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Abstract—Human skeleton data provides a compact, low
noise representation of relative joint locations that may be used
in human identity and activity recognition. Hierarchical Co-
occurrence Network (HCN) has been used for human activity
recognition because of its ability to consider correlation between
joints in convolutional operations in the network. HCN shows
good identification accuracy but requires a large number of
samples to train. Acquisition of this large-scale data can be time
consuming and expensive, motivating synthetic skeleton data
generation for data augmentation in HCN. We propose a novel
method that integrates an Auxiliary Classifier Generative
Adversarial Network (AC-GAN) and HCN hybrid framework
for Assessment and Augmented Identity Recognition for
Skeletons (AAIRS). The proposed AAIRS method performs
generation and evaluation of synthetic 3-dimensional motion
capture skeleton videos followed by human identity recognition.
Synthetic skeleton data produced by the generator component
of the AC-GAN is evaluated using an Inception Score-inspired
realism metric computed from the HCN classifier outputs. We
study the effect of increasing the percentage of synthetic samples
in the training set on HCN performance. Before synthetic data
augmentation, we achieve 74.49% HCN performance in 10-fold
cross validation for 9-class human identification. With a
synthetic-real mixture of 50%-50%, we achieve 78.22% mean
accuracy, significantly (p<0.05) outperforming the baseline
HCN performance. The proposed framework demonstrates the
feasibility of combining a synthetic data generation architecture
with hierarchical co-occurrence feature learning for human
identity recognition.

Keywords—Security, Human Identity = Recognition,
Skeleton Data, Motion Capture Data, Generative Adversarial
Network, Auxiliary Classification, Synthetic Skeleton Data, Co-
occurrence

1. INTRODUCTION

Modern sensing technologies enable capture of efficient,
high-quality representations of human structure and dynamic
human motion. Among these representations, articulated
human pose, also known as skeleton, provides a rich source
of biometric and behavioral information. Sequences of
skeleton frames provide an inherently compact and robust-
to-
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noise representation of human pose over time. Recent
advances in deep learning have facilitated apposite
processing of skeleton sequence data for tasks including fall
detection [1], human action recognition [2], and human
identity recognition [3]. In this work, we focus on the task of
human identity recognition. Skeleton-based identity
recognition offers quick, unintrusive biometric authentication
for security applications.

While originally designed for image data, convolutional
neural networks (CNNss) have also demonstrated outstanding
ability to extract high-level features from skeleton data [4].
To use skeleton sequence data with CNNs, the skeleton is
presented as an image-like representation with columns for
each joint, rows for each video frame, and a channel for each
3D spatial coordinate, i.e., X, y, z. CNNs extract features from
local receptive fields and perform global feature aggregation
over the channel dimension. Because the joints are typically
given as channels when presented to the CNN, standard CNN
processing of these image-like representations of skeletons
miss important inter-joint correlation. To capture co-
occurrence, features that exist between skeleton joints, Li et
al. [4] introduce the Hierarchical Co-occurrence Network
(HCN) framework for CNN-based action recognition from
skeleton data. The HCN framework rearranges the feature
map dimensions within the intermediate layers of the network
to extract features based on global aggregation over the
different joints. Features related to the motion of the joints
across frames are also learned explicitly using a parallel
network branch that operates on a calculated derivative of the
skeleton video over time. Given that HCN captures joint co-
occurrence and dynamics of motion features, we adapt the
HCN for our task of human identity recognition from
skeleton videos.

The stringent reliability and validity requirements of
security applications and the tendency of deep learning
models to overfit on small data both motivate the need for a
large and diverse training set for deep learning-based human
identity recognition. However, depending on the acquisition
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technology, constructing such datasets may be time
consuming and expensive. Real datasets are also prone to
missing data, including missing frames and unknown or
outlier joints within a frame. This missing data and noise may
corrupt data samples, further reducing dataset size or
reliability. To overcome these challenges, synthetic skeleton
data may be generated to augment smaller training sets.
Generative adversarial networks (GANs) [5] have been
proposed for synthetic skeleton action generation [6-8].
GANSs consist of two networks in competition. A generator
network synthesizes samples from noise and a discriminator
network aims to distinguish synthesized examples from real
examples. Multiple variants of GAN have been proposed,
including conditional GAN (cGAN) [9] which enables the
generation of class-conditioned samples, and Auxiliary
Classifier GAN (AC-GAN) [10], which improves upon
c¢GAN by adding an auxiliary output to the discriminator to
classify synthetic examples.

The most widely used quantitative evaluation metrics of
synthetic data are built upon the Inception V3 network
pretrained on the ImageNet dataset. The Inception V3
network [11] is a deep CNN model trained for classifying
over 1000 categories of natural images in the ImageNet [12]
database. Metrics such as the Inception Score [13] and
Fréchet Inception Distance [14] use the output of an
intermediate or final layer of Inception V3 to compute scores
quantifying the realism of the generated data. However, it has
been noted that using the Inception V3 model for evaluating
generative models trained on datasets outside of ImageNet
yields misleading results [15, 16]. To overcome this
limitation, we propose a within-dataset metric for synthetic
skeleton data evaluation inspired by the Inception Score.

To address the need for synthetic skeleton data to improve
the robustness of human identification of a given dataset with
only a few hundred samples per identity class, we propose an
AC-GAN and HCN hybrid framework: the Assessment and
Augmented Identity Recognition for Skeletons (AAIRS)
framework. This framework generates synthetic skeleton
videos and performs realism assessment of these samples.
The framework uses the synthetic samples as feedback to the
classifier to fine-tune the human identity recognition model.
Our AAIRS framework incorporates an HCN model trained
for human identity recognition (HCN-ID) and AC-GAN
model adapted for identity-conditional synthetic skeleton
generation (AAIRS-GAN). To our knowledge, our approach
is the first to bring generative adversarial and hierarchical co-
occurrence learning together in a single framework. We train
and evaluate our framework using a challenging ground truth
skeleton dataset extracted from lidar motion capture data
[17]. The dataset contains 9 subjects performing 2 trials of a
simple walking movement in sequences consisting of a few
hundred frames. We consider two experimental pipelines: 1)
HCN-ID based realism assessment of AAIRS-GAN
generated samples, and 2) training and evaluation of HCN-ID
under synthetic data augmentation. In our first pipeline, we
use the trained HCN-ID model to compute a within-dataset
realism assessment score on synthetic skeleton samples

generated by the AAIRS-GAN model. In our second pipeline,
we retrain HCN-ID on a mixture of real and synthetic data
samples and evaluate the effect of different training set
compositions on performance. Our contributions are as
follows: A) adapt, train and evaluate HCN for identity
recognition from skeleton gait data, B) adapt and train AC-
GAN to generate synthetic skeleton data for identity
recognition, C) introduce and compute an appropriate within-
dataset realism metric for synthetic skeleton data, and D)
augment HCN training set with synthetic samples and
investigate the effect of the percentage of synthetic samples
on identity classification performance.

The remainder of this paper is structured as follows.
Section II discusses relevant background on deep learning for
skeleton data, the HCN framework, generation of synthetic
data using AC-GAN, and Inception Score for evaluation of
synthetic data. Section III presents our AAIRS framework.
Models and procedures for human identity classification,
synthetic skeleton generation, and realism assessment of
generated data are detailed. Section IV describes the two
experimental pipelines and discusses the results. Section V
concludes and suggests directions for future work.

II. BACKGROUND

A. Deep Learning for Skeleton Data

Most of the prior work on deep learning for skeleton data
utilize Recurrent Neural Networks (RNNs) with Long-Short
Term Memory (LSTM) for modeling temporal motion. Zhu
et al. propose a fully connected LSTM network for learning
co-occurrence features [4]. Song et al. introduce hierarchical
co-occurrence with spatial and temporal attention modules
for selecting dominant joints and assigning importance
weights to individual frames, respectively [18]. However,
LSTM networks model temporal structure over the input
space in isolation without accounting for higher order
features that may explain some of the underlying variation in
the data [19].

Du et al. [20] and Ke et al. [21] use CNNs to perform
skeleton-based action recognition. Both studies perform
transformations on the raw skeleton data to obtain an image-
like representation prior to feeding the data into the CNN. Du
et al. [20] encode temporal movement and skeleton joints as
rows and columns, respectively, and X, y, z dimensions are
considered as the channels. Ke et al. [21] propose a similar
representation but perform a coordinate transformation and
rescaling to represent X, y, and z channels as gray-scale
images. The modeling of joint co-occurrence features in these
methods is limited by the receptive field of the CNN, i.e.,
joint co-occurrence information is learned for neighboring
joints only. The HCN model proposed by Li et al. [4]
addresses this limitation by modeling global co-occurrence
and achieves state-of-the-art results on action recognition
benchmark data.

B. HCN Framework

The HCN model with weights 8 takes a video with one
or more skeleton views xq,..,xy where each x, € X €
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R/CT for J joints, C = 3 axes for the 3D coordinates of a
joint, and T frames per sample. HCN takes these skeletons as
input and produces a vector of estimated probabilities y for
each class as in equation (1).

-~

y= [pyl: ---'pylo] = H(xy, ., Xn|0p) (1)

Skeleton motion is modeled explicitly as follows. Given
each input x € R/©T to the HCN network H, the network
calculates the derivative w.r.t. time x € R/“T using the
differencing formula in eq. (2).

x === x¢,:,22T)—xG,:,:T-1) )

The HCN contains 2 parallel branches that are optimized
separately. Branch 1 takes x4,..,xy and branch 2 takes
Xy, ..., Xy, respectively. In both branches, the HCN performs
hierarchical aggregation of feature information. First, a point-
level aggregation over the x, y, and z channels is performed
using 1 X1 and 1 X J convolutions. Then, aggregation is
performed globally across all joints. A permutation of the
dimensions of x and x occurs in each branch to orient the
joint dimensions of each sample to the channel dimension of
the convolutional filter inputs. The concatenated output of the
parallel branches undergoes further convolutional and fully
connected operations prior to classification.

C. AC-GAN Framework

AC-GAN is an image synthesis framework from the GAN
family of generative models. Like cGAN, AC-GAN is a
conditioned model that incorporates label selection as a part
of the synthetic data generation. In addition to the noise input,
the AC-GAN generator also takes a class label as a
conditioned input. The AC-GAN discriminator performs
classification of images as real or generated. In addition to the
discriminator, an auxiliary classifier is used to classify
generated images into image classes. In practice, the
discrimination and auxiliary classification tasks are
performed by a single discriminator network optimized for
both tasks. The goal of AC-GAN is to generate synthetic data
that reflects the mix of classes present in the real data. Let eq.
(3) represent the distribution of synthetic data X for given
label Y.

Xfake|Y~P(X=x|Y=y) (3)

The AC-GAN generator with weights 6; can be
described as in eq. (4) where given input class label y; €
{y1,..y;} with I possible classes and noise vector

E~MVN(E|u=0,T=0%1),
Xfake = G(Yiﬁgl 06) “
The AC-GAN discriminator with weights 8, can be

described as in eq. (5) where input x is drawn either from real
data X;.qq; or synthetic generated data Xsqy.. Similar to the

HCN output in eq. (1), the discriminator outputs a vector y
for the estimate of the probability for each class y;, as well as
an estimate 7 of the probability that the source of the sample
is real. Note that the estimate f of the probability that the
source of the sample is fake is implied as f = 1 — 7.

3,7 = D(x]6p)) (&)

The AC-GAN framework uses two separate loss
functions. Lg is the log-likelihood of correct source, while L,
is the log-likelihood of correct class. The discriminator
attempts to maximize Lg + L, while the generator is trained
to maximize Lg — Ly. Lg and L can are defined in eq. (6)
and eq. (7) respectively. Fig. 1 shows the network
architecture for both the generator and discriminator used by
the AC-GAN based framework in this paper.

Ly = E[log(f) | x € Xreu] +

E[log(l —-7)|x € Xfake] ©)

Lc = Eflog(@)|Y =yl @)

Size = [B,L],Y Size = B,C,T,J
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Fig. 1. AC-GAN generator (left) and discriminator (right) architectures.
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D. Inception Score

The Inception Score is the most widely adopted metric for
quantitative evaluation of the realism of synthetic data. While
the Inception Score is computed using the ImageNet
pretrained Inception V3 network, the mathematical
framework for computing the score is general enough such
that any trained classification model may be substituted for
Inception V3. In general, a classification network trained on
a specific problem domain may be used to evaluate the
realism of GAN-generated examples in the same domain.
Given a set of synthetic data X, generated by a GAN, we
evaluate realism using eq. (10). The idea is to compare the
conditional distribution given by the classifier, e.g., § =
[pyl, ...,pylo] from the classifier H in eq. (1), to the
marginal distribution of the labels as given in eq. (8). The
marginal distribution is estimated using the expected
conditional distribution y = H(x|0y) as in eq. (9), where
P(X) is simplified assuming a uniform distribution. We use
KL divergence as a metric of the similarity of these
distributions and then take the expected value by averaging
over a large set of N examples of synthetic data as in eq. (10).
We take 2 to the power of the final expectation in eq. (10) to
convert from units of entropy to perplexity.

Y ~P(Y) = [, P(X,Y)dx (8)

P(Y) = fP(X =x,Y)dx =

fXP(XY|X =x)P(X = x)dx =~ )
P(Y) = [, H(x|0y)P(X)dx =
E[H(x|0x)] = X H(x|0y) /N

Inception Score =
E|KL (H(xl6y) 1| PON)]| = (10)
Y. KL(H(x|6,) || P(Y))/N
III. METHODS

A. HCN for Human Identity Classification (HCN-ID)

The HCN-ID model follows the same structure as the
HCN model architecture in [4]. The number of output units
in the classification layer is chosen to reflect the number of
identity classes.

Consider the data distribution of real skeleton data in eq.
(11). Each sample skeleton sequence is composed of
dimensions J joints, C = 3 axes for the 3D coordinates of a
joint, and T frames per sample such that X € R/*¢T. Each
sample has a corresponding subject identity, Y € {y,, ..., y;}
for I subject identity classes.

X'Y~Preal(X=xry=y) (11
Given a single subject input, the HCN-ID model estimates

the marginal distribution of the real data in eq. (12). The
HCN-ID model takes a single input sample sequence x and

estimates a vector of probabilities for each of the possible
subjects as in eq. (13).

YIX~P(Y =y|lX =x) (12)

y= [pyp ---'pym] = H(x|6y) (13)

B. AAIRS-GAN Synthetic Skeleton Data Generation and
Realism Assessment via HCN-ID Score

The overall pipeline for synthetic skeleton generation and
realism assessment is summarized in Fig. 2. Our AAIRS-
GAN model for synthetic skeleton data generation follows
the AC-GAN training framework in [10]. The generator
accepts two inputs, noise vector € ~ MVN(€ | u = 0,x=
o? I)and input class label y; € {y; ,...y;}, to yield x¢q, €
RICT . As in eq. (5), the discriminator performs
discrimination and auxilliary classification tasks. In the
discrimination task, the estimate 7 is the probability that
discriminator input x corresponds t0 X, € RCT. In the
auxiliary classification task, y corresponds to the predicted
class label.

For realism assessment, each generated skeleton sample
is input into the pretrained HCN-ID model to output a vector
of predicted probabilities as in eq. (13). Then, the HCN-ID
outputs for a set of N generated samples are used with eq.
(10) to compute the HCN-ID score, a measure of within-
dataset synthetic skeleton data realism. The HCN-ID score is
an approximation of the AAIRS-GAN generator realism with
larger N yielding a better approximation.

C. Synthetic Data Augmentation of HCN-ID

The pipeline for synthetic data augmentation of the HCN-
ID model is shown in Fig. 3. A pool of synthetic samples is
obtained from the AAIRS-GAN generator. A mixture of real
and synthetic samples is formed such that M% synthetic
samples are distributed evenly across all classes. HCN-ID is
then trained on this synthetic data augmented training set. A
10-fold cross validation scheme is used to assess the
performance of the HCN-ID with synthetic data
augmentation. Model performance is assessed for different
compositions of real and synthetic data in the training set.
Steps of 10% are considered as values of M with a minimum
synthetic-real mixture of 10%-90% and maximum synthetic-
real mixture of 50%-50%

IV. RESULTS AND DISCUSSION

A. Experimental Pipelines

To evaluate the proposed AAIRS framework, we consider
two experimental pipelines. The first pipeline, shown in Fig.
2, assesses the realism of the synthetic samples generated by
the AAIRS-GAN using the HCN-ID score. The HCN-ID
score is used to quantify the realism of the synthetic samples
being produced by the AAIRS-GAN.

The second pipeline is shown in Fig. 3 and utilizes a
mixture of real and synthetic samples for synthetic data

Authorized licensed use limited to: Old Dominion University. Downloaded on January 30,2023 at 21:40:25 UTC from IEEE Xplore. Restrictions apply.



Real Data H
Generator| | Discriminator
_____________ Loss Loss
Label v *—I ,_A
Random ‘ . P ‘
Noise Generator Switch —>‘ Discriminator r ----------- g

Pretrglned
HCN
| Classifier |

Inception
Score

lSkeleton
Quality

Fig. 2. Skeleton Generation and Realism Assessment Pipeline

Label
—>

i Generator
Noise

Synthetic Real Data
Data Pool Pool

]

Mix N% ‘

synthetic/real

samfles

Train HCN Test Samples

| |
!

Assess Performance
with Test Samples

Fig. 3. Pipeline for Synthetic Data Augmentation of HCN-ID

augmented training of the HCN-ID model. This second
pipeline represents the AAIRS hybrid training framework
incorporating real and synthetic samples to increase sample
size with the goal of improving human identity classification.

B. Dataset

For training and evaluation of the proposed AAIRS
framework, we consider the challenging ground truth
skeleton dataset extracted from lidar motion capture data in
[17]. This dataset contains a total of 176 skeleton samples
from I = 9 subjects following the distribution shown in Fig
4. Each sample consists of / = 13 joints animated over a

continuous T = 3 frame segment from multiple video
sequences of the subjects walking in a fixed position,
centered at the origin of the 3-dimensional space. The data
are normalized between -1 and 1, maintaining the relative
lengths between joints over all subjects in the dataset. The
samples are distributed into training and testing sets
following a 10-fold cross validation scheme.

C. HCN-ID Results

We train the HCN-ID model using the ADAM
optimization algorithm with a learning rate of 0.001 for 50
epochs and a batch size B = 64. The 10-fold cross validation
results for 9-class classification of human identity for the
HCN-ID and Zero-Rule [22] baseline model are shown in
Table I. The mean test accuracy over the 10 cross validation
test folds is 74.49%, outperforming the baseline model by
56.71% with similar standard deviation. Fig. 5 (a) and Fig. 5
(b) show representative plots displaying the convergence of
accuracy and loss, respectively, during training.

D. AAIRS-GAN Results

The AAIRS-GAN framework is trained using the ADAM
optimization algorithm and a batch size B = 64. Visual
inspection of the synthetic skeleton videos generated by the
AAIRS-GAN demonstrates that the generator has learned to
produce skeletons with realistic anatomy i.e. head placement
above the shoulders. Fig. 6 shows a series of representative
sequence of frames produced by the AAIRS-GAN. For
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Fig. 4. Dataset Class Distribution

TABLEIL COMPARISON OF HCN-ID AND ZERO RULE BASELINE
MODEL 10-FOLD CROSS VALIDATION MEAN ACCURACY

Dataset Mean Accuracy
Zero Rule (Baseline) 17.78% + 2.49%
HCN-ID 74.49% + 2.64%
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Fig. 5. Representative training (a) accuracy and (b) loss plots during
HCN-ID training

comparison, a representative real skeleton sequence is shown
in Fig. 7. The synthetic skeletons in general exhibit correct
relative anatomical joint locations with legs, arms, and torso
positioned correctly.

E. HCN-ID Score for Synthetic Skeleton Realism
Assessment

HCN-ID scores are computed on the synthetic data
generated based upon the training set for each 10-fold cross
validation split. The HCN-ID model is trained on the same
training set as the AAIRS-GAN model. The HCN-ID score
ranges from 1 (worst score) to 9 (best score) in theory based
on the underlying perplexity for 9 classes. We compute the
HCN-ID score using 100 generated samples per class or N =
900.

Table II shows the average HCN-ID scores of the real and
synthetic data. The real data scores an average of ~8 out of 9,
and the synthetic data scores an average of ~4. The synthetic
data score is greater than the minimum score of 1,
demonstrating that the AAIRS-GAN has learned a subset of
features underlying the variation of the subject data. Further
improvements will seek to increase the HCN-ID score of
AAIRS-GAN generated data to come closer to matching the
realism of the ground truth data.

It is important to note that the performance of the HCN-
ID model will affect the computation of the HCN-ID score.

Height

Fig. 6. Representative Synthetic Skeleton Frame Sequence Example
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Fig. 7. Representative Real Skeleton Frame Sequence Example

Improving HCN-ID performance will yield a better
measurement of synthetic data realism.

F. AAIRS Hybrid Training Framework

The AAIRS hybrid training framework is trained and

tested using the same previously mentioned 10-fold cross
validation training and test sets. The synthetic data is
generated using the AAIRS-GAN trained on the same ground
truth as the HCN-ID. This prevents test set information from
leaking into the HCN-ID training set through the AAIRS-
GAN generator. The synthetic data is then mixed in with the
real training data in intervals of 10% ranging from 0%
(baseline) to 50% synthetic data. We train the synthetic data
augmented HCN-ID models using the ADAM optimizer with
a learning rate of 0.001 for 50 epochs.
The AAIRS Hybrid Training results are shown in Table III.
The results suggest that augmenting the HCN-ID with
AAIRS-GAN generated synthetic data substantially
improves performance. The best performance of 78.22% is
achieved by 50%-50% synthetic-real mixture. This represents
a significant (paired t-test with t = 2.2767, p = 0.0353)
improvement over the 74.49% accuracy achieved by the 0%-
100% synthetic-real mixture for 10-fold cross validation.
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TABLEII.  10-FOLD CROSS VALIDATION MEAN HCN-ID SCORES

Dataset Mean HCN-ID Score

Real Data 8.352+£0.1049

Synthetic Data 3.933 £ 0.8673

TABLE IIIl.  AAIRS HYBRID 10-FOLD CROSS VALIDATION MEAN
ACCURACIES FOR DIFFERENT PERCENTAGES OF SYNTHETIC SAMPLES IN
THE TRAINING SET

o .
% .Synthe:tl.c Samples Mean Accuracy
in Training Set
0% 74.49% +2.64%
10% 75.93% + 1.61%
20% 76.12% +2.37%
30% 75.70% £ 1.89%
40% 77.15% +2.32%
50% 78.22% +2.37%

V. CONCLUSION AND FUTURE WORK

This work presents the AAIRS framework for
hierarchical co-occurrence human identity classification and
generation of skeleton data. The proposed framework
consists of a co-occurrence classification network (HCN-ID)
and a synthetic data generation framework (AAIRS-GAN).
We demonstrate and evaluate the AAIRS framework in two
pipelines for assessing the realism of generated synthetic data
and investigating the effect of synthetic data augmentation on
HCN-ID classification performance. The first pipeline
simultaneously generates labeled synthetic skeleton data with
the AAIRS-GAN and evaluates this data with the HCN-ID
score. The second pipeline trains the HCN-ID on a mixture
of real and synthetic data by providing a feedback structure
from the set of synthetic skeleton data to the HCN-ID training
framework.

The AAIRS framework demonstrates hierarchical co-
occurrence learning and generation of human identity
features from skeleton data with higher than baseline HCN-
ID score. Additionally, the AAIRS framework demonstrates
significantly higher 10-fold cross validation mean accuracy
with synthetic data augmentation when compared to the
HCN-ID without data augmentation. The preliminary results
reported show the feasibility of our baseline and data-
augmented training of the HCN-ID model as well as
generation and evaluation of AAIRS-GAN samples. Future
work will consider transfer learning from larger benchmark
skeleton datasets to improve the performance of the HCN-ID
and AAIRS-GAN. Leveraging information learned from a
large, diverse, and class-balanced dataset may improve the
overall performance of the AAIRS framework. As an
extension of the HCN-ID score, we plan to implement an
appropriate Fréchet Inception Distance inspired metric that
takes the distribution of real images into account when
evaluating the synthetic samples. In the future, we plan to

compare our framework to other methods for human
identification using skeleton data.
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