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Abstract: Quantum cascade lasers (QCLs) have broken the spectral barriers of semiconductor lasers
and enabled a range of applications in the mid-infrared (MIR) and terahertz (THz) regimes. However,
until recently, generating ultrashort and intense pulses from QCLs has been difficult. This would
be useful to study ultrafast processes in MIR and THz using the targeted wavelength-by-design
properties of QCLs. Since the first demonstration in 2009, mode-locking of QCLs has undergone
considerable development in the past decade, which includes revealing the underlying mechanism
of pulse formation, the development of an ultrafast THz detection technique, and the invention of
novel pulse compression technology, etc. Here, we review the history and recent progress of ultrafast
pulse generation from QCLs in both the THz and MIR regimes.

Keywords: quantum cascade lasers; mode-locking; ultrafast dynamics; terahertz and mid-infrared;
semiconductor lasers; pulse compression; laser physics

1. Introduction

Quantum cascade lasers (QCLs) are electrically pumped compact semiconductor light
sources that were first demonstrated in the mid-infrared in 1994 by Faist et al. at Bell
Lab [1] and in the terahertz (THz) frequency range by Kohler et al. at Scuola Normale
Superiore in 2002 [2]. The QCL concept has enabled powerful and compact coherent light
sources in previously inaccessible or unpractical mid-infrared and THz regions of the
electromagnetic spectrum. In the mid-infrared area, QCLs have achieved an impressive
performance with more than 5.6 W output power from a single facet [3-6], and with
high wall-plug efficiency up to 31% at room temperature (RT) in a continuous wave (CW)
operation [7]. Besides, high beam-quality single-mode long-wave infrared (LWIR) QCLs
with record light extraction (2.0 MW ecm~2 sr=! for A &~ 10 um, 2.2 MW cm~2 sr~! for
A= 9 um, 5.0 MW cm ™2 sr—! for A =~ 8 um) from a single facet in CW operation at 15 °C
have also been demonstrated [8]. These results mark an important milestone in the lighting
capability of inter-sub-band semiconductor lasers in the mid-infrared spectral ranges.
Beyond the Restrahlen band (>50 um), QCLs have also shown remarkable development:
high output power over 1 W, far-field engineering on metal-metal waveguide, quantum
limited linewidths and self-generated frequency combs have been demonstrated [9-13].
Although there remain challenges, the further development and exploitation of QCLs is
crucial due to the unparalleled success of these devices in terms of their output power and
wavelength agility in a compact, potentially inexpensive and user-friendly geometry.
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Mode-locking of QCLs enables the gathering of mid-infrared and THz energy on a
very short timescale and generation of periodic light pulses in a long-term time domain.
It offers unique conditions and an extreme environment for the development of cutting-
edge technology, the test of fundamental physics, the examination of relativity theory, and
expansion of the boundaries of human cognition, etc. [14-18]. Unlike traditional semi-
conductor lasers, mode-locking of QCLs has proven to be extremely challenging due to
its ultrafast gain recovery time, which is more than one order of magnitude smaller than
the round-trip time of photons that are circling in the laser cavity [19-21]. However, this
stumbling block was overcome in 2011 by injecting a round-trip electrical modulation to
force pulse formation within the laser cavity [22]. Thereafter, ultrafast QCLs have under-
gone considerable development, including the explanation of the underlying physics of
mode-locking [23-25], pulse shortening by a novel dispersion compensation technique [26],
and other pulse-generation and compression techniques [24,27,28].

Here, we focus on discussing the development of ultrafast pulse generation from QCL,
and divide the main content of this review paper into four sections, as follows: (I) in the
first section, we give an introduction to the ultrafast dynamics of QCLs from the theoretical
aspect [28-31]; (II) in the second section, we present the high-speed modulation of QCLs
using a radio-frequency (RF) injection locking; (III) in the third section we present the
mode-locked QCLs [22,32-35]; (IV) in the fourth section, we present the state-of-art results
of ultrafast pulse generation from THz QCLs [26], and (V) in the fifth section we present
pulse generation in MIR-QCLs by applying novel compression techniques [24,27].

2. Ultrafast Dynamics of QCLs

As unipolar devices, photon emission in QCLs is based on intersubband transitions
in the conduction band of quantum heterostructures. They exhibit ultra-short carrier
lifetimes that are on the same (picosecond) scale as the photon lifetime, which leads to the
absence of the relaxation resonant oscillations in the transient response of these devices
and ultrafast gain dynamics. The ultrafast gain dynamics of QCLs, combined with Kerr
nonlinearities, the group velocity dispersions (material dispersion, waveguide dispersion,
and gain dispersion), and spatial hole burning determine the pulse formation dynamics
in QCLs. These intersubband transitions feature strong third-order optical nonlinearities,
due to the large optical matrix element between the excited states and the empty lower
states, allowing parametric processes due to four-wave mixing (FWM) [36]. Through
the cascade FWM process based on multiple laser longitudinal modes and low group
velocity dispersion (GVD), free-running combs with frequency modulations have been
achieved in MIR-QCLs (this is frequency modulated QCLs and hence in principle no pulse
generation) [36,37]. In addition, it has been found that a finite linewidth enhancement
factor in fast gain medium lasers leads to a considerable Kerr nonlinearities, more so than in
interband lasers with slow gain dynamics, which means that shorter carrier lifetimes lead
to a wider FWM gain bandwidth, which in turn supports wider multi-mode emission [37].
Carrier lifetimes in THz QCLs are an order of magnitude higher than that in MIR-QCLs,
which in principle make pulse formation in THz QCLs easier than in MIR-QCLs. However,
the semiconductor material is more dispersive at THz frequencies than in mid-infrared
frequencies due to stronger coupling with the crystalline lattice (for instance, GVD of GaAs
at 40 K at 3.5 THz is 250 times higher that at 7 pm) [12], thus dispersion compensation
techniques, such as a chirped corrugation etched into the facet of the laser [12] or GTIs [26],
have to be considered to form stable pulses. In multi-mode QCLs with Fabry—Perot cavities,
the waves travelling in forward and backward directions are coupled as they share the
same gain medium, which gives rise to spatial hole burning (SHB) that favors multi-mode
emission and can help to further reduce the pulse duration of the short pulses in QCLs.
However, on the other hand, SHB also results in pulse instabilities and non-stationary
pulse generation [38]. Furthermore, it has been concluded that the combined effects of SHB,
GVD and Kerr nonlinearities due to asymmetric gain give rise to the recently observed
linear frequency chirp [39]. The self-starting frequency combs generated in QCLs can be
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improved by RF injection through active mode-locking [22,23] and even with harmonic
mode-locking [28], which provides possibilities for higher repetition rates beyond the
limitation from the laser cavity length. Recently, soliton structures have been observed in
ring QCLs, which opens interesting physics questions in the lasers with fast gain dynamics.

The theoretical models used to investigate multi-mode dynamics and QCL combs
include reduced rate equations [40,41], Maxwell Bloch equations [25,42], and Master equa-
tions [29,39,43,44]. The multi-mode reduced rate equations (Equations (1)—(4)) are based on
interactions between electrons and photons through stimulated emissions, spontaneous
emission, and stimulated absorptions. This model is very suitable for studying the time-
resolved electron and photon transport dynamics and the steady-state analysis of the
laser, such as light-current-voltage (LIV) curves. This model has been used to study the
frequency tuning mechanisms [40] and ultra-fast mode switching dynamics in coupled-
cavity QCLs [29]. It is also adapted to include the external perturbations into the model,
such as optical injections and optical feedback effects. The model has been used to study
single-mode and multi-mode dynamics under optical feedback in QCLs [41]. However, as
rate equations, this model does not include spatial dependence effects, such as SHB.

dN3(t)
dt
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where N3(t) and N;(t) are the carrier populations in the upper and lower laser levels
of the active medium (ULL and LLL), respectively, and S, (t) and ¢, () are the photon
population and the phase of the electric field in longitudinal mode m. The other input
parameters include the injection efficiencies into ULL and LLL #3 and #, the drive current
I, the number of periods in the active cavity M, spontaneous emission factor Bsp, the carrier
lifetimes 13, 732, 72 and photon lifetime 7, the spontaneous emission lifetime 7p, the
linewidth enhancement factor « and the gain factor for mode m G;,. The gain recovery
time in QCLs can be described by the total carrier lifetime in ULL 73 in this model. The
dependence of the optical gain on the population inversion and the amplitude-to-phase
coupling are also included in this model.

The Maxwell-Bloch equations combine the Bloch equation and the wave equation,
and are a set of equations for the normalized envelope of the electric field, the polarization,
and the population inversion in the gain medium. By considering the polarization of the
electric field, which describes the interactions between the laser field and the gain medium,
this model includes the effects of Kerr nonlinearities through the optical susceptibility. It
also includes the coherent coupling between the populations, such as Risken-Nummedal-
Graham-Haken (RNGH) instabilities induced by the coherent resonant tunneling between
adjacent stages in the active region. In addition, this model has time and spatial (only z
direction) as independent parameters, which can include the SHB effects originated from
the standing waves in the FP laser cavities, which play an important role on multimode
operation and pulse duration reduction in the QCL combs study. This model has been
used to investigate self-starting mode-locking and the formation of optical instabilities in
QCLs [45,46]. However, as a full model, it is difficult to understand the roles of each of the
physical effects on the formed frequency combs or pulses in the QCLs.

The conventional Haus Master equation can be used to study how the pulse shape
varies under the gain dispersion and Kerr nonlinearities in conventional diode lasers
where the gain dynamics are not fast, such that the gain recovery time is longer than one



instabilities in QCLs [45,46]. However, as a full model, it is difficult to understand the
roles of each of the physical effects on the formed frequency combs or pulses in the QCLs.
The conventional Haus Master equation can be used to study how the pulse sha
varies under the gain dispersion and Kerr nonlinearities in conventional diode lasers
where the gain dynamics are not fast, such that the gain recovery time is longer than one
laser round trip time as shown in Figure 1 [47]. Despite its popularity, the Haus Master
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The full width at half maximum (FWHM) of the beatnote signal is dominated by the
frequency jittering of QCL modes. Similar to optical injection locking, by injecting an RF
signal (frp) that is resonant with the FSR or beatnote (fpeatnote) into the QCL system, the
spectral purity and stability of the low-noise external RF signal can be transferred to the
QCL. From the complex amplitude evolution of the RF field in the system, the injection
locking can be described using the following equation [53]:

Z—f = WRr — Aw — wising (6)

The injection-locking theory developed by Adler to describe the behavior of coupled
nonlinear electronic oscillators [53]. However, it is ubiquitous in physical systems involv-
ing frequency locking between several oscillators such as lasers, mechanical oscillators,
gyroscopes, etc. In Equation (6), ¢ represents the phase difference between the RF signal
and the QCL internal electrical beating signal, wgr is the angular frequency of the RF signal,
Aw is the angular frequency of the beatnote, and wry, is the locking range, which can be
further given in the following equation [54]:

_ 2wq | Pinj
TR v

In Equation (7), wy is the free-running oscillation angular frequency, Q is the oscillator
g-factor, P;y; is the injected power of RF source and Py is the optical power within the laser
cavity. When the condition | wrr — Aw | < wy is satisfied, Equation (6) has a steady-state
solution: sing = (wrr — Aw)/wr. In this case, the beatnote is locked to the injected RF
signal and changes with it. When the condition | wrp — Aw | > wy, is satisfied, Equation
(6) will fall out of the locking range and the beatnote will no long be equal to the external
modulation frequency. For mode-locking a QCL, the injected RF frequency and power has
to satisfy the locking conditions given above.

Direct RF modulation was firstly introduced to THz QCL community in 2007 by
Barbieri et al. [55]. They modulated the bias current that was injected into a THz QCL and
observed the appearance of sideband modes in the emission spectrum, with a spacing that
could be continuously tuned up to 13 GHz. The most important phenomena observed
in the experiment was that when the modulation frequency approached the round-trip
frequency of photons circulating in the resonant cavity, the number of QCL sidebands
was considerably increased. This phenomenon, already observed in traditional lasers, was
confirmed in QCL for the first time and was also in agreement with the above injection-
locking theory. According to the Fourier transform, the broadened spectrum can potentially
transfer to short pulses in time domain.

Thereafter, the injection locking of THz QCLs was studied in detail in the same
group [54]. They investigated the longitudinal mode behavior of QCLs under different
external modulation conditions. The first one was to fix the modulation frequency and
change the RF modulation power. The second one was to fix the modulation power and
change the modulation frequency. In both cases, a clear frequency “pulling effect” was
observed as given in Ref [54]. They found a square-root dependence of the locking range
with RF-power in agreement with classical injection-locking theory, as given in Equation
(6). This THz QCL showed a locking range above 200 MHz, also in agreement with the
theory described by Equation (7).

Then, injection locking and harmonic injection locking were also demonstrated in
mid-infrared QCL through direct microwave modulation [56,57]. As shown in the light-
current-voltage (LIV) curve and the spectrum in Figure 2a,c, the QCL with a broadband
emission spectrum spanning 8.0-8.6 um is capable of delivering high optical power of over
2 W from a single facet in CW operation at approximately room temperature. Figure 2b also
gives the scanning electron microscope (SEM) image of the high-power long-wave infrared
QCL. Figure 2d shows the evolution of the beatnote (continuous branch) of the QCL as
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4. Mode-Locked THz QCLs

The class of laser is the dominating factor regarding its transient behavior that deter-
mines how it generates short pulses. For QCL, the photon lifetime (Tcay) in laser cavity is
in the order of magnitude 100-200 ps, while the lifetime of electrons () on excited energy
levels is in the order of a few picoseconds. This condition (Tcay >> T) gives an exponen-
tial growth transient behavior in the switched-on dynamic regime of QCL. Hence, QCLs
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Figure 3. Schematic diagram of mode-locking in time or space domain in a Fabry-Pérot cavity.
Figure 3. Schematic diagram of mode-locking in time or space domain in a Fabry-Pérot cavity.

If we suppose that the electric field of one longitudinal mode, for example the m™h

one, I§ Bg(snppasetititherelectrie fickdiiplane ongitadinal proden{escramplatthodrt
coptherByilt pivdpe tRE tabttetission inddingntbel @eatnic fields of all these resonant

modes together will give us the laser emission in the time domain:
m m ]
E(t) = LEn(t) = ¥ Ape?™Untton) 4 c.c
1 1

= f A2 fotm-8f+8fm)tt¢m] 4 ¢ o
®)

S

= 2Amei[2”(f0+m‘5f)t+¢m+27'f'Afm't] +c.c

Amgi[zn(f0+m‘5f)t+‘bnz(t)] +c.c

I
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where Ay, fi, and ¢y, are, respectively, the amplitude, frequency, and time-independent
phase of the m'™ mode. éw and Aw;, are, respectively, the cold cavity mode spacing and
the frequency-dependent mode shifting induced by hot cavity. ®,, = 27A fiut + ¢y, is the
time-dependent phase of the m™ mode and ¢y, is the time-independent phase of the m™
mode.
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As discussed above, the key mission of mode-locking is to remove or fix the time

depefdeatisphssetbahawe, ek dye misdioapafny add-fodsing islheerembyidentfixlthe time
dependent phase term and make the mode spacing and phase of a laser to be identical.
Generally, when a laser is mode-locked and periodic pulses are generated, J f and ¢, will
be automatically fixed due to the “phase-matched” modulation imposed on these modes.

How can we fix the free spectral range Jf of a laser and keep the modes in phase? There
are many ways that can be used to achieve this, including active mode-locking, passive
mode-locking and hybrid mode-locking. Each type of mode-locking can be also realized by
many different detailed techniques, such as direct current modulation [58], acoustic-optic
modulation [59], saturable absorption [60], and nonlinear Kerr effect [61], etc.

Here we present active mode-locking as it is the most adapted for pulse generation
from QCLs. Generally, we employ an electrical modulation wy;, which is monochromatic
and very close to the mode spacing 6w, to modulate a laser directly (i.e., modulation at the
round trip of the cavity). Firstly, let us consider the modulation effect on the frequency wy,,
as is illustrated in Figure 5a. Before modulation is applied, the free-running emission mode
spacings are not identical dwy; # dwi+1. When modulation is applied, the central frequency
wy, will transfer a part of its energies to its modulated sidebands (wy, + wp, Wy — W)
and will be close in frequency to the two free-running modes (wy; —1, wy+1) of the cavity. If
the modulation power is strong enough, it will force the free-running frequencies (w1,
wm+1) to move towards the sidebands’ frequencies positions at (w + wa, wm — wpy) until
they totally overlap wy,—1 = wm — Wp, W1 = Wi + wp. Finally, the mode spacing will be
locked to the modulation frequency dw;, = dwm41 = wpy, as presented in Figure 5b.

Electric field (a.u)
b o o« &
Intensity(a.u)
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wm, as 1S 1llustrated 1n rigure ca. berore modulation 1s applied, the rree-running €mission
mode spacings are not identical dwm # dwm+1. When modulation is applied, the central fre-
quency wn will transfer a part of its energies to its modulated sidebands (wm + wm, wm —
wwm) and will be close in frequency to the two free-running modes (wm-1, wm+1) of the cavity.
If the modulation power is strong enough, it will force the free-running frequencies (wn-1,
wm+) to move towards the sidebands’ frequencies positions at (a)m + a)M, wm — wm) until 9 0f 18

to the modulation frequency dwm = dwm+ = wm, as presented in Figure 5b.
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generate short pulses using passive approaches.

However, it has been shown recently that these devices can be actively mode-locked,
where the QCL is modulated at microwave frequencies, to generate a train of picosecond
pulses [22,62]. The key to these demonstrations has been the development of new ultrafast
techniques for the THz range. In the first case, detection of the emitted pulse train has
been made possible by phase-locking the QCL repetition rate and carrier frequency to
a high order harmonic of the repetition rate of a mode-locked femtosecond laser. This
technique permits coherent detection of the THz electric field, and allows the control of
the carrier-envelope phase shift of the QCL. Its disadvantage is that it undersamples the
electric field of the pulse train of lasers in the time domain.

An alternative ultrafast detection technique called the “injection seeding technique
has also been developed [63]. This technique has the full capability to measure all the infor-
mation of QCL emission in time domain, including phase, amplitude, intensity, spectrum,
and full electric field, as shown in Figure 6. This provides the possibility to observe di-
rectly pulse-train generation and has paved the way for QCL mode-locking demonstration
directly in time domain.

Immediately after the development of this injection seeding technique, mode-locking
of THz QCLs was realized and demonstrated in time domain [32-34,64]. A series of
important work was published on this research topic, showing that THz QCLs could be
mode-locked for short pulse generation. Figure 7a shows the THz intensity emitted by
an actively mode-locked QCLs over picosecond time scales (without a seed). Both the
initiation of mode-locked pulses and the steady-state regime were examined. For bias
conditions well above threshold, a sinusoidal modulation of the emission was achieved;
however, when the QCL was biased around threshold and the round-trip modulation was
strong, Gaussian-shaped transform limited mode-locked pulses with a full width at half
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pulses [22,62]. The key to these demonstrations has been the development of new ultrafast
techniques for the THz range. In the first case, detection of the emitted pulse train }flflss
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relied on synchronizing the mode-locked pulses to a reference laser and was applied to
15-ps pulses generated by a 2-THz QCL. The pulses from the actively mode-locked laser
were completely characterized in field and in time with a sub-ps resolution, allowing us
to determine the amplitude and phase of each cavity mode. Figure 7c shows the zoom in
of a light pulse from the mode-locked QCL. We can clearly resolve the oscillationicf the

electric field of the faser emission.
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Figure 7. (a) Sampled THz intensity from the QCL. Left: at different currents. Right: a different
modulation power. The detailed explanation on different color can be found in Ref [32] (b) The
electric field (left) and its corresponding spectra (right) of QCL emission with and without round-trip
modulation, respectively. (c) The zoom in of one THz pulse of QCL emission. (Figure (a) from Ref [32],
reprint with the permission of AIP Publishing).

Since then, mode-locked THz QCLs have been experimentally demonstrated using
different detection approaches as discussed above. However, the exact mechanism of mode-
locking in QCLs is still unknown, which strongly limits new avenues to be explored to
generate shorter and more intense laser pulses. Over a series of samples and measurements
by researchers [23], it has been found that, contrary to a long-standing belief that the QCL
gain dynamics are the limiting factor, the key mechanism is in fact a nonlinear interaction
between the pulse generated and the applied electrical modulation [23], as shown in
Figure 8a. This is important information and has permitted new avenues to be explored to
generate shorter and intense pulses.
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F1 gure 8b shows the Maxwell-Bloch simulations of the gain recovery time (T1), It was
carcliiee Shons S MmrsitRloebamulations ablhs st ey e el
was,calg eil: sine Maxw 1s 1}1 nite. 1 erence.| ][Iglﬁ main §im aas%)n .1 aa WO
le{,/eﬁ system [2 "%ﬁe proce re 15 det pth n Re? TB?] }?Iere a ep asing
time about 0.6 ps from the full-width at half—maxnnum of the gain and a total waveguide
loss of 12 em ™! from the first pass gain measurements of the longitudinal optical (LO)
phonon-depopulation-based QCL were used. A time data with a gain recovery time of
~5 ps showed the best ‘fit’ with the data. The ultrafast gain recovery time measured here,
which did not limit pulse generation, could be used as an advantage to generate more
intense and shorter pulses if short intense electrical pulses could be used to switch on
the QCL gain. For example, a Gaussian or Lorentzian profile could be used. Although
difficult to generate electronically, optically generated electrical pulses using ultrafast lasers
combined with ultrafast materials are feasible and these could then be used to switch the
QCL on sub-picosecond time scales. Further techniques that could circumvent the current
limitations would be the application of greater microwave power for higher pulse energies
and the application of hybrid mode-locking techniques to shorten the pulses to sub-10 ps
values. Figure 8c top shows the spectra of a seeded (red) and a mode-locked (black) QCL;
bottom shows the phases of the eight mode-locked longitudinal modes (green triangles).
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5. Pulse Shortening in Mode-Locked THz QCLs

As of 2013, active mode-locked THz QCLs have been demonstrated through different
measures in different groups. However, the pulse width of mode-locked QCLs is quite
large, falling between 10 and 20 ps. Researchers have attempted many different approaches,
including using broad-bandwidth QCLs, designing different geometry structures, adopting
hybrid mode-locking techniques, etc., to compress the pulse width below 10 ps but without
any success despite many active research efforts [54,56,57,65].

In 2016, the research group at TU Wien Vienna showed that a single THz pulses as
short as 2.5 ps could be generated from a QCL [66]. However, this was not a train of pulses,
with subsequent pulses broadening as the QCL was not actively mode-locked.

To realize a mode-locked pulse train, a monolithic on-chip dispersion compensation
scheme to shorten the THz pulses of mode-locked QCLs was proposed [26]. This was
based on the realization of a small coupled cavity resonator that acted as an ‘off resonance’
Gires—Tournois interferometer (GTI), permitting large THz spectral bandwidths to be
compensated, as shown in Figure 9. In this work, the THz pulses of mode-locked QCLs
was considerably shortened from 16 ps to 4 ps. This permitted the compression of THz
pulses of mode-locked QCLs beyond the 10 ps barrier that had stood for several years.
This result marks an important milestone in exploring ultrafast light-pulse generation
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6. Pulse Generation in M1d Infrared QCLs

6. PulsﬁqGCelgsg (gi)%lelr{}c (1}? _1£r rleﬂggd%%ts is far ahead of THz QCLs [3,4,6-8,67], but its
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ulated mid-infrared QCLs using space- and time-domain simulations of coupled density
matrix and Maxwell equations, with resonant tunneling current taken into account. They
showed that it was possible to achieve active mode-locking and stable generation of pico-
second pulses in QCLs by bias modulation of a short section of a monolithic Fabry-Pérot
cavity.
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in 2015 by Belyanin’s group in Texas [25]. They investigated the dynamics of actively
modulated mid-infrared QCLs using space- and time-domain simulations of coupled
density matrix and Maxwell equations, with resonant tunneling current taken into account.
They showed that it was possible to achieve active mode-locking and stable generation of
picosecond pulses in QCLs by bias modulation of a short section of a monolithic Fabry—
Pérot cavity.

In the same year, active mode-locking of mid-infrared QCLs at a wavelength of 5 pum
was experimentally demonstrated in a free-space external ring cavity QCL, as shown in
Figure 10a [24]. The laser operated at room temperature and stayed in mode-locking state
over the full dynamic range of injection currents. Figure 10b,c shows the estimated pulse
width and corresponding spectra using a four-subband model for the QCL active region,
which ranges between 10 ps and 45 ps depending on the cavity length. In the paper, the
theoretical modeling showed that one could achieve much shorter pulses and broader
phase-locked frequency combs by modulating the pumping with shorter and sharper
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Recently, Faist’s group at ETH Zurich also demonstrated an approach capable of
producing near-transform-limited sub-picosecond pulses (630 femtosecond) with several
watts of peak power at a wavelength of around 8pm using a diffraction grating compressor,
as shown in Figure 10d [27]. Starting from a frequency-modulated phase-locked state,
ultrashort high-peak-power pulses were generated via spectral filtering, gain modulation-
induced spectral broadening, and external-pulse compression. They investigated the pulse
width of QCLs emission using a novel asynchronous sampling method, coherent beatnote
interferometry, and interferometric autocorrelation. Figure 10e shows the free-running
and round-trip-modulated optical spectra, respectively. It can be clearly observed that a
considerable increase in spectral bandwidth has been achieved in the latter case. Such a
temporal modulation brings a strong overall amplitude modulation, accomplished with the
decrease of emitted average power due to increased gain saturation, as shown in Figure 10f.
This is another milestone in ultrafast pulse generation from QCLs following the 4 ps THz
pulse generation from mode-locked THz QCLs. These achievements presented above are
also listed in Table 1 given below:

Table 1. Achievements on pulse generation from QCLs.

Pulse Wavelength/ Operation

Width Frequency Tempera- Method Peak Power
ture
2009 Ref. [62] 3ps 6.3 pm 77 K active modulation 0.5pJ
2011 Ref. [22] 10 ps 2.5 THz 20K coherent sampling X
2012 Refs. [32-34] 10-20 ps 2 THz 10K active modulation X
2016 Ref. [24] 1045 ps 5.25 um 300 K external cavity 12 mW
22-2.8 dispersion
2017 Ref. [26] 4ps THa 20K compensation X
2021 Ref. [27] 0.63 ps 8 um 300 K external pulse 45W

compression

7. Conclusions and Perspectives

To conclude, pulse generation through mode-locking of QCLs has undergone consid-
erable development in the past decade. Owing to the fast dynamics, QCLs were thought to
be very difficult to mode-lock. Through active mode-locking and pulse compression, an
ultrashort pulse train as short as 4 ps in THz and 0.6 ps in mid-infrared regime has been
realized from mode-locked QCLs. These results push QCLs to a new milestone, enabling
a range of applications in fundamental research, high-tech industry and defense technol-
ogy, particularly in mid-infrared and THz nonlinear optics where high pulse energies are
typically required. With further development of this technology, many new QCL-based
applications will emerge in the near future, potentially replacing or being complementary
to OPA technologies.
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