-
netic digitizer (polhemus.com) was used to record the 3D locations of
optodes and head landmarks (i.e., nasion, left, and right preauricular
points) before recording sessions.

2.2. Preprocessing of fNIRS data

The preprocessing of fNIRS data followed the protocol described in
our previous study (Zhang et al., 2021) using the HOMER2 toolbox
(Huppert et al., 2009). Data from each session were preprocessed sepa-
rately. Briefly, raw channel-wise light intensity data were transformed to
optical densities (OD) by measuring their log-ratios against the channel-
wise means over the entire recording window as baselines (see equation
in Section 2.3). Power spectral densities (PSDs) of OD data were calcu-
lated using the Welch’s method (window length: 60 s, 50% overlapping).
The LS-channel OD data showing no visible heartbeat power peaks in the
frequency range of 0.8-1.6 Hz were discarded (indicating possible inad-
equate optode-scalp contact). As the sampling frequency of DOT (6.25
Hz) was suffiently high, resting OD data were then bandpass filtered at
0.008-0.2 Hz to retain useful information in the higher frequency band
up to 0.2 Hz (Smith et al., 2012). Bad segments corresponding to exces-
sive head motions were identified based on the metric of global variance
in temporal derivative (GVTD) (Sherafati et al., 2020). Specifically, the
time points with GVTD > 3 x the mean GVTD over all time points were
labeled, and the recordings of 10 s centered at these time points were
excluded from further analyses. After this step, 73.4% + 7.5 of data in
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participants were retained. To remove the physiolgocial noise related
to superficial tissue absorption, motion and pulse/respiration related
variations (Zhang et al., 2019, Zhang et al., 2021, Khan et al., 2021b,
Cheong et al., 2020), we computed nuissances regressors based on time
courses of 8 SS channels that were evenly distributed across the scalp
and removed their contributions to LS-channel OD data using general
linear model regression (referred to as the SS regression).

2.3. Diffuse optical tomography

DOT forward modeling was conducted using our previously devel-
oped framework on participant-specific head models with finite ele-
ment (FE) volume meshes (tetrahedrons: 866,929 + 223,964, nodes:
140,774 + 35,883, Fig. 1C) (Khan et al., 2021b). A linear forward
relationship between measured light changes at the scalp nodes due
to small perturbations in chromophore concentrations is given by
(Srinivasan et al., 2005, White, 2012):

Y =Ax 0 (1

where ;(t) = [AAy’“(t)

Ay (D)
lengths A1 (760 nm) and A2 (850 nm), respectively. The OD was defined
as the log-ratio of measured light intensity I(r) with reference to the

baseline light intensity I, €.g., Ay;;(t) = — ln(ll‘l‘ﬁ). The unknown

base

] are measurement vectors of OD at two light wave-

AHBR()

AHDbO()

genated hemoglobin (HbO) concentration changes at the source nodes
within the source space. Because the sensitivity of {NIRS drops consid-
erably with the depth, the source space is made up of FE mesh nodes in-
side the brain (contained by the pial surface) within 45 mm of the scalp
(Dehghani et al., 2009b). The forward operator A (Eq. (1)), known as
the sensitivity matrix or the Jacobian matrix, was calculated using the
NIRFAST software (Dehghani et al., 2009a) with realistic baseline opti-
cal properties of brain tissues (Eggebrecht et al., 2012) and smoothed to
remove point-like artifacts from numerical computations (Khan et al.,
2021b).

The inverse solution of Eq. (1) was obtained via a minimum-norm
estimate (MNE) (Hamalainen, 1984) with the Tikhonov regularization
(Tikhonov, 1963):

variable }(t) = ] denotes vectors of time-varying HbR and oxy-

min <|| YO -Ax O +a0- 1 x <r>||§>, @

where the first term |)y(f) — A- x (t)||§ denotes the residual errors

in fitting measurement data, ; (t)g is the L2-norm regularization
term (Michel et al., 2004). The A(r) is the regularization parameter,
which was estimated at each time point using the L-curve method
(Hansen and O’Leary, 1993) implemented in the Regularization Tools
toolbox (Hansen, 2007) and then smoothed to remove potentially un-
reasonable values as a result of numerical calculation of the L-curve
(Khan et al., 2021b). The minimization of Eq. (2) yielded the inverse
solution:

2,0 = AT(A- AT + 40 - 1) 30), 3)

where I is the identity matrix and the inverse solution %,(r) is a vec-
tor of joint estimates of HbR and HbO concentration changes, and the
subscript v represents the volumetric solution space. These volumetric
data were spatially smoothed using a 6-mm spherical kernel to reject
high-frequency spatial noise (Friston et al., 1995). Only HbR data, close
to BOLD fMRI (Buxton, 2013), were further analyzed in the following
steps.
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Fig. 1. The framework for reconstructing brain-wide CAPs from individual timeframe data of DOT. Diffuse optical tomography (DOT) consists of (A) the cap-based
high-density optode placement system; (B) continuous-wave dual-wavelength (760 mm and 850 mm) light intensity fNIRS measurements; (C) realistic finite-element
head models segmented from individual participant MRI data; and (D) inversely estimated cortical distribution of HbR concentration changes. (E) group-level
Spatial ICA (gSICA) on temporally concatenated DOT data (D) across N participants. Spatiotemporal regression (STR) performs (F) spatial regression to estimate
participant-level time courses of ICs (group-level IC spatial maps as regressors and DOT data as responses); and (G) temporal regression to estimate participant-level
spatial maps of ICs (participant-level IC time courses as regressors and DOT data as responses). CAPs: (H) participant-level cluster centroids (k x number of ICs)
are obtained via the k-means++ clustering analysis on temporally concatenated IC time courses. The clustering indices are used to average DOT timeframe data to
obtain (I) participant-level spatial maps of CAPs; and (J) group-level spatial maps of CAPs.

2.4. Estimation of brain-wide resting-state networks

Inverse volumetric data %,(r) of participants obtained via DOT
were firstly mapped to their respective cortical surfaces (Fig. 1D).
These participant-specific cortical surfaces (20,484 nodes) were de-
fined as the gray and white matter interface segmented from MRI data
using FreeSurfer (Fischl, 2012, Ségonne et al., 2004). The volume-
to-surface projection was used as hemoglobin concentration changes
close to the gray matter are believed to reflect more neuronal activ-
ity (Obrig and Villringer, 2003, Scholkmann et al., 2014). This is dif-
ferent from DOT reconstructions (see Section 2.3) where light prop-
agation involves both cerebral and extracerebral tissues and there-
fore participant-specific volumetric models are used. The projected
cortical surface DOT data from participants (two sessions per partic-
ipant) were concatenated and subjected to a group-level spatial ICA
(Calhoun et al., 2009) (Fig. 1E). The number of ICs was empirically
set to 20 (Khan et al., 2021b). The participant-level IC spatial maps
(Fig. 1G) and time courses (Fig. 1F) were obtained via the spatiotempo-
ral regression, STR (GIFT, 2020, Beckmann et al., 2009) for preparing
the clustering analysis (Section 2.5). This STR approach (also named
as dual regression or multi-level regression) has been widely used in
functional neuroimaging data (Erhardt et al., 2011). Group-level spatial
maps of ICs were then obtained by averaging corresponding IC spatial
maps from all participants. These spatial maps, termed DOT RSNs, have
shown similarities to fMRI RSNs in our recent study (Khan et al., 2021a,
Khan et al., 2021b).

2.5. Estimations of CAPs and their spatial, temporal, and transitional
properties

Time courses of 20 DOT RSNs (i.e., ICs) from all participants were
concatenated and subjected to a k-means clustering analysis to find dis-
tinct CAPs with DOT RSN as building blocks. To remove scale discrep-
ancies between participants and ICs, the time course of each IC was nor-
malized in each participant to obtain z-scores. After that, all participant-
level z-score data for corresponding ICs were temporally concatenated
(Fig. 1F). The k-means++ clustering using the Euclidean distance met-
ric (Arthur and Vassilvitskii, 2006) was applied to these concatenated
z-scored IC timeframe data (20 ICs x # of time points from all partic-
ipants) on the time dimension to yield k clusters. The IC timeframes
(each is a vector of 20 elements) from the same participant that were
classified into the same cluster were firstly averaged to generate the

participant-level centroids (Fig. 1H), which represented the geometric
center of the subspace expanded by all timeframe vectors belonging to
the same cluster in a 20-dimensional space. Next, the participant-level
spatial map of a CAP (Fig. 1I) was obtained as an average of the DOT
timeframe data belonging to the CAP from clustering. The group-level
spatial maps of CAPs (Fig. 1J) were obtained via averaging participant-
level CAPs across all participants. Note that the participant-level CAPs
were obtained in order to perform statistical analyses on spatial, tem-
poral, and transitional metrics discussed in this section to characterize
CAPs using participants as samples. To evaluate the spatial link among
all CAPs at the group level, the distances between their cluster centroid
vectors were calculated and projected onto a 3D space using a multidi-
mensional scaling tool from MATLAB, i.e., cmdscale.m (Seber, 2009).
Clustering was repeated with different k values (6< k <30) (see most
results in Supplementary Fig. 2A). Percentage-wise explained variance
and explained variance gain were calculated with the method adopted
for neural data (Shilling-Scrivo et al., 2021) using the k-means_opt func-
tion in MATLAB File Exchange (Landtsheer, 2018). Their curves were
plotted to help choose an optimal cluster size, i.e., k (Supplementary
Fig. 2B). With an elbow area in the range of k=4-7, the explained vari-
ance gain between consecutive k values showed a decreasing pattern
and was consistently less than 2% beyond k=7. We, therefore, reported
results from k=6 as they showed the highest stability (after performing
the clustering several times using different seed points) and explained
87.1% of the variance.

Following clustering, entire recording data in each participant were
characterized as a sequence of recurring CAP events. To examine dy-
namic patterns in these sequences, multiple temporal, dynamic, and
spectral metrics of CAPs were computed on each participant and then
summarized to generate group-level statistics. An occurrence of a CAP
was defined as a set of continuous timeframes belonging to the same
CAP. The occurrence rate of a CAP was calculated as the ratio of its total
occurrences to the total occurrences of all CAPs. The mean dwell time of
one type of CAP was calculated as the mean time duration from all its
occurrences. The mean interval time of one type of CAP was calculated
as the mean time duration between two neighbored occurrences of the
CAP. To probe the relationship between a pair of CAPs, the one-step
transition probability of one type of CAP to another type of CAP (direc-
tional) was calculated as the number of such transitions divided by the
total number of transitions in these CAP sequences. To calculate PSDs
of CAPs, we adopted a concept from (Gutierrez-Barragan et al., 2019)
to construct the continuous-time course of each CAP in each partici-
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pant. Briefly, these participant-level CAP continuous-time courses were
obtained via regressing participant-level normalized (z-scores) cortical
DOT data with the group-level CAP spatial maps as regressors. Then
CAP PSDs were calculated using the Lomb-Scargle method (Horne and
Baliunas, 1986), which could better handle DOT data of temporal dis-
continuities after preprocessing (Section 2.2) than the popular Welch’s
method (Welch, 1967).

To examine the intra-cluster and inter-cluster spatial similarities
among CAPs, the metric of spatial correlation was used as all CAP spa-
tial maps were defined on the standard cortical surface model. To study
temporal correspondences of different CAPs, two types of co-occurrence
analyses were utilized. The framewise co-occurrence analysis was ap-
plied to two different sets of clustering results usually obtained from the
same original data but with different processing conditions (e.g., with or
without the SS regression). Specifically, we calculated, at the resolution
of single timeframes, the percentage ratio of overlapped occurrences of
two CAPs each from different conditions to the total occurrences of one
of two CAPs (i.e., the reference CAP of investigational interests). The
framewise co-occurrence analysis was not possible to investigate tem-
poral correspondences of different CAPs from a single clustering analy-
sis. We, therefore, performed the co-occurrence analysis on predefined
time windows, termed as windowed co-occurrence analysis to be distin-
guished from the one above. Specifically, within a predefined window,
the ratio between the numbers of occurrences of two investigated CAPs
was calculated, termed as the windowed co-occurrence ratio (WCOR).
These two temporal metrics were calculated in data from each partici-
pant, and their statistics were summarized at the group level.

The mixed-effect model with multiple recording sessions (i.e., 2 in
the present study) per participant (Holmes, 1988, Beckmann et al.,
2003) was adopted to perform statistical analyses on CAP metrics dis-
cussed above. Briefly, each metric value being tested was separately
calculated in each recording session data and then averaged across two
sessions for each participant. These participant-level metric values were
then tested, unless otherwise mentioned, using two-tail paired t-tests
with Bonferroni correction (Bonferroni, 1936).

2.6. Relationship between CAPs and GS

To probe the relationship between CAPs and GS, we tested whether
the occurrences of CAPs locked toward specific phases of GS as such a
phase-locking phenomenon had been reported between CAPs and GS in
animal fMRI data (Gutierrez-Barragan et al., 2019). Firstly, GS was cal-
culated as the mean time course of all cortical node time courses within
the source space in each participant (Section 2.3), similar to the calcula-
tion of GS in BOLD fMRI data (Zarahn et al., 1997). Secondly, to enhance
infraslow activities (Gutierrez-Barragan et al., 2019), the obtained GS
time course from each participant was bandpass filtered at 0.01-0.03
Hz and converted into an analytical signal using the Hilbert Transform
(Huang et al., 1998) to yield estimations of instantaneous phases and
amplitudes. The instantaneous phases were tabulated for each cluster
and pooled across all participants. Then their circular distributions and
means were plotted using the MATLAB CircStat toolbox (Berens, 2009).

3. Results
3.1. Brain-wide DOT CAPs

Fig. 2A illustrates six coactivation patterns (CAP1-6) obtained with
DOT RSNs. The DOT RSN as building blocks to these CAPs are shown in
Supplementary Fig. 1. The spatial distributions of these CAPs are struc-
tured, brain-wide, and of hemispheric symmetry. Three distinct spatial
patterns are identified among them: the dorsal-ventral (DV) pattern (i.e.,
CAP1, 2), the anterior-posterior (AP) pattern (i.e., CAP4, 5), and the
global pattern (i.e., CAP3, 6). The DV CAPs show the opposite HbR
changes (positive vs. negative AHbR) along the dorsal-ventral axis. In
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the orthogonal direction of the dorsal-ventral axis, the separation of pos-
itive and negative HbR changes approximately runs along the inferior
frontal sulcus in the frontal cortex, cuts through the sensorimotor cor-
tex above the deep lateral fissure, and then extends toward the poste-
rior end of the brain roughly along the lateral occipital sulcus. On the
middle wall, the separation is on the upper boundary of the inferior
temporal cortex. The AP CAPs show the opposite HbR changes along
the anterior-posterior axis. The separation of positive and negative HbR
changes appears roughly along the postcentral sulcus and cuts through
the posterior end of the temporal cortex in the orthogonal direction of
the anterior-posterior axis. The global CAPs exhibit either global posi-
tive or global negative HbR changes with diminished changes toward
the tip of the temporal cortex.

Visual inspections reveal anticorrelated spatial patterns of two CAPs
in the DV, or AP, or global groups. This is further confirmed by the quan-
titative metric of pair-wise spatial correlation (SC) between all CAPs
(Fig. 2C). The SC between CAP1 and CAP2, i.e., the pair with DV pat-
terns, is -0.96, -0.91 for CAP4 and CAPS5, i.e., the pair with AP patterns,
and -0.97 between CAP3 and CAPS, i.e., the pair with global patterns.
The mean SC of these pairs (i.e., -0.95) is statistically significantly (t-
test, t(13)=6.6, p < 1e-5, corrected) lower than the mean SC (i.e., -0.01)
of all other possible pairs of CAPs (Fig. 2D). The anticorrelated nature
of these pairs is also evident from the weight matrix (Fig. 2B), wherein
each row is the centroid vector for a cluster (i.e., a CAP) and each ele-
ment in the row represents the weight coefficient of each building block
(i.e., IC or DOT RSN). Specifically, the anticorrelated pairs have their
significant weight coefficients (i.e., > 60% of the largest) mostly con-
tributed by the same ICs (denoted by solid circles in Fig. 2B), but with
opposite polarity in the paired CAPs.

In addition to characteristic patterns in single CAPs and paired CAPs,
the 3D distance map illustrating all cluster centroids further reveals a
well-structured spatial relationship among all six CAPs (Fig. 2E). Firstly,
the three anticorrelated pairs have an almost orthogonal structure, with
each CAP pair occupying one of three axes in the 3D space. Secondly,
two CAPs in any anticorrelated pair are polarized separately toward ei-
ther positive or negative directions of the dimensional axis. Lastly, the
three-dimensional axes illustrated as the direct links between the three
paired CAPs are then across over the same spatial point in the center.
This spatial structure indicates that the dynamics of moment-to-moment
brain states could be described in a 3D space by this collection of six
CAPs, with each of them representing one spatially orthogonal pattern.
The Euclidean distance between the projected centroids of the AP pair
(2.50) was only about half of those from DV (5.07) and global (4.94)
pairs.

In general, for k ranging from 6 to 20, all three spatial patterns of
CAPs described above (i.e., AP, DV, and global) are retained (Supple-
mentary Fig. 2A), albeit with a few changes. Some new emerged patterns
may be due to the sub-patterns split from the original CAPs obtained
when k equals 6. For example, the CAP9 from the analysis with k be-
tween 9 and 20 shows a close-to-global positive pattern with the tempo-
ral pole as moderately negative. This might be a sub-pattern in the orig-
inal DV pattern with lowered positive/negative boundary. Furthermore,
the CAP4 with k between 10 and 20 shows a DV pattern with elevated
positive/negative boundary as compared with the original DV pattern.
Some other CAPs retain such as DV or AP patterns but with reduced
magnitudes (e.g., CAP18 from k between 18 and 20). The detection of
sub-patterns might suggest that there are more detailed ingredients in
the space represented by six CAPs, but potentially less representative at
the group level.

3.2. Temporal, dynamic, and spectral measures of DOT CAPs

The occurrence rates of the AP pair (23.8% and 23.3% for CAP4
and CAP5, respectively) are significantly higher than all other CAPs
(paired t-test, t(12)>4.9, p < .001, corrected, Fig. 3A). The CAP2 from
the DV pair occurs the least at 9.2%, which is significantly lower than
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Fig. 2. Brain-wide DOT CAPs. (A) Group-level spatial maps of HbR CAPs when k = 6, showing three anticorrelated CAP pairs, i.e., anterior-posterior (CAP4 and
CAP5), dorsal-ventral (CAP1 and CAP2), and global pairs (CAP3 and CAP6); (B) group-level cluster centroids of 6 CAPs with ICs as building blocks. Large IC weights
in each row (i.e., greater than 60% of the largest absolute value in the row) are denoted by solid circles (same colors used for anticorrelated CAP pairs); (C) spatial
correlation (SC) between all possible pairs for the CAPs in (A). solid red dots: SC values < -0.90, indicating three anticorrelated pairs; (D) mean SC values of
anticorrelated pairs and non-anticorrelated pairs of CAPs show statistically significant differences using a t-test (*****: p < 1e-5, corrected); (E) the 3D distance map
of the cluster centroids among 6 CAPs obtained with a multidimensional scaling tool from Matlab.

all other CAPs (paired t-test, t(12) >5.5, p < .01, corrected) except the
global CAPs. There is no significant difference in the dwell times among
CAPs, which is about 4.02 s on average (Fig. 3B). The interval times
of these CAPs are shown in Fig. 3C. The AP pair’s interval times (12.9s
and 13.2s for CAP4 and CAP5, respectively) are considerably lower than
all other CAPs (paired t-test, t(12) > 3.1, p < .05, corrected). Except for
the DV pair (paired t-test, t(12)=3.5, p < .01, corrected), there was no
significant difference in interval times between two CAPs within a pair.
Fig. 3D illustrates the one-step transition probability matrix among 6
CAPs. Firstly, transitions involving the AP pair of CAPs show higher
transition probabilities (enclosed by the solid red lines) than other tran-
sitions. Specifically, the top 5% highest CAP transitions all involve ei-

ther CAP4 or CAP5 (red dots). Furthermore, while the mean transition
probability between all possible CAPs is 3.33%, the mean transition rate
involving either CAP4 or CAP5 is 4.63%, significantly greater than the
overall mean transition rate (t-test, t(46)=2.5, p < .05, corrected). Sec-
ondly, except for the AP pair, the mean CAP transitions (1.4%) within
the DV pair (between CAP1 and CAP2) and the global pair (between
CAP3 and CAP6) were significantly lower than the overall mean tran-
sition rate (t-test, t(40)=3.1, p < .01, corrected). The CAP PSDs across
all participants revealed a significant amount of power in the infraslow
frequency band between 0.005 and 0.03 Hz (Fig. 4) overlapping with
the frequency band of GSs showing most powers, i.e., 0.008-0.06 Hz
(Fig. 4). It is noted that the cutoff frequency at the low boundary (i.e.,
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Fig. 5. GS phase histograms of DOT CAPs. Each plot is a circular histogram of occurrences of a CAP pooled from all participants as a function of the GS instantaneous
phase at the resolution of 20°/bin. Solid black line: magnitude of the resultant mean vector; arc: 95% confidence intervals of estimated mean vectors; 0°: GS peaks;

and 180°: GS troughs.

0.005Hz in CAP PSDs) is caused by the bandpass filter used in the pre-
processing. Without it, CAP PSDs should show ~1/f power spectra that
are typically observed in BOLD signals (He et al., 2010).

Temporal discontinuities of DOT data caused by bad segment re-
jections in preprocessing (see Section 2.2) might potentially affect the
values of temporal and dynamic metrics of CAPs investigated above. An
analysis was performed to investigate the potential effects by creating
a dummy CAP (CAP7) in places where data segments were removed
and then all temporal metrics discussed above were re-calculated (Sup-
plementary Fig. 7). The results are similar to the ones in Fig. 3, which
indicates that the effect of missing data on the temporal and dynamic
metrics used in the present study does not change the distinct patterns
observed in various CAPs.

3.3. Global CAPs phase-locked to GS

We hypothesized a potential linkage between GS and CAPs because
1) GS and all CAPs retain most signal power below 0.1Hz; 2) the oc-
currences of positive and negative global CAPs are likely leading to GS
peaks and troughs; 3) no global CAPs are detected if GS is removed from
DOT data in the analysis for all k values (see Supplementary Fig. 3A for
k = 6). Therefore, we specifically investigated the quantitative corre-
spondences between GS phases and CAP occurrences (Section 2.6). Fig. 5

illustrates the circular occurrence histograms of each CAP across all par-
ticipants as functions of the instantaneous GS phase. Note that a phase of
0° and 180° represents the peak and trough of GS, respectively. Interest-
ingly, the occurrences of positive and negative global CAP patterns are
concentrated most pronouncedly around the GS peaks and troughs, i.e.,
CAP3 average phase (+std) at -6° + 55° and CAP6 at 181° + 55°, respec-
tively, which are significantly different from a uniform circular distribu-
tion (Rayleigh test; CAP3: p = 0, CAP6: p <1e-69, corrected). Although
the occurrences of other four CAPs also indicate non-uniform circular
distributions, their standard deviations are much wider (CAP1: + 74°,
CAP2: + 78°, CAP4: + 79°, and CAP5: + 77°), and their magnitudes of
the resultant vectors indicating the average phases are much lower. The
mean normalized magnitude of the resultant vectors at the centered av-
erage phases of global CAPs is 0.46, which is significantly greater than
the mean magnitude of 0.082 from the other four CAPs (t-test, t(4)=10.7,
p <.001, corrected).

3.4. Plausible neuronal relevance for global CAPs

Repeating the above ICA and clustering analysis after removing GSs
in participant-level data, our results indicate no detection of global CAPs
(Supplementary Fig. 3A). Due to the debates on the origins of GS in
the past decade (Murphy and Fox, 2017), it is important to understand
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whether our detected global CAPs are of neuronal relevance. Therefore,
we have performed further analyses to search evidence of neuronal rel-
evance for our detected global CAPs. While removal of GS is a well-
established procedure in BOLD fMRI in dealing with non-neuronal sys-
tematic fluctuations, it is more difficult in fNIRS, particularly for patch-
based systems (Wheelock et al., 2019), due to the absence of whole-brain
coverage. On the other hand, non-neuronal hemodynamic systemic fluc-
tuations in fNIRS have been often estimated using the SS channels (ICD:
<15mm) (Gagnon et al., 2012, Goodwin et al., 2014) as such chan-
nels are only sensitive to superficial extracerebral tissues, e.g., scalp
(Saager and Berger, 2008). The SS regression used in the present study
based on such an estimate of systemic fluctuations has demonstrated to
be effective in removing non-neuronal signals recorded with LS chan-
nels (Zhang et al., 2021). As a result, the detected global CAPs with the
SS regression in preprocessing provide the first set of evidence toward
their potential neuronal relevance.

To further support this evidence, one way is to test whether the ab-
sence of SS regression in preprocessing would result in additional global
CAPs due to non-neuronal systematic fluctuations, and whether these
additional global CAPs are separatable from two original global CAPs
in Fig. 2. Therefore, we repeated the same analysis on the same fNIRS
dataset but without the SS regression (k=6 to 20). An empirical metric,
i.e., the percentage ratio of global CAPs (PRGC) out of all CAPs as a
function of k (see details about PRGC in Supplementary Fig. 5), was cal-
culated to evaluate the difference in the number of global CAPs with and
without the SS regression. The PRGC metric data indicate a large differ-
ence in the number of global patterns only with the k value between
8 and 11, which supports our hypothesis that non-neuronal systematic
fluctuations lead to additional global CAPs. As our previous results in-
dicate that CAPs primarily exist in anticorrelated pairs (Fig. 2A), we
performed further studies on CAPs obtained without the SS regression at
k = 8 (Fig. 6A). All eight CAPs were consistently observed across partici-
pants (Supplementary Fig. 6). From the spatial patterns, CAP4 and CAP6
form the AP pair homologous to CAP4 and CAP5 in Fig. 2A, respectively,
and CAP5 and CAP7 form the DV pair homologous to CAP2 and CAP1 in
Fig. 2A, respectively. The results from the framewise co-occurrence anal-
ysis indicate that the occurrences of CAP4 and CAP6 in Fig. 6 are dom-
inantly overlapped with the occurrences of CAP4 and CAPS5 in Fig. 2A,
respectively. Similarly, the occurrences of CAP5 and CAP7 in Fig. 6A
are dominantly overlapped with the occurrences of CAP2 and CAP1 in
Fig. 2A, respectively. These temporal correspondences establish the re-
liability of DV and AP brain states and the robustness of results from the
clustering analysis in detecting them under different conditions (i.e.,
with or without the SS regression). Such reliability and robustness pro-
vide strong confidence about the observations below on global CAPs
where changes are expected between the conditions with or without
the SS regression.

Four CAPs, i.e., CAP1, CAP2, CAP3, and CAPS8, exhibit global pat-
terns in Fig. 6A. Via visual inspections, CAP1 and CAP3 resemble the
two original global CAPs in Fig. 2A (CAP6 and CAP3, respectively). Two
additional global CAPs, i.e., CAP2 and CAP8, show moderately anticor-
related HbR changes at the anterior part of the temporal lobe, which are
slightly different from the two global CAPs in Fig. 2A. The pair of CAP2
and CAP8 in Fig. 6A also preserved hemispherically symmetric anticor-
related patterns, like all other CAPs in both Figs. 2A and 6A. Further-
more, the four global CAPs in Fig. 6A all indicate strong phase-locking
to GS, while four non-global CAPs (i.e., AP and DV pairs) are not phase-
locked to GS (Fig. 6B), consistent with those observed in Fig. 2B. The
co-occurrence analysis (Fig. 6C) indicates that the occurrences of CAP3
in Fig. 6A are dominantly overlapped with the occurrences of CAP3 in
Fig. 2A. The occurrences of CAP1 in Fig. 6A are primarily overlapped
with the global state CAP6 and a non-global state CAP5 in Fig. 2A. On
the contrary, both CAP2 and CAPS8 in Fig. 6A are significantly over-
lapped with four and three CAPs (>10% for each) in Fig. 2A, respec-
tively, including both global and non-global CAPs. These spatial and
temporal correspondences indicate two types of global CAPs in Fig. 6A
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are spatiotemporally distinguishable. Specifically, the pair of CAP1 and
CAP3 are potentially of neuronal relevance (like the original global CAPs
in Fig. 2A). In contrast, the two additional global CAPs, i.e., CAP2 and
CAPS, are introduced possibly due to non-neuronal systematic fluctua-
tions.

As the two types of global CAP pairs (i.e., the original global CAP pair
and the additional global CAP pair) are both phase-locked to GS peaks
and troughs, we next investigated if the two types of global CAP pairs oc-
cupied different subsets of GS peaks (for the positive global ones: CAP2
vs. CAP3) and troughs (for the negative global ones: CAP1 vs. CAP8)
using a windowed co-occurrence analysis (see Section 2.5). Specifically,
we centered a window, which varied from 0.5 to 100 s in the step of
a single timeframe (0.16 s), to a GS peak (or trough) with the original
global positive CAP (or the original global negative CAP) as the ref-
erence to calculate values of the metric WCOR and then repeated the
calculation with the additional global positive CAP (or the additional
global negative CAP) as the reference. We focused the resulted group-
level WCOR values (Fig. 6D) on two window sizes: <=6 s that is halfway
between the mean dwell time (~4 s, Fig. 3B) of four global CAPs and
the mean time between a pair of neighboring peak and trough of GS
(8.7 s); and >40 s as the mean interval time of the four global CAPs is
about 40 s (Fig. 3C). The WCOR values corresponding to the window
size <=6 s are below 12% regardless of the type of the reference CAP,
which indicates that each GS peak or trough and its surrounding time-
frames are mainly occupied by one type of global CAPs (see examples
of overlay of GS peaks, troughs, and CAPs in Supplementary Fig. 4). In
other words, two types of global CAPs are phase-locked to different sub-
sets of GS peaks and troughs. For window size >40 s, the WCOR values
are roughly in the range between 30% and 40% regardless of the type
of the reference CAP. Moreover, these values plateau between 40 and
100 s window sizes, which indicate that each type of CAPs largely occur
in clusters. In other words, one type of phase-locked global positive or
negative CAP largely occurs consecutively. These observations indicate
that the phase-locked occurrences of two types of global CAPs are tem-
porally separable in relation to GS peaks/troughs, which further support
that the two types of global CAPs have different origins.

3.5. Participant-level brain-wide CAPs

We investigated if CAPs could be detected at the participant level.
Fig. 7A illustrates the spatial maps of six CAPs obtained from data in
one participant. Although spatially noisier, they show a strong resem-
blance to the group-level CAPs (Fig. 2A). Three pairs of distinguished
patterns are identifiable, including AP (CAP4 and CAP5), DV (CAP1
and CAP2), and global patterns (CAP3 and CAP6), which further in-
dicate anticorrelated features in each pair (Fig. 7B and C). Moreover,
the participant-level spatial maps of all six CAPs are matched with their
corresponding group-level maps with statistically significant spatial cor-
relations greater than zero (paired t-test, p < .00001, corrected, Fig. 7D
and Supplementary Fig. 3C). Furthermore, all six CAPs have been iden-
tified in all participants with only one exception of one session on one
participant (see Supplementary Fig. 4). These findings suggest that FC
variations in the brain can be consistently observed at the participant
level.

4. Discussion
4.1. Brain-wide coactivations indicating recurring brain states

The present study for the first time reports the detection of brain-
wide CAPs in hemodynamic signals recorded with a wearable whole-
brain high-density optical imaging system operating in the near-infrared
range, known as DOT, on healthy human participants. Our results of
DOT CAPs show distinctive spatiotemporal features of CAPs that resem-
ble findings in BOLD fMRI data. Firstly, our data indicate that resting-
state fluctuations of whole-brain hemodynamic signals can be accounted
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Fig. 7. Participant-level brain-wide DOT CAPs. (A) Spatial maps of CAPs from a representative participant corresponding to those in Fig. 2A; (B) spatial correlation
(SC) between all possible pairs for the CAPs in (A); solid red dots: SC values < -0.79, indicating three anticorrelated pairs; (C) mean SC values of anticorrelated
pairs and non-anticorrelated pairs of CAPs show statistically significant differences using a t-test (***: p < .001, corrected); (D) SCs between the group-level and
participant-level spatial maps of CAPs show significantly higher values than zero (paired t-test, *****: p < .00001, corrected).

with a relatively small number of brain-wide functional states, i.e., 6
CAPs, which is consistent with the number of CAPs reported in recent
fMRI literature, e.g., 6 (Yang et al., 2021) and 8 CAPs (Janes et al.,
2020). Small numbers of brain-wide functional states have been sim-
ilarly reported in animal BOLD data, e.g., 3 (Liang et al., 2015) and
6 CAPs (Gutierrez-Barragan et al., 2019). These CAP numbers are at
the similar level as the number of dynamic brain states estimated from
cross-RSN functional connectivity (FC) in resting-state fMRI, e.g., 7
(Allen et al., 2014). Since the CAPs in the present study are defined as a
weighted combination from a set of DOT RSNs (Supplementary Fig. 1),
each CAP represents interactions among multiple RSNs (and transient
in nature due to their short dwell times), which is, in concept, similar
to the cross-RSN FC (Allen et al., 2014). However, it is important to
note that brain states defined in cross-RSN FCs are estimated based on
the metric of correlation over preselected time windows, which are dif-
ferent from the CAP analysis based on individual timeframes. Interest-
ingly, multiple RSNs have been reported to transiently change together
in the concept of CAPs in both human (Yang et al., 2021) and animal
fMRI data (Gutierrez-Barragan et al., 2019). On the other hand, large
numbers of CAPs have also been reported, e.g., up to 16 (Chen et al.,
2015), 20 (Karahanoglu and Van De Ville, 2015), and 30 CAPs (Liu et al.,
2013), from selected fMRI timeframe data showing local intensity peaks
in a priori anatomically-seeded regions. Moreover, the CAPs based on
pre-determined regions of interest have established close relationships
to RSNs (Liu et al., 2013). The CAPs reported in the present study are
identified using a differernt approach via clustering all timeframe data
without being restricted by polarity and intensity of local hemodynamic
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signals, which allow regionally unbiased detections of tranisent recur-
ring patterns. Therefore, the CAPs in the present study are believed to
be more representive of brain-wide functional states, which has been
termed as manifold CAPs (Gutierrez-Barragan et al., 2019) as each CAP
is defined by a subspace (the mathemical definition of a brain state)
spanned by the collection of timeframes assigned from clustering in the
total 20-dimensional space (i.e., 20 ICs as building blocks in the present
study).

Secondly, the spatial maps of brain states in CAPs show bilaterally
symmetrical patterns. In humans (Yeo et al., 2011, Smith et al., 2009)
and anesthetic monkeys (Vincent et al., 2007), hemodynamic resting-
state FC often exhibits bilateral symmetry across two cerebral hemi-
spheres, which is even preserved in humans with complete agenesis of
the corpus callosum (Tyszka et al., 2011). The majority of coactiva-
tion studies with BOLD fMRI have also reported CAPs with symmet-
rical spatial patterns in humans (Liu et al., 2013, Liu et al., 2018a,
Karahanoglu and Van De Ville, 2015, Chen et al., 2015) and animals
(Gutierrez-Barragan et al., 2019, Liang et al., 2015). It is important to
note that spatial patterns of ICs, as the building blocks of CAPs, mostly
exhibit asymmetrical patterns (Supplementary Fig. 1), albeit in comple-
mentary pairs (e.g., the IC2-IC20 pair for the dorsal attention network
and the IC13-IC15 for the somatomotor network), which is consistent
with previously reported DOT RSNs (Khan et al., 2021b). This obser-
vation indicates that the bilateral symmetry of CAPs could result from
temporally coordinated activations of multiple RSNs. It is plausible that
the bilateral coordinations across hemispheres are transient, which are
better detected in the framewise clustering analysis but not in the static
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ICA analysis. This hemispheric symmetry of CAPs in the present study is
preserved despite increasing the k value (Supplementary Fig. 2A), rul-
ing out the possibility of it being forced due to a small number of CAPs,
e.g., 6.

Thirdly, DOT CAPs show strongly anticorrelated spatial patterns
in pairs, i.e., AP, DV, and global pairs (Fig. 2). In fMRI literature,
strong brain-wide anticorrelation patterns are widely existing in resting-
state FCs and CAPs. In humans, the phenomenon of anticorrelation
in RSNs has been observed using the conventional windowed corre-
lational method, e.g., between sensory regions and default mode re-
gions (Allen et al., 2014) and between distributed task-positive and task-
negative brain networks (Fox et al., 2005) (Liu et al., 2013). In animals,
the phenomenon of anticorrelation has been reported with CAPs in rest-
ing mice (Gutierrez-Barragan et al., 2019). The anticorrelations might
be expressed because of separating neuronal processes responsible for
competing interests (Fox et al., 2005), such as task focus vs. stimulus-
independent thought (Giambra, 1995). Although there have been doubts
that the phenomenon of anticorrelation might be artificially introduced
due to the GS regression (Murphy et al., 2009), the anticorrelation pat-
terns have been reported in the absence of GS regression (Chai et al.,
2012). The results in the present study also show strong anticorrela-
tions in the CAP spatial patterns obtained in the absence of GS regression
(Supplementary Fig. 3A and B, see more discussions in Section 4.3).

Lastly, our results further indicate one pair of DOT RSNs show-
ing global positive and negative patterns, which has been reported
when hemodynamic data are analyzed using techniques other than
correlation-based methods (Yousefi et al., 2018, Matsui et al., 2019,
Ma et al., 2020). For example, the global coactivation patterns have
been identified in human hemodynamic data without removing GS us-
ing a quasiperiodic pattern searching algorithm (Yousefi et al., 2018).
Transient global coactivations have been observed in searching glob-
ally propagating waves in both hemodynamic and neural signals from
rodents (Matsui et al., 2019). A recent human EEG study (Ding et al.,
2021) further identifies global coactivations in neuronal electrical sig-
nals.

4.2. Spatiotemporal metrics of CAPs indicate structured transitions among
brain states

The philosophy of coactivation analysis in studying dynamics of
spontaneous brain fluctuations is principally different from conven-
tional correlational-based static/dynamic FC methods. The coactiva-
tion analysis utilizes single timeframe data as the basic unit of analysis
rather than entire or windowed recordings (Liu et al., 2018b). Even in
dFCs, the selection of windows is limited to the minimal data length
mathematically required to warrant the estimation accuracy of corre-
lations and its non-optimal selection may bias reconstructed brain net-
works (Liu et al., 2013). Coactivation analysis is, however, independent
of the choice of window size. All of our detected CAPs show consis-
tent mean dwell times at 4.02s (Fig. 3B), which is significantly lower
than window sizes that are usually used in dFC fMRI studies, e.g., 120s
(Savva et al., 2019). The dwell time in the present study is in close agree-
ment with the previous coactivation studies using fMRI, e.g., 4.0-7.6s
in humans (Karahanoglu and Van De Ville, 2015), 4s in mice (Gutierrez-
Barragan et al., 2019), and ~10s in rats (Liang et al., 2015). These
dwell times are on the order of hemodynamic responses (Friston et al.,
2000) and several orders greater than the dwell times of CAPs based
on electrical signals, e.g., EEG (Ding et al., 2021, Li et al., 2022), and
brain states studied by other methods, e.g., microstates (Lehmann et al.,
1987, Michel and Koenig, 2018), which range from tens to hundreds of
milliseconds. We speculate that the large difference between the dwell
times of transient brain state events between hemodynamic and elec-
trical signals could be mainly determined by the “sluggish” nature of
the cerebral hemodynamic response following neuronal activity, which
also supports the fact that the least variations are observed in the dwell
time than all other temporal and dynamic metrics among different CAPs
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(Fig. 3 and see more discussions below) in the present study. How-
ever, more work is needed to verify this speculation in future stud-
ies especially if a quantitative relationship between hemodynamic and
electrical-based CAPs could be established with concurrently recorded
EEG and fMRI signals (Yuan et al., 2016).

Beyond the metric of dwell time, all other temporal and dynamic
metrics indicate significant differences among the six CAPs. These dif-
ferences are consistent across different metrics, as well as with the spa-
tial metric, and collectively suggest the existence of a structured tran-
sition pattern among the six brain states represented by CAPs. Inter-
estingly, the anterior-posterior CAP pair is heavily involved with transi-
tions among all brain states. This important role of the anterior-posterior
CAPs in dynamic brain state transitions is supported by their signifi-
cantly higher occurrence rates and significantly lower interval times as
compared with other CAPs. This role is further supported by the 3D dis-
tance map (i.e., the spatial metric) between all CAPs (Fig. 2E), where
the distance between two opposite anterior-posterior CAPs is signifi-
cantly shorter than other anticorrelated CAP pairs. Furthermore, the di-
rect transitions between the two anticorrelated CAPs within the dorsal-
ventral pair, as well as within the global pair, are among the lowest,
which further suggest the anterior-posterior CAP pair might serve as the
intermediate brain states during the transition of brain states in opposite
directions.

We speculate that these observed structured transitions among
CAPs could indicate the presence of globally propagating waves that
have been well reported in fMRI (Raut et al., 2020, Raut et al.,
2021, Majeed et al, 2011), optical data (Matsui et al., 2016,
Matsui et al., 2019), MEG data (Takeda et al., 2021), and electrical data
(Massimini et al., 2004, Huang et al., 2010, Takeda et al., 2021). Glob-
ally propagating waves made up of a sequence of brain-wide CAPs in
both hemodynamic and neuronal spiking data predominantly originat-
ing from the anterior brain and propagating toward the posterior end
of the brain have been reported in mice (Matsui et al., 2016). A cor-
tical traveling wave originating from the prefrontal-orbitofrontal corti-
cal regions and traveling to the posterior cortical regions is observed
in sleeping human participants in a high-density (178-186 channels)
EEG study (Massimini et al., 2004). Also, a global anterior-to-posterior
phase shift in gamma oscillations (40 Hz) is reported with MEG data
(Ribary et al., 1991). Our detected anterior-posterior anticorrelated
CAPs might be two moment-to-moment snapshots of brain states with
the most representative spatial patterns along these anterior-posterior
propagating waves. Similarly, we speculate that the detected dorsal-
ventral anticorrealated CAPs might reflect representative brain states
of cortical dorsoventral propagating waves, e.g., in fMRI of rats and hu-
mans (Majeed et al., 2011) and as alpha waves in electrocorticography
(Bahramisharif et al., 2013). However, it is cautioned that the present
study does not provide direct evidences of propagations and future stud-
ies are needed to integrate the coactivation analysis together with other
sequence analysis methods (Majeed et al., 2011) to further clarify exist-
ing propagation pathways among brain states indicated by CAPs.

4.3. Plausible origins of CAPs and GS

We believe that our detected DOT CAPs reflect nonstationary fluc-
tuations in spontaneous neuronal activity in human brains (Foster and
Wilson, 2006, Logothetis et al., 2012, Matsui et al., 2019) and, therefore,
are of neuronal origins. Firstly, as both CAPs and dFCs study temporal
fluctuations in hemodynamic data in resting brains, the neurophysio-
logical evidence of dFC has been extensively reported in both humans
(Chang et al., 2013, Tagliazucchi et al., 2012) and animals (Lu et al.,
2007, Thompson et al., 2013). More recently, a study on lightly anes-
thetized mice has reported CAPs in simultaneously recorded calcium
(i.e., neuronal) and hemodynamic signals, as well as their temporal cor-
respondences, providing direct neuronal evidence of CAPs (Matsui et al.,
2019). Studies using other brain signals (i.e., electrical) have directly re-
ported neuronal CAPs in animals (Matsui et al., 2016, Mohajerani et al.,
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2013, Vanni and Murphy, 2014) and humans (Ding et al., 2021). As
discussed above (see Sections 4.1 and 4.2), the spatial, temporal, and
transitional data of CAPs in our present study corresponds well with
hemodynamic CAPs with known neuronal origins.

In addition, our present study has provided indirect evidence about
the plausible neuronal relevance of two global CAPs. These evidences
include: (1) a pair of original global CAPs (Fig. 2A) detected with an effi-
cient preprocessing technique in place, i.e., the SS regression, to remove
non-neuronal systematic hemodynamic fluctuations (Cheong et al.,
2020, Zhang et al., 2019, Zhang et al., 2021); (2) a pair of additional
global CAPs observed in the absence of SS regression (corresponding
to non-neuronal systematic hemodynamic fluctuations); (3) distinguish-
able patterns in spatial maps, temporal occurrences, and relations to GS
between the pair of original global CAPs and the pair of additional non-
neuronal global CAPs; and 4) consistent detections of global CAPs in
conditions with a wide range of selection of parameters (Figs. 2A, 6A,
7A, and Supplementary Fig. 2A). Further more, the neuronal relevance
of this pair of original CAPs is supported by recent literature on transient
electrical global patterns in rats (Schwalm et al., 2017) and electrical
global CAPs in humans (Ding et al., 2021).

The present study further indicates that GS contains neuronally rel-
evant information due to the close relationship between GS and global
CAPs, i.e., global CAPs phase-locked to GS peaks and troughs (Figs. 5
and 6B) and no detection of global CAPs after regressing GS out (Sup-
plementary Fig. 3A). Given that GS is calculated as the spatial mean of
DOT data in each time frame, it is not a surprise that the positive and
negative global CAPs are corresponding to GS peaks and troughs, re-
spectively, as no cancellations between regional activations occur due to
the globally same magnitude polarity. The neuronal relevance of GS has
been suggested in recent literature, in which GS of fMRI has been linked
to vigilance (Wong et al., 2013, Chen et al., 2020), glucose metabolism
(Thompson et al., 2016), and arousal (Liu et al., 2018a). In addition,
our recent whole-head EEG-fNIRS study in humans has shown that the
fNIRS GS is negatively associated with EEG vigilance in resting states
(Chen et al., 2020). Thus, this finding in the present study suggests
that care need to be exercised when removing GS of hemodynamic data
(Scholvinck et al., 2010) in either fMRI or fNIRS.

It is also important to note that, after removing GS, majority of obser-
vations regarding CAPs discussed have been reserved except the loss of
two original global CAPs. Specifically, in results at k=6, the CAP pairs of
AP patterns (CAP1, 6) and DV patterns (CAP2, 4) (Supplementary Fig.
3A) are still identified. Hemispherical symmetric patterns in all CAPs
(Supplementary Fig. 3A) and strong anticorrelations within the AP and
DV pairs (Supplementary Fig. 3B) are also observed. Similarly, the CAP
pair of AP patterns has more important roles in the transitions of brain
states defined by all CAPs (Supplementary Fig. 3D) and the CAP pair
of DV patterns has the lowest occurrence rates and the highest inter-
val times (Supplementary Fig. 3F). All CAPs show similar PSDs (Sup-
plementary Fig. 3E) as observed in Fig. 4 and similar participant-level
detections (Supplementary Fig. 3C).

4.4. Relationship among coactivations, structured transitions, and global
activity patterns

Coactivations, brain-wide coordinated transitions, and global activ-
ity patterns (or global signals), separately, have all been well docu-
mented previously in hemodynamic literature, mainly with fMRI as de-
scribed above. The co-existences of any two of these three phenomena
have been reported as well. (Matsui et al., 2016) have further demon-
strated all three phenomena in both neuronal spiking and hemodynamic
data in mice. The present study extends the previous research work
in animals and reports the co-existence of these phenomena in human
brains and their relationship. Specifically, our study focuses initially
on the investigation of coactivation patterns via a framewise clustering
technique on independent component sources identified in DOT data,
which leads to the detections of brain-wide patterns indicating recurring
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functional brain states. A pair of identified brain states actually exhibit
global positive (coactivation) and negative (co-deactivation) patterns,
leading to the definition of global activity patterns and their existences
as one kind of recurring functional brain state. We further demonstrate
that these two global activity patterns are phase-locked to global signals
and are responsible for the generation of a significant subset of global
signal peaks and troughs, while non-neuronal systematic fluctuations
in breathing and circulation are responsible for the generation of other
global signal peaks and troughs. Finally, we present evidence about the
existence of a structured transitions among identified brain states, in
which most transitions among brain states involve the pair of anterior-
posterior CAPs (Fig. 3D). Furthermore, brain states with both anterior-
posterior and dorsal-ventral patterns might reflect representative spa-
tial patterns during the well-reported globally propagating waves in the
anterior-posterior and dorsal-ventral directions, respectively. Global ac-
tivity pattern has been observed as snapshots of brain states in globally
propagating waves (Matsui et al., 2016). It is therefore plausible that all
identified CAPs represent recurring brain states resulted from structured
propagations. By showing the relationship among coactivations, brain
state transitions, and global activity patterns, the present study brings
together a broad range of studies in animals and humans to form the
basis for understanding these phenomena on a unified foundation.

4.5. Limitations

The present study was limited in the following aspects. Firstly, the
mapping of coactivation with our BW-DOT technique only covers the
neocortex, but not deep brain structures (e.g., hippocampus and amyg-
dala) due to exponential light attenuations as a function of penetration
depth and therefore significantly reduced sensitivity in deep parts of
the brain (Dehghani et al., 2009b), which is the most significant draw-
back as compared with fMRI. In terms of density of optode distribu-
tions, our BW-DOT system is lower than the reported ultrahigh-density
patch-based DOT systems (Eggebrecht et al., 2012), which is a trade-
off between the whole-head coverage and ultrahigh spatial resolution
(Khan, 2021). Relatively low spatial density of optodes might be a con-
tributing factor to the small number of brain states (i.e., 6) identified in
the present study, which should be investigated in future studies after
addressing the technical challenge of having an ultrahigh-density whole-
head-coverage DOT systems. It is further noted that our whole-head cov-
erage also indicate lower sensitivity in the ventral parts of the temporal
cortex (Khan, 2021, Zhang et al., 2021). Secondly, the sampling fre-
quency of BW-DOT at 6.25 Hz was several times higher than typical
fMRI scans (~0.5 Hz), which was useful for capturing faster hemody-
namics (Polimeni and Lewis, 2021) and reducing aliasing noise. How-
ever, it was still fundamentally limited in revealing fast brain dynamics,
e.g., in alpha (Bahramisharif et al., 2013, Shou et al., 2020) and gamma
bands (Ribary et al., 1991). Thirdly, like fMRI, DOT interrogates hu-
man brain activity indirectly on secondary hemodynamic responses of
neuronal events and, therefore, neuronal origins of brain-wide CAPs and
global brain activity, as well as their propagation characteristics, need to
be further investigated using primary response data of neuronal events,
i.e., electrical activity (Ding et al., 2021), with technologies like EEG,
MEG, and ECoG. In particular, to directly investigate the relationship
between brain-wide neuronal events and their hemodynamic correspon-
dences would need simultaneous recording techniques, including con-
current EEG and fMRI (Yuan et al., 2016, Yuan et al., 2012) or concur-
rent EEG and fNIRS (Khan et al., 2021b, Ahn and Jun, 2017, Chen et al.,
2020). Fourthly, it should be noted that our findings only provide indi-
rect evidence to the neuronal relevance of original global CAPs as they
are different from brain-wide patterns caused by non-neuronal system-
atic variations in hemodynamic signals. Their neuronal origins still need
to be directly interrogated with simultaneously measured neuronal ac-
tivities, such as electrophysiology, in human, using concurrent record-
ing techniques discussed above. Moreover, the physiological relevance
of these global CAPs needs to be established via identifying their behav-
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ioral or cognitive correlates (Preti et al., 2017). Finally, these brain-wide
hemodynamic phenomena observed in this pilot study need to be repli-
cated using a larger number of participants.

5. Conclusion

The present pilot study utilized a wearable brain-wide DOT technol-
ogy and data-driven methods to investigate spatio-temporal dynamic
patterns in hemodynamic signals from spontaneous human brain ac-
tivity. Our results demonstrate that brain-wide spontaneous hemody-
namic signals from DOT can be described by a few co-(de)activation
patterns representing recurring and transitioning brain states. Global
positive and negative brain states, different from global non-neuronal
patterns, are identified as two co-(de)activation patterns indicating tran-
sient activations over the entire cortex, which are phased-locked with
a subset of global signal peaks and troughs. Collectively, these results
indicate the existence and interaction of three phenomena, i.e., CAPs,
global brain activity, and brain-wide structured transitions, in human
hemodynamic data, which extend existing findings on similar transient
neuronal events recently reported in animal fMRI data. Our study has
important implications in understanding the spontaneous activities and
the fundamental organization of resting state networks in the human
brain.
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