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Summary

Currently known structural colors in feathers are caused by light scattering from periodic
or amorphous arrangements of keratin, melanin, and air within barbs and barbules that
comprise the feather vane. Structural coloration in the largest part of the feather, the
central rachis, is rare. Here, we report on an investigation of the physical mechanisms
underlying the only known case of structural coloration in the rachis, the blue rachis of
great argus (Argusianus argus) flight feathers. Spectrophotometry revealed a
reflectance peak at 344 nm that is diffuse and well-matched to the blue and ultraviolet
sensitive cone sensitivities of this species’ visual system. A combination of electron
microscopy and optical modeling confirmed blue coloration is generated by scattering
from amorphous wrinkle nanostructures 125 nm deep and 385 nm apart, a new avian
coloration mechanism. These findings have implications for understanding how novel
courtship phenotypes arise through evolutionary modification of existing ontogenetic

templates.

Introduction

Some of the most diverse phenotypes are those involved in elaborate courtship
displays. For example, birds such as the great argus and birds-of-paradise utilize
complex visual signals, movements, and sounds to attract potential mates’2. Signal
traits in birds represent an ideal system for studying novelty because such traits are
often complex' and involve interactions between genes, physicochemical traits, and
functions?. In particular, avian feather coloration is an emergent phenotype that stems

either from pigment composition or structuring of feather materials*. To date, all verified
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cases of structural coloration in feathers are generated in the smallest parts of feathers:
the barbs and barbules that make up the vanes®8. In feather barbs, non-iridescent
structural colors are generally caused by the 3-D amorphous arrangement of keratin
and air into either channels or spheres’. By contrast, in feather barbules, iridescent
structural colors are generated by thin films®, 1-D multilayer reflectors®, or 2-D photonic
crystals’®''. Despite impressive variation in the size and shape of feather
nanostructures, the classes of nanostructures that can form in barbs and barbules are
distinct: barbules do not develop keratin-air nanostructures as seen in feather barbs,
and barbs do not develop organized layers of melanosomes to coherently reflect light®.
The great argus (Argusianus argus) is a large pheasant that uses its flight
feathers to form a “bowl!” shape as part of a dynamic, multimodal courtship display'?. A
peculiar blue color in the central rachis of primary flight feathers first described by
William Beebe in the early 20th century’? remains the only known case of blue rachis
coloration in birds. Although recently the smooth surface of the rachis of feathers of the
cassowary, a large flightless bird, was shown to cause enhanced gloss (i.e., achromatic
enhancement of specular vs diffuse reflection)'?, there is thus far no published evidence
for nanostructures causing hue changes due to rachis-borne structural coloration.
Rachis coloration in other bird species is due to pigmentation: melanin in black and
brown rachises and carotenoids in the red and yellow shafts of the Northern flicker used
in displays. Given there are no known cases of blue pigments in feathers's, we
hypothesized that blue rachis color is caused instead by a unique instance of structural
coloration in this part of the feather. By contrast, structural colors in feather barbs and

barbules have evolved independently in several groups®°.
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This dramatic difference in coloration mechanisms deployed in feather vanes and
the rachis suggests that i) unique aspects of development, complexity, or scale of
feather barbs and barbules differentially enable their structural diversity relative to that
of the rachis, enabling a greater range of structural coloration; and/or ii) distinct
ontogenic or functional constraints limit the formation of structural coloration in feather
rachises. For example, hydrodynamic constraints have been implicated in barb
microstructure changes in penguins (e.g., flattened barbs, loss of the central vacuole)'®
that may have excluded other mechanisms of generating blue color and led to its
production via novel keratin nanofibers'”.

A first step in studying the origin of any novel form of structural coloration is to
understand the underlying physical mechanism. This approach has shed light on how
nanoscale changes in feather tissue influence plumage color'®'"17 and why some
groups of birds are more colorful than others'19, To study the physical mechanism of
coloration in the blue rachis of the great argus, we used a combination of advanced 3D
imaging, optical modeling, and Raman spectroscopy to investigate potential rachis
nanostructures responsible for the blue coloration. We further compared the observed
argus rachis structure with examples of similar nanostructures in another archosaur

species (i.e., the clade including crocodiles and birds).

Results

Scanning electron microscopy (SEM) of the blue rachis revealed a wrinkle layer only on
the dorsal surface. This wrinkle layer was located atop a solid layer of keratin (Fig. S1b).

It consisted of ridges of keratin 178 + 18 nm in diameter (Fig. 1d). Fast fourier transform
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(FFT) analysis showed a single diffraction ring, indicating these ridges are quasi-
ordered; i.e., they have only short-range order along the surface (Fig. 2a, inset), with a
mean nearest neighbor distance of 385 nm. The observed wrinkle height was 125 nm,
as measured from a 3D tomograph constructed from focused ion beam (FIB) milling and
SEM (Fig. 2b). Wrinkle spacing estimated from FFT analysis of another archosaur
integument (Nile crocodile scales) was >700 nm (see Fig. 3d).

Reflectance spectrophotometry of the great argus rachis revealed a distinct
diffuse peak at 344 nm that extends over a wide range of UV-blue wavelengths (Fig.
2c). Peak wavelength and spectral shape were the same for all angles measured (Fig.
S2). Observed variation in absolute reflectance values at different angles (Fig. S2) is
consistent with instrument uncertainty from repositioning the reflectance probe. To
determine if wrinkle nanostructures cause the observed blue color (Fig. 1a), we
modeled them as a sinusoidal surface (Fig. 2c, inset) defined by two parameters known
to determine optical performance in artificial nanostructures: wrinkle spacing and wrinkle
height. Optical modeling showed that wrinkle nanostructures act as a surface diffraction
grating (Fig. 2c), with wrinkle height (h) modulating brightness (Fig. 4a) and wrinkle
spacing (A) determining color, or hue (Fig. 4b). Simulated wrinkle heights greater than
200 nm or less than 50 nm caused the reflectance peak to flatten out (Fig. 4a);
interestingly, the argus feather was within this optimal range at h = 125 nm. While
ordinary diffraction gratings can only reflect colored light at well-defined angles, our
simulations show that wrinkle nanostructure reflect blue light diffusively (i.e.,
independent of angle) because they reflect light at a wide variety of angles (Fig. S2) due

to the sinusoidally-varying orientation of their surfaces (Fig. 2b,c).
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To begin to understand the developmental origin of the wrinkle nanostructure
layer, we used Raman spectroscopy to compare keratin chemistry between the rachis
interior keratin and the outer surface where we observed blue color (Fig. 5). We
observed a shift in the Amide | band (Fig. 5), suggestive of higher a-keratin content at

the rachis surface?0-2!,

Discussion

A unique mechanism and location for a color-producing nanostructure in birds
Our combined SEM, reflectance spectrum and optical modeling results indicate that the
wrinkle nanostructure found on the cortex surface of the great argus rachis indeed
corresponds to a new mechanism for blue structural coloration in birds. For comparison,
while achromatic structural gloss in the rachis was recently described for the rachis of
the large-bodied cassowary'3, in that case the rachis surface was smooth, not wrinkled.
The reflectance peak of argus nanostructures spans a wide range of angles (Fig. S2)
and over a region of the UV-blue spectrum (Fig. 2c) that is well-matched to the
ultraviolet sensitive cones of closely-related Indian peafowl! (Pavo cristatus)??, and
therefore likely to be highly conspicuous to females during courtship displays. The
wrinkle height found for these feathers also corresponds to the near-optimal value for
producing a reflectance peak.

Although surface gratings generally cause color that is highly dependent on the
angle of light and the viewing angle?®, our simulation results suggest that wrinkle
disorder (Fig. 2a) causes reflection at broader angles (Fig. S2). Other studies have

similarly reported angle-independent color that is caused by disorder in surface
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diffraction gratings. For example, a diffuse scattering effect has been observed in flower
petals?* and peacock spider scales?, in which adding small amounts of disorder to
surface diffraction gratings produce blue colors visible over a range of angles. Research
with artificial materials?® has shown that disorder in wrinkle spacing (not height) causes
angular broadening of diffraction peaks and rearrangement of peak intensities (i.e.,
certain wavelengths more pronounced than others). Given the recent interest in
biomimetic design of structurally-colored surfaces and materials?’-?° and the novel
wrinkle structure we describe here, we anticipate the results of this study will continue to
inspire the engineering design of non-iridescent color-producing structures based on
wrinkling mechanisms. This is especially relevant given the growing interest in applying
structural color to manufactured objects®’, which is facilitated by methods involving only

surface modifications.

Archosaurs are able to produce convergent wrinkle nanostructures

Similar wrinkle nanostructures have been described in the integument of another
archosaur species: the Nile crocodile®'. Crocodile scales had surface structures with
similar degrees of quasi-ordering as the argus rachis (Fig. 3d). However, wrinkle
spacing for crocodile scales based on FFT analysis was >700 nm, which would, in
theory, produce a peak outside the visible wavelengths of light. The evolutionary novelty
in the argus rachis may be a reduction of wrinkle spacing that enables the production of
bird-visible coloration, although this idea would need to be tested by rigorously
comparing keratin surface structures across archosaurs. These shared features of

surface keratin nanostructures among archosaurs (Fig. 3) hint at a possible homology of
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their underlying developmental mechanisms. While wrinkle structures are widely found
in living organisms®233, and are actively under consideration for biomimetic applications
24-36 this is the first example of a biophotonic (i.e., color-producing) wrinkle

nanostructure in birds.

Hypotheses for the development of wrinkle nanostructures

Wrinkle structures form through buckling when there is a difference in elasticity and
stress between adjacent layers®’. Soft keratins (i.e., a-keratin) are known to be
differentially present at scale junctures in outgroup lepidosaurs and archosaurs and in
the outer feather sheath®. Busson et al.3® showed evidence for four distinct layers
making up the cortex of the rachis in a closely related species, the Indian peafowl.
Given that our results suggest higher keratin density and a greater proportion of a-
keratin at the rachis surface (Fig. 5), it is possible that differences in keratin density or
material properties between layers is responsible for formation of wrinkles during
feather growth. Recent theoretical work on the growth of wrinkled surface layers on
cylindrical structures (i.e., similar to a developing feather) suggests that differences in
growth rate between layers has a small effect on wrinkle morphology compared to the
difference in material properties (i.e., shear modulus) between layers*?. An alternative
developmental hypothesis is that wrinkles are formed in the keratin sheath that is
preferentially retained only in the blue part of the rachis. For example, a bluish color in
normally developing pin feathers and in those in which the sheath is abnormally
retained*' is superficially similar to that of the great argus rachis. The flat and wide (6 +

0.25 mm) dorsal surface of argus rachises would be near the outer edge of the
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developing feather and adjacent to the feather sheath. Large rachises would result in
greater surface area for rachis-sheath contact and may increase the probability of
retaining portions of the feather sheath after molt. Testing these ideas will require future
work on the development of wrinkle nanostructures and sheath separation in birds.
Whatever the origin, once evolved, wrinkle nanostructures can produce visual signals

used in elaborate courtship displays'2.

Evolutionary implications of wrinkle nanostructures for visual signaling

If wrinkle nanostructures evolved from a shared developmental pathway in birds, why
did blue rachis coloration evolve only once out of >10,000%? recognized bird species?
One possibility is that there are constraints on achieving wrinkle spacings small enough
to produce bird-visible colors (i.e., less than 700 nm). Testing this idea would involve
extensive SEM imaging of feather rachises across birds. A second possibility is that the
rachis has evolved under strict constraints due to its key structural role. This would limit
the rachis from achieving the kind of modifications allowed for barbs and barbules,
which not only vary widely in coloration but also in nanostructure, number, and shape®.
For example, mechanical constraints on the rachis’s function in flight and displays have
resulted in it consisting of a stiff cylindrical outer shell, the cortex, and a lightweight foam
filling, the medulla*. However, in the unique case of the great argus, it may be that
there are strong selective pressures for both structural features (large rachises) and
signal properties (blue color). Our findings suggest that the great argus rachis
reconciles these constraints by generating color via a surface modification that leaves

its internal structure unaffected (Figs. 2b, S1b). Strong, sustained sexual selection on
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diverse courtship displays is another hallmark of pavonine pheasants'?. Similar to how
several pheasants utilize circular eyespots in courtship displays'?44, blue rachises in the
great argus may accentuate feather patterns and dimensions (Fig. 1a) or may involve
co-option of a developmental by-product of rachis size. Behavioral work will be needed
to clarify if blue rachis color is a key signal in courtship displays and whether females

have innate preference for circular patterns (e.g., radiating rachises or eyespots).

Limitations of the study

We reported a novel coloration mechanism and location of structural color in the great
argus pheasant (Argusianus argus). To date, no other structural color has been
described in the rachis of other bird species. This does not rule out the possibility that
wrinkle structures are present but not capable of producing blue color. More electron
microscope imaging in diverse avian species is needed to establish whether wrinkle

nanostructures are more common across birds than previously recognized.
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FIGURE LEGENDS

Figure 1. Wrinkle nanostructures are located in the blue part of the great argus
flight feather rachis. (a) Displaying male great argus pheasant (Argusianus argus)
showing blue coloration in primary feather rachises and approximate location of feather
sampling (white box). (b) Single flight feather showing approximate locations for SEM
imaging. (c,d) SEM images of the rachis surface revealing wrinkle structures in the blue
part of the rachis (d) and absence of these structures near the base of the feather (c).

Scale bars are 500 nm (c,d). Photo credit: Jeremy Johnson CC-3.0 (a,b).

Figure 2. Diffractive mechanism of color-production in great argus feathers. (a)
SEM images of wrinkle nanostructures present at the rachis surface. (scale bar = 5 ym).
Wrinkle nanostructures appear to be confined to cell boundaries (note irregular grooves
in @) and fast Fourier transform (FFT) analysis of the structure reveals short-range
order, visible as a ring in the FFT (a, inset). (b) 3-D model of wrinkle nanostructure
produced using FIB-SEB. Scale bars in each dimension are 1 um (see lower left). (c)
Reflectance spectrum of the rachis (solid black line) shows a clear 344 nm peak. Optical
model results for different wrinkle spacing values are shown as colored dashed lines,
assuming a sinusoidal surface grating with different spacings (see Supplemental
Methods for details). Inset to (c) shows the electric field magnitude as a plane wave
strikes the surface (model parameters: wrinkle height = 175 nm, wrinkle spacing = 350

nm; keratin refractive index = 1.56).
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Figure 3. Comparative analysis of surficial keratin nanostructures in archosaurs.
Upper images show photographs of the great argus rachis (a) and Nile crocodile scales
(b). Lower images are SEM micrographs of surface nanostructures in the great argus
rachis (c) and crocodile scales (d). All scale bars are 5 ym. Image credits: Josh Moore

CC BY-NC-ND 2.0 (b) and Evan Saitta (d).

Figure 4. Simulated reflectance spectra of wrinkle nanostructures. Heatmaps
showing reflectance (see legend) as a function of wrinkle height h (a) and wrinkle
spacing A (b). For each set of simulations, one parameter was held fixed (horizontal
dashed lines) while the other parameter was allowed to vary. See Methods, Dryad for

details and R code needed to perform optical simulations.

Figure 5. Raman spectroscopy of blue rachis surface. Raman spectra showing
absorbance as a function of wavenumber for the interior (dashed) and exterior part of
the rachis (solid line). Characteristic peaks for distinguishing different keratin forms?° are
indicated as solid vertical lines. Arrow shows location of peak shift for blue rachis in the

region of the Amide | band.
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STAR Methods

KEY RESOURCES TABLE

REAGENT or RESOURCE | SOURCE IDENTIFIER

SEM images This paper doi:10.17632/zpmrt2tmvx.1
Reflectance spectra This paper doi:10.17632/zpmrt2tmvx.1
Code for running optical This paper doi:10.17632/zpmrt2tmvx.1
simulations

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and

will be fulfilled by the lead contact, Chad M. Eliason (celiason@fieldmuseum.org).

Materials Availability

This study did not generate new reagents.

Data and Code Availability

Data - SEM images generated for this study have been deposited on Mendeley Data
and are publicly available as of the date of publication. DOls are listed in the key
resources table. Spectral data as CSV files are also available on Mendeley Data (see

key resources table).
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Code - All original code has been deposited to Mendeley Data and has been made

publicly available as of the date of publication (URL available in key resource table).

Other - Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This work does not use experimental models typical in the life sciences.

METHOD DETAILS

Feather sampling

We sampled an outer (leading edge) primary feather from a male great argus
(Argusianus argus). Studying color mechanisms in a single feather is sufficient for
characterizing structural color®®. During display, these feathers form the elaborate
bottom of a "bow!" shaped display, with secondary feathers fanning around the top such
that their blue rachises form a pattern of radial blue lines (Fig. 1a). We used a razor
blade to cut a cross-section of the feather rachis and to remove the top layers of the
rachis where the blue color originates. We also removed a brown section of the base of
the rachis to use a negative control, since we did not expect nanostructures in this

region.

Reflectance spectrophotometry
To measure reflectance spectra, we used a model USB2000+ spectrometer, PX-2

pulsed xenon light source and P400-1-UV-VIS optical fibers (Ocean Optics, Largo FL,

15
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USA) operating over a wavelength range of 300-700 nm, matching the visual sensitivity
of closely-related Indian peafowl (Pavo cristatus)?. A blue rachis specimen was
illuminated at normal incidence and its reflected intensity detected at angles from 0° to
60°, in 15° increments; neither the reflectance magnitude nor wavelength distributions
were found to depend significantly on reflected angle (Fig. S2). All data were recorded
using OceanView software (30 ms integration time, 5 scans averaged, 3 pixel boxcar
averaging) in a dark, room, corrected for dark current, and normalized using a flat
99.0% reflectance standard (Spectralon USRS-99-010-EPV, Labsphere, North Sutton,

NH USA).

Electron microscopy

We prepared feathers for scanning electron microscopy (SEM) by removing a small (1
mm) region of the feather surface with a razor blade. We affixed the samples to carbon
tape on SEM stubs and sputter coated the samples with gold on a Denton Vacuum
Desk IV sputter coater to minimize charging. We viewed samples on a Zeiss EVO 60

SEM in the Field Museum’s digital morphology laboratory.

Focused ion beam (FIB) milling

To investigate the 3-D structure of the surface nanostructures, we performed focused
ion beam SEM (FIB-SEM). Briefly, we ablated 50 nm sections over a 5 ym x 5 ym area.
We then reconstructed 3D surface structure using optimized threshold values in
Seg3D2 (University of Utah, MIT license) and visualized the 3-D surfaces with

Meshlab?’.
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Raman spectroscopy

To understand whether the chemical makeup of the surface differs from the interior, we
recorded Fourier transform infrared spectroscopy (FTIR) spectra (64 scans at 2 cm™’
resolution) at room temperature using a Nicolet iS5 FTIR with a diamond ATR
attachment. To prepare samples for FTIR, we used a paper-bladed saw to make a
clean cross-section of the rachis. The paper blade avoided crushing the delicate rachis
by matching its durability more closely than conventional diamond, metal, or glass

blades.

Optical modeling

To test whether the observed nanoscale wrinkle structures are sufficient for explaining
the observed blue color, we used finite difference time domain (FDTD) optical modeling
implemented in the MEEP program“®. We treated the surface as a sinusoidal structure
using the wrinkle height (h) and wrinkle spacing (1) estimated from 3D tomographic
reconstruction (Fig. 2b) to define the wrinkle structure*®. We further simulated the
reflectance for a range of these structural parameters bracketing these values to assess
how different combinations of wrinkle height and spacing influenced the predicted

reflectance spectrum (see Mendeley Data for code to run optical simulations).

QUANTIFICATION AND STATISTICAL ANALYSIS

This work does not rely on statistical analyses typical in the life sciences.
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