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Under temperature oscillation, cyclic molecular machines such as catalysts and enzymes could
harness energy from the oscillatory bath and use it to drive other processes. Using a novel geomet-
rical approach, under fast temperature oscillation, we derive a general design principle for obtaining
the optimal catalytic energy landscape that can harness energy from a temperature-oscillatory bath
and use it to invert a spontaneous reaction. By driving the reaction against the spontaneous direc-
tion, the catalysts convert low free energy product molecules to high free energy reactant molecules.
The design principle, derived for arbitrary cyclic catalysts, is expressed as a simple quadratic ob-
jective function that only depends on the reaction activation energies, and is independent of the
temperature protocol. Since the reaction activation energies are directly accessible by experimental
measurements, the objective function can be directly used to guide the search for optimal energy-
harvesting catalysts.

In stochastic thermodynamics, catalysts and enzymes
can be considered cyclic molecular machines [1–10]: the
catalyst undergoes a cycle of state changes to assist the
conversion of reactant(s) to product(s), and returns to its
initial state. In a stationary environment, the catalytic
cycle reaches a nonequilibrium steady state (NESS),
driven by the thermodynamically spontaneous reaction
(∆G < 0) to a biased direction.
In idealized stationary environments, molecular ma-

chines can transduce free energy from one form to an-
other [11–13]. By contrast, molecular machines in real-
istic time-varying environments can demonstrate novel
dynamical and thermodynamic behavior beyond NESS.
For example, a periodically oscillating environment could
drive a detailed-balanced system to mimic a dissipative
system [14, 15]. Moreover, the driving force provided
by the time-changing environment could drive enzymes
or molecular complexes to function as engines, ratchets,
or pumps [16–28]. Also, periodically oscillating temper-
atures could drive catalysts to alter the reaction kinet-
ics or even shift the equilibrium concentration [29–32].
These results indicate that catalysis could also demon-
strate novel behavior in time-varying environments.

Many existing works on molecular ratchet focus on
their dynamics with a given fixed energy landscape
[10, 22, 27, 28, 33–41]. However, only recently people
started to explore the optimal design of the energy land-
scape for functional molecular ratchets and pumps [42–
45]. This work focuses on identifying a novel regime of
driven catalysis and the corresponding design principles
of its optimal energy landscape.

Consider a catalyst and a chemical reaction whose for-
ward direction is always spontaneous for a continuous
range of stationary temperatures. If temperature oscil-
lates within the range, can the catalyst drive the reaction
backward? If yes, the catalyst harnesses environmental
energy to convert low free energy products to high free
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FIG. 1. A general model of a catalyzed reaction, where the
catalyst undergoes a cyclic pathway consisting of N interme-
diate states and 2N transitions. A and B represent the sets
of reactants and products, which can join/leave the catalytic
loop at arbitrary locations. We choose a convention that the
forward reaction goes clockwise. The transition from j to i
and its rate Rij is illustrated by the energy landscape.

energy reactants. Although counter-intuitive, this effect
is similar to the Parrondo’s Paradox [46], where a gam-
bler can win a game by periodically switching between
two losing strategies.
This letter derives a universal objective function to find

catalyst’s energy landscape that can maximally drive the
reaction against its spontaneous direction. The objective
function (Eq. 13) is simply related only to the activation
energies in the catalytic cycle, shown as αij in Fig. 1.
Thus, this theory is directly applicable to experimen-
tal selections of catalysts or designing catalytic reaction
pathways to achieve energy harvesting.
Consider a general Markov model of the cyclic kinetics

of catalysis sketched in Fig. 1, as a single-loop catalytic
pathway consisting of N states. By completing a cycle,
the reactant A is converted into product B, and the cata-
lyst returns to its initial state. There are 2N transitions
on the N -state cycle between adjacent states whose rates
follow the Arrhenius law,

Rij = rij,0 exp(−βαij) (1)

for state j to i. Here β is the inverse temperature, and
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αij is the activation energy of the transition from j to
i (see Fig. 1). The temperature-independent prefactor,
rij,0, can be proportional to the concentration of external
molecule (A or B) if an external molecule is absorbed in
the transition.

The dynamics of the catalysis can be described by the
master equation

dp⃗

dt
= R̂(β) · p⃗ (2)

where p⃗ is a N -dim column vector characterizing the
probability of each state, R̂(β) is the transition rate ma-
trix at given inverse temperature β, the off-diagonal ele-
ments of R̂ is Rij , and the diagonal elements are chosen

such that each column of R̂ sums to 0.
Throughout this paper, we assume that the chemical

bath is infinitely large, so the chemical concentrations re-
main constant. Then at a fixed temperature, this system
reaches a NESS, p⃗ ss where R̂(β) · p⃗ ss = 0. Then spon-
taneous reaction’s rate is characterized by the net NESS
probability current:

Jss = R21p
ss
1 −R12p

ss
2 (3)

where at NESS, the current is uniform across the loop,
and we choose to define it between states 1 and 2. In
this work, we choose the convention that clockwise (CW)
current is positive, corresponding to the forward reaction
(A to B), and the counter-clockwise (CCW) current is
negative. If the Gibbs free energy of A is higher than B
(GA > GB), the forward reaction is spontaneous, leading
to a positive NESS current Jss > 0. The affinity, which
is equal to the free energy difference between A and B,
determines the direction:

A ≡ β−1
∑
⟨i,j⟩

εij lnRij = GA −GB = −∆G (4)

where ∆G is the free energy change corresponding to
the forward reaction, the

∑
⟨i,j⟩ sums over all of the 2N

transitions from j to i on the loop. We have adopted the
following sign indicator of transition from j to i:

εij =

{
1 forward
−1 backward

(5)

If A > 0, the spontaneous reaction is forward, A < 0
backward, and if A = 0, the system is at thermal equilib-
rium without net reaction flow. In this paper, we assume
GA is always greater than GB within the temperature
range of interest, and thus A > 0 and Jss > 0, and the
spontaneous reaction always goes forward (CW).

If the temperature non-quasi-statically oscillates in
time, the chemical reaction is driven out of NESS. The
system eventually reaches a time-periodic state (i.e., a pe-
riodic orbit in probability space): p⃗(t+ τ) = p⃗(t), where
τ is period of temperature oscillation. There have been
studies of the periodic states under periodic temperature
modulation [29–31]. However, it is generally impossible

to analytically solve the dynamics for arbitrary systems
or arbitrary reaction landscapes. To derive the generic
design principle, in this letter, we consider the fast oscil-
lation limit τ → 0 [47], where a perturbation analysis [48]
for small periods τ could reveal an analytical solution of
the periodic orbit shrinking into a fixed point p⃗(t) → p⃗ ∗,
which leads to a general principle that applies to arbi-
trary reaction energy landscapes. (See SI.I [49] ) The
fixed point p⃗ ∗ can be considered as an effective NESS
corresponding to an effective rate matrix R̂∗:

R̂∗ · p⃗ ∗ = 0 (6)

where the effective rate matrix is nothing but the time
average of R̂(β(t)) over a period:

R̂∗ ≡ lim
τ→0

1

τ

∫ τ

0

R̂(β(t))dt (7)

At the fast oscillation limit, one can find the average
current by using p⃗ ∗ and R̂∗ similar to that in Eq. 3:

J∗ = R∗
21p

∗
1 −R∗

12p
∗
2 (8)

In contrast to NESS, the affinity is no longer well-defined
since the temperature is no longer a fixed constant. Here
without a constant temperature, we introduce an dimen-
sionless affinity,

Ã =
∑
⟨i,j⟩

εij lnRij (9)

where Rij is not restricted to a fixed-temperature rate

matrix R̂(β) but can also be defined for effective rate

matrix R̂∗. At a constant temperature, the Ã calculated
from stationary temperature rate matrix R̂(β) can be

related back to A by Ã = βA(β) = −β∆G. When tem-
perature rapidly oscillates, one can define the effective
dimensionless affinity Ã∗ by plugging the effective rate
matrix R̂∗ in Eq. 9.
Under oscillatory temperature, the direction of reac-

tion (the sign of J∗) is solely determined by the active

driving force Ã∗: if Ã∗ > 0, the reaction on average
proceeds forward (J∗ > 0); if Ã∗ < 0, the reaction on
average proceeds backward (J∗ < 0).
Thus, the goal of searching for a catalyst to invert a

spontaneous reaction is formulated in terms of Ã∗: Con-
sider a spontaneous reaction where ∆G < 0, J(β) > 0,

and Ã(β) > 0 for any temperature within a continuous
range. When temperature oscillates within the range,
what catalyst facilitates a negative Ã∗ < 0 (i.e., reaction
is inverted and J∗ < 0)?

In this letter, based on the geometric property of Ã,
we obtain a universal objective function, Eq. 13, to find
the optimal catalytic reaction inversion. Historically, ge-
ometry has played important roles in thermodynamics.
Gibbs first used geometry to demonstrate the thermody-
namic properties within the space of state functions [50].
Recently, Crooks [51], Ito [52, 53], and Dong [54] have de-
rived various general thermodynamic results by utilizing
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FIG. 2. Illustrated is the 2N-dimensional design space of
r = (R21, R12, ..., Rji, Rij , ..., R1N , RN1). The yellow β-locus
crossing 3 points AOB is the set of r(β) corresponding to
a given energy landscape at all possible inverse temperature
β’s. Blue surface represents a (2N − 1)-manifold defined by

Ã(r) = const that contains point O. The gradient of Ã(r) at

point O, is shown as the blue normal vector ∇Ã. When we
consider temperature oscillation between β1,2 = β0±∆β, their
corresponding rate matrices are points A and B. The rate ma-
trix at β0 is represented by point O. The effective rate matrix
R̂∗ corresponds to the midpoint D between A and B. At in-

finitesimal temperature amplitude, the vector
−→
OC =

−→
OB−

−→
AO

becomes d2r / dβ2 in Eq. 11.

differential geometry within various types of probability-
distribution spaces.

Rather than working within a probability space,
this letter focuses on the geometry in the 2N -
dimensional space consisting of kinetic rates: r =
(R21, R12, ..., Rji, Rij , ..., R1N , RN1). According to Eq. 1,
the reaction rates are determined by both temperature
β−1 and the catalytic energy landscape αij ’s. For any
catalyst specified by its energy landscape αij ’s, its ki-
netic rates r(β) parameterized by inverse temperature β
is illustrated by a yellow β-locus in Fig. 2.
Without losing generality, let us illustrate our theory

using a simple square-wave temperature oscillation be-
tween β1 and β2 of equal time duration. At constant
temperature, β1 (or β2), the kinetic rate matrix R̂(β) or
equivalently r(β) is illustrated by the point A (or B) on
the β-locus in Fig. 2. Under fast temperature oscillation,
the effective rate matrix is simply the arithmetic mean:

R̂∗ =
R̂(β1) + R̂(β2)

2
(10)

and is represented by point D, the midpoint between A
and B in the r space.

Recall that the generalized dimensionless affinity Ã(r)
is a function on the r-space, and its sign dictates the
direction of averaged flow. By construction, within the
range of β ∈ [β1, β2], the reaction free energy ∆G(β) < 0

and Ã(r(β)) > 0. Typically point D is not on the yellow

locus r(β). Thus Ã(r) at point D can take a very different

value than that on the yellow locus. When Ã(r) < 0 at
point D, the catalyst inverts the reaction direction when
temperature oscillates rapidly.

Geometrically, the catalyst is represented by a locus

r(β) in the r-space. The analysis above allows us to
characterize the catalyst’s ability to invert reaction by
how much the locus r(β) curves toward the steepest de-

scent direction (gradient) of Ã(r). Notice this geometri-
cal characterization is not dependent on the specific pro-
tocol of temperature oscillation.
The qualitative geometrical argument above can be

quantified by two vectors. Firstly, the bending of the
β-locus r(β) can be characterized by the second order

derivative vector d2r / dβ2 (see vector
−→
OC in Fig. 2). This

curvature-like vector is the acceleration vector for the mo-
tion of point r(β) as the β varies. The entries of d2r / dβ2

are

d2Rij

dβ2
= α2

ijRij (11)

Secondly, the variation of Ã in the r-space is character-
ized by the gradient vector ∇Ã(r) (as the blue arrow in
Fig. 2), whose entries are

∂Ã
∂Rij

=
εij
Rij

. (12)

Combining the above, the catalyst’s ability to invert the
reaction direction is characterized by the inner product
between the second-order derivative vector d2r / dβ2 and

the gradient vector of Ã:

C({αij}) = ∇Ã · d
2r

dβ2
=

∑
⟨i,j⟩

εijα
2
ij (13)

which serves as a universal objective function to find
the optimal catalytic energy landscape that can achieve
strong reaction inversion.
An alternative derivation based on a finite-difference

analysis of temperature oscillation between β0 −∆β and
β0+∆β is shown in Fig. 2 and the supporting information
(see SI.II [49]). Here C({αij}) is directly proportional to

∆Ã, the difference of Ã of R̂∗ and the NESS Ã(β0) at
constant temperature β0.

∆Ã ≡ Ã(R̂∗)−Ã(r(β0)) = C({αij})
∆β2

2
+o(∆β2) (14)

Due to the nice geometric property of the constant-
Ã(r) manifold and the β-locus [55], the Rij from Eqs. 11
and 12 cancels out, and the resulting objective function
Eq. 13 takes a simple quadratic form that only depends
on the activation energies of the catalyst αij ’s, and is
independent of the specific temperature protocol. For
the same geometrical reason, C applies to large-amplitude
temperature oscillation (see Fig. 4b).
The objective function C({αij}) is directly accessible

by experiment via direct measurements of the activa-
tion energies αij ’s. Thus, our result (Eq. 13) provides
chemists with an easy approach to predict arbitrary cat-
alysts’ ability to invert reaction direction under fast tem-
perature oscillation.
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FIG. 3. Reaction rate (average probability current at peri-
odic steady state) versus temperature oscillation frequency
f = τ−1 for both the optimal energy landscapes for reac-
tion inversion and enhancement, obtained for A = −∆G = 1,
αmax = 11, β0 = 0.9 and ∆β = 0.3.

For illustration, Fig. 3 demonstrates the frequency re-
sponse of the optimal 3-state catalyst landscape ({αij})
under the following design constraints. First, we fix the
reaction’s free energy change ∆G(β) = −1 for all β’s. As
a result, the affinity must be constant A = −∆G = 1
regardless of the choice of the catalyst. Secondly, we as-
sume that the reaction rate prefactor rij,0’s are all fixed
to be the same constant. By doing so for any constant
temperature,

A = −
∑
+

αij +
∑
−

αij = 1 (15)

where
∑

+ (or
∑

+) is the sum over all forward (or back-
ward) reaction transitions. Thirdly, as we search for
the optimal landscape (activation energies), we restrict
the activation energies of all 2N transitions in the range
αij ∈ [0, αmax]. Here we assume the reaction’s affinity
is weaker than the maximum allowed activation energy:
A = 1 < αmax.

According to our result, to find the optimal catalyst
with the strongest driving force against spontaneous re-
action under temperature oscillation, one needs to mini-
mize the objective function

C =
∑
+

α2
ij −

∑
−

α2
ij (16)

which is a simple quadratic minimization problem on a
convex set. For N = 3, the optimal solution of αij ’s are

αinv
+ = (

2αmax − 1

3
,
2αmax − 1

3
,
2αmax − 1

3
) (17)

αinv
− = (αmax, αmax, 0) (18)

where αinv
+ are the activation energies αij ’s for the 3 for-

ward transitions and αinv
− are for the 3 backward transi-

tions (see SI.IV [49]). The order of the 3 forward (or 3
backward) αij ’s does not impact the result.

Beyond the fast oscillation limit, the optimal catalyst
can invert the reaction at finite frequency f ’s (see Fig. 3).
At the critical frequency f = fc, the reaction free energy
force ∆G is completely stalled by inversion force from the
catalyst, and the reaction stops (Jperiod = 0); at larger
frequency, f > fc the catalyst’s driving wins over ∆G
and reaction direction is inverted (Jperiod < 0). At the
fast oscillation limit f ≫ 1, we can use the Matrix Tree
Theorem [56] to obtain from the effective rate matrix R∗

the effective current J∗ = (R∗
13R

∗
32R

∗
21 − R∗

12R
∗
23R

∗
31)/κ,

where κ > 0 (see SI.III [49]). Thus the sign of current J∗

is always the same with Ã∗.
It is worth pointing out that the objective function

Eq. 13 can be used toward an inverse effect of catalytic
reaction inversion, i.e., driving force enhancing. By max-
imizing Eq. 13, (see SI.IV [49])

αenh
+ = (αmax, αmax, 0) (19)

αenh
− = (

2αmax + 1

3
,
2αmax + 1

3
,
2αmax + 1

3
) (20)

defines a reaction-enhancing catalyst that optimally en-
hances the spontaneity of a reaction. The reaction cur-
rent enhanced at various frequencies f is shown in Fig. 3.
Even though C (Eq. 13) is obtained from the local

curvature, due to nice geometric properties of Ã(r) and
r(β), it remains a good optimization objective function
even for big-amplitude temperature oscillations (e.g., for
β0 = 0.9, ∆β = 0.3). We demonstrate that for both
small and large amplitudes, C is approximately linearly
correlated to the change of thermodynamic driving force.
The linear correlation is shown in Fig. 4 for both small
∆β = 0.05 and large ∆β = 0.3 by scatter plots of 104

points. Each point is obtained from one randomly gen-
erated energy landscape {αij}. Notice in the small am-

plitude limit, ∆β ≪ 1, C is equal to 2∆Ã/∆β2 (Eq. 14).
The optimal catalysts for reaction inversion and enhance-
ment (obtained by minimizing and optimizing C) are
highlighted as red and black crosses, appearing at the
two ends of both scatter plots.
At stationary temperature, kinetic intuition may ar-

gue that the higher the activation energy, the slower the
corresponding transition rates. However, when tempera-
ture oscillates, our theory indicates that big variation in
the activation energies of the inverse reaction direction
and mild activation energies of the forward reaction di-
rection could suppress the forward reaction and favor the
inverse direction. Moreover, designing the catalytic re-
action inversion suffers from a trade-off relation between
strength and speed. Strong inversion (large |∆Ã|) favors
the choice of larger activation energies (larger αij), which
impedes the net reaction current.

In conclusion, this letter demonstrated a geometric
approach to derive the general design principle of op-
timal oscillatory-driven catalysis. In this regime, we
demonstrate catalysts that can harness energy from an
oscillatory-temperature bath and utilize the energy to
enhance or invert a spontaneous reaction. The design
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FIG. 4. Objective function C and the scaled affinity change
2∆Ã/∆β2 for randomly generated energy landscapes un-
der the same set restriction with the optimization problem
(A = −∆G = 1, αmax = 11, β0 = 0.9). The red and black
crosses correspond to the optimal energy landscapes for reac-
tion inversion (minimizing C) and enhancement (maximizing
C).

principle is formulated by an objective function Eq. 13,
which only depends on the activation energies of the en-

ergy landscape in a quadratic form. Due to the nice
geometric property of the thermodynamic driving force
Ã, the objective function is independent of the temper-
ature protocol. Moreover, this result obtained from the
fast oscillation limit can still be used to invert sponta-
neous reactions at finite-frequency temperature oscilla-
tion. Since activation energies are accessible in the exper-
imental study of reaction mechanisms, this result could
be experimentally verified and directly used to guide the
design of useful catalysts for energy harnessing.
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I. PERTURBATION ANALYSIS IN THE FAST OSCILLATION LIMIT

Here we demonstrate that under the fast oscillation limit, the system reaches an effective steady state p⃗∗ corre-
sponding to an effective rate matrix R̂∗. Similar derivation for Fokker Planck equation can be found in [1].
Let us consider a time-heterogeneous Markov process described by a master equation:

dp⃗(t)

dt
= R̂tp⃗(t) (1)

where the transition rate matrix changes periodically in time with period τ :

R̂t = R̂t+τ (2)

If the system is periodically driven for a long time, it will asymptotically reach a limit cycle or a time-periodic
solution p⃗(t) = p⃗(t+ τ). For this periodic steady state, let us define a scaled time

h =
t

τ
(3)

and

ρ⃗(h) = p⃗(hτ) (4)

The corresponding master equation is written as

dρ⃗(h)

dh
= τR̃hρ⃗(h) (5)

where R̃h = R̂hτ .
Now consider the fast oscillation limit, the size of the limit cycle will shrink into a single point, yielding an effective

steady state probability, ρ⃗0. This effective steady state is denoted by p⃗∗ in the main text. To show this, let us perform
perturbation analysis by expanding ρ⃗(h) into

ρ⃗(h) =

∞∑
n=0

τnρ⃗n(h) (6)

In the limit τ → 0, by plugging Eq. 6 into Eq. 5 and matching terms at different order of τ , we obtain:

dρ⃗0(h)

dh
= 0 (7)

dρ⃗1(h)

dh
= R̃hρ⃗0 (8)

where h ranges from 0 to 1 during one period. Since the system is at a periodic steady state ρ⃗(0) = ρ⃗(1) for any τ ,
all orders must satisfy ρ⃗n(0) = ρ⃗n(1).
According to Eq. 7, ρ⃗0(h) is a stationary point independent of h. Thus by integrating Eq. 8 over a whole period (h

from 0 to 1), we can find

ρ⃗1(1)− ρ⃗1(0) =

(∫ 1

0

dhR̃h

)
ρ⃗0 (9)

∗ zhiyuelu@unc.edu
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Thus, we can find that the effective stationary state p⃗ ∗ = ρ⃗0 is the stationary solution for an time-averaged rate
matrix R̂∗:

0 =

(∫ 1

0

dhR̃h

)
ρ⃗0 =

1

τ

(∫ τ

0

dtR̂t

)
p⃗ ∗ = R̂∗p⃗ ∗ (10)

where the time averaged rate matrix is defined by

R̂∗ =
1

τ

∫ τ

0

dtR̂t (11)

II. ALTERNATIVE DERIVATION OF THE UNIVERSAL OBJECTIVE FUNCTION

In this section, we demonstrate an alternative derivation of the central result, starting by assuming small amplitude
of temperature oscillation, where the inverse temperature oscillates around β0. The ability to invert reaction is
characterized by the change of thermodynamic driving force, which is characterized by ∆Ã. ∆Ã is the value difference
of Ã(r) between points O and D in Fig. 2 of the main text. Notice that ∆Ã reflects the local curvature-like property
of the β-locus around any β0 and it mainly depends on the catalyst’s energy landscape {αij}. Thus we can derive a
generic energy landscape optimization principle independent of the temperature protocol. Let us start by expressing
∆Ã as

∆Ã = Ã(R̂∗)− Ã(R̂0) =
∑
⟨i,j⟩

εij log
R∗

ij

R0,ij
(12)

By plugging in the Arrhenius Law

Rij(β0 ±∆β) = rij,0 exp[−(β0 ±∆β)αij ] (13)

= exp(∓αij∆β)Rij(β0) (14)

Thus

R∗
ij =

Rij(β0 +∆β) +Rij(β0 −∆β)

2
(15)

= cosh(αij∆β)Rij(β0) (16)

When ∆β → 0,

log cosh(αijdβ) =
1

2
α2
ijdβ

2 + o(dβ2) (17)

In the end, ∆Ã is dictated by a local curvature-like property as

∆Ã =
∑
⟨i,j⟩

εij log cosh(αijdβ) (18)

=
1

2

∑
⟨i,j⟩

εijα
2
ijdβ

2 + o(dβ2) (19)

This derivation leads to the objective function as Eq. 13 in the main text that can be used to predict the performance
of the catalyst:

C ≡
∑
⟨i,j⟩

εijα
2
ij (20)

III. SOLVING CURRENT AT FAST OSCILLATION LIMIT

At the fast oscillation limit f ≫ 1, the reaction current Jperiod can be analytically solved by using the Matrix Tree
Theorem[2]. For a 3-state ring, the current can be expressed as

J∗ =
R∗

13R
∗
32R

∗
21 −R∗

12R
∗
23R

∗
31

κ
(21)
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where the denominator is positive: κ = R∗
12R

∗
13 + R∗

13R
∗
21 + R∗

12R
∗
23 + R∗

21R
∗
23 + R∗

12R
∗
31 + R∗

23R
∗
31 + R∗

13R
∗
32 +

R∗
21R

∗
32 + R∗

31R
∗
32. The net current J∗ shares the same sign with the effective driving force Ã∗ = log(R∗

13R
∗
32R

∗
21) −

log(R∗
12R

∗
23R

∗
31) at the fast limit. This result is directly applicable to N -state rings.

IV. SOLUTION TO THE OPTIMIZATION PROBLEM

Here we demonstrate the steps needed to find the optimal energy landscape for the 3-state catalytic cycle. Within
the cycle, there are 3 forward transitions whose activation energies are denoted by α1, α2, and α3, and 3 backward
transitions whose activation energies are denoted by α4, α5, α6. To find the strongest energy landscape for chemical
reaction inversion is equivalent to searching for the values of α1 to α6 such that the cost function

C = α2
1 + α2

2 + α2
3 − (α2

4 + α2
5 + α2

6) (22)

is minimized under the constraints that

(α4 + α5 + α6)− (α1 + α2 + α3) = 1 (23)

and that

0 ≤ αi ≤ αmax (24)

for i = 1, 2, · · · 6.
It is intuitive to separately deal with the forward activation energies and the backward activation energies for the

above optimization problem. Here let us introduce a function conditioned on s:

f(x, y, z; s) = x2 + y2 + z2 (25)

where the condition is that x+ y + z = s. Then, the optimization problem under the restrictions listed above can be
broken into two steps, first optimize C under a given value of s = α4 +α5 +α6 and equivalently s− 1 = α1 +α2 +α3,
and then vary the value of s to find the desired optimum. In other words, the optimization is obtained by solving

inf
s
( inf
α1,α2,α3

f(α1, α2, α3; s− 1)− sup
α4,α5,α6

f(α4, α5, α6; s)) (26)

Notice that the infα1,α2,α3
f(α1, α2, α3; s− 1) can be found at ((s− 1)/3, (s− 1)/3, (s− 1)/3) despite the restriction

that 0 ≤ x, y, z ≤ αmax. (Notice that we have decided that αmax > A = 1.) However the supα4,α5,α6
f(α4, α5, α6; s)

lies on the boundary of the intersection between the cube 0 ≤ x, y, z ≤ αmax and the plane x + y + z = s. Thus the
sup depends on the choice of s:

arg max
α4,α5,α6

f(α4, α5, α6; s) =

 (s, 0, 0) 0 ≤ s ≤ αmax

(αmax, s− αmax, 0) αmax < s ≤ 2αmax

(αmax, αmax, s− 2αmax) 2αmax < s ≤ 3αmax

(27)

Then we found that since we allowed for αmax > 1, the minimum is taken at s = 2αmax,

α+ = (
2αmax − 1

3
,
2αmax − 1

3
,
2αmax − 1

3
) (28)

α− = (αmax, αmax, 0) (29)
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