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Abstract—Human skeleton data provides a compact, low 

noise representation of relative joint locations that may be used 

in human identity and activity recognition. Hierarchical Co-

occurrence Network (HCN) has been used for human activity 

recognition because of its ability to consider correlation between 

joints in convolutional operations in the network. HCN shows 

good identification accuracy but requires a large number of 

samples to train.  Acquisition of this large-scale data can be time 

consuming and expensive, motivating synthetic skeleton data 

generation for data augmentation in HCN. We propose a novel 

method that integrates an Auxiliary Classifier Generative 

Adversarial Network (AC-GAN) and HCN hybrid framework 

for Assessment and Augmented Identity Recognition for 

Skeletons (AAIRS). The proposed AAIRS method performs 

generation and evaluation of synthetic 3-dimensional motion 

capture skeleton videos followed by human identity recognition. 

Synthetic skeleton data produced by the generator component 

of the AC-GAN is evaluated using an Inception Score-inspired 

realism metric computed from the HCN classifier outputs. We 

study the effect of increasing the percentage of synthetic samples 

in the training set on HCN performance. Before synthetic data 

augmentation, we achieve 74.49% HCN performance in 10-fold 

cross validation for 9-class human identification. With a 

synthetic-real mixture of 50%-50%, we achieve 78.22% mean 

accuracy, significantly (p<0.05) outperforming the baseline 

HCN performance. The proposed framework demonstrates the 

feasibility of combining a synthetic data generation architecture 

with hierarchical co-occurrence feature learning for human 

identity recognition.  

Keywords—Security, Human Identity Recognition, 

Skeleton Data, Motion Capture Data, Generative Adversarial 

Network, Auxiliary Classification, Synthetic Skeleton Data, Co-

occurrence 

I. INTRODUCTION

Modern sensing technologies enable capture of efficient, 

high-quality representations of human structure and dynamic 

human motion. Among these representations, articulated 

human pose, also known as skeleton, provides a rich source 

of biometric and behavioral information. Sequences of 

skeleton frames provide an inherently compact and robust-

to-

noise representation of human pose over time. Recent 

advances in deep learning have facilitated apposite 

processing of skeleton sequence data for tasks including fall 

detection [1], human action recognition [2], and human 

identity recognition [3]. In this work, we focus on the task of 

human identity recognition. Skeleton-based identity 

recognition offers quick, unintrusive biometric authentication 

for security applications. 

While originally designed for image data, convolutional 

neural networks (CNNs) have also demonstrated outstanding 

ability to extract high-level features from skeleton data [4]. 

To use skeleton sequence data with CNNs, the skeleton is 

presented as an image-like representation with columns for 

each joint, rows for each video frame, and a channel for each 

3D spatial coordinate, i.e., x, y, z. CNNs extract features from 

local receptive fields and perform global feature aggregation 

over the channel dimension. Because the joints are typically 

given as channels when presented to the CNN, standard CNN 

processing of these image-like representations of skeletons 

miss important inter-joint correlation. To capture co-

occurrence, features that exist between skeleton joints, Li et 

al. [4] introduce the Hierarchical Co-occurrence Network 

(HCN) framework for CNN-based action recognition from 

skeleton data. The HCN framework rearranges the feature 

map dimensions within the intermediate layers of the network 

to extract features based on global aggregation over the 

different joints. Features related to the motion of the joints 

across frames are also learned explicitly using a parallel 

network branch that operates on a calculated derivative of the 

skeleton video over time. Given that HCN captures joint co-

occurrence and dynamics of motion features, we adapt the 

HCN for our task of human identity recognition from 

skeleton videos.  

The stringent reliability and validity requirements of 

security applications and the tendency of deep learning 

models to overfit on small data both motivate the need for a 

large and diverse training set for deep learning-based human 

identity recognition. However, depending on the acquisition 
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technology, constructing such datasets may be time 

consuming and expensive. Real datasets are also prone to 

missing data, including missing frames and unknown or 

outlier joints within a frame. This missing data and noise may 

corrupt data samples, further reducing dataset size or 

reliability. To overcome these challenges, synthetic skeleton 

data may be generated to augment smaller training sets. 

Generative adversarial networks (GANs) [5] have been 

proposed for synthetic skeleton action generation [6-8]. 

GANs consist of two networks in competition. A generator 

network synthesizes samples from noise and a discriminator 

network aims to distinguish synthesized examples from real 

examples. Multiple variants of GAN have been proposed, 

including conditional GAN (cGAN) [9] which enables the 

generation of class-conditioned samples, and Auxiliary 

Classifier GAN (AC-GAN) [10], which improves upon 

cGAN by adding an auxiliary output to the discriminator to 

classify synthetic examples. 

The most widely used quantitative evaluation metrics of 

synthetic data are built upon the Inception V3 network 

pretrained on the ImageNet dataset. The Inception V3 

network [11] is a deep CNN model trained for classifying 

over 1000 categories of natural images in the ImageNet [12] 

database. Metrics such as the Inception Score [13] and 

Fréchet Inception Distance [14] use the output of an 

intermediate or final layer of Inception V3 to compute scores 

quantifying the realism of the generated data. However, it has 

been noted that using the Inception V3 model for evaluating 

generative models trained on datasets outside of ImageNet 

yields misleading results [15, 16]. To overcome this 

limitation, we propose a within-dataset metric for synthetic 

skeleton data evaluation inspired by the Inception Score.  

To address the need for synthetic skeleton data to improve 

the robustness of human identification of a given dataset with 

only a few hundred samples per identity class, we propose an 

AC-GAN and HCN hybrid framework: the Assessment and 

Augmented Identity Recognition for Skeletons (AAIRS) 

framework. This framework generates synthetic skeleton 

videos and performs realism assessment of these samples. 

The framework uses the synthetic samples as feedback to the 

classifier to fine-tune the human identity recognition model. 

Our AAIRS framework incorporates an HCN model trained 

for human identity recognition (HCN-ID) and AC-GAN 

model adapted for identity-conditional synthetic skeleton 

generation (AAIRS-GAN).  To our knowledge, our approach 

is the first to bring generative adversarial and hierarchical co-

occurrence learning together in a single framework. We train 

and evaluate our framework using a challenging ground truth 

skeleton dataset extracted from lidar motion capture data 

[17]. The dataset contains 9 subjects performing 2 trials of a 

simple walking movement in sequences consisting of a few 

hundred frames. We consider two experimental pipelines: 1) 

HCN-ID based realism assessment of AAIRS-GAN 

generated samples, and 2) training and evaluation of HCN-ID 

under synthetic data augmentation. In our first pipeline, we 

use the trained HCN-ID model to compute a within-dataset 

realism assessment score on synthetic skeleton samples 

generated by the AAIRS-GAN model. In our second pipeline, 

we retrain HCN-ID on a mixture of real and synthetic data 

samples and evaluate the effect of different training set 

compositions on performance. Our contributions are as 

follows: A) adapt, train and evaluate HCN for identity 

recognition from skeleton gait data, B) adapt and train AC-

GAN to generate synthetic skeleton data for identity 

recognition, C) introduce and compute an appropriate within-

dataset realism metric for synthetic skeleton data, and D) 

augment HCN training set with synthetic samples and 

investigate the effect of the percentage of synthetic samples 

on identity classification performance. 

The remainder of this paper is structured as follows. 

Section II discusses relevant background on deep learning for 

skeleton data, the HCN framework, generation of synthetic 

data using AC-GAN, and Inception Score for evaluation of 

synthetic data. Section III presents our AAIRS framework. 

Models and procedures for human identity classification, 

synthetic skeleton generation, and realism assessment of 

generated data are detailed. Section IV describes the two 

experimental pipelines and discusses the results. Section V 

concludes and suggests directions for future work. 

II. BACKGROUND

A. Deep Learning for Skeleton Data

Most of the prior work on deep learning for skeleton data

utilize Recurrent Neural Networks (RNNs) with Long-Short 

Term Memory (LSTM) for modeling temporal motion. Zhu 

et al. propose a fully connected LSTM network for learning 

co-occurrence features [4]. Song et al. introduce hierarchical 

co-occurrence with spatial and temporal attention modules 

for selecting dominant joints and assigning importance 

weights to individual frames, respectively [18]. However, 

LSTM networks model temporal structure over the input 

space in isolation without accounting for higher order 

features that may explain some of the underlying variation in 

the data [19].  

Du et al. [20] and Ke et al. [21] use CNNs to perform 

skeleton-based action recognition. Both studies perform 

transformations on the raw skeleton data to obtain an image-

like representation prior to feeding the data into the CNN. Du 

et al. [20] encode temporal movement and skeleton joints as 

rows and columns, respectively, and x, y, z dimensions are 

considered as the channels.  Ke et al. [21] propose a similar 

representation but perform a coordinate transformation and 

rescaling to represent x, y, and z channels as gray-scale 

images. The modeling of joint co-occurrence features in these 

methods is limited by the receptive field of the CNN, i.e., 

joint co-occurrence information is learned for neighboring 

joints only. The HCN model proposed by Li et al. [4] 

addresses this limitation by modeling global co-occurrence 

and achieves state-of-the-art results on action recognition 

benchmark data.  

B. HCN Framework

The HCN model with weights �� takes a video with one

or more skeleton views ��, … , ��  where each �� ∈  � ∈
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ℝ
,�,�  for �  joints, � � 3 axes for the 3D coordinates of a 

joint, and � frames per sample. HCN takes these skeletons as 

input and produces a vector of estimated probabilities �� for 

each class as in equation (1).  

 

�� � ����, … , ����� � ����, … , ��|���              (1) 

 

Skeleton motion is modeled explicitly as follows. Given 

each input � ∈ ℝ
,�,�  to the HCN network � , the network 

calculates the derivative w.r.t. time � ∈ ℝ
,�,�  using the 

differencing formula in eq. (2).  

 

�  �  !"
!#  $  ��∶ , ∶ , 2: �� ( ��∶ , ∶ , 1: � ( 1�       (2) 

 

The HCN contains 2 parallel branches that are optimized 

separately. Branch 1 takes ��, … , ��  and branch 2 takes 

� �, … , � � , respectively. In both branches, the HCN performs 

hierarchical aggregation of feature information. First, a point-

level aggregation over the x, y, and z channels is performed 

using 1 * 1  and 1 * �  convolutions. Then, aggregation is 

performed globally across all joints. A permutation of the 

dimensions of �  and �  occurs in each branch to orient the 

joint dimensions of each sample to the channel dimension of 

the convolutional filter inputs. The concatenated output of the 

parallel branches undergoes further convolutional and fully 

connected operations prior to classification.  

C. AC-GAN Framework 

AC-GAN is an image synthesis framework from the GAN 

family of generative models. Like cGAN, AC-GAN is a 

conditioned model that incorporates label selection as a part 

of the synthetic data generation. In addition to the noise input, 

the AC-GAN generator also takes a class label as a 

conditioned input. The AC-GAN discriminator performs 

classification of images as real or generated. In addition to the 

discriminator, an auxiliary classifier is used to classify 

generated images into image classes. In practice, the 

discrimination and auxiliary classification tasks are 

performed by a single discriminator network optimized for 

both tasks. The goal of AC-GAN is to generate synthetic data 

that reflects the mix of classes present in the real data. Let eq. 

(3) represent the distribution of synthetic data �  for given 

label +.  
 

�-./0|+ ~ 2�� � �|+ � ��                      (3) 

 

The AC-GAN generator with weights �3  can be 

described as in eq. (4) where given input class label �4 ∈
5�� , … �67  with 8  possible classes and noise vector 

9⃑ ~ ;<=>9⃑ | ? � 0A⃑  , Σ � CD I F.  
 

�-./0 � G��4 , 9⃑ | �3�                           (4) 

 

The AC-GAN discriminator with weights �H  can be 

described as in eq. (5) where input � is drawn either from real 

data �I0.J  or synthetic generated data �-./0 . Similar to the 

HCN output in eq. (1), the discriminator outputs a vector �� 

for the estimate of the probability for each class �4 , as well as 

an estimate K̂ of the probability that the source of the sample 

is real. Note that the estimate MN of the probability that the 

source of the sample is fake is implied as MN � 1 ( K̂. 

 

��, K̂ � O��|�H��                            (5) 

 

The AC-GAN framework uses two separate loss 

functions. PQ is the log-likelihood of correct source, while PR 

is the log-likelihood of correct class. The discriminator 

attempts to maximize PQ S P�  while the generator is trained 

to maximize PQ ( P� .  PQ  and P�  can are defined in eq. (6) 

and eq. (7) respectively. Fig. 1 shows the network 

architecture for both the generator and discriminator used by 

the AC-GAN based framework in this paper.  

 

PQ � TUlog�K̂� | � ∈ �I0.JY S   
 T�log�1 ( K̂� | � ∈ �-./0�                   (6) 

 

P� �     TUlog���4� | + � �4Y                           (7) 

 

 

Fig. 1. AC-GAN generator (left) and discriminator (right) architectures. 
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D. Inception Score 

The Inception Score is the most widely adopted metric for 

quantitative evaluation of the realism of synthetic data. While 

the Inception Score is computed using the ImageNet 

pretrained Inception V3 network, the mathematical 

framework for computing the score is general enough such 

that any trained classification model may be substituted for 

Inception V3. In general, a classification network trained on 

a specific problem domain may be used to evaluate the 

realism of GAN-generated examples in the same domain. 

Given a set of synthetic data �-./0 , generated by a GAN, we 

evaluate realism using eq. (10). The idea is to compare the 

conditional distribution given by the classifier, e.g., �� �
����, … , �����  from the classifier �  in eq. �1�, to the 

marginal distribution of the labels as given in eq. (8). The 

marginal distribution is estimated using the expected 

conditional distribution �� � ���|���  as in eq. (9), where 

2��� is simplified assuming a uniform distribution. We use 

KL divergence as a metric of the similarity of these 

distributions and then take the expected value by averaging 

over a large set of = examples of synthetic data as in eq. (10). 

We take 2 to the power of the final expectation in eq. (10) to 

convert from units of entropy to perplexity.  

 

+ ~ 2�+� � f 2��, +�g� 
h                       (8) 

 

2�+� �  i 2�� � �, +�g�
 

h
� 

f 2�+|� � ��2�� � ��g� 
h $            (9) 

                         2j�+� � f ���|���2���g� 
h �    

                       TU���|���Y � ∑ ���|���" /=   
    

                               8mno�pqrm snrKo �  

T tuP v���|��� || 2j�+�wx �                     (10) 

                      ∑ uP����|��� || 2j�+��/="   

III. METHODS 

A. HCN for Human Identity Classification (HCN-ID) 

The HCN-ID model follows the same structure as the 

HCN model architecture in [4]. The number of output units 

in the classification layer is chosen to reflect the number of 

identity classes.  

Consider the data distribution of real skeleton data in eq. 

(11). Each sample skeleton sequence is composed of 

dimensions � joints, � � 3 axes for the 3D coordinates of a 

joint, and �  frames per sample such that � ∈ ℝ
,�,� . Each 

sample has a corresponding subject identity, + ∈ 5�� , … , �67 

for 8 subject identity classes.  

 

�, + ~ 2I0.J�� � �, + � ��                  (11) 

 

Given a single subject input, the HCN-ID model estimates 

the marginal distribution of the real data in eq. (12). The 

HCN-ID model takes a single input sample sequence � and 

estimates a vector of probabilities for each of the possible 

subjects as in eq. (13). 

 

   +|� ~ 2�+ � �|� � ��                              (12) 

 

 

�� � ����, … , ����� � ���|���                   (13) 

 

B. AAIRS-GAN Synthetic Skeleton Data Generation and 

Realism Assessment via HCN-ID Score 

The overall pipeline for synthetic skeleton generation and 

realism assessment is summarized in Fig. 2. Our AAIRS-

GAN model for synthetic skeleton data generation follows 

the AC-GAN training framework in [10]. The generator 

accepts two inputs, noise vector 9⃑ ~ ;<=>9⃑ | ? � 0A⃑  , Σ �
CD I F and input class label �4 ∈ 5�� , … �67, to yield �-./0 ∈
ℝ
,�,� . As in eq. (5), the discriminator performs 

discrimination and auxilliary classification tasks. In the 

discrimination task, the estimate K̂  is the probability that 

discriminator input �  corresponds to �I0.J ∈ ℝ
,�,� .  In the 

auxiliary classification task, �� corresponds to the predicted 

class label.  

For realism assessment, each generated skeleton sample 

is input into the pretrained HCN-ID model to output a vector 

of predicted probabilities as in eq. (13).  Then, the HCN-ID 

outputs for a set of = generated samples are used with eq. 

(10) to compute the HCN-ID score, a measure of within-

dataset synthetic skeleton data realism. The HCN-ID score is 

an approximation of the AAIRS-GAN generator realism with 

larger = yielding a better approximation.  

C. Synthetic Data Augmentation of HCN-ID 

The pipeline for synthetic data augmentation of the HCN-

ID model is shown in Fig. 3. A pool of synthetic samples is 

obtained from the AAIRS-GAN generator. A mixture of real 

and synthetic samples is formed such that ;%  synthetic 

samples are distributed evenly across all classes. HCN-ID is 

then trained on this synthetic data augmented training set. A 

10-fold cross validation scheme is used to assess the 

performance of the HCN-ID with synthetic data 

augmentation. Model performance is assessed for different 

compositions of real and synthetic data in the training set. 

Steps of 10% are considered as values of ; with a minimum 

synthetic-real mixture of 10%-90% and maximum synthetic-

real mixture of 50%-50% 

IV. RESULTS AND DISCUSSION 

A. Experimental Pipelines 

To evaluate the proposed AAIRS framework, we consider 

two experimental pipelines. The first pipeline, shown in Fig. 

2, assesses the realism of the synthetic samples generated by 

the AAIRS-GAN using the HCN-ID score. The HCN-ID 

score is used to quantify the realism of the synthetic samples 

being produced by the AAIRS-GAN. 

The second pipeline is shown in Fig. 3 and utilizes a 

mixture of real and synthetic samples for synthetic data 

Authorized licensed use limited to: Old Dominion University. Downloaded on January 30,2023 at 21:40:25 UTC from IEEE Xplore.  Restrictions apply. 



augmented training of the HCN-ID model. This second 

pipeline represents the AAIRS hybrid training framework 

incorporating real and synthetic samples to increase sample 

size with the goal of improving human identity classification. 

B. Dataset 

For training and evaluation of the proposed AAIRS 

framework, we consider the challenging ground truth 

skeleton dataset extracted from lidar motion capture data in 

[17]. This dataset contains a total of 176 skeleton samples 

from 8 � 9 subjects following the distribution shown in Fig 

4. Each sample consists of � � 13  joints animated over a 

continuous � � 3  frame segment from multiple video 

sequences of the subjects walking in a fixed position, 

centered at the origin of the 3-dimensional space. The data 

are normalized between -1 and 1, maintaining the relative 

lengths between joints over all subjects in the dataset. The 

samples are distributed into training and testing sets 

following a 10-fold cross validation scheme.  

C. HCN-ID Results 

We train the HCN-ID model using the ADAM 

optimization algorithm with a learning rate of 0.001 for 50 

epochs and a batch size B = 64. The 10-fold cross validation 

results for 9-class classification of human identity for the 

HCN-ID and Zero-Rule [22] baseline model are shown in 

Table I. The mean test accuracy over the 10 cross validation 

test folds is 74.49%, outperforming the baseline model by 

56.71% with similar standard deviation. Fig. 5 (a) and Fig. 5 

(b) show representative plots displaying the convergence of 

accuracy and loss, respectively, during training.  

D. AAIRS-GAN Results 

The AAIRS-GAN framework is trained using the ADAM 

optimization algorithm and a batch size B = 64. Visual 

inspection of the synthetic skeleton videos generated by the 

AAIRS-GAN demonstrates that the generator has learned to 

produce skeletons with realistic anatomy i.e. head placement 

above the shoulders. Fig. 6 shows a series of representative 

sequence of frames produced by the AAIRS-GAN. For 

Fig. 4. Dataset Class Distribution 

TABLE I.     COMPARISON OF HCN-ID AND ZERO RULE BASELINE 

MODEL 10-FOLD CROSS VALIDATION MEAN ACCURACY 

Dataset Mean Accuracy 

Zero Rule (Baseline) 17.78% ± 2.49% 

HCN-ID 74.49% ± 2.64% 
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Fig. 2. Skeleton Generation and Realism Assessment Pipeline 

 

Fig. 3. Pipeline for Synthetic Data Augmentation of HCN-ID 
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comparison, a representative real skeleton sequence is shown 

in Fig. 7. The synthetic skeletons in general exhibit correct 

relative anatomical joint locations with legs, arms, and torso 

positioned correctly. 

E. HCN-ID Score for Synthetic Skeleton Realism 

Assessment  

HCN-ID scores are computed on the synthetic data 

generated based upon the training set for each 10-fold cross 

validation split. The HCN-ID model is trained on the same 

training set as the AAIRS-GAN model. The HCN-ID score 

ranges from 1 (worst score) to 9 (best score) in theory based 

on the underlying perplexity for 9 classes. We compute the 

HCN-ID score using 100 generated samples per class or = �
900. 

Table II shows the average HCN-ID scores of the real and 

synthetic data. The real data scores an average of ~8 out of 9, 

and the synthetic data scores an average of ~4. The synthetic 

data score is greater than the minimum score of 1, 

demonstrating that the AAIRS-GAN has learned a subset of 

features underlying the variation of the subject data. Further 

improvements will seek to increase the HCN-ID score of 

AAIRS-GAN generated data to come closer to matching the 

realism of the ground truth data. 

It is important to note that the performance of the HCN-

ID model will affect the computation of the HCN-ID score. 

Improving HCN-ID performance will yield a better 

measurement of synthetic data realism.  

F. AAIRS Hybrid Training Framework 

The AAIRS hybrid training framework is trained and 

tested using the same previously mentioned 10-fold cross 

validation training and test sets. The synthetic data is 

generated using the AAIRS-GAN trained on the same ground 

truth as the HCN-ID. This prevents test set information from 

leaking into the HCN-ID training set through the AAIRS-

GAN generator. The synthetic data is then mixed in with the 

real training data in intervals of 10% ranging from 0% 

(baseline) to 50% synthetic data. We train the synthetic data 

augmented HCN-ID models using the ADAM optimizer with 

a learning rate of 0.001 for 50 epochs.  

The AAIRS Hybrid Training results are shown in Table III. 

The results suggest that augmenting the HCN-ID with 

AAIRS-GAN generated synthetic data substantially 

improves performance. The best performance of 78.22% is 

achieved by 50%-50% synthetic-real mixture. This represents 

a significant (paired t-test with t = 2.2767, p = 0.0353) 

improvement over the 74.49% accuracy achieved by the 0%-

100% synthetic-real mixture for 10-fold cross validation. 

 
Fig. 6. Representative Synthetic Skeleton Frame Sequence Example 

 
Fig. 7. Representative Real Skeleton Frame Sequence Example 

 

 
(a) 

 
(b) 

Fig. 5. Representative training (a) accuracy and (b) loss plots during 

HCN-ID training 
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V. CONCLUSION AND FUTURE WORK 

This work presents the AAIRS framework for 

hierarchical co-occurrence human identity classification and 

generation of skeleton data. The proposed framework 

consists of a co-occurrence classification network (HCN-ID) 

and a synthetic data generation framework (AAIRS-GAN). 

We demonstrate and evaluate the AAIRS framework in two 

pipelines for assessing the realism of generated synthetic data 

and investigating the effect of synthetic data augmentation on 

HCN-ID classification performance. The first pipeline 

simultaneously generates labeled synthetic skeleton data with 

the AAIRS-GAN and evaluates this data with the HCN-ID 

score. The second pipeline trains the HCN-ID on a mixture 

of real and synthetic data by providing a feedback structure 

from the set of synthetic skeleton data to the HCN-ID training 

framework.  

The AAIRS framework demonstrates hierarchical co-

occurrence learning and generation of human identity 

features from skeleton data with higher than baseline HCN-

ID score. Additionally, the AAIRS framework demonstrates 

significantly higher 10-fold cross validation mean accuracy 

with synthetic data augmentation when compared to the 

HCN-ID without data augmentation. The preliminary results 

reported show the feasibility of our baseline and data-

augmented training of the HCN-ID model as well as 

generation and evaluation of AAIRS-GAN samples. Future 

work will consider transfer learning from larger benchmark 

skeleton datasets to improve the performance of the HCN-ID 

and AAIRS-GAN. Leveraging information learned from a 

large, diverse, and class-balanced dataset may improve the 

overall performance of the AAIRS framework. As an 

extension of the HCN-ID score, we plan to implement an 

appropriate Fréchet Inception Distance inspired metric that 

takes the distribution of real images into account when 

evaluating the synthetic samples. In the future, we plan to 

compare our framework to other methods for human 

identification using skeleton data.  
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