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1 INTRODUCTION

Unconditional derandomization has been a major focus of research in computational complexity
theory for more than 30 years. A significant line of work in this area has been on developing
unconditional pseudorandom generators (PRGs) for various types of Boolean functions. Early
seminal results in this vein focused on Boolean circuits [1, 43, 45] and branching programs [22,
44, 46], but over the past decade or so a new strand of research has emerged in which the goal
is to construct PRGs against halfspaces and various generalizations of halfspaces. This work has
included a sequence of successively more efficient PRGs against halfspaces [9, 15, 27, 29, 35, 39],
low-degree polynomial threshold functions [10, 24, 25, 27, 28, 39], and, most relevant to this article,
intersections of halfspaces [8, 18, 19, 56].
Since intersections ofm halfspaces correspond tom-facet polytopes, and also to {0, 1}-integer

programs withm constraints, these objects are of fundamental interest in high-dimensional geom-
etry, optimization, and a range of other areas. A pseudorandom generator that δ -fools intersections
ofm halfspaces can equivalently be viewed as an explicit discrepancy set form-facet polytopes: a
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small subset of {0, 1}n that δ -approximates the {0, 1}n-volume of everym-facet polytope. (Discrep-
ancy sets are stricter versions of hitting sets, which are only required to intersect every polytope
of volume at least δ .) The problem of constructing a PRG for intersections ofm halfspaces is also
a stricter version of the algorithmic problem of deterministically approximating the number of
solutions of a {0, 1}-integer program with m constraints. It is stricter because a PRG yields an
input-oblivious algorithm: The range of a PRG is a single fixed set of points that gives approx-
imately the right answer for every {0, 1}-integer program. Beyond pseudorandomness, intersec-
tions of halfspaces also play a significant role in other fields such as concrete complexity theory
[4, 26, 40, 48, 58, 59] and computational learning theory [6, 16, 30, 32–34, 57, 64].
The main result of this article is a new PRG for intersections of m halfspaces. Its seed length

grows polylogarithmically withm, which is an exponential improvement of the previous best PRG
for this class. Before giving the precise statement of our result, we briefly describe the prior state-
of-the-art-for this problem.

1.1 Prior work on PRGs for Intersections of Halfspaces

A halfspace F (x ) = 1[w · x ≤ θ] is said to be τ -regular if |w j | ≤ τ ‖w ‖2 for all j ∈ [n]; intuitively,
a τ -regular halfspace is one in which no coefficient w j is too large relative to the overall scale of
all the coefficients. Harsha, Klivans, and Meka [19] gave a PRG that δ -fools any intersection ofm
many τ -regular halfspaces with seed length poly(logm, 1/δ ) · logn, where τ has to be sufficiently
small relative to m and δ (specifically, τ ≤ some poly( δ

logm
) is required). While this seed length

has the desirable property of being polylogarithmic inm, due to the regularity requirement this
result cannot be used to fool intersections of even two general halfspaces. We note that there are
very basic halfspaces, such as F (x ) = 1[x1 ≤ 1/2], that are highly irregular.
Recently, Reference [56] built on the work of Reference [19] to give a PRG that fools a different

subclass of intersections of halfspaces. They give a PRG that δ -fools any intersection ofm many
weight-W halfspaces with seed length poly(logm,W , 1/δ ) · polylogn; a halfspace has weightW if
it can be expressed as 1[w · x ≤ θ] where each coefficient w j is an integer of magnitude at most
W . Unfortunately, many n-variable halfspaces require weight polynomially or even exponentially
large inn; in fact, a counting argument shows that almost all halfspaces require exponentially large
weight. Therefore, the Reference [56] result also cannot be used to fool even two general halfspaces.
In Reference [18], Gopalan, O’Donnell, Wu, and Zuckerman gave a PRG that can fool intersec-

tions ofm general halfspaces. However, various aspects of their approach each necessitate a seed
length that is at least linear inm, and indeed their overall seed length is O ((m log(m/δ ) + logn) ·
log(m/δ )).1 So, while this PRG is notable for being able to handle intersections of general halfs-
paces, its seed length becomes trivial (greater than n) for intersections ofm ≥ n many halfspaces.
(Indeed, this PRG of Reference [18] fools arbitrary monotone functions of m general halfspaces,
with intersections (i.e., Ands) being a special case. Due to the generality of this class—which of
course includes every monotone function over {0, 1}m—it can be shown that any PRG for it has to
have at least linear seed length dependence onm.)

1.1.1 PRGs over Gaussian Space. There has also been work on PRGs for functions over Rn en-
dowed with the n-dimensional Gaussian distribution. Analyses in this setting are often facilitated
by the continuous nature of Rn and rotational invariance of the Gaussian distribution, useful
technical properties not afforded by the standard setting of Boolean space. For halfspaces and poly-
topes, PRGs over Gaussian space can be viewed as a first step towards PRGs over Boolean space; as
we describe below, Boolean PRGs even for restricted subclasses of halfspaces and polytopes yield

1Their seed length improves to O (m log(m/δ ) + logn) if m/δ is bounded by any polylog(n).
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Table 1. PRGs for Intersections of Halfspaces Over {0, 1}n

Reference Function class Seed length of PRG

[18] Monotone functions ofm halfspaces
O ((m log(m/δ ) + logn) · log(m/δ ))

O (m log(m/δ ) + logn), ifm/δ ≤ any polylog(n)

[19] Intersections ofm τ -regular halfspaces poly(logm, 1/δ ) · logn, if τ ≤ some poly( δ
logm

)

[56] Intersections ofm weight-W halfspaces poly(logm,W , 1/δ ) · polylogn

This work Intersections ofm halfspaces poly(logm, 1/δ ) · logn

Gaussian PRGs for general halfspaces and polytopes, but the converse does not hold. We also note
that the correspondence between polytopes and {0, 1}-integer programs is specific to Boolean
space, and in particular, Gaussian PRGs do not yield algorithms for counting solutions to these
programs.
For halfspaces, Meka and Zuckerman [39] showed that any PRG for the subclass of O ( 1√

n
)-

regular halfspaces over Boolean space yields a PRG for all halfspaces over Gaussian space. Note
that O ( 1√

n
)-regular halfspaces are “the most regular” ones; every halfspace is τ -regular for some

τ ∈ [ 1√
n
, 1]. Reference [19] generalized this connection to polytopes: They showed that any PRG

for intersections of m many O ((logm)/
√
n)-regular halfspaces over Boolean space yields a PRG

for intersections ofm many arbitrary halfspaces over Gaussian space. Combining this with their
Boolean PRG for intersections of regular halfspaces discussed above, Reference [19] obtained a
Gaussian PRG for intersections of m halfspaces with seed length poly(logm, 1/δ ) · logn. Recent
work of Reference [8] gives a different Gaussian PRG with seed length poly(logm, 1/δ ) +O (logn).
The focus of the current work is on the standard setting of PRGs over Boolean space, and the

rest of the article addresses this (more challenging) setting.

1.2 This Work: A PRG for Intersections of General Halfspaces

Summarizing the prior state-of-the-art on PRGs over Boolean space, there were no PRGs that could
fool intersections ofm = nmany general halfspaces, and relatedly, the best PRG for intersections of
m ≤ n general halfspaces had a superlinear seed length dependence onm. The PRGs that could fool
intersections ofm ≥ n halfspaces imposed technical restrictions on the halfspaces: either regularity
(hence excluding simple halfspaces such as 1[x1 ≤ 1/2]) or small weights (hence excluding almost
all halfspaces). Please refer to Table 1.
The main result of this article is a PRG that fools intersections ofm general halfspaces with a

polylogarithmic seed length dependence onm:

Theorem 1.1 (PRG for Polytopes). For all n,m ∈ N and δ ∈ (0, 1), there is an explicit pseudo-
random generator with seed length poly(logm, 1/δ ) · logn that δ -fools the class of intersections ofm
halfspaces over {0, 1}n .

In particular, this PRG fools intersections of quasipoly(n) many halfspaces with seed length
polylog(n), and its seed length remains non-trivial for intersections of exponentially many halfs-
paces (exp(nc ) where c > 0 is an absolute constant).
An immediate consequence of Theorem 1.1 is a deterministic algorithm that runs in time

npolylog(m) and additively approximates the number of solutions to any n-variable {0, 1}-integer
program withm constraints. Prior to our result, no non-trivial deterministic algorithm (running
in time < 2n ) was known even for general {0, 1}-integer programs with m = n constraints.
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Theorem 1.1 also yields PRGs with comparable seed lengths for intersections of halfspaces over
a range of other domains, such as the n-dimensional hypergrid {0, 1, . . . ,N }n and the solid cube
[0, 1]n (details are left to the interested reader).

1.3 Discussion

Since the initial conference publication of a preliminary version of this article [50], several works
have appeared that are relevant to the topic of this article. One line of work has been on obtain-
ing pseudorandom generators for functions of halfspaces (including intersections of halfspaces,
i.e., polytopes) with a better dependence on the error parameter but a worse dependence on other
parameters. Kabanets et al. [23] gave a PRG that δ -fools the class of n-variable size-s de Morgan
formulas with halfspace gates at the bottom and has seed length O (n1/2s1/4 log(n) log(n/δ )), and
Hatami et al. [20] gave a PRG that δ -fools the class of arbitrary functions ofm halfspaces over n

variables with seed length Õ (
√
n(m + log(1/δ ))). The techniques employed in these works are very

different from the methods of our article; even for the special case of intersections ofm halfspaces,
each of these results has a seed length that is polynomial in n andm (rather than logarithmic or
polylogarithmic as in our work), but these results have a much better seed length dependence on
the error parameter δ . Achieving a polylogarithmic dependence on all three parameters n,m, and
1/δ is an interesting challenge for future work.
In a different related line of work, Arunachalam and Yao [2] have considered the problem of con-

structing explicit PRGs for positive spectrahedrons. A positive spectrahedron is a Boolean function
1[x1A

1 + · · · + xnA
n � B], where the Ai ’s are k × k positive semidefinite matrices. Building on

some of the ideas and ingredients in this article and in prior work [19], they establish invariance
principles and give a PRG that δ -fools “sufficiently regular” positive spectrahedrons over {0, 1}n
with seed length poly(logk, 1/δ ) · logn.

2 OVERVIEW OF OUR PROOF

Our proof of Theorem 1.1 involves several novel extensions of the central technique driving this
line of work, namely, Lindeberg-style proofs of probabilistic invariance principles and derandom-
izations thereof. We develop these extensions to overcome challenges that arise due to the general-
ity of our setting; specifically, the fact that we are dealing with intersections of arbitrary halfspaces,
with no restrictions whatsoever on their structure. One of the key new ingredients in our analy-
sis, which we believe is of independent interest, is a sharp high-dimensional generalization of the
classic Littlewood–Offord anticoncentration inequality [12, 37] that we establish. We now describe
our proof and the new ideas underlying it in detail.

2.1 Background: The Reference [19] PRG for Regular Polytopes

We begin by recalling the arguments of Harsha, Klivans, and Meka [19] for fooling regular poly-
topes. At a high level, Reference [19] builds on the work of Meka and Zuckerman [39], which gave
a versatile and powerful framework for constructing pseudorandom generators from probabilistic
invariance principles; the main technical ingredient underlying the Reference [19] PRG for regular
polytopes is a new invariance principle for such polytopes, which we now describe.

Reference [19]’s invariance principle and the Lindeberg method. At a high level, the Ref-
erence [19] invariance principle for regular polytopes is as follows: Given an m-tuple of regular
linear forms over n input variables x = (x1, . . . ,xn ) (denoted byAx , whereA is anm-by-n matrix),
the distribution (overRm ) ofAu, whereu ∼ {−1, 1}n is uniform random, is very close to the distri-
bution of Aд, where д ∼ N (0, 1)n is distributed according to a standard n-dimensional Gaussian.
Here, closeness is measured by multidimensional CDF distance; we observe that multidimensional
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CDF distance corresponds to test functions of the form 1[Ax ≤ b] where b ∈ Rm , which syncs up
precisely with an intersection ofm halfspaces 1[A1x ≤ b1] ∧ · · · ∧ 1[Amx ≤ bm]. To prove this
invariance principle, Reference [19] employs the well-known Lindeberg method (see, e.g., Chapter
§11 of References [47] and [61]) and proceeds in two main conceptual steps. The first step estab-
lishes a version of the result for smooth test functions, proxies for the actual “hard threshold” test
functions 1[Ax ≤ b], and the second step relates distance with respect to these smooth test func-
tions to multidimensional CDF distance via Gaussian anticoncentration. We outline each of these
two steps below.
The first step is to prove an invariance principle for smooth test functions. Here, instead of

measuring the distance between Au and Aд using test functions that are orthant indicators
Ob (v1, . . . ,vm ) = 1[v ≤ b] (corresponding to multidimensional CDF distance), distance is mea-

sured using a sufficiently smooth mollifier Õb : Rm → [0, 1] of Ob . Such mollifiers, with useful
properties that we now discuss, were proposed and analyzed by Bentkus [5]. In more detail, Refer-

ence [19] proves that the difference between the expectations of Õb (Au) and Õb (Aд) is bounded

by a certain function involving Õb ’s derivatives. In fact, as in standard in Lindeberg-style proofs of
invariance principles, Reference [19] actually bounds this difference with respect to any smooth
test function ϒ : Rm → R in terms of ϒ’s derivatives; the only specific property of Bentkus’s mol-

lifier Õb that is used is that its derivatives are appropriately small. At a high level, the proof of this
smooth invariance principle proceeds by hybridizing from ϒ(Au) to ϒ(Aд), using the multidimen-
sional Taylor expansion of ϒ to bound the error incurred in each step. (The regularity of the linear
forms is used in a crucial way to control the approximation error that results from truncating the
Taylor expansion at a certain fixed degree.)
The second step is to establish the desired bound on multidimensional CDF distance using the

aforedescribed smooth invariance principle applied to Bentkus’s mollifier. This step relies on a

second key property of Bentkus’s mollifier: Õb agrees with the orthant indicator Ob except on
a small error region near the orthant boundary. With this property in hand, a fairly simple and
standard argument shows that it suffices to bound the anticoncentration of the Gaussian random
variable Aд; intuitively, such anticoncentration establishes that Aд does not place too much prob-

ability weight on the error region where Õb disagrees with Ob . In Reference [19], the required
anticoncentration for Aд follows immediately from a result of Nazarov [33, 42] on the Gaussian
surface area ofm-facet polytopes.

The Reference [19] PRG via a derandomized invariance principle.Having proved this invari-
ance principle for regular polytopes, Reference [19] then establishes a pseudorandom version by
derandomizing its proof. That is, they argue that their proof in fact establishes multidimensional-
CDF-closeness between Az and Aд, where д ∼ N (0, 1)n is distributed according to a standard
Gaussian as before, but z ∼ {−1, 1}n is the output of a suitable pseudorandom suitable gener-
ator G : {−1, 1}r → {−1, 1}n (rather than uniform random). Combining the “full-randomness”
invariance principle (establishing closeness between Au and Aд) with this pseudorandom version
(establishing closeness betweenAz andAд), it follows from the triangle inequality that Az andAu
are close. Recalling that multidimensional CDF distance corresponds to test functions of the form
1[Ax ≤ b] = 1[A1x ≤ b1] ∧ · · · ∧ 1[Amx ≤ bm], this is precisely equivalent to the claim that G
fools the intersection ofm halfspaces with weight matrix A ∈ Rm×n (and an arbitrary vector of
thresholds b ∈ Rm ).
For later reference, we close this section with an informal description of the Reference [19]

generator (for fooling intersections ofm many τ -regular halfspaces):

(1) Pseudorandomly hash the n variables into L � poly(1/τ ) buckets using an (rhash � 2 logm)-
wise uniform hash function h : [n]→ [L].
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9:6 R. O’Donnell et al.

(2) Independently across buckets, assign values to the variables within each bucket using an
(rbucket � 4 logm)-wise uniform distribution.

We remark that this is the structure of theMeka–Zuckerman generator [39] for fooling a single reg-
ular halfspace, the only difference being that the relevant parameters L, rhash, and rbucket are larger
in Reference [19] than in Reference [39] (naturally so, given that the Reference [19] generator fools
intersections ofm regular halfspaces instead of a single one).
Our analysis in this article can be used to show that the Reference [39] generator, instantiated

with suitable choices of L, rhash, and rbucket, fools intersections ofm general halfspaces. However,
for technical reasons (that are not essential for this high-level discussion), this results in a seed
length that is poly(logm, 1/δ , logn). To achieve our seed length of poly(logm, 1/δ ) · logn, we
slightly extend the Reference [39] generator in two ways. First, within each bucket the variables
are assigned using an rbucket-wise uniform distribution Xor-ed with an independent draw from
a generator that fools small-width CNF formulas [17]. Second, we Xor the entire resulting n-bit
string with an independent draw from ak-wise independent generator. (See Section 4 for a detailed
description of our PRG.)

2.2 Some Key New Ingredients in our Analysis

A fundamental challenge in extending the Reference [19] PRG result from regular to general poly-
topes stems from the fact that an invariance principle simply does not hold for general polytopes
Ax ≤ b. Without the regularity requirement on A, it is not true that Au and Aд are close in CDF
distance; indeed, even a single non-regular linear form such as x1 is distributed very differently
under u ∼ {−1, 1}n versus д ∼ N (0, 1)n . This therefore necessitates a significant conceptual de-
parture from the Meka–Zuckerman framework for constructing pseudorandom generators from
invariance principles: Rather than establishing closeness betweenAu andAz (where z ∼ {−1, 1}n is
the output of a suitable pseudorandom generator) throughAд by means of an invariance principle,
one has to establish closeness between Au and Az “directly” without using invariance.
Somewhat surprisingly, even though an invariance principle does not hold in our setting of gen-

eral polytopes, our proof nonetheless proceeds via the Lindeberg method for proving invariance
principles. Following the two main conceptual steps of the method (as outlined in the previous

section), we first prove that Au and Az are close with respect to Bentkus’s smooth mollifiers Õb

for the orthant indicators Ob , and then use this to establish closeness in multidimensional CDF
distance. However, the fact that we are dealing with matrices A ∈ Rm×n whose rows are arbitrary
linear forms (corresponding to the facets of general m-facet polytopes) instead of regular linear
forms poses significant challenges in both steps of the Lindeberg method.We discuss some of these
challenges, and the new ideas that we employ to overcome them, next. For concreteness, we will
discuss these challenges and new ingredients by contrasting our proof with that of Reference [19],
but we remark here that these are in fact qualitative differences between our approach and the
Lindeberg method in general.

Step 1: Fooling Bentkus’s mollifier. Recall that Reference [19] first proves a general invariance
principle establishing closeness in expectation (with a quantitative bound that depends on ϒ’s
derivatives) between ϒ(Au) and ϒ(Aд) for any smooth test function ϒ. They then apply this general

invariance principle with Bentkus’s orthant mollifier Õb being the test function, using the bounds

on Õb ’s derivatives established in Reference [5] but no other properties of Õb .
In contrast, we do not prove closeness between Au and Az for all smooth test functions;

our argument is carefully tailored to Bentkus’s specific mollifier. In addition to bounds on Õb ’s

derivatives, we crucially rely on the specific structure of Õb , in particular, the fact that it is the
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product ofm univariate functions, one for each coordinate (i.e., Õb (v ) =
∏m

i=1ψbi
(vi ), where each

ψbi
maps R to [0, 1]). A high-level intuition for why such product structure is useful is as follows:

By doing some structural analysis of halfspaces (see Section 5), we can decompose each of ourm
halfspaces into a small “head” portion, consisting of at most k variables, and a remaining “tail” por-
tion that is regular. From this point of view, the difference between regular and general polytopes
is therefore the presence of these size-at-most-k head portions in each of them halfspaces. Very

roughly speaking, the product structure of Õb allows us to handle these head portions using pseu-
dorandom generators for small-width CNF formulas [17]. (To see the relevance of CNF formulas
in this context, at least at a conceptual level, observe that a product of {0, 1}-valued k-juntas is a
width-k CNF formula.)
Our proof incorporates these PRGs for CNFs into Reference [19]’s analysis of the regular tail

portions. We highlight one interesting aspect of our analysis: In all previous instantiations of the
Lindeberg method that we are aware of, expressions like | E[ϒ(v+Δ)]−E[ϒ(v+Δ′)]| are bounded
by considering two Taylor expansions of ϒ, both taken around the “common point” v . Lindeberg
method arguments analyze the difference of these Taylor expansions using moment-matching
properties of Δ and Δ′ and the fact that they are “small” in a certain technical sense, which is
directly related to the regularity assumptions that underlie these invariance principles. In contrast,
in our setting, since we are dealing with arbitrary linear forms rather than regular ones, we end up
having to bound expressions like | E[ϒ(v+Δ)]−E[ϒ(v ′+Δ′)]|. Note that this involves considering
the Taylor expansions of ϒ around two distinct points v and v ′, which may be far from each
other—indeed, a priori it is not even clear that | E[ϒ(v )]−E[ϒ(v ′)]| will be small. Because of these
differences from the standard Lindeberg scenario, moment-matching properties of Δ and Δ′ and
their “smallness” no longer suffice to ensure that the overall expected difference is small. Instead,
as alluded to above, our analysis additionally exploits the product structure of Bentkus’s mollifier
via PRGs for CNFs to bound | E[ϒ(v + Δ)] − E[ϒ(v ′ + Δ′)]| (see Section 8).

Step 2: Anticoncentration. The next step is to pass from closeness of Õb (Au) and Õb (Az) in
expectation, to closeness of Au and Az in multidimensional CDF distance. We recall that in the

analogous step in Reference [19]’s proof, the starting point was closeness in expectation of Õb (Au)

and Õb (Aд), where д ∼ N (0, 1)n is a standard Gaussian (instead of Õb (Az) where z ∼ {−1, 1}n is
pseudorandom). For this reason, it sufficed for Reference [19] to bound the Gaussian anticoncen-
tration of Aд and, as mentioned, such a bound is an immediate consequence of Nazarov’s bound
on the Gaussian surface area ofm-facet polytopes.
In contrast, since the Gaussian distribution does not enter into our arguments at all (by neces-

sity, as explained above), we instead have to bound the Boolean anticoncentration of Au where
u ∼ {−1, 1}n is uniform random. This task, which is carried out in Section 7, requires significantly
more work; indeed, Boolean anticoncentration formally contains Gaussian anticoncentration as
a special case. At the heart of our arguments for this step is a new Littlewood–Offord-type anti-
concentration inequality for m-facet polytopes, a high-dimensional generalization of the classic
Littlewood–Offord theorem [12, 37]. We discuss this new theorem, which we believe is of indepen-
dent interest, next.

2.2.1 A Littlewood–Offord Theorem for Polytopes. We first recall the classic Littlewood–Offord
anticoncentration inequality.

Theorem 2.1 (Littlewood–offord). For all θ ∈ R and w ∈ Rn such that |w j | ≥ 1 for all
j ∈ [n],

Pr[w · u ∈ (θ − 2,θ ]] = O
(
1
√
n

)
,

where u ∼ {−1, 1}n is uniformly random.
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9:8 R. O’Donnell et al.

Littlewood andOfford [37] first proved a bound ofO ((logn)/
√
n); Erdös [12] subsequently sharp-

ened this to O (1/
√
n), which is optimal by considering w = 1n and θ = 0. (We observe that the

question trivializes without the assumption on the magnitudes of w ’s coordinates; for instance,
the relevant probability is 1/2 forw = (1, 0, . . . , 0) and θ = 1.)
Theorem 2.1 has the following natural geometric interpretation: The maximum fraction of hy-

percube points that can fall within the “width-2 boundary” of a halfspace 1[w · x ≤ θ] where
|w j | ≥ 1 for all j isO (1/

√
n). Given this geometric interpretation, it is natural to seek a generaliza-

tion from single halfspaces (i.e., 1-facet polytopes) tom-facet polytopes:

What is the maximum fraction of hypercube points u ∈ {−1, 1}n that can lie within the
“width-2 boundary” of anm-facet polytope Ax ≤ b where |Ai j | ≥ 1 for all i and j?

In more detail, we say that u lies within the “width-2 boundary” of the polytope Ax ≤ b provided
Au ≤ b andAi ·u > bi−2 for some i ∈ [m]; equivalently,u lies in the difference of the two polytopes
Ax ≤ b and Ax ≤ b − 2 · 1m , where 1m denotes the all-1’s vector in Rm . The Littlewood–Offord
theorem (Theorem 2.1), along with a naive union bound, implies a bound ofO (m/

√
n); we are not

aware of any improvement of this naive bound prior to our work.
We give an essentially complete answer to this question, with upper and lower bounds that

match up to constant factors. In Section 7, we prove the following “Littlewood–Offord theorem for
polytopes”:

Theorem 2.2 (Littlewood–offord Theorem for Polytopes). For all m ≥ 2, b ∈ Rm , and
A ∈ Rm×n with |Ai j | ≥ 1 for all i ∈ [m] and j ∈ [n],

Pr
[
Au ≤ b & Ai · u > bi − 2 for some i ∈ [m]] ≤ 5

√
2 lnm
√
n
,

where u ∼ {−1, 1}n is uniformly random.

Our proof of Theorem 2.2 draws on and extends techniques from Kane’s bound on the Boolean
average sensitivity ofm-facet polytopes [26]. We complement Theorem 2.2 with a matching lower

bound, which establishes the existence of anm-facet polytope with an Ω(
√
lnm/

√
n)-fraction of

hypercube points lying within its width-2 boundary. (In fact, our lower bound is slightly stronger:

It establishes the existence of a polytope with an Ω(
√
lnm/

√
n)-fraction of hypercube points lying

on its surface, corresponding to its width-0 boundary.)
Theorem 2.2 does not suffice for the purpose of passing from closeness with respect to Bentkus’s

orthant mollifier Õb to closeness in multidimensional CDF distance (i.e., Step 2 in Section 2.2):
While the assumption on the magnitudes ofA’s entries is essential to Theorem 2.2 (just as the anal-
ogous assumption on w ’s coordinates is essential to the Littlewood–Offord theorem), the weight
matrix of a generalm-facet polytope need not have this property. In Section 7, we establish various
technical extensions of Theorem 2.2 that are required to handle this issue.

Remark 2.3. Our generalization of the Littlewood–Offord theorem (Theorem 2.2) is, to our
knowledge, incomparable to other high-dimensional generalizations that have been studied in the
literature. In particular, References [14, 31, 62] (see also the references therein) study the probabil-
ity that Au falls within a ball of fixed radius in Rm , where A ∈ Rm×n is a matrix whose columns
have 2-norm at least 1 (i.e., Au is the random ±1 sum of n manym-dimensional vectors of length
at least 1).

2.3 Relation to Reference [56]

We close this section with a discussion of the connection between our techniques and those of
the recent work cited in Reference [56]. Recall that the main result of Reference [56] is a PRG for
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δ -fooling intersections ofm weight-W halfspaces using seed length poly(logm,W , 1/δ ) ·polylogn
(whereas our main result, which is strictly stronger, is a PRG for δ -fooling intersections of m
general halfspaces using seed length poly(logm, 1/δ ) · logn, with no dependence on the weights
of the halfspaces).
A key structural observation driving Reference [56] is that every intersection ofm low-weight

halfspaces can be expressed as H ∧G, where H is an intersection ofm regular halfspaces andG is
a small-width CNF. (The width of G grows polynomially with the weights of the halfspaces, and
this polynomial growth is responsible for the polynomial dependence onW in the seed length
of the Reference [56] PRG.) From this starting point, it suffices for Reference [56] to bound the
multidimensional CDF distance between the (Rm × {±1})-valued random variables (Au,G (u))
and (Az,G (z)), where A ∈ Rm×n is the weight matrix of H , u is uniform random, and z is the
output of the Reference [56] PRG (which is a slight variant of Reference [19]’s pseudorandom
generator). Since H is an intersection of regular halfspaces, the fact that Au and Az are close in
multidimensional CDF distance is precisely the main result of Reference [19]; the crux of the work
in Reference [56], therefore, lies in dealing with the additional distinguished (m + 1)st coordinate
corresponding to the CNF G. Very roughly speaking, Reference [56] employs a careful coupling
(û, ẑ) (whose existence is a consequence of the fact that bounded independence fools CNFs [3,
52]) to ensure that G (û) and G (ẑ) almost always agree, and hence these (m + 1)st coordinates
“have a negligible effect” throughout Reference [19]’s Lindeberg-based proof of the regular case
establishing closeness between Au and Az.
Because of the aforementioned structural fact (that anm-tuple of low-weight halfspaces is equiv-

alent to “anm-tuple of regular halfspaces plus a CNF”), the low-weight case analyzed in Reference
[56] did not require as significant a departure from Reference [19]’s approach, and from the Linde-
berg method as a whole, as the general case that is the subject of this article. In particular, the new
ideas discussed in Section 2.2 that are central to our proof were not present in Reference [56]’s
analysis for the low-weight case. To elaborate on this,

◦ Reference [56] did not have to exploit the product structure of Bentkus’s orthantmollifier Õb to
fool it. Like Reference [19], the arguments of Reference [56] establish closeness in expectation
between ϒ(Au,G (u)) and ϒ(Az,G (z)) for all smooth test functions ϒ, and the only properties of
Bentkus’s mollifier that are used are the bounds on its derivatives given in Reference [5] (which
are used in a black box way). The simpler setting of Reference [56] also did not necessitate
comparing the Taylor expansions of ϒ around distinct points, as discussed in Section 2.2.
◦ Reference [56] did not have to reason about Boolean anticoncentration, which, as discussed
above, requires significant novel conceptual and technical work, including our new Littlewood–
Offord theorem for polytopes. Like Reference [19], Reference [56] was able to apply Nazarov’s
Gaussian anticoncentration bounds as a black box to pass from fooling Bentkus’s mollifier to
closeness in multidimensional CDF distance.

3 PRELIMINARIES

For convenience, in the rest of the article, we view halfspaces as having the domain {−1, 1}n rather
than {0, 1}n . We remind the reader that a halfspace F : {−1, 1}n → {0, 1} is a function of the form
F (x ) = 1[w · x ≤ θ] for somew ∈ Rn , θ ∈ R.
For an n-dimensional vector y and subset B ⊆ [n], we write yB to denote the |B |-dimensional

vector obtained by restricting y to the coordinates in B. For anm × n matrix A and subset B ⊆ [n],
we writeAB to denote them× |B | matrix obtained by restrictingA to the columns in B. For indices
i ∈ [m] and j ∈ [n], we write Ai to denote the n-dimensional vector corresponding to the ith row
of A, and Aj to denote them-dimensional vector corresponding to the j-column of A.
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3.1 Regularity, Orthants, and Taylor’s Theorem

Definition 3.1 ((k,τ )-regular Vectors and Matrices). We say that a vector w ∈ Rn is τ -regular if
|w j | ≤ τ ‖w ‖2 for all j ∈ [n]. More generally, we say that w is (k,τ )-regular if there is a partition
[n] = Head � Tail where |Head| ≤ k and the subvector wTail is τ -regular. We say that w is
(k,τ )-standardized if w is (k,τ )-regular and

∑
j ∈Tailw

2
j = 1. We say that a matrix A ∈ Rm×n is τ -

regular (respectively: (k,τ )-regular, (k,τ )-standardized) if all its rows are τ -regular (respectively:
(k,τ )-regular, (k,τ )-standardized). We also use this terminology to refer to polytopes Ax ≤ b.

Translated orthants and their boundaries. Forb ∈ Rm , wewriteOb ⊂ Rm to denote the translated
orthant

Ob = {v ∈ Rm : vi ≤ bi for all i ∈ [m]}.

We will overload notation and also write “Ob ” to denote the indicator Rm → {0, 1} of the or-
thant Ob (i.e., Ob (v ) = 1[v ≤ b]). We write �Ob ⊂ Ob to denote Ob ’s surface,

�Ob = {v ∈ Ob : vi = bi for some i ∈ [m]}.

For Λ > 0, we write �−ΛOb and �+ΛOb to denote the inner and outer Λ-boundaries of Ob ,

�−ΛOb = Ob \ Ob−(Λ, ...,Λ), �+ΛOb = Ob+(Λ, ...,Λ) \ Ob , (1)

and �±ΛOb to denote the disjoint union �±ΛOb = �+ΛOb � �−ΛOb .

Derivatives and multidimensional Taylor expansion. We write ψ (d ) to denote the dth derivative
of a Cd functionψ : R→ R. For anm-dimensional multi-index α = (α1, . . . ,αm ) ∈ Nm , we write
|α | to denote α1 + · · ·+αm , and α ! to denote α1!α2! · · ·αm !. Given a vector Δ ∈ Rm , the expression
Δα denotes

∏m
i=1 Δαi

i . Given a function ϒ : Rm → R, the expression ∂α ϒ denotes the mixed partial
derivative taken αi times in the ith coordinate.
The following is a straightforward consequence of the multidimensional Taylor theorem, upper-

bounding the error term by the L1-norm of the derivatives times the L∞-norm of the offset-powers:

Fact 3.2 (Multidimensional Taylor Approximation). Let d ∈ N and let ϒ : Rm → R be a
Cd function. Then for all v,Δ ∈ Rm ,

ϒ(v + Δ) =
∑

0≤ |α | ≤d−1

∂α ϒ(v )

α !
Δα + err(v,Δ),

where

|err(v,Δ) | ≤ sup
v∗ ∈Rm

⎧⎪⎨⎪⎩
∑
|α |=d

|∂α ϒ(v∗) |
⎫⎪⎬⎪⎭ · ‖Δ‖d∞.

3.2 Pseudorandomness Preliminaries

Throughout this work we use boldface for random variables and random vectors. If D is a prob-
ability distribution, then we write x ∼ D to denote that x is drawn from that distribution. For
example, N (0, 1) will denote the standard normal distribution, so д ∼ N (0, 1) means д is a stan-
dard Gaussian random variable. In case S is a finite set, the notation x ∼ S will mean that x is
chosen uniformly at random from S . The most common case for this will beu ∼ {−1, 1}n , meaning
that u is chosen uniformly from {−1, 1}n . We will reserve u for this specific random vector.
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We recall the definition of a pseudorandom generator:

Definition 3.3 (Pseudorandom Generator). A function G : {−1, 1}r → {−1, 1}n is said to δ -fool a
function F : {−1, 1}n → R with seed length r if���� E

s∼{−1,1}r

[
F (G (s ))

]
− E

u∼{−1,1}n

[
F (u)

] ���� ≤ δ .

Such a function G is said to be an explicit pseudorandom generator (PRG) that δ -fools a class F
of n-variable functions if G is computable by a deterministic uniform poly(n)-time algorithm and
G δ -fools every function F ∈ F . We will also use the notation z ∼ G to mean that z = G (s ) for
s ∼ {−1, 1}r .

Bounded independence and hash families. A sequence of random variables x1, . . . ,xn is said
to be r -wise independent if any collection of r of them is independent. In case the xi ’s are uniformly
distributed on their range, we say the sequence is r -wise uniform. We will also use this terminology
for distributions D on {−1, 1}n . An obvious but useful fact about r -wise uniform PRGs G is that
they 0-fool the class of degree-r polynomials {−1, 1}n → R.
A distribution H on functions [n] → [L] is said to be an r -wise uniform hash family if, for

h ∼ H , the sequence (h(1), . . . ,h(n)) is r -wise uniform. Such a distribution also has the property
that for any � ∈ [L], the sequence (1h (1)=�, . . . ,1h (n)=� ) is r -wise independent on {0, 1}n , with each
individual random variable being Bernoulli(1/L). Well-known constructions (see, e.g., Section 3.5.5
of Reference [63]) give that for every n,L and r , there is an r -wise uniform hash family H of
functions [n] → [L] such that choosing a random function from H takes O (r log(nL)) random
bits (and evaluating a function from H takes time poly(r , logn, logL)), and consequently there
are known efficient constructions of r -wise uniform distributions over {0, 1}n with seed length
O (r logn).

Fooling CNFs. Gopalan, Meka, and Reingold [17] have given an efficient explicit PRG that fools
the class of small-width CNFs:

Theorem 3.4 (PRG for Small-Width CNFs). There is an explicit PRG GGMR = GGMR (w,δCNF)
that δCNF-fools the class of all width-w CNF formulas over {−1, 1}n and has seed length

O (w2 log2 (w log(1/δCNF)) +w log(w ) log(1/δCNF) + log logn).

4 OUR PRG

The Meka–Zuckerman generator. As stated earlier, the PRG that we will analyze is a slight
variant of a PRG first proposed by Meka and Zuckerman for fooling a single halfspace [39]. We
begin by recalling the Meka–Zuckerman PRG.

Definition 4.1 (Meka–Zuckerman Generator). The Meka–Zuckerman generator with parameters
L, rhash, rbucket ∈ [n], denoted GMZ, is defined as follows: Let h : [n] → [L] be an rhash-wise uni-
form hash function. Let y1, . . . ,yL ∼ {−1, 1}n be independent random variables, each rbucket-wise
uniform. A draw from GMZ = GMZ (L, rhash, rbucket) is z ∼ {−1, 1}n where

zh−1 (�) = y
�
h−1 (�)

for all � ∈ [L].

In words, an rhash-wise uniform hash h is used to partition the variables x1, . . . ,xn into L “buck-
ets,” and then independently across buckets, the variables in each bucket are assigned according
to an rbucket-wise uniform distribution.
We note in passing that the generators of References [19, 56] also have this structure (though

the choice of parameters L, rbucket, and rhash are different than those in Reference [39]).
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Our generator. Now we are ready to describe our generator and bound its seed length. Roughly
speaking, our generator extends the Meka–Zuckerman generator by (i) additionally Xor-ing each
bucket with an independent pseudorandom variable that fools CNF formulas; and (ii) globally Xor-
ing the entire resulting n-bit string with an independent draw from a 2k-wise uniform distribution.

Definition 4.2 (Our Generator). Our generator, denoted G , is parameterized by values
L, rhash, rbucket, k,w ∈ [n], δCNF ∈ (0, 1) and is defined as follows: Let:

◦ h,y1, . . . ,yL be defined as in the Meka–Zuckerman generator with parameters L, rhash, and
rbucket.
◦ ỹ1, . . . , ỹL ∼ {−1, 1}n be independent draws from GGMR (w,δCNF).
◦ y� ∼ {−1, 1}n be 2k-wise uniform.

Define the random variable y̆ ∼ {−1, 1}n by

y̆h−1 (�) =
(
y� ⊕ ỹ�

)
h−1 (�)

for all � ∈ [L],

where ⊕ denotes bitwise Xor. A draw from our generator G = G (L, rhash, rbucket,k,w,δCNF) is
z ∼ {−1, 1}n where z = y̆ ⊕ y�.

Recalling the standard constructions of r -wise uniform hash functions and random variables
described at the end of Section 3, we have the following:

Fact 4.3 (Seed Length). The seed length of our PRG G with parameters L,rhash,rbucket,k,w ,δCNF is

≤ O (rhash · log(nL) + L · rbucket · logn (Seed length for GMZ)

+ L · (w2 log2 (w log(1/δCNF)) +w log(w ) log(1/δCNF) + log logn) (L copies of GGMR)

+ k logn). (2k-wise uniform string)

4.1 Setting of Parameters

We close this section with the parameter settings for fooling intersections of m halfspaces over
{−1, 1}n . Fix ε ∈ (0, 1) to be an arbitrarily small absolute constant; the parameters we now specify
will be for fooling to accuracy Oε (δ ) = O (δ ). We first define a few auxiliary parameters:

λ =
δ√

log(m/δ ) logm
(Dictated by Equation (31))

τ =
δ 1+ε

(logm)2.5+2ε
(Dictated by Equation (30))

d = constant depending only on ε . (Dictated by Equation (30))

The precise value of d = d (ε ) will be specified in the proof of Theorem 8.1. We will instantiate our
generator G = G (L, rhash, rbucket,k,w,δCNF) with parameters:

L =
(logm)5

δ 2+ε
(Constrained by Equation (30),

chosen to optimize seed length)
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rhash = C1 log(Lm/δ ) (Dictated by Proposition 8.11)

rbucket = log(m/δ ) (Dictated by Lemma 8.10)

k =
C2 log(m/δ ) log log(m/δ )

τ 2
(Dictated by Theorem 5.1)

w =
2k

L
(Dictated by Proposition 8.11)

δCNF =
δ

L
·
(

λ

m
√
n

)d−1
, (Dictated by Equation (30))

whereC1 andC2 are absolute constants specified in the proofs of Proposition 8.11 and Theorem 5.1,
respectively.

Our seed length: By Fact 4.3, our overall seed length is

polylog(m) · δ−(2+ε ) · logn (2)

for any absolute constant ε ∈ (0, 1).

Remark 4.4. As alluded to in the introduction, our techniques can also be used to show that the
Meka–Zuckerman generator itself fools the class of intersections of m halfspaces over {−1, 1}n .
However, this would require setting the parameters L, rhash, and rbucket to be somewhat larger than
the values used above and would result in a slightly worse seed length of poly(logm, 1/δ , logn)
than our poly(logm, 1/δ ) · logn. Briefly, such an analysis would use the fact that bounded-
uniformity distributions fool CNF formulas [3, 52]; our analysis instead uses the (more efficient)
Reference [17] generator for this purpose.

5 REDUCTION TO STANDARDIZED POLYTOPES

5.1 A Reduction from Fooling Polytopes to Fooling Standardized Polytopes

In this section, we reduce from the problem of fooling generalm-facet polytopes to the problem of
foolingm-facet (k,τ )-standardized polytopes (Definition 3.1). The main technical result we prove
in this section is the following:

Lemma 5.1 (Approximating Arbitrary Polytopes by (k,τ )-standardized Polytopes Under
Bounded-uniformityDistributions). There is a universal constantC2 > 0 such that the following
holds: Fixm ≥ 1 and 0 < δ ,τ < 1/2 such that

k �
C2 log(m/δ ) log log(m/δ )

τ 2
≤ n

2
. (3)

For every m-facet polytope Ax ≤ b in Rn , there is an m-facet (k,τ )-standardized polytope A′x ≤ b ′

in Rn such that if y ∼ {−1, 1}n is 2k-wise uniform, then

Pr
[
1[Ay ≤ b] � 1[A′y ≤ b ′]

] ≤ δ . (4)

Remark 5.2. Had we been content in this theoremwith the worse value of k = O
(
log2 (m/δ )/τ 2

)
,

then the result would essentially be implicit in Reference [9, Theorem 5.4] (and Reference [18,
Theorem 7.4]), using only (k + 2)-wise uniformity. To save essentially a log(m/δ ) factor, we give
a modified proof in Appendix A.

We stress that Lemma 5.1 establishes that 1[Ax ≤ b] is well-approximated by 1[A′x ≤ b ′] under
both the uniform distribution and the pseudorandom distribution constructed by our generator,
since both of these distributions are 2k-wise uniform. (Note that a draw z = y̆ ⊕ y� from our
generator is indeed 2k-wise uniform, since y� is; indeed,Lemma 5.1 is the motivation for why our
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construction includes a bitwise-Xor with y�.) This is crucial: In general, given a function F and
an approximator F ′ that is close to F only under the uniform distribution (i.e., Pr[F (u) � F ′(u)] is
small), fooling F ′ does not suffice to fool F itself.
Given Lemma 5.1, to prove Theorem 1.1 it is sufficient to prove the following:

Theorem 5.3 (Fooling (k,τ )-standardized Polytopes). Let G be our generator with parame-
ters as set in Section 4.1. For allm-facet (k,τ )-standardized polytopes A′x ≤ b ′,����� Pr

u∼{−1,1}n

[
A′u ∈ Ob′

]
− Pr

z∼G

[
A′z ∈ Ob′

] ����� = O (δ ).

Proof of Theorem 1.1 Assuming Theorem 5.3 and Lemma 5.1. Let Ax ≤ b be any m-facet
polytope in Rn . Given δ > 0, we recall that τ = δ 1+ε/(logm)2.5+ε . If the quantity (3) is greater
than n/2, then the claimed seed length from Fact 4.3 is greater than n and the conclusion of
Theorem 1.1 trivially holds, so we suppose that (3) is less than n/2. Let A′x ≤ b ′ be them-facet
(k,τ )-standardized polytope given by Lemma 5.1. We have

Pr
u∼{−1,1}n

[Au ∈ Ob ] = Pr
u∼{−1,1}n

[A′u ∈ Ob′] ± δ (Lemma 5.1 applied to u)

= Pr
z∼G

[A′z ∈ Ob′] ± δ ± δ (Theorem 5.3)

= Pr
z∼G

[Az ∈ Ob ] ± δ ± δ ± δ (Lemma 5.1 applied to z)

and Theorem 1.1 follows by rescaling δ appropriately. �

The rest of the article is devoted to proving Theorem 5.3.

6 BENTKUS’S MOLLIFIER AND ITS PROPERTIES

In this section we introduce and analyze Bentkus’s orthant mollifier Õb : Rm → (0, 1), which is a
smoothed version of the translated orthant indicator function Ob : Rm → {0, 1} from Section 3.1.

Definition 6.1 (Gaussian-mollified Halfline). For θ ∈ R and λ > 0, we define the C∞ function

1̃θ,λ : R→ (0, 1),

1̃θ,λ (t ) = E
д∼N (0,1)

[
1[t + λд ≤ θ]

]
.

Definition 6.2 (Bentkus’s Orthant Mollifier). For b ∈ Rm and λ > 0, the Bentkus λ-mollifier for

Ob is defined to be the C∞ function Õb,λ : Rm → (0, 1),

Õb,λ (v ) = E
д∼N (0,1)m

[
Ob (v + λд)

]
.

Since Ob (v ) =
∏m

i=1 1[vi ≤ bi ] andN (0, 1)m is a product distribution, the mollifier Õb,λ can be
equivalently defined as follows:

Õb,λ (v ) =
m∏

i=1

1̃bi ,λ (vi ). (5)

This product structure of Bentkus’s mollifier will be crucially important for us in the analysis that
we carry out in Section 8.1. We note the following translation property of Bentkus’s mollifier:

Fact 6.3. For all b,v,Δ ∈ Rm and λ > 0, we have Õb,λ (v + Δ) = Õb−v,λ (Δ).

In Section 8.1 we will also use the following global bound on the magnitude of the derivatives
of the Gaussian-mollified halfline:
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Fact 6.4 (Standard; see Exercise 11.41 in Reference [47]). For all θ ∈ R, λ > 0, and integer
d ≥ 1, ���1̃(d )

θ,λ
���∞ = Od

(
1

λ

)d

.

The following result, from Bentkus [5, Theorem 3(ii)], can be viewed as a multidimensional gen-
eralization of Fact 6.4. (Strictly speaking, Reference [5] only considers b’s of the form (θ ,θ , . . . ,θ ),
but by translation-invariance the bound holds for all b ∈ Rm .)

Theorem 6.5 (Bounded Sum of Derivatives). For allm ≥ 2, b ∈ Rm , λ > 0, and integer d ≥ 1,

sup
v ∈Rm

⎧⎪⎨⎪⎩
∑
|α |=d

|∂α Õb,λ (v ) |
⎫⎪⎬⎪⎭ = Od

��
√
logm

λ
��

d

.

Recall from (1) that �−ΛOb = Ob \ Ob−(Λ, ...,Λ) and �+ΛOb = Ob+(Λ, ...,Λ) \ Ob .We will use the
following notions of approximation for translated orthants:

Definition 6.6 (Inner and Outer Approximators for Orthants). We say that ϒ : Rm → [0, 1] is a
(Λ,δ )-inner approximator for Ob if

|ϒ(v ) − Ob (v ) | ≤ δ for all v � �−ΛOb .

Similarly, we say that ϒ is a (Λ,δ )-outer approximator for Ob if

|ϒ(v ) − Ob (v ) | ≤ δ for all v � �+ΛOb .

The connection between Bentkus’s mollifier and these notions of approximation is established
in the following claim:

Lemma 6.7 (Bentkus’s Mollifier, Appropriately Translated, Yields Inner and Outer
Approximators for Translated Orthants). For all b ∈ Rm and λ,δ ∈ (0, 1), there are

b in,bout ∈ Rm such that Õb in,λ , Õbout,λ are (Λ,δ )-inner and -outer approximators for Ob , respectively,

where Λ = Θ(λ
√
log(m/δ )).

Proof. Let b in = b − β1m where β = Θ(λ
√
log(m/δ )) < Λ will be specified in more detail later.

We show below that Õb in,λ is an (Λ,δ )-inner approximator forOb ; an analogous argument inwhich

the v ∈ Ob and v � Ob cases switch roles shows that Õbout,λ is a (Λ,δ )-outer approximator for Ob ,
where bout = b + β1m .
Fixv � �−ΛOb . There are two possibilities: eitherv ∈ Ob orv � Ob .Wefirst consider the case in

whichv lies in Ob . Sincev � �−ΛOb , we havevi ≤ bi −Λ for all i ∈ [m]. Since Ob (v ) = 1, we must

show that Õb in,λ (v ) ≥ 1−δ . Recalling Equation (5) and the fact that the function 1̃θ,λ : R→ (0, 1)

is monotone decreasing for all θ ∈ R and λ > 0, it suffices to show that Õb in,λ (b − Λ1m ) ≥ 1 − δ .
Again by Equation (5) this holds if and only if

m∏
i=1

1̃bi−β,λ (bi − Λ) ≥ 1 − δ ,

which is equivalent to (
Pr

д∼N (0,1)

[
д ≤ (Λ − β )/λ

] )m

≥ 1 − δ ,

which holds if

Pr
д∼N (0,1)

[д ≤ (Λ − β )/λ] ≥ 1 − δ/m. (6)
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By the well-known Gaussian tail bound Pr[д ≥ t] ≤ 1 − 1

t
√
2π
e−t 2/2 for t > 0 (see, e.g., Reference

[13], Section 7.1), we see that to achieve Equation (6) it suffices to have Λ − β ≥ Cλ
√
ln(m/δ ) for

an absolute constant C > 0, and hence Λ = Θ(λ
√
log(m/δ )) suffices.

Now, we turn to the case in which v � Ob , and hence for some i ∈ [m], we have vi > bi ;
without loss of generality, we suppose that v1 > b1. Since Ob (v ) = 0 in this case, we must show

that Õb in,λ (v ) ≤ δ . By Equation (5) this holds if and only if

m∏
i=1

1̃bi−β,λ (vi ) ≤ δ ,

which holds if

1̃b1−β,λ (v1) ≤ δ ,

which is equivalent to

Pr
д∼N (0,1)

[v1 + λд ≤ b1 − β] ≤ δ .

Recalling that v1 > b1, it suffices to have

Pr
д∼N (0,1)

[д ≤ −β/λ] ≤ δ ,

which holds (with room to spare) for our choice of β by the standard Gaussian tail bound. �

6.1 The Connection between Inner/outer Approximators and CDF Distance

The following elementary properties of inner/outer approximators will be useful for us:

Fact 6.8. Fix b ∈ Rm and let ϒin, ϒout be (Λ,δ )-inner and -outer approximators for Ob . Then

(1) ϒin (v ) − δ ≤ Ob (v ) ≤ ϒout (v ) + δ for all v ∈ Rm .
(2) ϒin is a (Λ,δ )-outer approximator for Ob−Λ1m

, and similarly ϒout is a (Λ,δ )-inner approxima-
tor for Ob+Λ1m

.

The next lemma is straightforward but very useful for us. Intuitively, it says that for an Rm-
valued random variable ṽ to fool a translated orthant Ob relative to another Rm-valued random
variablev , it suffices to (i) have ṽ fool both inner and outer approximators for Ob , and (ii) establish
anticoncentration of the original random variable v at the inner and outer boundaries of Ob . We
explain in detail how we will use this lemma after giving its proof below.

Lemma 6.9. Let ϒin, ϒout : Rm → [0, 1] be (Λ,δ )-inner and -outer approximators for Ob . Let v
and ṽ be Rm-valued random variables satisfying:��� E

[
ϒ(v )

]
− E

[
ϒ(ṽ )

] ��� ≤ γ (7)

for both ϒ ∈ {ϒout, ϒin}. Then��� Pr

[
v ∈ Ob

]
− Pr

[
ṽ ∈ Ob

] ��� ≤ γ + 2δ + Pr

[
v ∈ �±ΛOb

]
.

Proof. The proof follows similar lines to the arguments used to prove Lemma 3.3 in Reference
[19]. We first note that

Pr

[
ṽ ∈ Ob

]
≤ E

[
ϒout (ṽ )

]
+ δ (Item 1 of Fact 6.8)

≤
(
E

[
ϒout (v )

]
+ γ

)
+ δ (Equation (7) with ϒ = ϒout)

≤ Pr

[
v ∈ Ob+Λ1m

]
+ γ + 2δ . (Item 2 of Fact 6.8)

Journal of the ACM, Vol. 69, No. 2, Article 9. Publication date: January 2022.



Fooling Polytopes 9:17

Combining this with a symmetric argument for the lower bound, we have:

Pr

[
v ∈ Ob−Λ1m

]
− γ − 2δ ≤ Pr

[
ṽ ∈ Ob

]
≤ Pr

[
v ∈ Ob+Λ1m

]
+ γ + 2δ . (8)

To convert this type of closeness into CDF closeness, we observe that

Pr

[
v ∈ Ob+Λ1m

]
= Pr

[
v ∈ Ob

]
+ Pr

[
v ∈ �+ΛOb

]
Pr

[
v ∈ Ob−Λ1m

]
= Pr

[
v ∈ Ob

]
− Pr

[
v ∈ �−ΛOb

]
.

Plugging these identities into Equation (8), we conclude that

Pr

[
ṽ ∈ Ob

]
= Pr

[
v ∈ Ob

]
±

(
γ + 2δ + Pr

[
v ∈ �+ΛOb

]
+ Pr

[
v ∈ �−ΛOb

] )
= Pr

[
v ∈ Ob

]
±

(
γ + 2δ + Pr

[
v ∈ �±ΛOb

] )
,

thus completing the proof of Lemma 6.9. �

6.1.1 Applying Lemma 6.9 in the context of Theorem 5.3, and the organization of the rest of this

article. Applying Lemma 6.9 withv and ṽ being Au and Az, respectively, the task of bounding���� Pr
u∼{−1,1}n

[
Au ∈ Ob

]
− Pr

z∼GMZ

[
Az ∈ Ob

] ����
reduces to the following two-step program:

(1) Establishing anticoncentration within orthant boundaries: bounding Pr[Au ∈ �±ΛOb ]; and,

(2) Fooling Bentkus’s mollifier: bounding | E[Õ (Au)] − E[Õ (Az)]| for Õ ∈ {Õbout,λ , Õb in,λ }, the
inner and outer approximators for Ob given by Lemma 6.7.

Section 7 is devoted to the former and Section 8 the latter. In Section 9, we put these pieces together
to prove Theorem 5.3.

7 BOOLEAN ANTICONCENTRATION WITHIN ORTHANT BOUNDARIES

Themain result of this section is Theorem 7.1, which provides the first step of the two-step program
described at the end of Section 6:

Theorem 7.1 (Boolean Anticoncentration within Orthant Boundaries). Assume A ∈
Rm×n satisfies the following property: Each of its row vectors has a τ -regular subvector of 2-norm 1,
where τ is as set in Section 4.1.2 Then for all b ∈ Rm and Λ ≥ τ , we have

Pr
u∼{−1,1}n

[Au ∈ �±ΛOb ] = O
(
Λ
√
logm

)
.

En route to proving Theorem 7.1, we will establish a “Littlewood–Offord theorem for polytopes,”
Theorem 2.2, that was stated in Section 2.2.1. Theorem 2.2 will in fact be obtained as a special case
of a more general result about intersections ofm arbitrary unate functions (namely, Lemma 7.13).

Definition 7.2 (Unateness). A function F : {−1, 1}n → {0, 1} is unate in direction σ ∈ {−1, 1}n
if the function G (x1, . . . ,xn ) = F (σ1x1, . . . ,σnxn ) is a monotone Boolean function, meaning that
G (x ) ≤ G (y) whenever x j ≤ yj for all j ∈ [n].We refer to σ as the orientation of F .

Our analysis, dealing as it does with intersections of unate functions, is somewhat reminiscent
of that of Reference [26], and indeed we will establish the main result of Reference [26]—an upper

bound of O (
√
n logm) on the average sensitivity of any intersection ofm unate functions—in the

course of our analysis.

2Equivalently, A is (n, τ )-standardized.
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Fig. 1. Illustration of a cap and body.

7.1 Caps and Their Boundary Edges

Let G and H be subsets of {−1, 1}n . We typically think of G as a General/arbitrary set and H as
a Halfspace, though formally H will only need to be unate. Throughout this section, we write
σ ∈ {−1, 1}n to denote the orientation of H .
We call the setG \H the cap, the setG∩H the body, and the complement ofG the exterior. Please

refer to Figure 1, where G is the union of the two regions with blue shading and H is the gray-
shaded region (depicted as a halfspace in the figure). The upward arrows in the diagram illustrate
some edges of the hypercube. We have oriented these edges according to σ : For an edge {x ,y} in
the jth direction in which x j = −1 and yj = 1, the tail of the corresponding arrow represents x if
σj = −1 and y if σj = 1. Note in particular that the edges are oriented “away” from H (i.e., so that
H is antimonotone with respect to the edge orientations).
We will be concerned with the boundary edges for the capG \H ; these are edges that have one

endpoint inside G \ H and one endpoint outside it.

Definition 7.3 (Edge Boundary). For a general set F ⊆ {−1, 1}n , let E (F ) denote the fraction of
all n2n−1 hypercube edges that are boundary edges for F .

We distinguish the three possible types of boundary edges of the capG \ H :
◦ Body→Cap (BC) edges: the red edges in the diagram. Formally, these are edges where the
tail is in the body G ∩ H and the head is in the cap G \ H .
◦ Exterior→Cap (EC) edges: the green edges in the diagram. Formally, these are edges where
the tail is not in G, and the head is in the cap G \ H .
◦ Cap→Exterior (CE) edges: the purple edges in the diagram. Formally, these are edges
where the tail is in the cap G \ H and the head is not in G.

Remark 7.4. Note that there are no Cap→Body (CB) edges. Formally, these would be the last
possibility forG \H boundary edges, namely, ones with tail in the capG \H and head in the body
G ∩ H . But these cannot exist due to the antimonotonicity of H vis-à-vis the edges; if the tail is
already not in H , then the head cannot be in H .
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Given a cap C = G \ H , we write BC(G,H ), EC(G,H ), CE(G,H ) for the fraction of hypercube
edges of each of the three above types. Therefore, E (C ) = BC(G,H ) + EC(G,H ) + CE(G,H ).
We will also be interested in the directed edge boundary of caps:

Definition 7.5 (Directed Edge Boundary). For a cap G \ H , define
�E (G,H ) = BC(G,H ) + EC(G,H ) − CE(G,H ), (9)

the fraction of inward boundary edges minus the fraction of outward boundary edges.

It will be very useful for us to have an upper bound on E (G∩H )−E (G ), the change in E (G ) when
we intersect G with H (note that this quantity can be either positive or negative). The following
fact is immediate from the definitions:

Fact 7.6 (Change in Boundary Size). If G \ H is a cap, then

E (G ∩ H ) − E (G ) = BC(G,H ) − EC(G,H ) − CE(G,H ). (10)

Comparing Equations (10) and (9), we plainly have:

Fact 7.7. E (G ∩ H ) − E (G ) ≤ �E (G,H ).

To get a quantitative bound, we have the following lemma:

Lemma 7.8. For any cap C = G \ H ,

�E (G,H ) ≤ U (vol(C ))
√
n

,

where vol(C ) = |C |/2n and U denotes the function U (p) = 2p
√
2 ln(1/p).

Proof. This is a basic fact in analysis of Boolean functions. Identifying C with its indicator
function C : {−1, 1}n → {0, 1}, we have vol(C ) = E[C (u)] and

�E (G,H ) = 2 E
u∼{−1,1}n

j∼[n]

[C (u)σjuj] =
2

n

n∑
j=1

σjĈ ({j}),

where Ĉ ({j}) denotes the degree-1 Fourier coefficient ofC corresponding to coordinate j. It is well

known and elementary that for F : {−1, 1}n → {0, 1} with E[F ] = p, one has
∑n

j=1 |F̂ ({j}) | ≤
O (p

√
ln(1/p))

√
n; see, e.g., Kane’s paper [26, Lemma 6] for the short proof. For the sake of an

asymptotically tight constant, we can use the Cauchy–Schwarz inequality and the Fourier “Level-
1 Inequality” [7, 21, 60] to get

n∑
j=1

σjĈ ({j}) ≤
√
n ·

√√
n∑

j=1

Ĉ ({j})2 ≤
√
n · p

√
2 ln(1/p). �

7.1.1 Reproving the Main Result of Reference [26]. We can now reprove the main result of Ref-
erence [26] (which we will use later):

Theorem 7.9 ([26]). Let F be the intersection ofm ≥ 2 unate functions over {−1, 1}n . Then

E (F ) ≤ 2
√
2 lnm
√
n
. (11)

(Equivalently, an intersection ofm ≥ 2 unate functions has average sensitivity at most 2
√
2 lnm

√
n.)
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Proof. Let H1, . . . ,Hm be unate functions and define associated caps

Ci = (H1 ∩ · · · ∩ Hi−1) \ Hi , (12)

withC1 = {−1, 1}n \H1 (i.e.,H0 = {−1, 1}n). Letting F = H1∩· · ·∩Hm , we have that the complement
F c = {−1, 1}n \ F of F can be expressed as a disjoint union of caps:

F c = C1 � · · · �Cm . (13)

For intuition, we may think of the intersection of m unate sets F as being formed in m stages,
starting with {−1, 1}n and successively intersecting with each Hi ; given this interpretation, Ci is
the portion of {−1, 1}n that is removed in the ith stage. With this notation in hand, we have that

E (F ) =
m∑

i=1

E ((H1 ∩ · · · ∩ Hi−1) ∩ Hi ) − E (H1 ∩ · · · ∩ Hi−1)

≤
m∑

i=1

�E (H1 ∩ · · · ∩ Hi−1,Hi ) (Fact 7.7 with G = H1 ∩ · · · ∩ Hi−1 and H = Hi )

≤ 1
√
n
·

m∑
i=1

U (vol(Ci )). (Lemma 7.8)

Finally,

m∑
i=1

U (vol(Ci )) ≤ m ·U
(∑m

i=1 vol(Ci )

m

)
=m ·U

(
vol(F c )

m

)
≤ m ·U ( 1

m
) = 2

√
2 lnm,

where we used concavity of U , then Equation (13), then the fact that U is increasing on [0, 1/2].
This completes the proof of Theorem 7.9. �

7.2 A Littlewood–Offord Theorem for Polytopes (Theorem 2.2)

In this section we prove Theorem 2.2:

Theorem 7.10. For all m ≥ 2, b ∈ Rm and A ∈ Rm×n with |Ai j | ≥ 1 for all i ∈ [m] and j ∈ [n],

Pr
u∼{−1,1}n

[Au ∈ �−2Ob ] ≤
5
√
2 lnm
√
n
.

We note in passing that the anticoncentration bound given by Theorem 2.2 is best possible up
to constant factors. Indeed, our matching lower bound applies even to the stricter event of falling
on the surface of Ob :

Claim 7.11 (Optimality of Theorem 2.2). For 2 ≤ m ≤ 2n , there is a matrix A ∈ {−1, 1}m×n

and a vector b ∈ Rm such that

Pr
u∼{−1,1}n

[Au ∈ �Ob ] = Ω��
√
lnm
√
n

��.
We prove Claim 7.11 in Appendix B.

7.2.1 Proof of Theorem 2.2. As mentioned at the beginning of this section, we will obtain
Theorem 2.2 as a corollary of a more general result about intersections of unate functions. Let
H1, . . . ,Hm ⊆ {−1, 1}n be unate sets,m ≥ 2, and further suppose that we have additional unate

sets H 1, . . . ,Hm such that Hi ⊆ H i for all i . (For intuition, it may be helpful to think of Hi as the
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“interior” of H i ; see the proof of Theorem 2.2 using Lemma 7.13 just below for a typical example

of sets Hi and H i .) We define the following subsets of {−1, 1}n :

F = H 1 ∩ · · · ∩ Hm

F ◦ = H1 ∩ · · · ∩ Hm (interior of F )

∂F = F \ F ◦ (boundary of F )

F c = {−1, 1}n \ F (exterior of F )

∂Hi = H i \ Hi (for each i ∈ [m]). (boundary of H i )

Definition 7.12 (Thin Sets). We say that ∂Hi is thin if it does not contain any induced edges of
the hypercube.

Lemma 7.13. If ∂Hi is thin for each i ∈ [m], then vol(∂F ) ≤ 5
√
2 lnm√

n
.

Proof of Theorem 2.2 Assuming Lemma 7.13. Fix anyb ∈ Rm andA ∈ Rm×n such that |Ai j | ≥
1 for all i ∈ [m] and j ∈ [n], and let

H i =
{
x ∈ {−1, 1}n : Ai · x ≤ bi

}
, Hi =

{
x ∈ {−1, 1}n : Ai · x ≤ bi − 2

}
,

so

∂Hi =
{
x ∈ {−1, 1}n : bi − 2 < Ai · x ≤ bi

}
and

∂F =
{
x ∈ {−1, 1}n : Ax ≤ b & Ai · x > bi − 2 for some i ∈ [m]

}
=

{
x ∈ {−1, 1}n : Ax ∈ �−2Ob

}
.

Since |Ai j | ≥ 1 for all i, j, it follows that each ∂Hi is thin, and hence Lemma 7.13 directly gives
Theorem 2.2. �

The rest of this section will be devoted to the proof of Lemma 7.13. Recalling that F ◦ is called the
interior of F and ∂F is called the boundary of F , we say that an edge in the hypercube is boundary-
to-interior if it has one endpoint in ∂F and the other endpoint in F ◦, and we write νBI for the
fraction of all edges that are of this type. We similarly define boundary-to-exterior edges and νBE ,
with F c . Note that every boundary-to-interior edge is a boundary edge for F ◦ = H1 ∩ · · · ∩ Hm ,
which is an intersection ofm unate sets. By applying Theorem 7.9 to F ◦, we get that

νBI ≤
2
√
2 lnm
√
n
. (14)

Similarly, every boundary-to-exterior edge is a boundary edge for F = H 1 ∩ · · · ∩ Hm ; applying
Theorem 7.9 to this intersection yields

νBE ≤
2
√
2 lnm
√
n
. (15)

Next, we bound the fraction of edges that have both endpoints in ∂F and go between “two different
parts of ∂F . More precisely, for x ∈ ∂F , define i�(x ) to be the least i for which x ∈ ∂Hi (equivalently,
the least i for which x � Hi ). We say that an edge {x ,y} is boundary-to-boundary′ if x ,y ∈ ∂F but
i�(x ) � i�(y); we write νBB′ for the fraction of such edges.

Observation 7.14. If every ∂Hi is thin, then every edge with both endpoints in ∂F is boundary-
to-boundary′. In this case, νBI + νBE + νBB′ is exactly the fraction of edges in the cube that touch ∂F ,
which in turn is an upper bound on vol(∂F ).
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Thus, Lemma 7.13 follows from Equations (14) and (15) and the following claim:

Claim 7.15 (Boundary-to-boundary′ Edges). νBB′ ≤
√
2 lnm
√
n

.

Proof. We define the capsC1, . . . ,Cm with respect to theHi ’s as in Equation (12) in the proof of
Theorem 7.9. Subtracting Equation (10) from Equation (9) for each Ci and summing over i ∈ [m],

2

m∑
i=1

EC(H1 ∩ · · · ∩ Hi−1,Hi ) =
m∑

i=1

�E (H1 ∩ · · · ∩ Hi−1,Hi )

−
( m∑

i=1

E ((H1 ∩ · · · ∩ Hi−1) ∩ Hi ) − E (H1 ∩ · · · ∩ Hi−1)

)

=

m∑
i=1

�E (H1 ∩ · · · ∩ Hi−1,Hi ) − E (H1 ∩ · · · ∩ Hm )

=

m∑
i=1

�E (H1 ∩ · · · ∩ Hi−1,Hi ) − E (F ◦).

Since E (F ◦) ≥ 0, it follows that

m∑
i=1

EC(H1 ∩ · · · ∩ Hi−1,Hi ) ≤ 1

2

m∑
i=1

�E (H1 ∩ · · · ∩ Hi−1,Hi ) ≤
√
2 lnm
√
n
, (16)

where the derivation of the second inequality is exactly as in the proof of Theorem 7.9. By Equa-
tion (16), it suffices to show

νBB′ ≤
m∑

i=1

EC(H1 ∩ · · · ∩ Hi−1,Hi ). (17)

Let {x ,y} be a boundary-to-boundary′ edge and assume without loss of generality that i�(x ) <
i�(y). We now show that edge {x ,y} contributes to EC(H1∩· · ·∩Hi� (y )−1,Hi� (y ) ). For brevity, write

G = H1 ∩ · · · ∩ Hi∗ (y )−1,H = Hi∗ (y ) , andC = G \H = Ci� (y ) . Since x ∈ ∂Hi� (x ) = H i� (x ) \Hi� (x ) (in
particular, x � Hi� (x )) and i

�(x ) < i�(y),we have that x � G. However,y ∈ G \H = C by definition
of i�(y). Since x � G and y ∈ G \ H , we conclude that indeed {x ,y} ∈ EC(G,H ), as claimed. �

This completes the proof of Lemma 7.13 and hence Theorem 2.2.

7.3 A Robust Generalization of the Littlewood–Offord Theorem for Polytopes

In the previous section, we proved Theorem 2.2, which establishes anticoncentration of Au under
the assumption that all its entries have magnitude at least 1. The goal of this section is to prove
the following robust generalization of Theorem 2.2:

Theorem 7.16. Let A ∈ Rm×n have the property that in every row, at least an α fraction of the
entries have magnitude at least λ. Then for any b ∈ Rm ,

Pr[Au ∈ �−2λOb ] ≤
5
√
2 lnm

α
√
n
.

Recall that Theorem 2.2 followed as an easy consequence of the fact that vol(∂F ) ≤ 5
√
2 logm
√

n

when all ∂Hi ’s are “thin” (Lemma 7.13). We slightly generalize this notion here.
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Definition 7.17 (Semi-thin). For α ∈ [0, 1], say that ∂Hi is α-semi-thin if the following holds:
For each x ∈ ∂Hi , at least an α fraction of its hypercube neighbors are outside ∂Hi . (Note that
“1-semi-thin” is equivalent to “thin.”)

Example 7.18. Suppose H = {x ∈ {−1, 1}n : a · x ≤ b1} and H = {x ∈ {−1, 1}n : a · x ≤ b2} where
b1 ≤ b2, so ∂H = {x ∈ {−1, 1}n : b1 < a · x ≤ b2}. If |aj | ≥ (b2 − b1)/2 for at least an α fraction of
the coordinates j ∈ [n], then ∂H is α-semi-thin.

Theorem 7.16 follows as a direct consequence of the following lemma (by the same reasoning
that derives Theorem 2.2 as a corollary of Lemma 7.13):

Lemma 7.19 (Robust Version of Lemma 7.13). In the setup of Section 7.2.1, suppose each ∂Hi is
α-semi-thin. Then

vol(∂F ) ≤ 5
√
2 lnm

α
√
n
.

Proof. Our proof of Lemma 7.13 (a combination of Equation (14), Equation (15), and Claim 7.15)
shows that

νBI + νBE + νBB′ ≤
5
√
2 lnm
√
n
. (18)

However, in our current setting the left-hand side of the above is not a bound on vol(∂F ); Observa-
tion 7.14 no longer holds and we nowmay have edges (x ,y) where i�(x ) = i�(y). Given an x ∈ ∂F
and y a Hamming neighbor of x , we say that y is x-bad if y ∈ ∂F and i�(y) = i�(x ); otherwise, we
say that y is x-good. With this terminology, we can rewrite Equation (18) as

Pr

[
u ∈ ∂F & u⊕j is u-good

]
≤ 5
√
2 lnm
√
n
, (19)

where u ∼ {−1, 1}n and j ∼ [n] are uniformly random, and u⊕j denotes u with its jth coordinate
flipped. By the α-semi-thin property, for any x ∈ ∂F , the fraction of j’s such that x ⊕j is x-good is
at least α . Therefore,

Pr

[
u ∈ ∂F & u⊕j is u-good

]
≥ Pr[u ∈ ∂F ] · α , (20)

and the lemma follows by combining Equations (19) and (20). �

7.4 Proof of Theorem 7.1

In this section, we prove Theorem 7.1 using Lemma 7.19 established in the previous section. In
more detail, we use a bound on the anticoncentration of Au under the assumption that at least an
α fraction of entries of each row ofA have magnitude at least τ (given by Lemma 7.19) to establish
a bound on the anticoncentration ofAu under the assumption that each ofA’s rows has a τ -regular
subvector of 2-norm 1 (Theorem 7.1).
The following result regarding τ -regular linear forms is fairly standard:

Proposition 7.20. Let w ∈ Rn be a τ -regular vector with ‖w ‖2 = 1. Let π : [n] → [B] be
a random hash function that independently assigns each coordinate in [n] to a uniformly random
bucket in [B]. For b ∈ [B], write σ 2

b
=

∑
j ∈π−1 (b ) w

2
j , and say that bucket b is good if σ 2

b
> 1

2B
.

Assume B ≤ 1/τ 2. Then

Pr

[
at most

B

16
buckets b ∈ [B] are good

]
≤ exp

(
− B

64

)
.
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Proof. Let Xb = 1[σ 2
b
> 1

2B
] be the indicator that the bth bucket is good. Since E[σ 2

b
] = 1

B
and

E[σ 4
b ] = E

⎡⎢⎢⎢⎢⎢⎣
���

n∑
j=1

w2
j 1[π (j ) = b]���

2⎤⎥⎥⎥⎥⎥⎦ =
1

B

n∑
j=1

w4
j +

1

B2

∑
j�j′

w2
jw

2
j′ ≤

τ 2

B
+

1

B2
≤ 2

B2
,

the Paley–Zygmund inequality implies that E[Xb ] = Pr[σ 2
b
> 1

2 E[σ 2
b
]] ≥ 1

8 .

The joint random variables σ 2
1 , . . . ,σ

2
B are of “balls in bins” type (where the jth “ball” has “mass”

w2
j ) and are therefore negatively associated (see, e.g., Reference [11, Example 3.1]; the fact that the

balls have different “masses” does not change the argument). Since 1( 1
2B ,∞) is a nondecreasing

function, it follows that the random variables X1, . . . ,XB are also negatively associated. Thus, we
may apply the Chernoff bound to

∑B
k=1Xk , which has mean at least

B
8 . The result follows. �

Recall the following fact, which can also be easily proven using Paley–Zygmund (see, e.g., Propo-
sition 3.7 of the full version of Reference [18]):

Fact 7.21. For all w ∈ Rn and u ∼ {−1, 1}n , we have Pr[|w · u | ≥ 1
2 ‖w ‖2] ≥

1
16 .

We combine these as follows:

Proposition 7.22. Letw ∈ Rn and assume that some subvectorw ′ ofw is τ -regular with ‖w ′‖2 =
1. Let π : [n] → [B] be as in Proposition 7.20, where B ≤ 1/τ 2. Let u ∼ {−1, 1}n , and define w ∈ RB

by wb =
∑

j ∈π−1 (b ) w juj . Call a bucket b ∈ [B] big if |wb | > 1

2
√
2B

. Then

Pr

[
fewer than

B

512
buckets are big

]
≤ exp

(
− B

2048

)
.

Proof. First apply Proposition 7.20 tow ′ and observe that the presence of additional coordinates
from w cannot harm “goodness.” Then apply Fact 7.21 to the good buckets. Each becomes “big”
independently with probability at least 1

16 , and the proof follows from another Chernoff bound. �

We take B = �1/τ 2� in the above. This yields the following:
Corollary 7.23. Assume A ∈ Rm×n satisfies the following property: Each of its row vectors has

a τ -regular subvector of 2-norm 1. Fix B = �1/τ 2� and let A ∈ Rm×B be the matrix obtained from A
by randomly partitioning its columns into B buckets and adding them up with uniformly random ±1
signs within each bucket. Say that a row ofA is spread if at least a 1

512 -fraction of its entries exceed τ

2
√
2
.

Then except with probability at mostm · exp(−Ω(1/τ 2)), all of A’s rows are spread.

7.4.1 Proof of Theorem 7.1. We can now prove Theorem 7.1, which we restate here for conve-
nience:

Theorem 7.24. Assume A ∈ Rm×n satisfies the following property: Each of its row vectors has a
τ -regular subvector of 2-norm 1, where τ is as set in Section 4.1. Then for all b ∈ Rm and Λ ≥ τ , we
have

Pr
u∼{−1,1}n

[Au ∈ �±ΛOb ] = O
(
Λ
√
logm

)
.

Proof. By union-bounding over 2�Λ/τ � choices of b, it suffices to prove the following: When-
everA ∈ Rm×n has a τ -regular subvector of 2-norm 1 in each row, it holds that Pr[Au ∈ �−τOb ] ≤
O (τ

√
logm). Note that the distribution of Au is the same as that of Au ′, where A is as in Corol-

lary 7.23, andu ′ ∼ {−1, 1}B is uniform. Thus, applying Corollary 7.23 and then Theorem 7.16 (with
α = 1

512 and λ =
τ
2 ≥

τ

2
√
2
), we conclude that

Pr[Au ∈ �−τOb ] = O
(
τ
√
logm

)
+m · exp

(
−Ω(1/τ 2)

)
.
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By our choice of τ as set in Section 4.1, we get the desired overall bound of O (τ
√
logm) and the

proof is complete. �

8 FOOLING BENTKUS’S MOLLIFIER

The main result of this section is the following theorem, which provides the second step of the
two-step program described at the end of Section 6:

Theorem 8.1 (G Fools Bentkus’s Mollifier). Let G be our generator with parameters as given
in Section 4.1, and likewise let λ > 0 be as set in Section 4.1. For all (k,τ )-standardized matrices
A ∈ Rm×n and all b ∈ Rm ,���� E

u∼{−1,1}n

[
Õb,λ (Au)

]
− E

z∼GMZ

[
Õb,λ (Az)

] ���� = O (δ ).

At a very high level, in line with the usual Lindeberg approach, Theorem 8.1 is proved by hy-
bridizing between u and z via a sequence of intermediate distributions. In our setting there are
L+ 1 such distributions, the first of which isu and the last of which is z, and the �th of which may
be viewed as “filling in buckets �, . . . ,L according tou and filling in buckets 1, . . . , �− 1 according
to z,” where the L buckets correspond to the partition of [n] induced by the choice of the random
hash function in the Meka–Zuckerman generator.
In Section 8.1, we upper bound the error incurred by taking a single step through this sequence

of hybrid distributions. The upper bound given there (see Lemma 8.3) has a first component corre-
sponding to the terms of order 0, . . . ,d−1 in a (d−1)-st order Taylor expansion, and a second com-
ponent corresponding to the error term in Taylor’s theorem. The first component is upper bounded
in Section 8.1, and the second component is upper bounded in Section 8.2. Section 8.3 formalizes
the hybrid argument and uses the results of these earlier subsections to establish Theorem 8.1.

Remark 8.2 (Head and Tail Matrices). Recalling the definition of a (k,τ )-standardized matrix A
(Definition 3.1), for every i ∈ [m] there is a partition [n] = Headi � Taili such that |Headi | ≤ k
and (Ai )Taili

is τ -regular with 2-norm ‖ (Ai )Taili
‖2 equal to 1. Therefore, we may write A as H +T

where

Hi j = Ai j · 1[ j ∈ Headi ] and Ti j = Ai j · 1[ j ∈ Taili ]

for all j ∈ [n] and i ∈ [m]. Note that every row of H is k-sparse, and every row of T is τ -regular
with 2-norm 1.

8.1 Single Swap in the Hybrid Argument

Lemma 8.3 (Error Incurred by a Single Swap). Fix B ⊆ [n]. Let HB ,T B ∈ Rm×B , where every
row of HB is w-sparse and every row of T B has 2-norm at most 1. Let u,y be random variables over
{−1, 1}B , where u is uniform and y δCNF-fools the class of width-w CNFs. For all b ∈ Rm , λ > 0, and
all integers d ≥ 2

��� E

[
Õb,λ (HBu +T Bu)

]
− E

[
Õb,λ (HBy +T By)

] ��� (21)

= δCNF ·md−1 ·Od

(√
n

λ

)d−1
+Od

��
√
logm

λ
��

d (
E

[
‖T Bu‖d∞

]
+ E

[
‖T By‖d∞

] )
.

As we will see later, Equation (21) is a useful bound because we can (and will) take δCNF to be
very small, and when we apply Lemma 8.3, we will be able to ensure that both expectations on the
right-hand side of Equation (21) are small as well.
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The main ingredient in the proof of Lemma 8.3 is the following claim:

Claim 8.4. For all integers c ≥ 1 and α ∈ Nm such that |α | = c ,���� E

[
∂α Õb,λ (HBu) · (T Bu)α

]
− E

[
∂α Õb,λ (HBy) · (T By)α

] ���� = δCNF ·Oc

(√
n

λ

)c

. (22)

Remark 8.5. Recalling the discussion of Step 1 in Section 2.2, we remark that Claim 8.4 provides
the key ingredient of the arguments sketched there. This claim plays an essential role in enabling us
to get a strong bound on the magnitude of the difference of two expectations (which was denoted
“| E[ϒ(v + Δ)] − E[ϒ(v ′ + Δ′)]|” in Section 2.2 and corresponds precisely to the left-hand side
of Lemma 8.3 above) through an application of Taylor’s theorem around two different points. As

will be seen in Section 8.1.1, the proof of Claim 8.4 exploits the product structure of Õb by using
pseudorandom generators for small-width CNF formulas.

Before proving Claim 8.4, we observe that Lemma 8.3 follows as a consequence:

Proof of Lemma 8.3 Assuming Claim 8.4. By themultidimensional Taylor expansion (Fact 3.2)

applied twice to Õb,λ , we have

(21) ≤
������

∑
0≤ |α | ≤d−1

1

α !
E

[
∂α Õb,λ (HBu) · (T Bu)α

]
− 1

α !
E

[
∂α Õb,λ (HBy) · (T By)α

] ������
+ E

[���err(HBu,T Bu)���] + E

[���err(HBy,T By)���]
≤

∑
0≤ |α | ≤d−1

��� E

[
∂α Õb,λ (HBu) · (T Bu)α

]
− E

[
∂α Õb,λ (HBy) · (T By)α

] ��� (23)

+ sup
v ∈Rm

⎧⎪⎨⎪⎩
∑
|α |=d

|∂α Õb,λ (v ) |
⎫⎪⎬⎪⎭ ·

(
E

[
‖T Bu‖d∞

]
+ E

[
‖T By‖d∞

] )
.

By Claim 8.4, each of the O (md−1) summands of Equation (23) is at most δCNF ·O (
√
n/λ)d−1. This

along with the bound on Õb,λ ’s derivatives given by Theorem 6.5,

sup
v ∈Rm

⎧⎪⎨⎪⎩
∑
|α |=d

|∂α Õb,λ (v ) |
⎫⎪⎬⎪⎭ = Od

��
√
logm

λ
��

d

yields Lemma 8.3. �

8.1.1 Proof of Claim 8.4.

Definition 8.6. We say that a function ξ : {−1, 1}B → R is Boolean if its range is contained in
{0, 1}. For ξ1, . . . , ξm : {−1, 1}B → R, we say that the associated product function Ξ =

∏
i ∈[m] ξi is

a Boolean product function in case all the ξi ’s are Boolean.

Definition 8.7. We say that ξ is a weight-W combination of Boolean functions if it is expressible
as a linear combination ξ =

∑
� c�ξ� where each ξ� is a Boolean function and where

∑
� |c� | ≤W .

Likewise, Ξ is a weight-W combination of Boolean product functions if it is expressible as a linear
combination Ξ =

∑
� c�Ξ� where each Ξ� is a Boolean product function and where

∑
� |c� | ≤W .

The following facts are easy to establish:

Fact 8.8. (1) A function ξ : {−1, 1}B → [0, 1] is a weight-1 combination of Boolean functions.
(2) A function ξ : {−1, 1}B → [−W ,W ] is a weight-(2W ) combination of Boolean functions.
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(3) A weight-W1 combination of weight-W2 combinations of Boolean functions is a weight-(W1W2)
combination of Boolean functions.

(4) If ξ1 and ξ2 are weight-W1 and weight-W2 combinations of Boolean product functions, respec-
tively, then ξ1 · ξ2 is a weight-(W1W2) combination of Boolean product functions.

We are now ready to prove Claim 8.4.

Proof of Claim 8.4. We define the function Gα : {−1, 1}B → R,

Gα (x ) � ∂α Õb,λ (HBx ) · (T Bx )α

= ��
∏
i�S

1̃bi ,λ (HB
i x )

∏
i ∈S

1̃
(αi )
bi ,λ

(HB
i x )�� ·

∏
i ∈S

(T B
i x )αi , (24)

where S denotes supp(α ) = {i ∈ [m] : αi > 0}. (Equation (24) crucially relies on the product

structure of Õb,λ : Rm → (0, 1); recall Equation (5).)
Note that Claim 8.4 is equivalent to the claim that y δ -fools Gα for δ = δCNF · Oc (

√
n/λ)c . We

analyze the three types of functions in Equation (24) in turn:

◦ Recalling the assumptions of Lemma 8.3, by Item 1 of Fact 8.8, the function x �→ 1̃bi ,λ (HB
i x )

is a weight-1 combination of Boolean functions. Furthermore, since |supp(HB
i ) | ≤ w , it is in

fact a weight-1 combination of Booleanw-juntas.

◦ Similarly, by Item 2 of Fact 8.8, the function x �→ 1̃
(αi )
bi ,λ

(HB
i x ) is a weight-(2‖1̃(αi )

bi ,λ
‖∞) com-

bination of Booleanw-juntas.

◦ Since ‖T B
i ‖1 ≤

√
B · ‖T B

i ‖2 ≤
√
B ≤

√
n and x j ∈ {−1, 1} for all j ∈ B, by Items 2 and

3 of Fact 8.8 the function x �→ T B
i x is a weight-(2

√
n) combination of Boolean functions.

Furthermore, it is a weight-(2
√
n) combination of Boolean 1-juntas.

Combining the above with Item 4 of Fact 8.8, it follows that Gα : {−1, 1}B → R is a weight-W
combination of Boolean product functions Ξ : {−1, 1}B → {0, 1}, where

W = ��
∏
i ∈S

2 ‖1̃(αi )
bi ,λ
‖∞�� · ��

∏
i ∈S

(2
√
n)αi ��

= ��
∏
i ∈S

Oαi

(
1

λαi

)�� · ��
∏
i ∈S

(2
√
n)αi �� ( Fact 6.4)

= Oc

(√
n

λ

)c

. (|α | = α1 + · · · + αm = c)

Furthermore, every Ξ in this combination is the product ofm Booleanw-juntas and |α | Boolean 1-
junta(s). Since each such Ξ is computable by a width-w CNF, andy δCNF-fools the class of width-w
CNFs, we conclude thaty δ -foolsGα where δ = δCNF ·W . This completes the proof of Claim 8.4. �

8.2 Bounding the Error Terms

We will use the following technical result:

Claim 8.9 (Rosenthal’s Ineqality). Let β ∈ [0, 1] and let x1, . . . ,xn be independent {0,±1}-
valued random variables, each being 0 with probability 1 − β and ±1 with probability β/2 each. Let
w ∈ Rn be a τ -regular vector of 2-norm 1. Then for any q ≥ 2,

E[|w · x |q] = O
(
qτ · (β/τ 2)1/q +

√
q
√
β
)q

.
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Of course, if q is an even integer, then the above continues to hold even if x1, . . . ,xn are merely q-wise
independent.

Proof. This is an almost immediate consequence of a refinement of an inequality due to Rosen-
thal [53]. The exact version we use is due to Nagaev and Pinelis [41] (see also Reference [[51], (4)]);
in our context, it states that

E[|w · x |q] ≤ 2O (q ) ·
����q

q
n∑

j=1

E[|w jx j |q] + qq/2 ���
n∑

j=1

E[(w jx j )
2]

���
q/2����

≤ 2O (q ) · ���q
qβ

n∑
j=1

|w j |q + (qβ )q/2��� .
Since β

∑
j |w j |q ≤ β

(∑
j w

2
j

)
· τq−2 = βτq−2, using xq + yq ≤ (x + y)q for positive x ,y we get the

claimed bound. �

The following lemma will be used to bound the expectations on the right-hand side of Equa-
tion (21):

Lemma 8.10. Let L, rhash, rbucket, and τ be as set in Section 4.1. Let h : [n] → [L] be an rhash-wise
uniform hash function, and fix a bucket � ∈ [L]. Let y ∼ {−1, 1}n be an rbucket-wise uniform random
variable. Let T ∈ Rm×n be a τ -regular matrix in which each row has 2-norm 1. Then for all integers
d ≥ 2,

E
h,y

[
‖Th−1 (�)yh−1 (�) ‖d∞

]
= Od

(
τ logm +

√
(logm)/L

)d

.

Proof. Let q be the largest even integer smaller than both rhash and rbucket; note that q =
Θ(log(m/δ )). For notational brevity, we let X denote the Rm-valued random variable X �
Th−1 (�)yh−1 (�) . Since rbucket, rhash ≥ q, we can express X as

∑n
j=1 x jT

j where x1, . . . ,xn ∼ {−1, 0, 1}
are q-wise independent random variables distributed as in Claim 8.9, with β = 1/L.
Since q > d for sufficiently largem, we have that

E

[
‖X ‖d∞

]
≤ E

[
‖X ‖dq

]
≤ E

[
‖X ‖qq

]d/q
= ��

m∑
i=1

E[X
q
i ]

��
d/q

.

Applying Claim 8.9 to bound each E[X
q
i ], we conclude that

E

[
‖X ‖d∞

]
=

(
m ·O

(
qτ · (1/Lτ 2)1/q +

√
q/L

)q )d/q

=md/q ·O
(
qτ +

√
q/L

)d

= Od
��τ log(m/δ ) +

√
log(m/δ )

L
��

d

,

where the second inequality uses the fact that ( 1
Lτ 2 )1/q = ( δ

logm
)O (1/q ) = O (1). This completes the

proof of Lemma 8.10. �
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8.3 Proof of Theorem 8.1: The Hybrid Argument

In this subsection, we put together the twomain results of the two previous subsections (Lemma 8.3
and Lemma 8.10) to prove Theorem 8.1.
Recalling Remark 8.2, we can writeA as H +T , where every row of H is k-sparse and every row

of T is τ -regular with 2-norm 1. Let us say that a hash h : [n]→ [L] is H -good if

|h−1 (�) ∩ supp(Hi ) | ≤ w �
2k

L
(25)

for all buckets � ∈ [L] and rows i ∈ [m]. Equivalently, for all � ∈ [L], every row of the the submatrix

Hh−1 (�) isw-sparse.

Proposition 8.11 (Even Distribution of Head Variables). There is a universal constantC1 >
0 such that the following holds: If h : [n] → [L] is rhash-wise uniform where rhash ≥ C1 log(Lm/δ ),
then

Pr
[
h is not H -good

] ≤ δ .

Proof. Fix any � ∈ [L] and i ∈ [m]. The quantity |h−1 (�) ∩ supp(Hi ) | is a sum of |supp(Hi ) | ≤
k many rhash-wise independent {0, 1}-valued random variables, each of which takes the value 1
with probability 1/L. To bound the probability that |h−1 (�) ∩ supp(Hi ) | is larger thanw , we apply
the well-known tail bounds for sums of limited-independence random variables due to Schmidt,
Siegel, and Srinivasan [54], specifically their Theorem 5(I)(a). Taking the “δ” of their paper to be
1 and observing that their “μ” is our k/L and their “k” is our rhash = Θ(log(Lm/δ )), we get that
Pr[|h−1 (�) ∩ supp(Hi ) | > w] ≤ δ/(Lm). The proposition follows by a union bound over all � ∈ [L]
and i ∈ [m]. �

We are now ready to prove Theorem 8.1, which we restate here for convenience:

Theorem 8.12. Let G be our generator with parameters as given in Section 4.1, and likewise let
λ > 0 be as set in Section 4.1. For all (k,τ )-standardized matrices A ∈ Rm×n and all b ∈ Rm ,���� E

u∼{−1,1}n

[
Õb,λ (Au)

]
− E

z∼GMZ

[
Õb,λ (Az)

] ���� = O (δ ).

Proof. Let h,y1, . . . ,yL, ỹ1, . . . , ỹL , y̆, and y� be the random hash function and random vari-
ables associated with our generator G , as defined in Definition 4.2. Recall that a draw from z ∼ G
is z � y̆ ⊕ y�. We will show that in fact y̆ alone satisfies:���� E

u∼{−1,1}n

[
Õb,λ (Au)

]
− E

[
Õb,λ (Ay̆)

] ���� = O (δ ). (26)

Since y� and y̆ are independent, Theorem 8.1 follows as a consequence of Equation (26).
We recall the definition of y̆:

y̆h−1 (�) = (y� ⊕ ỹ� )h−1 (�) for all � ∈ [L].

We observe first that for each � ∈ [L], the random variable y� ⊕ ỹ� ∼ {−1, 1}n

(i) is rbucket-wise uniform (since y� is); and
(ii) δCNF-fools the class of width-w CNF formulas (since ỹ� does).

We will use both properties in this proof. For each hash h : [n] → [L] and index � ∈ {0, 1, . . . ,L},
we define the hybrid random variable xh, � ∼ {−1, 1}n ,

xh, �
h−1 (c )

=
⎧⎪⎨⎪⎩
uh−1 (c ) if c > �

(y� ⊕ ỹ� )h−1 (c ) if c ≤ �.

Journal of the ACM, Vol. 69, No. 2, Article 9. Publication date: January 2022.



9:30 R. O’Donnell et al.

Averaging over h, we get that xh,0 ≡ u and xh,L ≡ y̆, and so we may write

LHS of Equation (26) =
��� E

[
Õb,λ (Au)

]
− E

[
Õb,λ (Ay̆)

] ���
=

��� E

[
Õb,λ (Axh,0)

]
− E

[
Õb,λ (Axh,L )

] ���
≤ E

h

[��� E

[
Õb,λ (Axh,0)

]
− E

[
Õb,λ (Axh,L )

] ���]
≤ E

h

[��� E

[
Õb,λ (Axh,0)

]
− E

[
Õb,λ (Axh,L )

] ��� · 1[
h is H -good

] ]
+ Pr

[
h is not H -good

]
≤ E

h

[��� E

[
Õb,λ (Axh,0)

]
− E

[
Õb,λ (Axh,L )

] ��� · 1[
h is H -good

] ]
︸                                                                          ︷︷                                                                          ︸

♥

+δ .

The penultimate inequality uses the fact that Õb,λ is (0, 1)-valued (and hence the difference in its ex-
pectations under any two distributions is at most 1), and the final inequality is by Proposition 8.11
(note that we indeed have rhash ≥ C1 log(Lm/δ )).
It remains to bound ♥ by O (δ ). Fix a H -good hash h. By the triangle inequality,

��� E

[
Õb,λ (Axh,0)

]
− E

[
Õb,λ (Axh,L )

] ��� ≤
L∑

�=1

��� E

[
Õb,λ (Axh, �−1)

]
− E

[
Õb,λ (Axh, � )

] ���. (27)

Fix � ∈ [L] and consider the corresponding summand

��� E

[
Õb,λ (Axh, �−1)

]
− E

[
Õb,λ (Axh, � )

] ���. (28)

For notational clarity, let us write B for h−1 (�) and B to denote [n] \ B. Furthermore, since these
“adjacent” hybrid random variablesxh, �−1 andxh, � agree on all coordinates outsideB, we introduce

the random variable s ∼ {−1, 1}B where sh−1 (c ) ≡ xh, �−1
h−1 (c )

≡ xh, �
h−1 (c )

for all c � �. Note that s,uB , and

(y� ⊕ ỹ� )B are mutually independent. We have that

(28) =
���� E

s

[
E
u

[
Õb,λ (ABs +ABuB )

]
− E

y�,ỹ�

[
Õb,λ (ABs +AB (y� ⊕ ỹ� )B )

] ] ����
≤ E

s

[��� E
u

[
Õb,λ (ABs +ABuB )

]
− E

y�,ỹ�

[
Õb,λ (ABs +AB (y� ⊕ ỹ� )B )

] ���]
= E

s

[��� E
u

[
Õ

b−AB s,λ (ABuB )
]
− E

y�,ỹ�

[
Õ

b−AB s,λ (AB (y� ⊕ ỹ� )B )
] ���] (Fact 6.3)

= E
s

[��� E
u

[
Õ

b−AB s,λ (HBuB +T
BuB )

]
− E

y�,ỹ�

[
Õ

b−AB s,λ (HB (y� ⊕ ỹ� )B +T
B (y� ⊕ ỹ� )B )

] ���] .
Since h is H -good, every row of HB is indeed w-sparse, and since every row of T has 2-norm 1,
every row ofT B has 2-norm at most 1. Recalling (ii) from above, we may apply Lemma 8.3 to each
outcome s of s , and we get that this quantity is at most

δCNF ·md−1 ·O
(√

n

λ

)d−1
+O��

√
logm

λ
��

d (
E
u

[
‖T BuB ‖d∞

]
+ E

y�,ỹ�

[
‖T B (y� ⊕ ỹ� )B ‖d∞

])
,
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and therefore

RHS of Equation (27) ≤ L · δCNF ·md−1 ·O
(√

n

λ

)d−1

+O��
√
logm

λ
��

d

·
L∑

�=1

(
E
u

[
‖T h−1 (�)uh−1 (�) ‖d∞

]

+ E
y�,ỹ�

[
‖T h−1 (�) (y� ⊕ ỹ� )h−1 (�) ‖d∞

])
. (29)

Since Equation (29) holds for every H -good hash h, we have shown that

♥ ≤ E
h

[
(RHS of Equation (27)) · 1[h is H -good ]

]
≤ E

h

[
(RHS of Equation (29)) · 1[h is H -good ]

]
≤ E

h

[
(RHS of Equation (29))

]
= L · δCNF ·md−1 ·O

(√
n

λ

)d−1

+O��
√
logm

λ
��

d

·
L∑

�=1

(
E

h,u

[
‖Th−1 (�)uh−1 (�) ‖d∞

]
+ E

h,y�,ỹ�

[
‖Th−1 (�) (y� ⊕ ỹ� )h−1 (�) ‖d∞

])
︸                                                                                    ︷︷                                                                                    ︸

♦

.

Applying Lemma 8.10 to bound each of the 2L many summands of ♦, we have that

♥ ≤ L · δCNF ·md−1 ·O
(√

n

λ

)d−1
+O��

√
logm

λ
��

d

· 2L ·O��τ log(m/δ ) +

√
log(m/δ )

L
��

d

= L · δCNF ·md−1 ·O
(√

n

λ

)d−1
+ L ·O��

τ
√
log(m) log(m/δ )

λ
+

√
log(m) log(m/δ )

λ
√
L

��
d

. (30)

By our choice of parameters as set in Section 4.1,

(30) = O (δ ) +
(logm)5

δ 2+ε
·O

(
δ ε · log(m) (log(m/δ ))1.5+ε

(logm)2.5+ε
+ δ ε/2 · log(m) log(m/δ )

(logm)2.5

)d

.

Taking d to be sufficiently large relative to ε , the above expression can be bounded by O (δ ). This
establishes Equation (26), and the proof of Theorem 8.1 is complete. �

9 PROOF OF THEOREM 5.3

Having completed both steps of the two-step program described at the end of Section 6, we are
finally ready to prove Theorem 5.3, which we restate here for convenience:

Theorem 9.1. Let G be our generator with parameters as set in Section 4.1. For all m-facet (k,τ )-
standardized polytopes Ax ≤ b,���� Pr

u∼{−1,1}n

[
Au ∈ Ob

]
− Pr

z∼G

[
Az ∈ Ob

] ���� = O (δ ).

Proof. Let λ ∈ (0, 1) be as set in Section 4.1. By Lemma 6.7, there are b in,bout ∈ Rm

such that Õb in,λ , Õbout,λ are (Λ,δ )-inner and -outer approximators for Ob , respectively, where

Λ = Θ(λ
√
log(m/δ )). Next, we apply Lemma 6.9 with v and ṽ being Au and Az, respectively,
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using Theorem 8.1 to show that Equation (7) is satisfied for both Õb in,λ and Õbout,λ with γ = O (δ ).
We conclude that:����� Pr

u∼{−1,1}n
[Au ∈ Ob ] − Pr

z∼G
[Az ∈ Ob ]

�����
= O (δ ) + Pr[Au ∈ �±ΛOb ] (Lemma 6.9 and Theorem 8.1)

= O (δ ) +O
(
Λ
√
logm)

)
(Theorem 7.1; note that Λ ≥ τ is indeed satisfied)

= O (δ ) +O
(
λ
√
log(m/δ ) logm

)
= O (δ ). (31)

This completes the proof of Theorem 5.3. �

APPENDICES

A

In this section, we prove Theorem 5.1. The proof uses the “critical index” theory for Boolean half-
spaces, introduced in Reference [55] and used in several subsequent works on halfspaces.

Definition A.1 (Critical Index). Let w ∈ Rn and assume for notational simplicity that |w1 | ≥
|w2 | ≥ · · · ≥ |wn |. The τ -critical index of w is the least j such that the “tail” (w j ,w j+1, . . . ,wn ) is
τ -regular, or∞ if no such j exists.

GivenA as in Theorem 5.1, the rows that are already (k,τ )-regular pose no difficulty as a simple
rescaling of any such row (and the corresponding entry of b) makes it (k,τ )-standardized. The
remaining rows Ai have τ -critical index exceeding k . The critical index theory [49, 55] says that
such halfspaces 1[Aix ≤ bi ] are very close to k-juntas, and in fact Reference [9] shows that this is
true even under (k +2)-wise uniform distributions (for a slightly larger choice of k as alluded to in
Remark 5.2). We tweak the quantitative aspects of these arguments below to work for the choice
of k given in Equation (3). It will be convenient to follow the treatment in Reference [18].
The first lemma below says that if the “head” variables are set uniformly, then the resulting

random variable has good anticoncentration at the scale of the two-norm of the tail:

Lemma A.2. Let τ ∈ (0, 1), ε ∈ (0, 1/2), s > 1. Then for a certain � = O (log(s ) log(1/ε )/τ 2) the
following holds: If w ∈ Rn as in Definition A.1 has τ -critical index at least �, then for all θ ∈ R,

Pr
u∼{−1,1}�
uniform

[|w1u1 + · · · +w�u� − θ | ≤ s · σ ] ≤ ε +O (log(1/ε ) exp(−s2/2)),

where σ �
√
w2

�+1
+ · · · +w2

n .

Proof. We refer directly to the proof of the almost identical Reference [18, Theorem 5.3] in the

full version of that paper. In that proof we may take “δ” to be τ 2, and “η” to be 1/
√
3, since we

work with uniform ±1 bits (see Fact 3.3.5 therein). The only change needed in the proof occurs
before “inequality (10).” That inequality uses the fact that a certain random variable z satisfies the
tail bound Pr[|z | ≥ sρ] ≤ O (1/s4) when ρ is at most the standard deviation of z. But in our current
setting, the random variable z equals w1u1 + · · · +w�u� , i.e., it is a weighted sum of independent
uniform ±1 bits, and so we have the improved tail bound 2 exp(−s2/2) using Hoeffding. Carrying
through the remainder of the proof with this change yields the conclusion of Lemma A.2. �

Lemma A.3. Let τ ∈ (0, 1) and let ε ∈ (0, 1/2). Then for a certain k = O (log(1/ε ) log log(1/ε )/τ 2)
and r = O (log(1/ε )), the following holds for every w ∈ Rn that is not (k,τ )-regular:
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Let H ⊆ [n] be the set of k coordinates i for which |wi | is largest and let T = [n] \ H . Assume
w ′ ∈ Rn has w ′H = wH and ‖w ′T ‖2 ≤ ‖wT ‖2. Then for any θ ∈ R,

Pr
y

[
1[w · y ≤ θ] � 1[w ′ · y ≤ θ]

]
= O (ε )

provided y ∼ {−1, 1}n is (k + r )-wise uniform.

Proof. Supposew is not (k,τ )-regular. By reordering coordinates we may assume thatH = [k];
then the non-(k,τ )-regularity of w means the τ -critical index of w exceeds k . We may therefore

apply Lemma A.2 with s = O (
√
log(1/ε )). Using the fact that yH is fully uniform, we get

Pr
[|wH · yH − θ | ≤ s · ‖wT ‖2

]
= O (ε ) (and note thatw ′H · yH = wH · yH ). (32)

Conditioned on any outcome of yH , the distribution of yT remains r -wise uniform. We claim that
it remains to show the following:

Pr[|w ′T · yT | ≥ s · ‖wT ‖2] = O (ε ). (33)

To see that this suffices, observe that by Equation (32) we have that |wH ·yH −θ | = |w ′H ·yH −θ | >
s · ‖wT ‖2 except with probability O (ε ). Also, by applying Equation (33) with w ′ and with w ′ = w ,
we get both |wT · yT |, |w ′T · yT | ≤ s · ‖wT ‖2 except with another probability at most O (ε ). When
all of these events occur, 1[w · y ≤ θ] and 1[w ′ · y ≤ θ] agree.
Finally, we can establish Equation (33) by appealing to, e.g., Reference [47, Theorem 9.23]. That

theorem (with k = 1) shows that for t ≥
√
2e , any linear form f (x ) in uniform ±1 random vari-

ables x has Pr[| f (x ) | ≥ t ‖ f ‖2] ≤ exp(−O (t2)). If we could directly apply this to the linear form
w ′T ·yT , then we would be done by taking t = s and using ‖w ′T ‖2 ≤ ‖wT ‖2. We cannot directly ap-
ply this theorem, because the bits yT are not uniformly random. However, inspecting the proof of
Reference [47, Theorem 9.23] shows that it suffices for those bits to beO (t2)-wise uniform, which
they are provided that r = O (log(1/ε )) = O (s2) = O (t2). The reason that this suffices is because the
proof only uses (2,q, 1/

√
q − 1)-hypercontractivity of f (x ) for q = O (t2), and (for even integer q)

this condition only involves the first q moments of f (x ), which do not change if x is assumed to
be merely q-wise uniform rather than truly uniform. �

We can now prove Theorem 5.1:

Proof. We will use Lemma A.3 with ε = cδ/m for small constant c > 0. This leads to the choice
of k in the statement of Theorem 5.1; also, r � k and so 2k ≥ r + k .
Given A ∈ Rm×n , as noted earlier the rows that are (k,τ )-regular are not a problem, so we

consider all rows Ai that are not (k,τ )-regular. For these rows, we apply Lemma A.3, taking A′i
to agree with Ai on the appropriate “head” coordinates Hi , and taking A′i to simply be 0 on the
remaining “tail” coordinates. Note that A′i is now trivially (k,τ )-regular. By Lemma A.3, we have
that

Pr
y

[
1[Ai · y ≤ bi ] � 1[A′i · y ≤ bi ]

] ≤ δ/m.

Taking b ′i = bi for these i’s, and union-bounding over the at most m of them, we are almost at
the point of establishing Equation (4) from the theorem statement. We now have that all A′i are
(k,τ )-regular; the only deficiency is that the “tail” of each row need not have 2-norm 1, as required.
Whenever the “tail” of A′i has nonzero 2-norm, we can simply scale A′i and b ′ by the same

positive factor to make the tail of A′i have 2-norm 1; this scaling does not change the Boolean
function 1[A′i · x ≤ b ′i ] at all. The only (very minor) difficulty now remaining is that some of the
rows A′i may have tail with 2-norm zero. It is well known, however, that one can always slightly
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perturb the coefficients and threshold in a halfspace without changing it as a Boolean function.3

We can perturb in such a way that the tail coefficients all become equal to some sufficiently small
η > 0. After this perturbation, the row A′i is (k,τ )-regular (this holds, recalling that k ≤ n/2, since
n − k ≥ k ≥ 1/τ 2) and its tail has positive 2-norm. Now we can scale up (A′i ,b

′
i ) as before to make

the tail have 2-norm 1. �

B

We recall Claim 7.11:

Claim B.1 (Claim 7.11 Restated). For 2 ≤ m ≤ 2n , there is a matrixA ∈ {−1, 1}m×n and a vector
b ∈ Zm such that

Pr[Au ∈ �Ob ] = Ω��
√
lnm
√
n

��.
Proof. The proof is a simple probabilistic existence argument that follows the approach used

to prove Theorem 2 in Reference [26]. For a polytope K = 1[Ax ≤ b] we define

Inside(K ) = {x ∈ {−1, 1}n : Ax ∈ Ob \ �Ob , i.e., Aix < bi for all i ∈ [m]},
Surface(K ) = {x ∈ {−1, 1}n : Ax ∈ �Ob , i.e., Ax ≤ b and Aix = bi for some i ∈ [m]}.

Given 2 ≤ m ≤ 2n , ifm < 10, then the one-facet polytope 1[x1+ · · ·+xn ≤ 0] does the job (more
formally, we takeA to be them×n all-1’s matrix and b to be the zero vector inRm ). It is also clear
that proving our result form ≤ 2n/10 also proves it for 2n/10 ≤ m ≤ 2n . So, we henceforth assume
that 10 ≤ m ≤ 2n/10. Let k ≥ n/2 be an integer to be chosen later, and let F : {−1, 1}n → {0, 1}
denote the halfspace F (x ) = 1[x1 + · · · + xn ≤ k]. Now define the following quantities:

pI � |Inside(F ) |/2n =

(
n

<k

)
/2n , pS � |Surface(F ) |/2n =

(
n

k

)
/2n .

Let σ = (σ 1, . . . ,σm ) where each σ i is an independent uniform string in {−1, 1}n . Let A ∈
{−1, 1}m×n be the matrix whose ith row is σ i , and let b be the vector (k, . . . ,k ) ∈ Zm . It is easy to
see that to prove our result it suffices to show that there is a fixed outcome A of A such that

Pr[Au ∈ �Ob ] = Ω��
√
logm
√
n

��, (34)

and this is what we show below. Towards this end, for each i ∈ [m], let us define the matrixA\i ∈
{−1, 1}(m−1)×n obtained by removing the ith row of A, and further define b ′ = (k, . . . ,k ) ∈ Zm−1.
For each fixed z ∈ {−1, 1}n and each i ∈ [m] we have

Pr
σ

[
z ∈ Inside(1[A\ix ≤ b ′])

]
= pm−1

I

and

Pr
σ

[
z ∈ Surface(1[σ i · x ≤ k])

]
= pS.

Since σ i and (σ i′ )i′ ∈[m]\{i } are independent for each i ∈ [m], it follows that

Pr
σ

[
z ∈ Inside(1[A\ix ≤ b ′]) & z ∈ Surface(1[σ i · x ≤ k])

]
= pS · pm−1

I ,

3Given a halfspace 1[w · x ≤ θ ], there is a smallest value θ ′ > θ achievable as w · x for x ∈ {−1, 1}n ; first perturb θ

upward to (θ + θ ′)/2. Now no input x achieves w · x = θ exactly, so we can perturb the coefficients of w by sufficiently

small amounts.

Journal of the ACM, Vol. 69, No. 2, Article 9. Publication date: January 2022.



Fooling Polytopes 9:35

and since the events

z ∈ Inside(1[A\ix ≤ b ′]) & z ∈ Surface(1[σ i · x ≤ k])

and

z ∈ Inside(1[A\i
′
x ≤ b ′]) & z ∈ Surface(1[σ i′ · x ≤ k])

are mutually exclusive for i � i ′ ∈ [m], by a union bound we have that

Pr
σ

[
z ∈ Surface(1[Ax ≤ b ′])

]
= Pr

σ
[Az ∈ �Ob′] =m · pS · pm−1

I .

It follows that there is an outcome of σ such that the resulting matrix A ∈ Rm×n has at least an
m · pS · pm−1

I fraction of all points in {−1, 1}n satisfying Az ∈ �Ob ; i.e.,

Pr[Au ∈ �Ob ] ≥ m · pS · pm−1
I . (35)

It remains only to argue that for any 10 ≤ m ≤ 2n/10, there is a value k such that, for pI =
(

n
<k

)
and pS =

(
n
k

)
, we have

m · pS · pm−1
I = Ω

(√
logm/

√
n
)
.

Towards this end we choose k to be the largest integer such that
(

n
<k

)
/2n ≤ 1 − 1

m
. Recalling that

10 ≤ m ≤ 2n/10, we have that n/2 ≤ k ≤ 0.99n, and hence
(

n
k

)
and

(
n

k−1

)
are within an absolute

constant multiplicative factor of each other. It follows that

pI =

(
n

<k

)
/2n = 1 − Θ(1/m),

which implies that

pm−1
I = Ω(1).

Writing k = n/2+ (
√
n/2)t , we have the elementary binomial tail lower bound 1−pI ≥ exp(−O (t2))

(see, e.g., Reference [36, inequality (4.2)])); hence t ≥ Ω(
√
lnm). The desired bound

pS =

(
n

k

)
/2n = Ω(t/(m

√
n))

now follows from asymptotically tight estimates (up to universal constants for all 0 ≤ t ≤
√
n) for

the Mills ratio of the binomial distribution; see Reference [38]. �
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