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a b s t r a c t 

Brain-wide patterns in resting human brains, as either structured functional connectivity (FC) or recurring brain 
states, have been widely studied in the neuroimaging literature. In particular, resting-state FCs estimated over 
windowed timeframe neuroimaging data from sub-minutes to minutes using correlation or blind source sepa- 
ration techniques have reported many brain-wide patterns of significant behavioral and disease correlates. The 
present pilot study utilized a novel whole-head cap-based high-density diffuse optical tomography (DOT) tech- 
nology, together with data-driven analysis methods, to investigate recurring transient brain-wide patterns in 
spontaneous fluctuations of hemodynamic signals at the resolution of single timeframes from thirteen healthy 
adults in resting conditions. Our results report that a small number, i.e., six, of brain-wide coactivation patterns 
(CAPs) describe major spatiotemporal dynamics of spontaneous hemodynamic signals recorded by DOT. These 
CAPs represent recurring brain states, showing spatial topographies of hemispheric symmetry, and exhibit highly 
anticorrelated pairs. Moreover, a structured transition pattern among the six brain states is identified, where two 
CAPs with anterior-posterior spatial patterns are significantly involved in transitions among all brain states. Our 
results further elucidate two brain states of global positive and negative patterns, indicating transient neuronal 
coactivations and co-deactivations, respectively, over the entire cortex. We demonstrate that these two brain 
states are responsible for the generation of a subset of peaks and troughs in global signals (GS), supporting the 
recent reports on neuronal relevance of hemodynamic GS. Collectively, our results suggest that transient neuronal 
events (i.e., CAPs), global brain activity, and brain-wide structured transitions co-exist in humans and these phe- 
nomena are closely related, which extend the observations of similar neuronal events recently reported in animal 
hemodynamic data. Future studies on the quantitative relationship among these transient events and their rela- 
tionships to windowed FCs along with larger sample size are needed to understand their changes with behaviors 
and diseased conditions. 
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. Introduction 

Spontaneous fluctuations in neural signals of both electrical and
emodynamic forms are characterized with brain-wide functional con-
ectivity (FC) in mammalian brains at rest, known as resting-state net-
orks, RSNs ( Fox and Raichle, 2007 ). These networks have been re-
orted in data acquired by various imaging modalities, including func-
ional magnetic resonance imaging (fMRI) ( Beckmann et al., 2005 ,
iswal et al., 1995 ), electroencephalography (EEG) ( Yuan et al., 2016 ),
agnetoencephalography (MEG) ( Brookes et al., 2011 ), and optical
maging ( Eggebrecht et al., 2014 ). It has been extensively reported
hat these resting-state FCs exhibit consistencies across participants
 Damoiseaux et al., 2006 , Yeo et al., 2011 ), and show significant
ehavioral correlates ( Allen et al., 2014 , Hutchison et al., 2013 b,
Abbreviations: DOT, Diffuse optical tomography; CAP, Co-activation pattern; FC, F
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osenberg et al., 2016 , Kelly et al., 2008 ) as well as clinical ab-
ormalities in major neuropsychiatric disorders ( Fox and Greicius,
010 ). 
Resting-state FCs are observed primarily as patterns of covaria-

ions between brain regions calculated with either Pearson’s correla-
ion ( Biswal et al., 1995 ) or blind source separation techniques, e.g.,
patial independent component analysis (ICA) ( Beckmann et al., 2005 ).
owever, the exact neurophysiological mechanisms underlying these
orrelations remain elusive. In fMRI, increasing evidence have been
ocumented that such resting-state FCs are nonstationary over a scan
 Preti et al., 2017 , Allen et al., 2014 , Chang and Glover, 2010 ). In con-
rast to static FCs over the entire scanning window, estimations of FCs
ver sequential sliding-time windows (either partially overlapped or
on-overlapped) within a scan have led to the so-called dynamic FCs
unctional connectivity. 
ty of Oklahoma, 110 W. Boyd St. DEH room 150, Norman, OK 73019, USA. 

y 2022 

ticle under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2022.119460
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2022.119460&domain=pdf
mailto:leiding@ou.edu
https://doi.org/10.1016/j.neuroimage.2022.119460
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.F. Khan, F. Zhang, G. Shou et al. NeuroImage 260 (2022) 119460 

(  

E  

t  

h  

2  

f  

l  

b
 

r  

p  

l  

(  

2  

2  

w  

o  

w  

p  

o  

a  

w  

w  

a  

h  

d  

2  

(  

f  

2
 

b  

T  

l  

2  

s  

(  

r  

o  

p  

o  

b  

s  

b  

(  

v  

t  

i  

i  

r  

R
 

w  

d  

D  

u  

(  

s  

(  

a  

t  

1  

t  

G  

S  

s  

f  

F  

t  

i
 

i  

e  

(  

g  

2  

2  

c  

n  

e  

e  

i  

i  

M  

r  

l  

c  

c  

n  

d  

w  

2
 

h  

a  

2  

(  

F  

t  

a  

r  

w  

m  

a  

h  

e  

G  

t  

(  

c  

d
 

D  

c  

s  

p  

i  

C  

t  

i  

o  

n

2

2

 

w  

t  

o  

w  
dFC). Similarly, dFCs have been observed in other brain signals, e.g.,
EG ( Shou et al., 2020 ). It has been further suggested that dFCs poten-
ially have higher sensitivities than static FCs for correlating with be-
avioral and disease conditions ( Damaraju et al., 2014 , Hutchison et al.,
013 a). The fact that FCs are time-varying has motivated numerous ef-
orts of animal and human studies to identify potential neurophysio-
ogical events responsible for correlation-based FCs observed in various
rain signals, leading to several candidate hypotheses. 
Brain-wide propagating activity, characterized by wave-like recur-

ing patterns (at mesoscopic and macroscopic levels), is one of these hy-
otheses behind FCs ( Muller et al., 2018 ). Propagating wave dynamics of
arge-scale spontaneous neural networks have been reported in animals
 Huang et al., 2010 , Stroh et al., 2013 , Steriade et al., 1993 , Luczak et al.,
007 ) and humans ( Halgren et al., 2019 , Gu et al., 2021 , Raut et al.,
021 , Massimini et al., 2004 ). For example, globally-distributed cortical
aves have been recorded using optical imaging in mice at a timescale
f seconds ( Matsui et al., 2016 ). Similarly, lateral-to-medial propagating
aves in rats ( Majeed et al., 2011 , Majeed et al., 2009 ) and global wave
atterns in humans ( Raut et al., 2021 ) have been reported in blood-
xygen-level-dependent (BOLD) signals. In humans, more types of prop-
gating activities have been observed, including alternating activation
aves between the default mode network (DMN) and task-positive net-
orks (TPNs) ( Majeed et al., 2011 , Yousefi et al., 2018 ) and direction-
lly constrained waves along the spatial axis representing the cortical
ierarchical organization ( Gu et al., 2021 ). These waves may be the un-
erpinnings of correlational structures in resting-state FCs ( Matsui et al.,
019 ), or at least critical in shaping the dynamics in resting-state FCs
 Gu et al., 2021 ), and potentially with novel information about brain
unctional organizations in parallel to correlational FCs ( Majeed et al.,
011 ). 
The second hypothesis proposes that resting-state FCs are driven

y short-lived coactivation patterns (CAPs) ( Liu and Duyn, 2013 ).
hese CAPs are obtained via a point process analysis focusing on se-
ected fMRI frame data surrounding regional peaks ( Tagliazucchi et al.,
011 , Cifre et al., 2020 ). Strong correspondences between these tran-
ient events and resting-state FCs are reflected in their spatial patterns
 Liu et al., 2013 ), and CAPs account for significant variances describing
esting-state FCs ( Tagliazucchi et al., 2016 ). Recent clustering studies
n the entire fMRI frame data further indicate that similar coactivation
atterns exist beyond local peaks of fMRI activity in predefined regions-
f-interests, leading to the detection of the so-called manifold recurring
rain-wide CAPs ( Gutierrez-Barragan et al., 2019 ), while their relation-
hip to resting-state FCs is yet to be established. Moreover, CAPs have
een recently reported in neuronal electrical signals in both animals
 Matsui et al., 2019 ) and humans ( Ding et al., 2021 ). An obvious ad-
antage of CAP-based analysis is to allow interrogation of dFCs at fine
emporal scales down to single timeframes ( Liu et al., 2018 b), eliminat-
ng the need for a priori selected sliding windows as typically required
n correlational methods. Moreover, CAP studies have shown clinical
elevance ( Liu et al., 2018 b, Yang et al., 2021 , Marshall et al., 2020 ,
ey et al., 2021 , Kaiser et al., 2019 , Zhuang et al., 2018 ). 
The third hypothesis is global brain activity, which is linked to a

ell-known phenomenon in fMRI data analysis that is currently still un-
er debate ( Liu et al., 2017 ), i.e., global signal (GS). The anticorrelated
MN and TPNs, for example, have shown strongly positive correlation
nder the influence of GS, resulting in global brain activity patterns
 Yousefi et al., 2018 ). Furthermore, global brain activity has been ob-
erved as transient brain states during brain-wide propagating waves
 Matsui et al., 2019 ). GS is defined as the time series of intensity aver-
ged across imaging voxels in fMRI, which is usually regressed out in
he preprocessing of fMRI data ( Desjardins et al., 2001 , Aguirre et al.,
998 ), as it is believed that physiological noises substantially contribute
o it ( Liu et al., 2017 ). However, recent studies have demonstrated that
S contains neuronally relevant information ( Murphy and Fox, 2017 ,
chölvinck et al., 2010 ) and is primarily modulated by the fluctuating
tate of arousal ( Wong et al., 2013 , Liu et al., 2018 a). While GS is known
2 
or affecting FC analysis ( Murphy et al., 2009 , Murphy and Fox, 2017 ,
ox et al., 2009 ), it also drives dFC patterns ( Chang et al., 2009 ). All
hese facts support the potential role of global brain activity in generat-
ng resting-state FCs. 
It is important to note that these three phenomena (i.e., propagat-

ng waves, CAPs, and global brain activity) have shown linkages among
ach other. As discussed above, propagating waves are of global nature
 Stroh et al., 2013 ). Manifold recurring brain-wide CAPs have been sug-
ested to be phase-locked to GS in rodents ( Gutierrez-Barragan et al.,
019 , Ma et al., 2020 ). Furthermore, a recent mice study ( Matsui et al.,
016 ) using a wide-field optical imaging concurrently monitoring cal-
ium and hemodynamic signals indicates all three phenomena in both
euronal spiking and hemodynamic data in which transient CAPs are
mbedded in globally propagating waves. While these three phenom-
na have been studied separately in both animals and humans, stud-
es indicating their potential connections have been largely performed
n animal models ( Gutierrez-Barragan et al., 2019 , Matsui et al., 2016 ,
a et al., 2020 ) and the understanding of their interactions in humans
emains sparse. To further investigate these structured neurophysio-
ogical phenomena that are possibly responsible for the formation of
orrelation-based FCs in the human brain, the present study utilized a re-
ently proposed brain-wide diffuse optical tomography (BW-DOT) tech-
ique ( Khan et al., 2021 b) to map spatiotemporal structures in hemo-
ynamic signals recorded with a cap-based whole-head continuous-
ave functional near-infrared spectroscopy (fNIRS) system ( Zhang et al.,
021 ). 
DOT has a higher sampling rate than fMRI, which exempts DOT

emodynamic measurements from aliasing noises caused by breathing
nd systematic fluctuations in circulation ( Lowe et al., 1998 , Tong et al.,
011 ). Moreover, DOT technology is relatively robust to head motions
 Aslin and Mehler, 2005 ), which have shown considerable impacts on
Cs estimated from BOLD fMRI ( Laumann et al., 2017 ). Advanced from
he previous patch-based DOT systems in reconstructing regional RSNs
nd/or regional nodes of distributed RSNs ( Wheelock et al., 2019 ), our
ecent study has demonstrated that this new brain-wide DOT, with its
hole-head optode placements providing a field-of-view (FOV) covering
ost of the cortex (i.e., 109 long-separation channels), can reconstruct
 collective set of brain-wide RSNs ( Khan et al., 2021 b). The whole-
ead coverage provides an ability to study brain-wide transient events,
.g., CAPs and global propagating waves, and a means for estimating
S that is not available in patch-based DOT systems. We reasoned that
hese capacities of BW-DOT, together with other denoising approaches
e.g., 8 short-separation channels), would also improve our ability in
haracterizing temporal dynamics of these neuronal events and better
istinguishing those of neuronal or non-neuronal origins. 
The present pilot study investigated the spatiotemporal structures in

OT data from thirteen healthy participants. We firstly estimated corti-
al RSNs based on deoxygenated hemoglobin (HbR), using participant-
pecific MRI head models and state-of-the-art algorithms for data pre-
rocessing and reconstructions. We then adopted a framewise cluster-
ng approach on participant-level spatiotemporal RSN data to obtain
APs with and without the GS regression. We further analyzed the spa-
ial, temporal, and transitional properties of detected CAPs. Lastly, we
nvestigated the differences of global CAPs (indicating global activity)
btained with and without the GS regression regarding their plausible
eural relevance and their relationship to GS time series. 

. Materials and methods 

.1. Participants and experimental protocols 

The study was approved by IRB at the University of Oklahoma, and
ritten informed consent was obtained from every participant before
he study. A total of 20 participants were recruited for the study with-
ut any neurological or neuropsychiatric disorders. Three participants
ere not able to complete all data recordings. In addition, resting-state
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ata from four participants were excluded from the present study due
o poor data quality (primarily excessive motions). Thereafter, resting-
tate data from thirteen participants (31.7 ± 9.3 years, five females,
ight males) were included in the present study. Other analyses have
een conducted on the same resting-state data and reported ( Khan et al.,
021 b), as well as on motor task data performing hand-clenching that
ere collected with resting data in the same protocol (see descriptions
elow) and reported ( Zhang et al., 2021 ), which excluded data from
dditional 3 participants due to excessive motions only during tasks. 
Structural head MRI of each participant was acquired at OU Health

ciences Center, using a GE Discovery MR750 whole-body 3-Tesla MRI
canner (GE Healthcare, Milwaukee, WI, USA). The scanning parameters
ere: FOV = 240 mm, axial slices per slab = 180, slice thickness = 1 mm,
mage matrix = 256 × 256, TR/TE = 8.45/3.24 ms. Data were acquired
rom two sessions on the same day, each consisting of a block of resting
tate (6 min) and a block of a motor task of hand-clenching (5.5 min,
hese data were not analyzed in the present study). In each resting-state
lock, the participants sat upright on a comfortable chair in a dark and
ound-damped room and were instructed to rest with their eyes open
nd fixated on a cross mark shown on a computer screen and to stay
s still as they could to avoid motion-induced artifacts. E-Prime (Psy-
hology Software Tools, Sharpsburg, PA) software was used to program
isual cues and instructions displayed on an LCD monitor located about
0 cm from the participant. Data from fNIRS optodes, auxiliary sen-
ors, and EEG electrodes were captured simultaneously in all sessions,
ut EEG recordings were not analyzed in the present study. fNIRS data
ere gathered at a sampling rate of 6.25 Hz using a dual-wavelength
760/850 nm) continuous-wave fNIRS device (NIRx GmbH, Germany).
he fNIRS system included 34 LED sources, 31 avalanche photodetec-
ors, and 8 short-separation (SS) detectors (inter-optode distance, IOD:
 mm), resulting in 109 long-separation (LS) and 8 SS channels. The op-
odes were attached to an elastic cap (EASYCAP GmbH, Herrsching, Ger-
any) designed with the 10–5 system for electrode/optode placements

 Oostenveld and Praamstra, 2001 ). To maximize FOV while retaining
he high-density coverage, the optodes were uniformly placed over the
ntire scalp (IOD mean ± std: 3.65 ± 0.44 cm, min: 2.98 cm, max: 4.56
m). The pneumatic respiratory belt, a triaxial accelerometer, and a pho-
oplethysmography sensor were worn on the belly, forehead, and left
ndex finger, respectively, to capture chest movements, head motions,
nd cardiac beats at a sampling rate of 500 Hz using an EEG amplifier
Brain Vision, NC, USA). The Polhemus Patriot handheld electromag-
etic digitizer (polhemus.com) was used to record the 3D locations of
ptodes and head landmarks (i.e., nasion, left, and right preauricular
oints) before recording sessions. 

.2. Preprocessing of fNIRS data 

The preprocessing of fNIRS data followed the protocol described in
ur previous study ( Zhang et al., 2021 ) using the HOMER2 toolbox
 Huppert et al., 2009 ). Data from each session were preprocessed sepa-
ately. Briefly, raw channel-wise light intensity data were transformed to
ptical densities (OD) by measuring their log-ratios against the channel-
ise means over the entire recording window as baselines (see equation
n Section 2.3 ). Power spectral densities (PSDs) of OD data were calcu-
ated using the Welch’s method (window length: 60 s, 50% overlapping).
he LS-channel OD data showing no visible heartbeat power peaks in the
requency range of 0.8–1.6 Hz were discarded (indicating possible inad-
quate optode-scalp contact). As the sampling frequency of DOT (6.25
z) was suffiently high, resting OD data were then bandpass filtered at
.008–0.2 Hz to retain useful information in the higher frequency band
p to 0.2 Hz ( Smith et al., 2012 ). Bad segments corresponding to exces-
ive head motions were identified based on the metric of global variance
n temporal derivative (GVTD) ( Sherafati et al., 2020 ). Specifically, the
ime points with GVTD > 3 × the mean GVTD over all time points were
abeled, and the recordings of 10 s centered at these time points were
xcluded from further analyses. After this step, 73.4% ± 7.5 of data in
3 
articipants were retained. To remove the physiolgocial noise related
o superficial tissue absorption, motion and pulse/respiration related
ariations ( Zhang et al., 2019 , Zhang et al., 2021 , Khan et al., 2021 b,
heong et al., 2020 ), we computed nuissances regressors based on time
ourses of 8 SS channels that were evenly distributed across the scalp
nd removed their contributions to LS-channel OD data using general
inear model regression (referred to as the SS regression). 

.3. Diffuse optical tomography 

DOT forward modeling was conducted using our previously devel-
ped framework on participant-specific head models with finite ele-
ent (FE) volume meshes (tetrahedrons: 866,929 ± 223,964, nodes:
40,774 ± 35,883, Fig. 1 C) ( Khan et al., 2021 b). A linear forward
elationship between measured light changes at the scalp nodes due
o small perturbations in chromophore concentrations is given by
 Srinivasan et al., 2005 , White, 2012 ): 

𝑦 ( 𝑡 ) = 𝐴 

⇀
𝑥 ( 𝑡 ) (1) 

here 
⇀
𝑦 ( 𝑡 ) = [ 

⇀

Δ𝑦 𝜆1 ( 𝑡 ) 
⇀

Δ𝑦 𝜆2 ( 𝑡 ) 
] are measurement vectors of OD at two light wave-

engths 𝜆1 (760 nm) and 𝜆2 (850 nm), respectively. The OD was defined
s the log-ratio of measured light intensity 𝐼( 𝑡 ) with reference to the

aseline light intensity 𝐼 𝑏𝑎𝑠𝑒 , e.g., 
⇀

Δ𝑦 𝜆1 ( 𝑡 ) = − ln ( 
⇀
𝐼 𝜆1 ( 𝑡 ) 
𝐼 𝜆1 ,𝑏𝑎𝑠𝑒 

) . The unknown

ariable 
⇀
𝑥 ( 𝑡 ) = [ Δ

⇀

𝐻𝑏𝑅 ( 𝑡 ) 

Δ
⇀

𝐻𝑏𝑂 ( 𝑡 ) 
] denotes vectors of time-varying HbR and oxy-

enated hemoglobin (HbO) concentration changes at the source nodes
ithin the source space. Because the sensitivity of fNIRS drops consid-
rably with the depth, the source space is made up of FE mesh nodes in-
ide the brain (contained by the pial surface) within 45 mm of the scalp
 Dehghani et al., 2009 b). The forward operator A ( Eq. (1) ), known as
he sensitivity matrix or the Jacobian matrix, was calculated using the
IRFAST software ( Dehghani et al., 2009 a) with realistic baseline opti-
al properties of brain tissues ( Eggebrecht et al., 2012 ) and smoothed to
emove point-like artifacts from numerical computations ( Khan et al.,
021 b). 
The inverse solution of Eq. (1 ) was obtained via a minimum-norm

stimate (MNE) ( Hamalainen, 1984 ) with the Tikhonov regularization
 Tikhonov, 1963 ): 

in 
( ‖ ⇀

𝑦 ( 𝑡 ) − 𝐴 ⋅
⇀
𝑥 ( 𝑡 ) ‖2 2 + 𝜆( 𝑡 ) ⋅ ‖ ⇀

𝑥 ( 𝑡 ) ‖2 2 
) 

, (2) 

here the first term ‖) 𝑦 ( 𝑡 ) − 𝐴 ⋅
⇀
𝑥 ( 𝑡 ) ‖2 2 denotes the residual errors

n fitting measurement data, 
⇀
𝑥 ( 𝑡 ) 2 2 is the L2-norm regularization

erm ( Michel et al., 2004 ). The 𝜆( 𝑡 ) is the regularization parameter,
hich was estimated at each time point using the L-curve method
 Hansen and O’Leary, 1993 ) implemented in the Regularization Tools
oolbox ( Hansen, 2007 ) and then smoothed to remove potentially un-
easonable values as a result of numerical calculation of the L-curve
 Khan et al., 2021 b). The minimization of Eq. (2 ) yielded the inverse
olution: 

𝑥̂ 𝑣 ( 𝑡 ) = 𝑨 
𝑇 
(
𝑨 ⋅𝑨 

𝑇 + 𝜆( 𝑡 ) ⋅ 𝑰 
)−1 ⇀

𝑦 ( 𝑡 ) , (3)

here 𝐼 is the identity matrix and the inverse solution 
⇀

𝑥̂ 𝑣 ( 𝑡 ) is a vec-
or of joint estimates of HbR and HbO concentration changes, and the
ubscript 𝑣 represents the volumetric solution space. These volumetric
ata were spatially smoothed using a 6-mm spherical kernel to reject
igh-frequency spatial noise ( Friston et al., 1995 ). Only HbR data, close
o BOLD fMRI ( Buxton, 2013 ), were further analyzed in the following
teps. 
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Fig. 1. The framework for reconstructing brain-wide CAPs from individual timeframe data of DOT. Diffuse optical tomography (DOT) consists of (A) the cap-based 
high-density optode placement system; (B) continuous-wave dual-wavelength (760 mm and 850 mm) light intensity fNIRS measurements; (C) realistic finite-element 
head models segmented from individual participant MRI data; and (D) inversely estimated cortical distribution of HbR concentration changes. (E) group-level 
Spatial ICA (gSICA) on temporally concatenated DOT data (D) across N participants. Spatiotemporal regression (STR) performs (F) spatial regression to estimate 
participant-level time courses of ICs (group-level IC spatial maps as regressors and DOT data as responses); and (G) temporal regression to estimate participant-level 
spatial maps of ICs (participant-level IC time courses as regressors and DOT data as responses). CAPs : (H) participant-level cluster centroids ( k × number of ICs) 
are obtained via the k-means ++ clustering analysis on temporally concatenated IC time courses. The clustering indices are used to average DOT timeframe data to 
obtain (I) participant-level spatial maps of CAPs; and (J) group-level spatial maps of CAPs. 
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.4. Estimation of brain-wide resting-state networks 

Inverse volumetric data 
⇀

𝑥̂ 𝑣 ( 𝑡 ) of participants obtained via DOT
ere firstly mapped to their respective cortical surfaces ( Fig. 1 D).
hese participant-specific cortical surfaces (20,484 nodes) were de-
ned as the gray and white matter interface segmented from MRI data
sing FreeSurfer ( Fischl, 2012 , Ségonne et al., 2004 ). The volume-
o-surface projection was used as hemoglobin concentration changes
lose to the gray matter are believed to reflect more neuronal activ-
ty ( Obrig and Villringer, 2003 , Scholkmann et al., 2014 ). This is dif-
erent from DOT reconstructions (see Section 2.3 ) where light prop-
gation involves both cerebral and extracerebral tissues and there-
ore participant-specific volumetric models are used. The projected
ortical surface DOT data from participants (two sessions per partic-
pant) were concatenated and subjected to a group-level spatial ICA
 Calhoun et al., 2009 ) ( Fig. 1 E). The number of ICs was empirically
et to 20 ( Khan et al., 2021 b). The participant-level IC spatial maps
 Fig. 1 G) and time courses ( Fig. 1 F) were obtained via the spatiotempo-
al regression, STR ( GIFT, 2020 , Beckmann et al., 2009 ) for preparing
he clustering analysis ( Section 2.5 ). This STR approach (also named
s dual regression or multi-level regression) has been widely used in
unctional neuroimaging data ( Erhardt et al., 2011 ). Group-level spatial
aps of ICs were then obtained by averaging corresponding IC spatial
aps from all participants. These spatial maps, termed DOT RSNs, have
hown similarities to fMRI RSNs in our recent study ( Khan et al., 2021 a,
han et al., 2021 b). 

.5. Estimations of CAPs and their spatial, temporal, and transitional 

roperties 

Time courses of 20 DOT RSNs (i.e., ICs) from all participants were
oncatenated and subjected to a k-means clustering analysis to find dis-
inct CAPs with DOT RSNs as building blocks. To remove scale discrep-
ncies between participants and ICs, the time course of each IC was nor-
alized in each participant to obtain z-scores. After that, all participant-
evel z-score data for corresponding ICs were temporally concatenated
 Fig. 1 F). The k-means ++ clustering using the Euclidean distance met-
ic ( Arthur and Vassilvitskii, 2006 ) was applied to these concatenated
-scored IC timeframe data (20 ICs × # of time points from all partic-
pants) on the time dimension to yield 𝑘 clusters. The IC timeframes
each is a vector of 20 elements) from the same participant that were
lassified into the same cluster were firstly averaged to generate the
4 
articipant-level centroids ( Fig. 1 H), which represented the geometric
enter of the subspace expanded by all timeframe vectors belonging to
he same cluster in a 20-dimensional space. Next, the participant-level
patial map of a CAP ( Fig. 1 I) was obtained as an average of the DOT
imeframe data belonging to the CAP from clustering. The group-level
patial maps of CAPs ( Fig. 1 J) were obtained via averaging participant-
evel CAPs across all participants. Note that the participant-level CAPs
ere obtained in order to perform statistical analyses on spatial, tem-
oral, and transitional metrics discussed in this section to characterize
APs using participants as samples. To evaluate the spatial link among
ll CAPs at the group level, the distances between their cluster centroid
ectors were calculated and projected onto a 3D space using a multidi-
ensional scaling tool from MATLAB, i.e., cmdscale.m ( Seber, 2009 ).
lustering was repeated with different 𝑘 values (6 ≤ 𝑘 ≤ 30) (see most
esults in Supplementary Fig. 2A). Percentage-wise explained variance
nd explained variance gain were calculated with the method adopted
or neural data ( Shilling-Scrivo et al., 2021 ) using the k-means_opt func-
ion in MATLAB File Exchange ( Landtsheer, 2018 ). Their curves were
lotted to help choose an optimal cluster size, i.e., 𝑘 (Supplementary
ig. 2B). With an elbow area in the range of 𝑘 = 4–7, the explained vari-
nce gain between consecutive k values showed a decreasing pattern
nd was consistently less than 2% beyond k = 7. We, therefore, reported
esults from 𝑘 = 6 as they showed the highest stability (after performing
he clustering several times using different seed points) and explained
7.1% of the variance. 
Following clustering, entire recording data in each participant were

haracterized as a sequence of recurring CAP events. To examine dy-
amic patterns in these sequences, multiple temporal, dynamic, and
pectral metrics of CAPs were computed on each participant and then
ummarized to generate group-level statistics. An occurrence of a CAP
as defined as a set of continuous timeframes belonging to the same
AP. The occurrence rate of a CAP was calculated as the ratio of its total
ccurrences to the total occurrences of all CAPs. The mean dwell time of
ne type of CAP was calculated as the mean time duration from all its
ccurrences. The mean interval time of one type of CAP was calculated
s the mean time duration between two neighbored occurrences of the
AP. To probe the relationship between a pair of CAPs, the one-step
ransition probability of one type of CAP to another type of CAP (direc-
ional) was calculated as the number of such transitions divided by the
otal number of transitions in these CAP sequences. To calculate PSDs
f CAPs, we adopted a concept from ( Gutierrez-Barragan et al., 2019 )
o construct the continuous-time course of each CAP in each partici-
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ant. Briefly, these participant-level CAP continuous-time courses were
btained via regressing participant-level normalized (z-scores) cortical
OT data with the group-level CAP spatial maps as regressors. Then
AP PSDs were calculated using the Lomb-Scargle method ( Horne and
aliunas, 1986 ), which could better handle DOT data of temporal dis-
ontinuities after preprocessing ( Section 2.2 ) than the popular Welch’s
ethod ( Welch, 1967 ). 
To examine the intra-cluster and inter-cluster spatial similarities

mong CAPs, the metric of spatial correlation was used as all CAP spa-
ial maps were defined on the standard cortical surface model. To study
emporal correspondences of different CAPs, two types of co-occurrence
nalyses were utilized. The framewise co-occurrence analysis was ap-
lied to two different sets of clustering results usually obtained from the
ame original data but with different processing conditions (e.g., with or
ithout the SS regression). Specifically, we calculated, at the resolution
f single timeframes, the percentage ratio of overlapped occurrences of
wo CAPs each from different conditions to the total occurrences of one
f two CAPs (i.e., the reference CAP of investigational interests). The
ramewise co-occurrence analysis was not possible to investigate tem-
oral correspondences of different CAPs from a single clustering analy-
is. We, therefore, performed the co-occurrence analysis on predefined
ime windows, termed as windowed co-occurrence analysis to be distin-
uished from the one above. Specifically, within a predefined window,
he ratio between the numbers of occurrences of two investigated CAPs
as calculated, termed as the windowed co-occurrence ratio (WCOR).
hese two temporal metrics were calculated in data from each partici-
ant, and their statistics were summarized at the group level. 
The mixed-effect model with multiple recording sessions (i.e., 2 in

he present study) per participant ( Holmes, 1988 , Beckmann et al.,
003 ) was adopted to perform statistical analyses on CAP metrics dis-
ussed above. Briefly, each metric value being tested was separately
alculated in each recording session data and then averaged across two
essions for each participant. These participant-level metric values were
hen tested, unless otherwise mentioned, using two-tail paired t-tests
ith Bonferroni correction ( Bonferroni, 1936 ). 

.6. Relationship between CAPs and GS 

To probe the relationship between CAPs and GS, we tested whether
he occurrences of CAPs locked toward specific phases of GS as such a
hase-locking phenomenon had been reported between CAPs and GS in
nimal fMRI data ( Gutierrez-Barragan et al., 2019 ). Firstly, GS was cal-
ulated as the mean time course of all cortical node time courses within
he source space in each participant ( Section 2.3 ), similar to the calcula-
ion of GS in BOLD fMRI data ( Zarahn et al., 1997 ). Secondly, to enhance
nfraslow activities ( Gutierrez-Barragan et al., 2019 ), the obtained GS
ime course from each participant was bandpass filtered at 0.01–0.03
z and converted into an analytical signal using the Hilbert Transform
 Huang et al., 1998 ) to yield estimations of instantaneous phases and
mplitudes. The instantaneous phases were tabulated for each cluster
nd pooled across all participants. Then their circular distributions and
eans were plotted using the MATLAB CircStat toolbox ( Berens, 2009 ).

. Results 

.1. Brain-wide DOT CAPs 

Fig. 2 A illustrates six coactivation patterns (CAP1–6) obtained with
OT RSNs. The DOT RSNs as building blocks to these CAPs are shown in
upplementary Fig. 1. The spatial distributions of these CAPs are struc-
ured, brain-wide, and of hemispheric symmetry. Three distinct spatial
atterns are identified among them: the dorsal-ventral (DV) pattern (i.e.,
AP1, 2), the anterior-posterior (AP) pattern (i.e., CAP4, 5), and the
lobal pattern (i.e., CAP3, 6). The DV CAPs show the opposite HbR
hanges (positive vs. negative Δ𝐻𝑏𝑅 ) along the dorsal-ventral axis. In
5 
he orthogonal direction of the dorsal-ventral axis, the separation of pos-
tive and negative HbR changes approximately runs along the inferior
rontal sulcus in the frontal cortex, cuts through the sensorimotor cor-
ex above the deep lateral fissure, and then extends toward the poste-
ior end of the brain roughly along the lateral occipital sulcus. On the
iddle wall, the separation is on the upper boundary of the inferior
emporal cortex. The AP CAPs show the opposite HbR changes along
he anterior-posterior axis. The separation of positive and negative HbR
hanges appears roughly along the postcentral sulcus and cuts through
he posterior end of the temporal cortex in the orthogonal direction of
he anterior-posterior axis. The global CAPs exhibit either global posi-
ive or global negative HbR changes with diminished changes toward
he tip of the temporal cortex. 
Visual inspections reveal anticorrelated spatial patterns of two CAPs

n the DV, or AP, or global groups. This is further confirmed by the quan-
itative metric of pair-wise spatial correlation (SC) between all CAPs
 Fig. 2 C). The SC between CAP1 and CAP2, i.e., the pair with DV pat-
erns, is -0.96, -0.91 for CAP4 and CAP5, i.e., the pair with AP patterns,
nd -0.97 between CAP3 and CAP6, i.e., the pair with global patterns.
he mean SC of these pairs (i.e., -0.95) is statistically significantly ( t-
est , t(13) = 6.6, p < 1e-5, corrected ) lower than the mean SC (i.e., -0.01)
f all other possible pairs of CAPs ( Fig. 2 D). The anticorrelated nature
f these pairs is also evident from the weight matrix ( Fig. 2 B), wherein
ach row is the centroid vector for a cluster (i.e., a CAP) and each ele-
ent in the row represents the weight coefficient of each building block
i.e., IC or DOT RSN). Specifically, the anticorrelated pairs have their
ignificant weight coefficients (i.e., > 60% of the largest) mostly con-
ributed by the same ICs (denoted by solid circles in Fig. 2 B), but with
pposite polarity in the paired CAPs. 
In addition to characteristic patterns in single CAPs and paired CAPs,

he 3D distance map illustrating all cluster centroids further reveals a
ell-structured spatial relationship among all six CAPs ( Fig. 2 E). Firstly,
he three anticorrelated pairs have an almost orthogonal structure, with
ach CAP pair occupying one of three axes in the 3D space. Secondly,
wo CAPs in any anticorrelated pair are polarized separately toward ei-
her positive or negative directions of the dimensional axis. Lastly, the
hree-dimensional axes illustrated as the direct links between the three
aired CAPs are then across over the same spatial point in the center.
his spatial structure indicates that the dynamics of moment-to-moment
rain states could be described in a 3D space by this collection of six
APs, with each of them representing one spatially orthogonal pattern.
he Euclidean distance between the projected centroids of the AP pair
2.50) was only about half of those from DV (5.07) and global (4.94)
airs. 
In general, for k ranging from 6 to 20, all three spatial patterns of

APs described above (i.e., AP, DV, and global) are retained (Supple-
entary Fig. 2A), albeit with a few changes. Some new emerged patterns
ay be due to the sub-patterns split from the original CAPs obtained
hen k equals 6. For example, the CAP9 from the analysis with k be-
ween 9 and 20 shows a close-to-global positive pattern with the tempo-
al pole as moderately negative. This might be a sub-pattern in the orig-
nal DV pattern with lowered positive/negative boundary. Furthermore,
he CAP4 with k between 10 and 20 shows a DV pattern with elevated
ositive/negative boundary as compared with the original DV pattern.
ome other CAPs retain such as DV or AP patterns but with reduced
agnitudes (e.g., CAP18 from k between 18 and 20). The detection of
ub-patterns might suggest that there are more detailed ingredients in
he space represented by six CAPs, but potentially less representative at
he group level. 

.2. Temporal, dynamic, and spectral measures of DOT CAPs 

The occurrence rates of the AP pair (23.8% and 23.3% for CAP4
nd CAP5, respectively) are significantly higher than all other CAPs
paired t-test , t(12) ≥ 4.9, p < .001, corrected , Fig. 3 A). The CAP2 from
he DV pair occurs the least at 9.2%, which is significantly lower than
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Fig. 2. Brain-wide DOT CAPs. (A) Group-level spatial maps of HbR CAPs when k = 6, showing three anticorrelated CAP pairs, i.e., anterior-posterior (CAP4 and 
CAP5), dorsal-ventral (CAP1 and CAP2), and global pairs (CAP3 and CAP6); (B) group-level cluster centroids of 6 CAPs with ICs as building blocks. Large IC weights 
in each row (i.e., greater than 60% of the largest absolute value in the row) are denoted by solid circles (same colors used for anticorrelated CAP pairs); (C) spatial 
correlation (SC) between all possible pairs for the CAPs in (A). solid red dots: SC values < -0.90, indicating three anticorrelated pairs; (D) mean SC values of 
anticorrelated pairs and non-anticorrelated pairs of CAPs show statistically significant differences using a t-test ( ∗ ∗ ∗ ∗ ∗ : p < 1e-5, corrected ); (E) the 3D distance map 
of the cluster centroids among 6 CAPs obtained with a multidimensional scaling tool from Matlab. 
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ll other CAPs (paired t-test , t(12) ≥ 5.5, p < .01, corrected ) except the
lobal CAPs. There is no significant difference in the dwell times among
APs, which is about 4.02 s on average ( Fig. 3 B). The interval times
f these CAPs are shown in Fig. 3 C. The AP pair’s interval times (12.9s
nd 13.2s for CAP4 and CAP5, respectively) are considerably lower than
ll other CAPs (paired t-test , t(12) ≥ 3.1, p < .05, corrected ). Except for
he DV pair (paired t-test , t(12) = 3.5, p < .01, corrected ), there was no
ignificant difference in interval times between two CAPs within a pair.
ig. 3 D illustrates the one-step transition probability matrix among 6
APs. Firstly, transitions involving the AP pair of CAPs show higher
ransition probabilities (enclosed by the solid red lines) than other tran-
itions. Specifically, the top 5% highest CAP transitions all involve ei-
6 
her CAP4 or CAP5 (red dots). Furthermore, while the mean transition
robability between all possible CAPs is 3.33%, the mean transition rate
nvolving either CAP4 or CAP5 is 4.63%, significantly greater than the
verall mean transition rate ( t-test , t(46) = 2.5, p < .05, corrected ). Sec-
ndly, except for the AP pair, the mean CAP transitions (1.4%) within
he DV pair (between CAP1 and CAP2) and the global pair (between
AP3 and CAP6) were significantly lower than the overall mean tran-
ition rate ( t-test , t(40) = 3.1, p < .01, corrected ). The CAP PSDs across
ll participants revealed a significant amount of power in the infraslow
requency band between 0.005 and 0.03 Hz ( Fig. 4 ) overlapping with
he frequency band of GSs showing most powers, i.e., 0.008–0.06 Hz
 Fig. 4 ). It is noted that the cutoff frequency at the low boundary (i.e.,
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Fig. 3. Temporal and dynamic measures of DOT CAPs: (A) occurrence rates; (B) dwell time (dashed line: mean of all CAPs); (C) interval time; (D) one-step transition 
probability matrix of all CAPs from time t to t + 1. Red dots: transition probabilities greater than 5%. ∗ ∗ ∗ ∗ : p < .0001 , ∗ ∗ ∗ : p < .001 , ∗ ∗ : p < .01 ∗ : p < .05, all corrected . 
Standard deviation bars were calculated across participants. 

Fig. 4. PSD of GS and DOT CAPs. 

Fig. 5. GS phase histograms of DOT CAPs. Each plot is a circular histogram of occurrences of a CAP pooled from all participants as a function of the GS instantaneous 
phase at the resolution of 20 0 /bin. Solid black line: magnitude of the resultant mean vector; arc: 95% confidence intervals of estimated mean vectors; 0 0 : GS peaks; 
and 180 0 : GS troughs. 
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.005Hz in CAP PSDs) is caused by the bandpass filter used in the pre-
rocessing. Without it, CAP PSDs should show ∼1/f power spectra that
re typically observed in BOLD signals ( He et al., 2010 ). 
Temporal discontinuities of DOT data caused by bad segment re-

ections in preprocessing (see Section 2.2 ) might potentially affect the
alues of temporal and dynamic metrics of CAPs investigated above. An
nalysis was performed to investigate the potential effects by creating
 dummy CAP (CAP7) in places where data segments were removed
nd then all temporal metrics discussed above were re-calculated (Sup-
lementary Fig. 7). The results are similar to the ones in Fig. 3 , which
ndicates that the effect of missing data on the temporal and dynamic
etrics used in the present study does not change the distinct patterns
bserved in various CAPs. 

.3. Global CAPs phase-locked to GS 

We hypothesized a potential linkage between GS and CAPs because
) GS and all CAPs retain most signal power below 0.1Hz; 2) the oc-
urrences of positive and negative global CAPs are likely leading to GS
eaks and troughs; 3) no global CAPs are detected if GS is removed from
OT data in the analysis for all k values (see Supplementary Fig. 3A for
 = 6). Therefore, we specifically investigated the quantitative corre-
pondences between GS phases and CAP occurrences ( Section 2.6 ). Fig. 5
7 
llustrates the circular occurrence histograms of each CAP across all par-
icipants as functions of the instantaneous GS phase. Note that a phase of
° and 180° represents the peak and trough of GS, respectively. Interest-
ngly, the occurrences of positive and negative global CAP patterns are
oncentrated most pronouncedly around the GS peaks and troughs, i.e.,
AP3 average phase ( ± std) at -6° ± 55° and CAP6 at 181° ± 55°, respec-
ively, which are significantly different from a uniform circular distribu-
ion (Rayleigh test; CAP3: p = 0 , CAP6: p < 1e-69, corrected ). Although
he occurrences of other four CAPs also indicate non-uniform circular
istributions, their standard deviations are much wider (CAP1: ± 74°,
AP2: ± 78°, CAP4: ± 79°, and CAP5: ± 77°), and their magnitudes of
he resultant vectors indicating the average phases are much lower. The
ean normalized magnitude of the resultant vectors at the centered av-
rage phases of global CAPs is 0.46, which is significantly greater than
he mean magnitude of 0.082 from the other four CAPs ( t-test , t(4) = 10.7,
 < .001, corrected ). 

.4. Plausible neuronal relevance for global CAPs 

Repeating the above ICA and clustering analysis after removing GSs
n participant-level data, our results indicate no detection of global CAPs
Supplementary Fig. 3A). Due to the debates on the origins of GS in
he past decade ( Murphy and Fox, 2017 ), it is important to understand
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hether our detected global CAPs are of neuronal relevance. Therefore,
e have performed further analyses to search evidence of neuronal rel-
vance for our detected global CAPs. While removal of GS is a well-
stablished procedure in BOLD fMRI in dealing with non-neuronal sys-
ematic fluctuations, it is more difficult in fNIRS, particularly for patch-
ased systems ( Wheelock et al., 2019 ), due to the absence of whole-brain
overage. On the other hand, non-neuronal hemodynamic systemic fluc-
uations in fNIRS have been often estimated using the SS channels (ICD:
 15mm) ( Gagnon et al., 2012 , Goodwin et al., 2014 ) as such chan-
els are only sensitive to superficial extracerebral tissues, e.g., scalp
 Saager and Berger, 2008 ). The SS regression used in the present study
ased on such an estimate of systemic fluctuations has demonstrated to
e effective in removing non-neuronal signals recorded with LS chan-
els ( Zhang et al., 2021 ). As a result, the detected global CAPs with the
S regression in preprocessing provide the first set of evidence toward
heir potential neuronal relevance. 
To further support this evidence, one way is to test whether the ab-

ence of SS regression in preprocessing would result in additional global
APs due to non-neuronal systematic fluctuations, and whether these
dditional global CAPs are separatable from two original global CAPs
n Fig. 2 . Therefore, we repeated the same analysis on the same fNIRS
ataset but without the SS regression ( k = 6 to 20). An empirical metric,
.e., the percentage ratio of global CAPs (PRGC) out of all CAPs as a
unction of k (see details about PRGC in Supplementary Fig. 5), was cal-
ulated to evaluate the difference in the number of global CAPs with and
ithout the SS regression. The PRGC metric data indicate a large differ-
nce in the number of global patterns only with the k value between
 and 11, which supports our hypothesis that non-neuronal systematic
uctuations lead to additional global CAPs. As our previous results in-
icate that CAPs primarily exist in anticorrelated pairs ( Fig. 2 A), we
erformed further studies on CAPs obtained without the SS regression at
 = 8 ( Fig. 6 A). All eight CAPs were consistently observed across partici-
ants (Supplementary Fig. 6). From the spatial patterns, CAP4 and CAP6
orm the AP pair homologous to CAP4 and CAP5 in Fig. 2 A, respectively,
nd CAP5 and CAP7 form the DV pair homologous to CAP2 and CAP1 in
ig. 2 A, respectively. The results from the framewise co-occurrence anal-
sis indicate that the occurrences of CAP4 and CAP6 in Fig. 6 are dom-
nantly overlapped with the occurrences of CAP4 and CAP5 in Fig. 2 A,
espectively. Similarly, the occurrences of CAP5 and CAP7 in Fig. 6 A
re dominantly overlapped with the occurrences of CAP2 and CAP1 in
ig. 2 A, respectively. These temporal correspondences establish the re-
iability of DV and AP brain states and the robustness of results from the
lustering analysis in detecting them under different conditions (i.e.,
ith or without the SS regression). Such reliability and robustness pro-
ide strong confidence about the observations below on global CAPs
here changes are expected between the conditions with or without
he SS regression. 
Four CAPs, i.e., CAP1, CAP2, CAP3, and CAP8, exhibit global pat-

erns in Fig. 6 A. Via visual inspections, CAP1 and CAP3 resemble the
wo original global CAPs in Fig. 2 A (CAP6 and CAP3, respectively). Two
dditional global CAPs, i.e., CAP2 and CAP8, show moderately anticor-
elated HbR changes at the anterior part of the temporal lobe, which are
lightly different from the two global CAPs in Fig. 2 A. The pair of CAP2
nd CAP8 in Fig. 6 A also preserved hemispherically symmetric anticor-
elated patterns, like all other CAPs in both Figs. 2 A and 6 A. Further-
ore, the four global CAPs in Fig. 6 A all indicate strong phase-locking
o GS, while four non-global CAPs (i.e., AP and DV pairs) are not phase-
ocked to GS ( Fig. 6 B), consistent with those observed in Fig. 2 B. The
o-occurrence analysis ( Fig. 6 C) indicates that the occurrences of CAP3
n Fig. 6 A are dominantly overlapped with the occurrences of CAP3 in
ig. 2 A. The occurrences of CAP1 in Fig. 6 A are primarily overlapped
ith the global state CAP6 and a non-global state CAP5 in Fig. 2 A. On
he contrary, both CAP2 and CAP8 in Fig. 6 A are significantly over-
apped with four and three CAPs ( > 10% for each) in Fig. 2 A, respec-
ively, including both global and non-global CAPs. These spatial and
emporal correspondences indicate two types of global CAPs in Fig. 6 A
8 
re spatiotemporally distinguishable. Specifically, the pair of CAP1 and
AP3 are potentially of neuronal relevance (like the original global CAPs
n Fig. 2 A). In contrast, the two additional global CAPs, i.e., CAP2 and
AP8, are introduced possibly due to non-neuronal systematic fluctua-
ions. 
As the two types of global CAP pairs (i.e., the original global CAP pair

nd the additional global CAP pair) are both phase-locked to GS peaks
nd troughs, we next investigated if the two types of global CAP pairs oc-
upied different subsets of GS peaks (for the positive global ones: CAP2
s. CAP3) and troughs (for the negative global ones: CAP1 vs. CAP8)
sing a windowed co-occurrence analysis (see Section 2.5 ). Specifically,
e centered a window, which varied from 0.5 to 100 s in the step of
 single timeframe (0.16 s), to a GS peak (or trough) with the original
lobal positive CAP (or the original global negative CAP) as the ref-
rence to calculate values of the metric WCOR and then repeated the
alculation with the additional global positive CAP (or the additional
lobal negative CAP) as the reference. We focused the resulted group-
evel WCOR values ( Fig. 6 D) on two window sizes: < = 6 s that is halfway
etween the mean dwell time ( ∼4 s, Fig. 3 B) of four global CAPs and
he mean time between a pair of neighboring peak and trough of GS
8.7 s); and > 40 s as the mean interval time of the four global CAPs is
bout 40 s ( Fig. 3 C). The WCOR values corresponding to the window
ize < = 6 s are below 12% regardless of the type of the reference CAP,
hich indicates that each GS peak or trough and its surrounding time-
rames are mainly occupied by one type of global CAPs (see examples
f overlay of GS peaks, troughs, and CAPs in Supplementary Fig. 4). In
ther words, two types of global CAPs are phase-locked to different sub-
ets of GS peaks and troughs. For window size > 40 s, the WCOR values
re roughly in the range between 30% and 40% regardless of the type
f the reference CAP. Moreover, these values plateau between 40 and
00 s window sizes, which indicate that each type of CAPs largely occur
n clusters. In other words, one type of phase-locked global positive or
egative CAP largely occurs consecutively. These observations indicate
hat the phase-locked occurrences of two types of global CAPs are tem-
orally separable in relation to GS peaks/troughs, which further support
hat the two types of global CAPs have different origins. 

.5. Participant-level brain-wide CAPs 

We investigated if CAPs could be detected at the participant level.
ig. 7 A illustrates the spatial maps of six CAPs obtained from data in
ne participant. Although spatially noisier, they show a strong resem-
lance to the group-level CAPs ( Fig. 2 A). Three pairs of distinguished
atterns are identifiable, including AP (CAP4 and CAP5), DV (CAP1
nd CAP2), and global patterns (CAP3 and CAP6), which further in-
icate anticorrelated features in each pair ( Fig. 7 B and C). Moreover,
he participant-level spatial maps of all six CAPs are matched with their
orresponding group-level maps with statistically significant spatial cor-
elations greater than zero (paired t-test, p < .00001, corrected , Fig. 7 D
nd Supplementary Fig. 3C). Furthermore, all six CAPs have been iden-
ified in all participants with only one exception of one session on one
articipant (see Supplementary Fig. 4). These findings suggest that FC
ariations in the brain can be consistently observed at the participant
evel. 

. Discussion 

.1. Brain-wide coactivations indicating recurring brain states 

The present study for the first time reports the detection of brain-
ide CAPs in hemodynamic signals recorded with a wearable whole-
rain high-density optical imaging system operating in the near-infrared
ange, known as DOT, on healthy human participants. Our results of
OT CAPs show distinctive spatiotemporal features of CAPs that resem-
le findings in BOLD fMRI data. Firstly, our data indicate that resting-
tate fluctuations of whole-brain hemodynamic signals can be accounted
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Fig. 6. Investigation of neuronal origins of global CAPs. (A) Group-level CAPs without SS regression at k = 8; (B) GS phase histograms of these eight CAPs; (C) 
framewise co-occurrences between 8 CAPs in (A) and 6 CAPs in Fig. 2 A. Percentage value on each bar: the ratio of co-occurrences between a Fig. 6 A CAP (each 
sub-plot) and a Fig. 2 A CAP (each bar in a sub-plot) to total occurrences of the Fig. 6 A CAP; (D) windowed co-occurrence ratios (WCORs) between the numbers of 
occurrences of two paired CAPs (CAP2 vs. CAP3 for GS peaks and CAP1 vs. CAP8 for GS troughs) for variable window lengths. The WCOR metric was calculated 
twice for each pair, each with one of two CAPs as the reference CAP. X/Xs: mean dwell time and mean transit time of each reference CAP. The inset shows an 
enlarged view of these plots for the window lengths less than 200 s. 

9 
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Fig. 7. Participant-level brain-wide DOT CAPs. (A) Spatial maps of CAPs from a representative participant corresponding to those in Fig. 2 A; (B) spatial correlation 
(SC) between all possible pairs for the CAPs in (A); solid red dots: SC values < -0.79, indicating three anticorrelated pairs; (C) mean SC values of anticorrelated 
pairs and non-anticorrelated pairs of CAPs show statistically significant differences using a t-test ( ∗ ∗ ∗ : p < .001, corrected ); (D) SCs between the group-level and 
participant-level spatial maps of CAPs show significantly higher values than zero (paired t-test , ∗ ∗ ∗ ∗ ∗ : p < .00001, corrected ). 
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ith a relatively small number of brain-wide functional states, i.e., 6
APs, which is consistent with the number of CAPs reported in recent
MRI literature, e.g., 6 ( Yang et al., 2021 ) and 8 CAPs ( Janes et al.,
020 ). Small numbers of brain-wide functional states have been sim-
larly reported in animal BOLD data, e.g., 3 ( Liang et al., 2015 ) and
 CAPs ( Gutierrez-Barragan et al., 2019 ). These CAP numbers are at
he similar level as the number of dynamic brain states estimated from
ross-RSN functional connectivity (FC) in resting-state fMRI, e.g., 7
 Allen et al., 2014 ). Since the CAPs in the present study are defined as a
eighted combination from a set of DOT RSNs (Supplementary Fig. 1),
ach CAP represents interactions among multiple RSNs (and transient
n nature due to their short dwell times), which is, in concept, similar
o the cross-RSN FC ( Allen et al., 2014 ). However, it is important to
ote that brain states defined in cross-RSN FCs are estimated based on
he metric of correlation over preselected time windows, which are dif-
erent from the CAP analysis based on individual timeframes. Interest-
ngly, multiple RSNs have been reported to transiently change together
n the concept of CAPs in both human ( Yang et al., 2021 ) and animal
MRI data ( Gutierrez-Barragan et al., 2019 ). On the other hand, large
umbers of CAPs have also been reported, e.g., up to 16 ( Chen et al.,
015 ), 20 ( Karahano ğlu and Van De Ville, 2015 ), and 30 CAPs ( Liu et al.,
013 ), from selected fMRI timeframe data showing local intensity peaks
n a priori anatomically-seeded regions. Moreover, the CAPs based on
re-determined regions of interest have established close relationships
o RSNs ( Liu et al., 2013 ). The CAPs reported in the present study are
dentified using a differernt approach via clustering all timeframe data
ithout being restricted by polarity and intensity of local hemodynamic
10 
ignals, which allow regionally unbiased detections of tranisent recur-
ing patterns. Therefore, the CAPs in the present study are believed to
e more representive of brain-wide functional states, which has been
ermed as manifold CAPs ( Gutierrez-Barragan et al., 2019 ) as each CAP
s defined by a subspace (the mathemical definition of a brain state)
panned by the collection of timeframes assigned from clustering in the
otal 20-dimensional space (i.e., 20 ICs as building blocks in the present
tudy). 
Secondly, the spatial maps of brain states in CAPs show bilaterally

ymmetrical patterns. In humans ( Yeo et al., 2011 , Smith et al., 2009 )
nd anesthetic monkeys ( Vincent et al., 2007 ), hemodynamic resting-
tate FC often exhibits bilateral symmetry across two cerebral hemi-
pheres, which is even preserved in humans with complete agenesis of
he corpus callosum ( Tyszka et al., 2011 ). The majority of coactiva-
ion studies with BOLD fMRI have also reported CAPs with symmet-
ical spatial patterns in humans ( Liu et al., 2013 , Liu et al., 2018 a,
arahano ğlu and Van De Ville, 2015 , Chen et al., 2015 ) and animals
 Gutierrez-Barragan et al., 2019 , Liang et al., 2015 ). It is important to
ote that spatial patterns of ICs, as the building blocks of CAPs, mostly
xhibit asymmetrical patterns (Supplementary Fig. 1), albeit in comple-
entary pairs (e.g., the IC2-IC20 pair for the dorsal attention network
nd the IC13-IC15 for the somatomotor network), which is consistent
ith previously reported DOT RSNs ( Khan et al., 2021 b). This obser-
ation indicates that the bilateral symmetry of CAPs could result from
emporally coordinated activations of multiple RSNs. It is plausible that
he bilateral coordinations across hemispheres are transient, which are
etter detected in the framewise clustering analysis but not in the static
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CA analysis. This hemispheric symmetry of CAPs in the present study is
reserved despite increasing the k value (Supplementary Fig. 2A), rul-
ng out the possibility of it being forced due to a small number of CAPs,
.g., 6. 
Thirdly, DOT CAPs show strongly anticorrelated spatial patterns

n pairs, i.e., AP, DV, and global pairs ( Fig. 2 ). In fMRI literature,
trong brain-wide anticorrelation patterns are widely existing in resting-
tate FCs and CAPs. In humans, the phenomenon of anticorrelation
n RSNs has been observed using the conventional windowed corre-
ational method, e.g., between sensory regions and default mode re-
ions ( Allen et al., 2014 ) and between distributed task-positive and task-
egative brain networks ( Fox et al., 2005 ) ( Liu et al., 2013 ). In animals,
he phenomenon of anticorrelation has been reported with CAPs in rest-
ng mice ( Gutierrez-Barragan et al., 2019 ). The anticorrelations might
e expressed because of separating neuronal processes responsible for
ompeting interests ( Fox et al., 2005 ), such as task focus vs. stimulus-
ndependent thought ( Giambra, 1995 ). Although there have been doubts
hat the phenomenon of anticorrelation might be artificially introduced
ue to the GS regression ( Murphy et al., 2009 ), the anticorrelation pat-
erns have been reported in the absence of GS regression ( Chai et al.,
012 ). The results in the present study also show strong anticorrela-
ions in the CAP spatial patterns obtained in the absence of GS regression
Supplementary Fig. 3A and B, see more discussions in Section 4.3 ). 
Lastly, our results further indicate one pair of DOT RSNs show-

ng global positive and negative patterns, which has been reported
hen hemodynamic data are analyzed using techniques other than
orrelation-based methods ( Yousefi et al., 2018 , Matsui et al., 2019 ,
a et al., 2020 ). For example, the global coactivation patterns have
een identified in human hemodynamic data without removing GS us-
ng a quasiperiodic pattern searching algorithm ( Yousefi et al., 2018 ).
ransient global coactivations have been observed in searching glob-
lly propagating waves in both hemodynamic and neural signals from
odents ( Matsui et al., 2019 ). A recent human EEG study ( Ding et al.,
021 ) further identifies global coactivations in neuronal electrical sig-
als. 

.2. Spatiotemporal metrics of CAPs indicate structured transitions among 

rain states 

The philosophy of coactivation analysis in studying dynamics of
pontaneous brain fluctuations is principally different from conven-
ional correlational-based static/dynamic FC methods. The coactiva-
ion analysis utilizes single timeframe data as the basic unit of analysis
ather than entire or windowed recordings ( Liu et al., 2018 b). Even in
FCs, the selection of windows is limited to the minimal data length
athematically required to warrant the estimation accuracy of corre-
ations and its non-optimal selection may bias reconstructed brain net-
orks ( Liu et al., 2013 ). Coactivation analysis is, however, independent
f the choice of window size. All of our detected CAPs show consis-
ent mean dwell times at 4.02s ( Fig. 3 B), which is significantly lower
han window sizes that are usually used in dFC fMRI studies, e.g., 120s
 Savva et al., 2019 ). The dwell time in the present study is in close agree-
ent with the previous coactivation studies using fMRI, e.g., 4.0–7.6s
n humans ( Karahano ğlu and Van De Ville, 2015 ), 4s in mice ( Gutierrez-
arragan et al., 2019 ), and ∼10s in rats ( Liang et al., 2015 ). These
well times are on the order of hemodynamic responses ( Friston et al.,
000 ) and several orders greater than the dwell times of CAPs based
n electrical signals, e.g., EEG ( Ding et al., 2021 , Li et al., 2022 ), and
rain states studied by other methods, e.g., microstates ( Lehmann et al.,
987 , Michel and Koenig, 2018 ), which range from tens to hundreds of
illiseconds. We speculate that the large difference between the dwell
imes of transient brain state events between hemodynamic and elec-
rical signals could be mainly determined by the “sluggish ” nature of
he cerebral hemodynamic response following neuronal activity, which
lso supports the fact that the least variations are observed in the dwell
ime than all other temporal and dynamic metrics among different CAPs
11 
 Fig. 3 and see more discussions below) in the present study. How-
ver, more work is needed to verify this speculation in future stud-
es especially if a quantitative relationship between hemodynamic and
lectrical-based CAPs could be established with concurrently recorded
EG and fMRI signals ( Yuan et al., 2016 ). 
Beyond the metric of dwell time, all other temporal and dynamic
etrics indicate significant differences among the six CAPs. These dif-
erences are consistent across different metrics, as well as with the spa-
ial metric, and collectively suggest the existence of a structured tran-
ition pattern among the six brain states represented by CAPs. Inter-
stingly, the anterior-posterior CAP pair is heavily involved with transi-
ions among all brain states. This important role of the anterior-posterior
APs in dynamic brain state transitions is supported by their signifi-
antly higher occurrence rates and significantly lower interval times as
ompared with other CAPs. This role is further supported by the 3D dis-
ance map (i.e., the spatial metric) between all CAPs ( Fig. 2 E), where
he distance between two opposite anterior-posterior CAPs is signifi-
antly shorter than other anticorrelated CAP pairs. Furthermore, the di-
ect transitions between the two anticorrelated CAPs within the dorsal-
entral pair, as well as within the global pair, are among the lowest,
hich further suggest the anterior-posterior CAP pair might serve as the
ntermediate brain states during the transition of brain states in opposite
irections. 
We speculate that these observed structured transitions among

APs could indicate the presence of globally propagating waves that
ave been well reported in fMRI ( Raut et al., 2020 , Raut et al.,
021 , Majeed et al., 2011 ), optical data ( Matsui et al., 2016 ,
atsui et al., 2019 ), MEG data ( Takeda et al., 2021 ), and electrical data

 Massimini et al., 2004 , Huang et al., 2010 , Takeda et al., 2021 ). Glob-
lly propagating waves made up of a sequence of brain-wide CAPs in
oth hemodynamic and neuronal spiking data predominantly originat-
ng from the anterior brain and propagating toward the posterior end
f the brain have been reported in mice ( Matsui et al., 2016 ). A cor-
ical traveling wave originating from the prefrontal-orbitofrontal corti-
al regions and traveling to the posterior cortical regions is observed
n sleeping human participants in a high-density (178–186 channels)
EG study ( Massimini et al., 2004 ). Also, a global anterior-to-posterior
hase shift in gamma oscillations (40 Hz) is reported with MEG data
 Ribary et al., 1991 ). Our detected anterior-posterior anticorrelated
APs might be two moment-to-moment snapshots of brain states with
he most representative spatial patterns along these anterior-posterior
ropagating waves. Similarly, we speculate that the detected dorsal-
entral anticorrealated CAPs might reflect representative brain states
f cortical dorsoventral propagating waves, e.g., in fMRI of rats and hu-
ans ( Majeed et al., 2011 ) and as alpha waves in electrocorticography

 Bahramisharif et al., 2013 ). However, it is cautioned that the present
tudy does not provide direct evidences of propagations and future stud-
es are needed to integrate the coactivation analysis together with other
equence analysis methods ( Majeed et al., 2011 ) to further clarify exist-
ng propagation pathways among brain states indicated by CAPs. 

.3. Plausible origins of CAPs and GS 

We believe that our detected DOT CAPs reflect nonstationary fluc-
uations in spontaneous neuronal activity in human brains ( Foster and
ilson, 2006 , Logothetis et al., 2012 , Matsui et al., 2019 ) and, therefore,
re of neuronal origins. Firstly, as both CAPs and dFCs study temporal
uctuations in hemodynamic data in resting brains, the neurophysio-
ogical evidence of dFC has been extensively reported in both humans
 Chang et al., 2013 , Tagliazucchi et al., 2012 ) and animals ( Lu et al.,
007 , Thompson et al., 2013 ). More recently, a study on lightly anes-
hetized mice has reported CAPs in simultaneously recorded calcium
i.e., neuronal) and hemodynamic signals, as well as their temporal cor-
espondences, providing direct neuronal evidence of CAPs ( Matsui et al.,
019 ). Studies using other brain signals (i.e., electrical) have directly re-
orted neuronal CAPs in animals ( Matsui et al., 2016 , Mohajerani et al.,
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013 , Vanni and Murphy, 2014 ) and humans ( Ding et al., 2021 ). As
iscussed above (see Sections 4.1 and 4.2 ), the spatial, temporal, and
ransitional data of CAPs in our present study corresponds well with
emodynamic CAPs with known neuronal origins. 
In addition, our present study has provided indirect evidence about

he plausible neuronal relevance of two global CAPs. These evidences
nclude: (1) a pair of original global CAPs ( Fig. 2 A) detected with an effi-
ient preprocessing technique in place, i.e., the SS regression, to remove
on-neuronal systematic hemodynamic fluctuations ( Cheong et al.,
020 , Zhang et al., 2019 , Zhang et al., 2021 ); (2) a pair of additional
lobal CAPs observed in the absence of SS regression (corresponding
o non-neuronal systematic hemodynamic fluctuations); (3) distinguish-
ble patterns in spatial maps, temporal occurrences, and relations to GS
etween the pair of original global CAPs and the pair of additional non-
euronal global CAPs; and 4) consistent detections of global CAPs in
onditions with a wide range of selection of parameters ( Figs. 2 A, 6 A,
 A, and Supplementary Fig. 2A). Further more, the neuronal relevance
f this pair of original CAPs is supported by recent literature on transient
lectrical global patterns in rats ( Schwalm et al., 2017 ) and electrical
lobal CAPs in humans ( Ding et al., 2021 ). 
The present study further indicates that GS contains neuronally rel-

vant information due to the close relationship between GS and global
APs, i.e., global CAPs phase-locked to GS peaks and troughs ( Figs. 5
nd 6 B) and no detection of global CAPs after regressing GS out (Sup-
lementary Fig. 3A). Given that GS is calculated as the spatial mean of
OT data in each time frame, it is not a surprise that the positive and
egative global CAPs are corresponding to GS peaks and troughs, re-
pectively, as no cancellations between regional activations occur due to
he globally same magnitude polarity. The neuronal relevance of GS has
een suggested in recent literature, in which GS of fMRI has been linked
o vigilance ( Wong et al., 2013 , Chen et al., 2020 ), glucose metabolism
 Thompson et al., 2016 ), and arousal ( Liu et al., 2018 a). In addition,
ur recent whole-head EEG-fNIRS study in humans has shown that the
NIRS GS is negatively associated with EEG vigilance in resting states
 Chen et al., 2020 ). Thus, this finding in the present study suggests
hat care need to be exercised when removing GS of hemodynamic data
 Schölvinck et al., 2010 ) in either fMRI or fNIRS. 
It is also important to note that, after removing GS, majority of obser-

ations regarding CAPs discussed have been reserved except the loss of
wo original global CAPs. Specifically, in results at k = 6, the CAP pairs of
P patterns (CAP1, 6) and DV patterns (CAP2, 4) (Supplementary Fig.
A) are still identified. Hemispherical symmetric patterns in all CAPs
Supplementary Fig. 3A) and strong anticorrelations within the AP and
V pairs (Supplementary Fig. 3B) are also observed. Similarly, the CAP
air of AP patterns has more important roles in the transitions of brain
tates defined by all CAPs (Supplementary Fig. 3D) and the CAP pair
f DV patterns has the lowest occurrence rates and the highest inter-
al times (Supplementary Fig. 3F). All CAPs show similar PSDs (Sup-
lementary Fig. 3E) as observed in Fig. 4 and similar participant-level
etections (Supplementary Fig. 3C). 

.4. Relationship among coactivations, structured transitions, and global 

ctivity patterns 

Coactivations, brain-wide coordinated transitions, and global activ-
ty patterns (or global signals), separately, have all been well docu-
ented previously in hemodynamic literature, mainly with fMRI as de-
cribed above. The co-existences of any two of these three phenomena
ave been reported as well. ( Matsui et al., 2016 ) have further demon-
trated all three phenomena in both neuronal spiking and hemodynamic
ata in mice. The present study extends the previous research work
n animals and reports the co-existence of these phenomena in human
rains and their relationship. Specifically, our study focuses initially
n the investigation of coactivation patterns via a framewise clustering
echnique on independent component sources identified in DOT data,
hich leads to the detections of brain-wide patterns indicating recurring
12 
unctional brain states. A pair of identified brain states actually exhibit
lobal positive (coactivation) and negative (co-deactivation) patterns,
eading to the definition of global activity patterns and their existences
s one kind of recurring functional brain state. We further demonstrate
hat these two global activity patterns are phase-locked to global signals
nd are responsible for the generation of a significant subset of global
ignal peaks and troughs, while non-neuronal systematic fluctuations
n breathing and circulation are responsible for the generation of other
lobal signal peaks and troughs. Finally, we present evidence about the
xistence of a structured transitions among identified brain states, in
hich most transitions among brain states involve the pair of anterior-
osterior CAPs ( Fig. 3 D). Furthermore, brain states with both anterior-
osterior and dorsal-ventral patterns might reflect representative spa-
ial patterns during the well-reported globally propagating waves in the
nterior-posterior and dorsal-ventral directions, respectively. Global ac-
ivity pattern has been observed as snapshots of brain states in globally
ropagating waves ( Matsui et al., 2016 ). It is therefore plausible that all
dentified CAPs represent recurring brain states resulted from structured
ropagations. By showing the relationship among coactivations, brain
tate transitions, and global activity patterns, the present study brings
ogether a broad range of studies in animals and humans to form the
asis for understanding these phenomena on a unified foundation. 

.5. Limitations 

The present study was limited in the following aspects. Firstly, the
apping of coactivation with our BW-DOT technique only covers the
eocortex, but not deep brain structures (e.g., hippocampus and amyg-
ala) due to exponential light attenuations as a function of penetration
epth and therefore significantly reduced sensitivity in deep parts of
he brain ( Dehghani et al., 2009 b), which is the most significant draw-
ack as compared with fMRI. In terms of density of optode distribu-
ions, our BW-DOT system is lower than the reported ultrahigh-density
atch-based DOT systems ( Eggebrecht et al., 2012 ), which is a trade-
ff between the whole-head coverage and ultrahigh spatial resolution
 Khan, 2021 ). Relatively low spatial density of optodes might be a con-
ributing factor to the small number of brain states (i.e., 6) identified in
he present study, which should be investigated in future studies after
ddressing the technical challenge of having an ultrahigh-density whole-
ead-coverage DOT systems. It is further noted that our whole-head cov-
rage also indicate lower sensitivity in the ventral parts of the temporal
ortex ( Khan, 2021 , Zhang et al., 2021 ). Secondly, the sampling fre-
uency of BW-DOT at 6.25 Hz was several times higher than typical
MRI scans ( ∼0.5 Hz), which was useful for capturing faster hemody-
amics ( Polimeni and Lewis, 2021 ) and reducing aliasing noise. How-
ver, it was still fundamentally limited in revealing fast brain dynamics,
.g., in alpha ( Bahramisharif et al., 2013 , Shou et al., 2020 ) and gamma
ands ( Ribary et al., 1991 ). Thirdly, like fMRI, DOT interrogates hu-
an brain activity indirectly on secondary hemodynamic responses of
euronal events and, therefore, neuronal origins of brain-wide CAPs and
lobal brain activity, as well as their propagation characteristics, need to
e further investigated using primary response data of neuronal events,
.e., electrical activity ( Ding et al., 2021 ), with technologies like EEG,
EG, and ECoG. In particular, to directly investigate the relationship
etween brain-wide neuronal events and their hemodynamic correspon-
ences would need simultaneous recording techniques, including con-
urrent EEG and fMRI ( Yuan et al., 2016 , Yuan et al., 2012 ) or concur-
ent EEG and fNIRS ( Khan et al., 2021 b, Ahn and Jun, 2017 , Chen et al.,
020 ). Fourthly, it should be noted that our findings only provide indi-
ect evidence to the neuronal relevance of original global CAPs as they
re different from brain-wide patterns caused by non-neuronal system-
tic variations in hemodynamic signals. Their neuronal origins still need
o be directly interrogated with simultaneously measured neuronal ac-
ivities, such as electrophysiology, in human, using concurrent record-
ng techniques discussed above. Moreover, the physiological relevance
f these global CAPs needs to be established via identifying their behav-
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oral or cognitive correlates ( Preti et al., 2017 ). Finally, these brain-wide
emodynamic phenomena observed in this pilot study need to be repli-
ated using a larger number of participants. 

. Conclusion 

The present pilot study utilized a wearable brain-wide DOT technol-
gy and data-driven methods to investigate spatio-temporal dynamic
atterns in hemodynamic signals from spontaneous human brain ac-
ivity. Our results demonstrate that brain-wide spontaneous hemody-
amic signals from DOT can be described by a few co-(de)activation
atterns representing recurring and transitioning brain states. Global
ositive and negative brain states, different from global non-neuronal
atterns, are identified as two co-(de)activation patterns indicating tran-
ient activations over the entire cortex, which are phased-locked with
 subset of global signal peaks and troughs. Collectively, these results
ndicate the existence and interaction of three phenomena, i.e., CAPs,
lobal brain activity, and brain-wide structured transitions, in human
emodynamic data, which extend existing findings on similar transient
euronal events recently reported in animal fMRI data. Our study has
mportant implications in understanding the spontaneous activities and
he fundamental organization of resting state networks in the human
rain. 

ata and code availability statement 

Data used in this study are not publicly available due to re-
earch data sharing restrictions from the IRB but are available
rom the corresponding author (L.D.) through a data use agree-
ent. The BW-DOT pipeline is provided in detail in ( Khan et al.,
021 b). FNIRS preprocessing was performed using HOMER2
 http://openfnirs.org/ ). The segmentation and FEM modeling were per-
ormed using FreeSurfer ( https://surfer.nmr.mgh.harvard.edu ), Mesh-
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