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Abstract

We present a hierarchical Dirichlet regression model with Gaussian process priors that enables accurate and
well-calibrated forecasts for U.S. Senate elections at varying time horizons. This Bayesian model provides a
balance between predictions based on time-dependent opinion polls and those made based on fundamen-
tals. It also provides uncertainty estimates that arise naturally from historical data on elections and polls.
Experiments show that our model is highly accurate and has a well calibrated coverage rate for vote share
predictions at various forecasting horizons. We validate the model with a retrospective forecast of the 2018
cycle as well as a true out-of-sample forecast for 2020. We show that our approach achieves state-of-the art
accuracy and coverage despite relying on few covariates.

Keywords: forecasts, Bayesian, Gaussian process, elections

Predicting Senate Races

In recent years, there has been an explosion of interest in election prediction models. Primarily,
this has been driven by media outlets and popular forecasting websites like fivethirtyeight.com.
However, although the most prominent forecasting efforts have been housed in media organiza-
tions, these models often build from, or are inspired by, research in political science.

Broadly speaking, academic election forecasting in the U.S. context can be divided into two
approaches. First, there are static models that make a single prediction for a given election (e.g.,
Abramowitz 2008; Fair 1978; Lewis-Beck and Tien 2008). These models are sometimes referred
to as “fundamentals” models and primarily rely on economic indicators, incumbency status, and
other factors that shape the general context of an election. To the extent, they incorporate polling
data atall, they are based on proxies such as presidential approval (e.g., Erikson and Wlezien 2008)
or snapshots taken well before Election Day (e.g., Campbell and Wink 1990).

Asmaller body of research focuses on dynamic forecasting models that change over the course
of the campaign as new polling data arrives. In particular, Linzer (2013) introduces a dynamic
Bayesian model forecasting the U.S. presidential election results for all 50 states. This model
has served as a basis for presidential forecasts produced by major media outlets including The
Economist and Daily Kos.! Another example is Jackman (2005), which presents a somewhat related
Bayesian model, although the goal is to aggregate polls rather than to make a prediction per se.

While the U.S. presidential election has received the most attention, a smaller body of research
has focused on predicting legislative elections. Most examples in this domain do not seek to

While The Economist presidential model was based on Linzer (2013), their senate forecasting model was not. The details of
The Economist 2020 U.S. Senate model are not public.
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predict individual races, but rather the aggregate number of seats that swing to a specific party
(e.g., Campbell 2018; Lockerbie 2012). Still, some previous work has built models of individual U.S.
Senate races based on fundamental factors (Hummel and Rothschild 2014; Klarner 2008; Klarner
2012; Klarner and Buchanan 2006). However, to the best of our knowledge, there are no published
models providing dynamic forecasts of individual senate races in political science.

The relative lack of attention to the Senate is probably the result of the intense popular interest
in the presidential race. However, it also reflects the fact that predicting individual-level Senate
elections is actually a more difficult task than it may first appear. To begin, there is far less
polling data for any given Senate election relative to national races, especially early in the cycle.
Some states with close races and large media markets may have dozens of polls, but in many
others there are very few. In addition, senate races are relatively low salience to voters, especially
early in the cycle. Even strong challengers can be unfamiliar to voters until the final weeks. As a
consequence, public opinion can be far more dynamic as voters learn about their options in the
lead-up to Election Day. In short, senate elections offer fewer polls and what polls exist can be
noisy predictors.

A further problem is that local context and other “fundamentals” are often only weakly pre-
dictive of candidate performance. Although the general partisan dispositions in each state tends
to heavily structure presidential outcomes, results in Senate elections are far less geographically
determined. That is, knowing how a party candidate performed in one election is often a poor
predictor of performance in subsequent years. A recent examples would be West Virginia where
Democrat Joe Manchin won over 60% of the vote in 2012 and Republican Shelly Capito won
over 62% just 2 years later. These kinds of dramatic partisan swings occur regularly, making
“fundamentals” forecasts difficult. Klarner notes that his fundamentals-based model “has never
performed well, being off by three seats in 2006 and five seatsin 2008. U.S. Senate elections appear
to beinfluenced by race-specific factors that are difficult to include in forecasting models” (Klarner
2013, p. 45). Meanwhile, Hummel and Rothschild (2014) predicted only 83% of races correctly
in-sample and performed similarly out-of-sample.

In combination, this means that for any single cycle it is difficult to provide accurate
forecasts in the absence of polling. Yet, polling data itself is relatively sparse and subject
to significant trends over the course of the election. And, of course, relying on unvarnished
polling data can be inaccurate even where it is not just missing, making simple polling averages
suboptimal.

On the other hand, there is one very important advantage to working in this setting relative to
national elections; there are many more observations. While presidential elections offer only one
observation every 4 years, the Senate has roughly 33 election outcomes attached to hundreds
of polls every 2 years. In our dataset, which covers only the post-1992 period, we have 501
election results and over 7,900 published polls. This give us some hope that we can train a model
that can learn from the past to predict future outcomes and, crucially, correctly calibrate our
uncertainty.

Below, we present a hierarchical Dirichlet regression model in a Bayesian framework that
enables us to combine polls and fundamentals to accurately forecast election outcomes at var-
ious time horizons. This model provides a structured balance between time-dependent opinion
polls and state/candidate-level fundamentals. Unlike fundamentals-based models, ours updates
throughout the election cycle to reflect recent polling trends. Yet unlike existing dynamic models,
ours is trained on a set of historical election outcomes rather a single election cycle. The result is
amodel that provides uncertainty estimates that arise naturally from the induced posterior based
on historical data and therefore provide a better sense of our true uncertainty. Experiments show
that our model can achieve high levels of accuracy and correct coverage for various forecasting
horizons.

Yehu Chen et al. | Political Analysis 14
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The most important contribution we make in this article is proposing an accurate, dynamic
model appropriate for subnational elections at the district level—something the discipline
currently lacks.? However, we also advance the broader elections forecasting literature in two
ways. First, the hierarchical structure we propose combines the unique strengths of poll-based
dynamic models and fundamentals-based static models in a single framework. Existing dynamic
models are fit to polling data from a single election cycle (Jackman 2005; Linzer 2013). To the
extent historical data are used at all, they enter only through informative priors or hyperparameter
selection. This makes it more difficult to understand whether the final predictive intervals
accurately represents our uncertainty about the outcomes since the likelihood itself is actually fit
to polls and not to election results. Our approach differs in that the dynamic component feeds
into a higher-level model trained on historical election results. Since this higher-level model also
includes fundamental factors (e.g., the partisan orientation of the state), final predictions are
better calibrated to reflect our actual uncertainty about unobserved election outcomes and can
weight polling and fundamentals to reflect their actual predictive performance at different time
horizons.

Second, we introduce a Gaussian process (GP) framework for modeling trends in latent public
opinion that is more appropriate for elections with fewer polls—a common feature outside of
U.S. presidential races. Our GP approach offers a significant advantage in that we can model
pollingtrends as a linear process where nonlinear deviations are allowed given sufficient data. This
added structure offers a significant improvement in out-of-sample prediction relative to a random
walk (Linzer 2013) while also relaxing strict linearity assumptions when needed. It has the further
advantage that it allows us to derive the posterior for these time trends analytically, significantly
reducing computation time for any one election. This in turn allows us to fit the full hierarchical
model including hundreds of elections.

In the next section, we provide a basic intuition for our modeling framework before providing a
more detailed presentation in Section 3. We then test the model using historical data in Section 4
and evaluate a true out-of-sample forecast for the 2020 election cycle in Section 5. We show that
our approach achieves state-of-the art accuracy and coverage despite relying on few covariates.
We conclude with a discussion of how our model could be improved in future iterations or adjusted
for other election settings.

Intuition and Related Work
Before introducing the model, we want to focus on the core ideas that inform our approach. First,
we suppose that polling for a candidate is a noisy measure of true underlying public opinion, 7(¢),
at any given time t. That is, we assume that there is a true level of underlying support for each
candidate that moves smoothly over time and that polling results imperfectly follow these trends.

While modeling smooth latent public opinion is consistent with previous efforts to aggregate
polls (Jackman 2005; Linzer 2013; Stoetzer et al. 2019), we adopt a strategy that is more appro-
priate given the sparseness of polling in many senate elections. Our approach assumes a linear
trend in the data with mild nonlinear deviations. This provides a sensible compromise between
a simple linear model of public opinion and the trend-free smoothing procedures adopted in
Jackman (2005) and Linzer (2013) (see also Stoetzer et al. 2019; Walther 2015). Indeed, these other
approaches can be viewed as special cases of our more general model where no linear trend is
included.

Third, our modeling strategy assumes that latent public opinionis only one predictor of election
outcomes. Thatis, latent public opinionis not assumed to translate directly into election outcomes

Media outlets like fivethirtyeight.com and The Economist provide dynamic predictions. However, the details of these
models are not public and we have no way to assess their methodology or build upon their techniques.
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asinLinzer (2013). Instead, the model learns the degree to which public opinion accurately predicts
elections relative to other “fundamental” factors including state-level voting history, candidate
quality, and the like. This approach has two advantages. To begin, it allows us to easily train our
model at different time horizons such that public opinion is weighted more heavily as the election
approaches and polling becomes more predictive. More fundamentally, however, it allows us to
explicitly model the inherent uncertainty in election outcomes that cannot be adequately pre-
dicted from polling and and contextual factors. That is, we assume that even if we knew public sup-
port for a candidate perfectly, there would still be uncertainty in the outcome due to turnout and
other unmodeled factors. Our aim is to use historical data to calibrate our uncertainty and achieve
correct coverage rates at various time horizons in a way that reflects this irreducible uncertainty.

Finally, the model is tuned to accurately predict elections not polls. Thus, while polling out-
comes are included in the model, the key model parameters are not selected to reduce the errorin
predicting polls but in predicting vote share. We select hyperparameters intentionally that under-
predictindividual polling results but provide a better basis for predicting candidate vote share. The
result is a parsimonious, but accurate and well calibrated model of elections.? The model takes in
only four variables: polling data, Cook’s partisan voting index (Campbell 2018; MacWilliams 2015),
party affiliation of candidates, and candidate quality (Jacobson 1989; Jacobson and Carson 2019).
However, it still makes accurate predictions for races at various time horizons while maintaining
correct coverage. Indeed, in the 2020 Election our model outperformed the model published
in The Economist (Economist 2020) and provided comparable (and by some metrics superior)
performance to the popular fivethirtyeight.com forecasts (Fivethirtyeight 2020).

In the next section, we introduce the model in stages. Section 3.1 provides important back-
ground information on Gaussian process regression, an approach that has appeared rarely in
political science research. Section 3.2 then applies this framework to the task of projecting latent
public support for each candidate. Section 3.3 then explains how this is combined with contextual
factors in our Dirichlet regression model of vote share. We then briefly contrast our approach with
other forecasting models in the literature in Section 3.4 before turning to our results in Section 4.

A Predictive Model of U.S. Senate Elections

Our proposed model has two components as depicted in Figure 1. First, we use candidate-level
polling data to predict latent public support for candidate i on Election Day (¢ = 0), which we
denote as £;(0).* If we are predicting this before the election (¢ < 0), this quantity is predicted
based on all polling data up to the current date as well as an informative prior reflecting the
general electoral context. Note that the goal is not to create a point prediction, but to estimate
a distribution on £;(0) that reflects our uncertainty about the trajectory of public opinion over the
course of the election as well the inherent uncertainty in polling data itself. We refer to this as our
candidate-level model.

Second, we then use predicted public support as inputs for an election-level model> with the
goal of predicting the proportion of the vote divided among all candidates in a given race (that
is, the entire vote share and not only the winner). We model this with a Dirichlet regression with
year-level random effects using a training dataset of elections starting in 1992. Importantly, this
Dirichlet regression takes in 7;(0) as an input along with contextual factors. Thus, we are able to
use historical data to estimate the the degree to which electoral context, public opinion, or some
mix of the two are best able to predict vote shares at different time horizons.

The model was built using data from 1992-2016 with cross validation. All modeling decisions and hyper-parameter
selection was done using only these data. We held out 2018 to serve as a test set for this analysis.

Supplementary Appendix A provides a reference table of all notation.

Throughout, we use election to refer to a race between two or more candidates in a single seat. The overall election cycle
(roughly 33 elections in a given year) is referred to as a cycle.

Yehu Chen et al. | Political Analysis 116
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Figure 1. Conceptual outline of the two stage model. The candidate-level model, predicts public opinion on
Election Day. The election-level model, predicts vote share as a function of public opinion and contextual
factors.

The final output is a prediction for Senate elections that accounts for two levels of uncertainty.
We have uncertainty about where latent public opinion will be on Election Day given the polling
data we have observed so far. But we also have uncertainty as to how well public opinion and
contextual factors predict election outcomes based on historical data.

Background on Gaussian Process Regression

Our model for latent public opinion over time is a linear trend with smooth nonlinear deviations.
Here, we subsume both components into a single GP model of latent opinion. GPs offer a flexible
Bayesian framework for nonlinear regression widely adopted in machine learning (Rasmussen
and Williams 2006). GP models have not been used widely in political science, although they
have appeared under the label Bayesian kriging (Gill 2020; Monogan and Gill 2016). However,
mathematically they can be considered a Bayesian variant of kernal regularized least squares
(KRLS) (Hainmueller and Hazlett 2014; Mohanty and Shaffer 2019).

To define a GP, consider a function f: X — R on some arbitrary domain X; for our model of
latent opinion, X = (—c0,0] is the span of times at which we may wish to predict. The defining
property of a Gaussian process is that if X c X is a finite vector of input locations, then the
associated function values f(X) has a multivariate normal distribution. The moments of this
distribution are provided by a mean function u(x) = E[f(x) | x] and covariance function K(x, x’) =
cov[f(x),f(x")| x, x"]; evaluating these pointwise provides the mean vector and covariance matrix
for any desired vector of function values 7 (X). Modeling with the GP entails designing the mean and
covariance functions to encoding the desired statistical properties of f such as correlations over
the domain.

A critical property of GPs is that they enable exact, closed-form inference for regression for
observations corrupted by additive Gaussian noise. Let f ~ GP(u, K) have a GP prior and suppose
we obtain a vector of observed values y at locations X, where y; = f(x;) + &, € ~ N(0,02). Then the

Yehu Chen et al. | Political Analysis 17
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3.2

posterior belief of f given D = (X,y) is again a GP with updated mean and covariance function:

Hrip(x) = H(x) + K (x, X)(K (X, X) + 1) 7" (y = (X))
Krio(x, x") = K(x,x") = K(x,X)(K (X, X) + 1) K (X, x').

Hence, appealing to the definition above, the posterior predictive distribution of any function
value f(x*) is normal:

f(x*) | D.x" ~ N (pr1p(x7), Kejp(x™, x7)).

Thisfinal pointisimportant for our application. When modeling the latent opinion with a Gaussian
process, our prediction for latent public opinion on Election Day, £;(0), is a normal distribution
that can be directly derived. This in turn becomes a normal prior for public opinion that is passed
directly into the election-level model. This allows us to include our uncertainty about where public
opinion will be on election day into the election-level model while at the same time significantly
reducing computation time relative to Linzer (2013).

Projecting Public Support via GP Regression

We next outline our approach for forecasting voter preferences throughout an election given
polling results. Our approach entails building independent GP models for each race conditioned
on available polling outcomes.® The model includes only polls, hyperparameters, and priors
(discussed below).

Denote by C the set of all candidates in all races we wish to reason about. We will consider
the unknown proportion of voters preferring candidate / € C in a given race a function of time,
writing f;: (—c0,0] — [0, 1]. Here, the domain of the function is time (measured in days), where
the election is defined to occur at time t = 0days. Let 7; be the set of times when opinion polls for
candidate j were conducted.”

We model the trend of voter preferences f; as a sum of an underlying linear trend a; + b;t, with
smooth nonlinear deviations from this trend, n;(t). We place independent Gaussian priors on the
intercept a; (i.e., the prior mean of the voter preferences on Election Day) and slope b; of the linear
trend, and will place an independent, zero-mean GP prior on the nonlinear component n;. The
covariance function K determines the correlation of deviations from the linear trend as a function
oftime and was taken to be identical across all races. Here, we used the Matérn covariance function
withv = %, which models isotropic, once-differentiable functions (Rasmussen and Williams 2006).
This covariance function has two hyperparameters that we will estimate from training data: a
length scale p determining the scale of correlations, and an output scale A determining the
pointwise variance of the process. Intuitively, we can think of p as determining the “window” of
days over which nonlinear deviations are estimated and A as controlling the degree of nonlinearity
we expect such that higher values lead to more dramatic deviations.

The model can be summarized as:

fi(t) = aj + bt +ni(t) (1
a;~ N(3,02=0.1% )
b; ~ N(0,0% = 0.002%) (3)

ni(t) ~ GP(0,K), (4)

Supplementary Appendix B shows that Senate election results are far less correlated across states than presidential
elections. As we discuss in the conclusion, this independence assumption would need to be relaxed for presidential
forecasting.

We date polls based on the first day they are in the field.

Yehu Chen et al. | Political Analysis 118
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where the covariance function for the nonlinear deviations is

3d 3d

K(t,t’;p,A)=A2(1+£)exp(—£); d=|t-t'|.

P P
The priors on the linear parameters are constructed to be broad for the slope (so that over a time
period of roughly 100 days the linear trend could plausibly assume any possible value) and vaguely
informative for the intercept; we will discuss the intercept mean parameter a; shortly.

The above prior choices induce the following joint prior over the voter preference, as shown

in (5). Notice that our model provides an automatic marginalization over the linear slope parame-

ters, since the covariance function in our GP model has absorbed the hyperparameters controlling
the prior distribution of the linear function parameters.

file) ~ N (pie). V(2.2). @
ui(t) = aj, (6)
V(t,t') = o+ tt'cl+K(t ). (7)

Our goal is to infer the latent voter preference trend from opinion poll outcomes, which
are by their nature noisy. Our approach is to model the observed poll outcomes as binomially
distributed, then approximate each binomial with a Gaussian for mathematical convenience. This
will allow closed-form exact inference, yielding a posterior GP belief about underlying voter trends
conditioned on available data. As discussed in Section 3.4, this step is an important innovation,
allowing us to exactly solve for the posterior predictive distribution of f(t).

For a candidate / € C with S; conducted opinion polls, let D; = {t;s, nis, xjs}, (s = 1,...,S;)
denote the outcomes of all available polls involving that candidate. Here, t;, is the time of the poll,
njs is the sample size of the poll, and x; is the number of polled people expressing support for the
candidate. Dropping subscripts momentarily, consider one such polling outcome (¢, x, n) € D. We
make the natural assumption that the number of supporters x is binomially distributed given the
sample size n and the true (unknown) voter support f at time t:

x ~ Binomial(n, f(t)). (8)

Unfortunately, it is not possible to condition a GP exactly on observations with a binomial
likelihood. However, sample sizes for election polls tend to be large enough (often in the hundreds)
that we can safely make a Gaussian approximation to the likelihood by moment matching. Here,
we also explicitly consider an additional general noise term o, which designates another level of
noise stemming from the polling data. Let p = x/n to be the observed proportion of supportin a
poll, so (8) could be approximated with

p~N(f.p(1-p)/n+05?), (9)

where we have substituted the estimated g for the true unknown proportion £ (¢t) in the variance (in
our case, p = p after observation). This likelihood is now conjugate to our GP prior on f and allows
exact inference.

Let us define the vector p to entail a set of polling outcomes observed at timest, ps = xs/ns,and
further define Bto be a S x S diagonal matrix with Bss = ps(1—ps)/ns + 2. Thisis the approximate
noise variance for each of these measurements appearing in (9). Using the results in Section 3.1,

Yehu Chen et al. | Political Analysis 19
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the posterior predictive distribution of the voter preference at any time t is:

F(t)| D ~N(uro(t),Keo(t,t)), (10)
pr 1o, () = u(t) + V(6,8 (V+B) ' (p—p), (1)
Keip(t.t') = V(t,t) - V(t.H)(V+B) ' V(t.t), (12)

where pu and V are the prior mean and covariance of f(t), respectively. Although we may make
forecasts for any time t, we are especially interested in public opinion on Election Day, 7 (t = 0).
This will also be normal following Equation (10). For notational convenience below, we will again
use subscripts for candidates and write £;(0) ~ N (¢, K¢).

The candidate-level model is completed by choosing values for the intercepts {3;} and
the set of shared hyperparameters w = (p,A,0?). Here, o2 represents the level of unmodeled
noise remaining in the polling data, A controls the degree to which the time trend deviates
from linearity, and p represents the “bandwidth” of the smoothing window for these nonlinear
deviations.

We chose informative, but wide hyperpriors for {a;} so that projections could be made in races
with few or zero polls but that polling data would quickly swamp the prior when plentiful. Since
the standard deviation for the hyperprioris set at 0.1, any vote share within £30 points of the prior
should be well supported.® To set {3, }, we ran a simple regression in the training set with normal-
ized vote share as the dependent variable and party, lagged partisan vote index (PVI), and level or
prior experience as covariates.’ While not an accurate model by itself, it proved to be an adequate
prior.'°

For w, we adopt a leave-one-year-out (loyo) cross-validation approach using the training
period from 1992 to 2016. The motivation is to choose hyperparameters that maximize predictive
performance for election results even at the expense of choosing parameters that reduce fit for
the polling data.

First, we define the search region of output scale and shared noise both to be [0,0.05]. We
search length scale with a minimum of 7 days and a maximum of 56 days."" Empirically, we
generate potential w’s for the validation procedure from a low-discrepancy Sobol sequence (Sobol
1979) in the search region, since it covers the space more efficiently than a grid. We fit the complete
model, including the election-level model, for each of 100 values of w at each time horizon (7)
leaving out each year in turn.

For example, for choosing the hyperparameters for the model predicting 4 weeks in advance
of the election, we used all of the polling data up to day t = —28. We then fit the GP models and
trained the election-level model described below leaving out each cycle in turn. We then generate
out-of-sample predictions for vote shares and choose the hyperparameter setting that maximized
the loyo log-likelihood averaged across all cycles.

Supplementary Appendix C considers alternative choices for the prior standard deviation o,. Using 2016 as a test case, we
show that these alternatives do not improve predictive performance.
Letting w represent standard regression coefficients, this model was just

vote share; ~ wo + wyexperienced; + woparty; + wapvi; X party;,

where party was coded as 1 for Republicans, —1 for Democrats, and 0 otherwise. We lag PVI to the previous presidential
cycle and experienced is a binary indicator for whether or not the candidate has ever previously held elected office. The
entire cycle is left out of the training data when constructing these priors.

The few exceptions where the prior proved to be wildly off were for third-party candidates. Future efforts to forecast might
create a separate prior structure for third-party candidates.

These ranges were determined from earlier exploratory work. Supplementary Appendix D considers an alternative cross-
validation strategy and shows it has almost no effect on model predictions.
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3.3

Table 1. Learned model hyperparameters from leave-one-year-out cross validation.

Time horizon (7) Length scale (p) Output scale (1) Noise std (o)

0 38.4 4.61% 2.89%

7 49.1 4.76% 4.61%
14 45.3 3.90% 3.28%
21 54.5 2.96% 4.84%
28 52.2 3.20% 3.67%
42 39.9 1.95% 4.92%
56 449 0.74% 3.48%

The chosen hyperparameters for each time horizon are shown in Table 1, and examples of the
resulting candidate-level models for one candidate (John McCain in 2016) are shown at various
time horizons in Figure 2. (Supplementary Appendix E shows another example for Democrat
Katie McGinty [PA-2016].) This approach yields models that begin as linear far from Election Day
but become increasingly nonlinear as 7 approaches zero. Note also that the uncertainty in £;(0)
narrows considerably in run up to Election Day.

Election-Level Model

The goal of the candidate-level model (Section 3.2) is to project forward at any time horizon a
predictive distribution of latent public support on Election Day, f;(0). The election-level model in
this section takes £;(0) as an input and combines it with additional contextual factors to generate a
predictive distribution. Our method is based on Dirichlet regression, that allows prediction of the
election vote shares for multiple candidates.'

In our setting, the vast majority of races involve only two credible candidates.” Indeed, in the
1992-2018 period, we included more than 2 candidates in only 11 elections.’* However, we retain
the Dirichlet presentation here as being more general and races with third parties can be critical
in any given cycle.

Relying on the Dirichlet likelihood contrasts with some work in political science for multi-party
elections, which builds on the logistic normal distribution (or t-distribution) applied to log-ratios
of the votes (Katz and King 1999) or seemingly unrelated regression (Tomz, Tucker, and Wittenberg
2002). The primary criticism of Dirichlet regression is that it assumes that ratios of outcomes are
independent (Aitchison 1982; Katz and King 1999; Philips, Rutherford, and Whitten 2016), which is
unrealisticin more standard settings such as multi-party elections. However, while the outcomein
U.S. Senate races is always compositional, the meaning of the categories do not correspond across
races as these alternative models require. That is, the “third choices” are typically idiosyncratic to
each race. So, for instance, the third-party candidate in the 2018 New Mexico race was Libertarian
Gary Johnsonwhileinthe 2008 Minnesotarace it was Independence Party candidate Dean Barkely.
In other cases, even the major party candidate labels can be confused. So, for instance, in the 2012
Maine election Cynthia Dill was the official Democratic nominee while Independent Angus King
garnered a significant amount of support from Democrats and caucused with the party once he

Note that the model we propose assumes that we know which candidates will be on the ballot. We discuss third-party
choices below. However, for a typical race this requires that the winner of the major party primaries should be known
either because the primary is over or the primary winner can be predicted with high level of certainty.

We include third-party candidates only when they are regularly included in public opinion polls in advance of the election.
However, this criterion may be ex ante difficult to anticipate at the beginning of a cycle. We return to this point in our
concluding discussion.

This includes races in Arizona (1992), Virginia (1994), Minnesota (2008), Alaska (2010 and 2016), Florida (2012), Maine (2012
and 2018), Maryland (2012), South Dakota (2014), and New Mexico (2018).
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Figure 2. Voter Preference Estimate for John McCain in 2016 Arizona race at various time horizons. Points
represent individual polls, the distribution on the right side of each panel is the prior, the dark gray region is
the 95% confidence intervals for the estimated latent trend, and the light-gray region is the projected latent
trajectory.

joined the senate. Indeed, in some instances the category meanings are unstable even when there
are only two choices. For example, the 2016 California race featured two Democrats. We therefore
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retain the Dirichlet regression approach despite the independence assumption since modeling the
dependence between the choice categories is impossible when the choice set itself changes from
observation to observation.'”

We model the parameters in the Dirichlet distribution as a linear function of voter preferences
and “fundamentals.” This is similar in nature to other generalized linear models where a linear
combination of terms is passed to a link function. In this case, each candidate is represented
by a “concentration parameter,” a;, which we model as a linear combination of both £;(0) and
other covariates. The unique feature of the Dirichlet regression is that each race is characterized
by a vector of concentration parameters, a, where we have one a; for each candidate. When
the concentration parameter for candidate i is relatively large, she is expected to earn a higher
proportion of the vote. Furthermore, the predictive density is more concentrated around this
expected value when the individual components of a; are large.

More formally, consider arbitrary race j with m; candidates and a specific candidate i. We
assume a simple linear model that maps the voter preference £;(0) to the underlying concentration
parameters a;. Although there are many possible covariates we could include, we found that
very few actually improved out-of-sample predictive performance.’® We therefore include only
the lagged PVI generated by Cooks political report (Campbell 2018; MacWilliams 2015), and an
indicator for the experience of the candidate where a one indicates the candidate has held elected
office before and it is coded zero otherwise (Jacobson 1989; Jacobson and Carson 2019). We also
include ayear-level random effect to accommodate unmodeled electoral “swings” associated with
specific election cycles. PVl and the year random effects are reverse coded by party.

More formally, collect a; = (a1 + @, ..., ap,; + &) from all candidates in the race (& > 0). The
base parameter @ here is introduced for two reasons. First, it can reduce variance of samples
and thus stabilize the MCMC sampling. Second, & encodes the prior belief on how equally the
vote shares should be distributed without any additional information. We assume that the actual
vote share vectory; = (y1;,. ..,y,,,jj)T is distributed with a Dirichlet distribution y; ~ Dir(y;; a;),
where a;; is a linear function of £;(0) and contextual predictors. We also need to integrate over the
distribution of £;(0); in our case, the distribution of £;(0) is a truncated Gaussian. In total, we assume
the election outcomes follow the following data generating process:

fi(0) ~ N(us,Ke), 0<F <1, (13)

ajj = 0:11;(0) + ezparty,-j X pvij + 93experience,-j +party;; X yyear, a@jj 20, (14)
Yyear ~ N (0, 0%ear); (15)
(yj,...,ymj)T~Dirichlet(&+a1,...,5(+ar,,,j), a>0. (16)

Here, we allow party to be equal to 1 for Democratic candidates, —1 for Republicans, and 0 for
independents.” This allows for PVl and the year random effects to have opposite effects by party.

The modelis completed by placing proper but vague priors across all parameters. The priors for
the 6 parameters are set to be wide based on the scale of the relevant variable. Specifically, we set

Note thatin our model, the specific party affiliation of the choices is determined by the values of the covariates, not whether
itis the first, second, or third choice. That is, the model is robust to the kinds of idiosyncratic variations in the meaning of
categories discussed here.

Forinstance, one alternative would be to include an indicator forincumbency status. While the model doesimprove at more
distant time horizons (e.g., 7 = 56) the overall accuracy of the final predictions is no better and by some metrics worse. For
the 2018 election discussed below, for example, including an incumbency covariate results in nearly identical root mean
squared error but lower predictive accuracy (94.29% vs. 97.14%). However, as we discuss in our concluding discussion, it
should be possible to extend the model to consider a wider array of covariates through some form of regularization scheme
in future research.

We code third-party candidates who regularly caucus with one party as belonging to that party. So, for instance, Sen. Bernie
Sanders is coded as a Democrat.
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Figure 3. Posterior predictive densities for Sen. John McCain in the 2016 Arizona Election at different time
horizons. The vertical line indicates the final vote share. Note that the posterior narrows noticeably as the
time horizon shrinks.

independent truncated Gaussian priors on the 8 coefficients and the year-level random effects.

0, ~ N(O,1002); 6,>0 065~ N(O,102); 6, >0,
65 ~ N(0,102); 65> 0 O'yzear ~ Gamma(1,0.5).

We can combine all of these parameters together in @ = ({6}, {}’year},dfear,&) and let z; be the
vector of contextual factors for election j. We obtain the posterior p(@ | {y;},{z;},{f:(0)}) using
MCMC estimation. Specifically, we use no-U-turn sampling in Stan (Carpenter et al. 2017; Hoffman
and Gelman 2014).

With this posterior, the final predictive distribution of future election outcomes with new
{f:(0)}, {zj} will be defined by (13)-(16) marginalized by the posteriors:

p(y; 1 {z; 1 {£:0)} {y; }. {z;}. {fi(0)})
=/P(yjI{Z}‘}s{ﬁ(O)*},@)p(Ol{yj},{zj},{fi(o)})de (17)

A final issue is how to handle the dynamic nature of our forecasting task. While we have the
complete set of polls for electionsin our training set, when making real-time forecasts we have only
the polls up to the current date. Training the model on the complete set of polls (all the way up to
Election Day) is likely to lead to higher weight being assigned to polling data and poor predictive
performance at remote time horizons. For instance, the coefficients for the Dirichlet regression
component in the election model may put too much confidence on the polling. As noted above,
this same issue applies to hyperparameter selection for the candidate-level model.

To address this concern, we train the complete model at various time horizons denoted by 7.
For any threshold, we discard all data where |t| < 7. Thus, when 7 = 28, we ignore all polls in the
training data closer than 28 days to the election. This again helps calibrate the model for the levels
of accuracy we can expect at various horizons. Table F.1in Supplementary Appendix F shows the
summaries for the posteriors of the model parameters at horizons ranging from 7 =0to 7 = 56 (8
weeks before the election). As expected, the 8 parameter associated with £;(0) increases as Election
Day approaches while the fundamental parameter become relatively less important.

Figure 3 shows the posterior prediction for Senator John McCain in 2016 for various time
horizons. Note that the outcome (marked with the vertical blue line) is near the center of
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the posterior for all horizons, but that the prediction becomes more concentrated as Election
Day nears. This reflects both more certainty in £;(0) and changing weights in the Dirichlet
regression.

Discussion

Before turning to our results, we briefly contrast our approach with existing forecasting models
in the literature. Most importantly, we combine a dynamic, poll-based model with an election-
level model trained on historical data to make predictions about individual senate races. Some
existing poll-based models are dynamic (e.g., Jackman 2005; Linzer 2013) while others create
district-level forecasts based on historical election results (e.g., Klarner 2012). However, to the best
of our knowledge this is the first published model to explicitly combine these two approaches.'

Second, we introduce a GP framework for modeling trends in public opinion. Although related
to the random walk model in Linzer (2013), it differs in two crucial ways. To begin with, the GP
model allows us to model polling trends as a linear process with nonlinear deviations, which (as
we show below) offers significant improvements in predictive performance when polling data
is sparse. Further, by adopting the Gaussian approximation to the binomial likelihood in Equa-
tion (9), we can exactly derive the posteriors for each candidate. This computational efficiency
allows us to build the election-level model and facilitates our loyo cross-validation approach.

Finally, itis also worth considering the computational resources required by the model. Assum-
ing that the hyperparameters have been selected, running the complete model is quite fast. A
standard run with 5,000 MCMC iterations takes roughly 5 min on an Intel i7-CPU machine (running
three chains in parallel). The GP component is very fast because results can be computed exactly
without sampling, usually completing in under one minute. This contrasts with, forinstance, a stan
implementations of the Linzer (2013) model, which takes approximately 30 min for a given election
cycle. Thus, during any one election, the computational load is very reasonable.

The computational bottleneck with our approach is in the loyo cross-validation procedure for
choosing hyperparameters. As described above, we ran the loyo validation for the 1992-2016
period with 100 hyperparameter settings at seven forecasting horizons. With three MCMC chains
for each model, this results in 27,300 posteriors. Thus, even the 5-min run time is cumulatively
computationally intensive requiring the use of a computing cluster. This exercise only needs to be
done once in advance of any specific election cycle, but is nonetheless time consuming. We return
to this point in our concluding discussion.

Empirical Evaluation

In this section, we investigate our model using historical polling data and vote shares in U.S.
Senate elections from 1992 to 2018. Throughout our model building process, we held out the 2018
election as a test case and it was not involved in any hyperparameter tuning, variable selection, or
other decisions. Therefore, we can assess the model’s predictive performance using the 1992-2016
period, but also approximate its true out-of-sample performance using the 2018 data. In the next
section, we report predictions for 2020 actually made in advance of Election Day.

Data and Evaluation Criteria

We obtained opinion polls and election outcomes of all senate election races from 1992 to 2018
from www.fivethirtyeight.com and from CNN. On average 16 polls were conducted for each race,
although some races such as the 2016 Florida election had over 80. Most of the surveys are
conducted 2 weeks to 4 months prior to election, with a median number of respondents of 635.

To be sure, Linzer (2013) uses historical data to create informative priors and chooses hyperparameters based on perfor-
mance in a previous cycle. However, the likelihood is based on polling alone, and the model is fit to only one cycle.
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Over 470 entities have conducted these polls, but several active pollsters collectively contribute
over half of them, including Rasmussen Reports, Mason-Dixon Polling, Public Policy Polling,
SurveyUSA, YouGov, SurveyMonkey, Quinnipiac, and Zogby Interactive. To guarantee credibility,
we eliminated polls sponsored by parties or candidates since unfavorable polls from these sources
are not released.

We also acquired the partisan voting indices in every election cycle for each election state. The
Cook PVl is a measurement of how strongly a U.S. congressional district or state leans toward the
Democratic or Republican Party, compared to the nation as a whole. For example, PVI for California
in 2018 is 10.76, indicating a strong preference for Democratic candidates, while PVI for the pro-
republican state Texas in 2018 is —7.02. For each candidate, we coded partisan affiliation and past
experience (whether or not they held office). Where not provided in the CNN data, we coded these
manually using ballotpedia.com.

To evaluate performance, we examine both the forecasting precision and the validity of our
model. Hence, we consider the following measures: the averaged root-mean-squared-error
(RMSE) between the expectation of the Dirichlet posterior samples and actual vote shares, the
prediction accuracy of winners for election defined by higher winning probability (we calculate
the winning probability of each candidate as the proportion of samples with the highest vote
shares in Dirichlet posteriors), the coverage rate of actual vote shares in 95% credible intervals for
Dirichlet posteriors, the averaged multinomial predictive likelihood and the averaged log-scaled
Dirichlet predictive likelihood (LL). RMSE and prediction accuracy focus on the precision of the
forecasting ability, while coverage rate focuses on the validity of the claimed credible intervals. The
two likelihood measures serve as out-of-sample evaluation criteria for both vote share (Dirichlet)
and final outcome (multinomial) that also reflect the uncertainty in the full posterior.

Baselines
We compare the performance of our combined GP and Dirichlet regression (GP+DR) model against
three benchmarks. First, we compare our model to the dynamic Bayesian model in Linzer (2013).
This model was developed for predicting state-level results in presidential elections, but we
adjusted it for predicting Senate races. Intuitively, this model is a dynamic Bayesian random walk
(BRW) model similar to the nonlinear component in the model described above except that latent
public opinion is assumed to be a random walk. We use the same informative prior for {a} as
used above and use the tuning parameters and basic estimation procedures as described in Linzer
(2013).1°

Second, we consider a baseline Dirichlet Regression model that uses a Bayesian linear regres-
sion model to forecast voter preferences. We refer the second baseline as LM+DR. To ensure a fair
comparison, we choose the same priors for the linear coefficients as those in GP priors. We also
chose the 0% hyperparameter using the same cross-validation approach described above. This
model is, in essence, the same as what we describe above without allowing for deviations from
linearity. Finally, we examine the performance of the GP modelin isolation excluding the Dirichlet
regression portion of the hierarchy. Note that while we frame these as competitors to our favored
model, both of these baselines are also novel.

Results

First, we present results from a loyo cross validation exercise where each election cycle from 1992
to 2016 was held out. This has the advantage that we can use the complete set of election outcomes
to validate the model. However, since we followed an identical procedure when choosing our

The major deviation from the original model implementation is we do not include a national over time trend since the
senate races are far more independent than the state-level presidential races. See Supplementary Appendix B.
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hyperparameters above, there may still be some risk of overfitting.?° We therefore also present
results for the 2018 election separately which serves as a stronger out-of-sample test.

We simulate a real forecasting scenario and examine the model’s forecasting ability at various
horizon 7’s. Specifically, we consider horizons of 4 months, 3 months, 6 weeks, 4 weeks, 2 weeks,
1 week and Election Day, where 7 = 56,42,28,21,14,7,0. As noted above, Table 1 summarizes
hyperparameters learnt for the candidate-level model used throughout this exercise.

Table 2 shows the results for the loyo cross validation exercise for the 1992-2016 period. The
results show that GP+DR model on average outperforms the other baselines across metrics. The
closest competitor is actually the LM+DR model, which performs quite well in terms of coverage
and accuracy. This is explained in part by the fact that the GP model itself is mostly linear at
distant horizons and when there is little polling data. However, the nonlinear component in the GP
does provide measurable improvements over the linear version in the final lead up to the election
when the hyperparameters most enable nonlinear deviations (see Figure 2). In Supplementary
Appendix G, we use a paired t-test to show that this improvement in accuracy is statistically
significant when 7 < 21.

We then predict the 2018 cycle, which was not used in our model development or cross
validation, and find a nearly identical pattern. (Full results for 2018 are shown in Supplementary
Appendix H.) The RMSE for the Election Day forecast was 0.053, 0.055, 0.060, and 0.075 for the
GP+DR, LM+DR, BRW, and GP models respectively. Meanwhile the predictive accuracy was 0.951,
0.932, 0.898, and 0.936.”

Figure 4 shows the predictions, 95% predictive credible intervals, and outcomes for the 2018
senate elections with 7 = 7. The results show that all election outcomes fell within the 95%
credible range and that on average the forecast tracked the actual election outcomes very closely.
Moreover, the elections where the model is incorrect at a 7-day range are also among the closest
contests in that cycle (Arizona and Nevada). Finally, the width of the credible interval can vary
significantly depending on the number and recency of polls for that election. For instance, the
credible intervals for Wyoming are very large reflecting the fact that we had only one poll. This
contrasts with, for instance, Missouri where dozens of polls were reported.

Predicting the 2020 Cycle
Finally, we turn to the task of predicting the 2020 senate elections. For this cycle, we again
acquired all data from the fivethirtyeight.com website. Following the procedures outlined above,
we exclude all partisan polls and and date each poll based on the first day it was fielded. We
did not include any third-party candidates,”? and we exclude the Georgia special election and
the Louisiana senate race do to the potential for a runoff after November.?> We used the same
hyperparameters as shown in Table 1, but refit the Dirichlet regression using the complete 1992-
2018 training period.

The final predictive densities for the Democratic candidates are shown in Figure 5 (we show
only one party since we modeled only two candidates in each state). The model predicted that

However, in Supplementary Appendix D, we show that the model’s predictions are not strongly sensitive to whether or not
the complete set of elections is included during the loyo process.

In Supplementary Appendix I, we also compare the 2018 model to the predictions posted on fivethirtyeight.com at different
forecasting horizons. The GP+DR model is more accurate at all time horizons (correctly predicting 97% vs. 90% of races
on Election Day). However, there is evidence that our model is relatively conservative, with coverage rates of 97% for 80%
credible intervals. We emphasize that our model was developed after the 2018 cycle.

We could have included the third-party candidates in Maine as they were polled regularly and received a significant portion
of the final vote. We discuss the issue of selecting third-party candidates ex ante to include in the forecast in our concluding
discussion.

We included the nonspecial Georgia race based on the (incorrect) assumption that the third-party candidate would not
deny the winner a majority. One possible extension to this model would be to better accommodate runoffs and elections
that take place outside of November. Alternatively, we could simply predict November vote share rather than excluding
races with a possible runoff and ignore the potential for a subsequent runoff.
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Table 2. Predictive accuracy in the 1992-2016 period.

Days until Eleciton Day (7)

sisAleuy |eonnod | o 18 uayd nysh

Model 56 42 28 21 14 7 ()]
RMSE GP+DR 0.082 0.074 0.068 0.065 0.059 0.056 0.053
GP 0.102 0.096 0.091 0.088 0.082 0.078 0.075
LM+DR 0.082 0.073 0.069 0.065 0.061 0.055 0.055
BRW 0.085 0.081 0.078 0.076 0.072 0.065 0.060
95% Coverage GP+DR 0.919 0.931 0.932 0.949 0.943 0.961 0.946
GP 0.800 0.870 0.862 0.860 0.819 0.823 0.747
LM+DR 0.928 0.919 0.938 0.933 0.933 0.936 0.950
BRW 0.548 0.523 0.504 0.510 0.514 0.514 0.527
Predictive accuracy GP+DR 0.892 0.892 0.919 0.915 0.920 0.935 0.951
GP 0.879 0.895 0.913 0.916 0.921 0.934 0.936
LM +DR 0.885 0.899 0.908 0.914 0.918 0.934 0.932
BRW 0.798 0.814 0.827 0.828 0.847 0.859 0.898
APLL Vote Share GP+DR 1.41 1.552 1.646 1.703 1.803 1.913 1.950
GP 0.549 1.126 1AM 1.186 1138 1.214 0.940
LM+DR 1.410 1.537 1.634 1.682 1.776 1.873 1.902
BRW -2.17 -1.606 -1.513 -1.126 -1.048 -0.377 -0.143
APLL Winner GP+DR —-0.135 —-0.116 -0.102 —-0.098 —-0.092 —-0.081 —-0.075
GP -0.170 -onv7 —0.101 —-0.097 -0.092 —-0.078 -0.072
LM+DR —-0.135 -0.118 —-0.105 —-0.100 —-0.092 —-0.082 -0.079
BRW -0.37 -0.337 —-0.342 —-0.289 —-0.252 —-0.234 —-0.172

Cellsreportsfit statistics at various simulated time horizons using a leave-one-year-out cross validation. RMSE is root mean squared error for the point predictions, while the 95% coverage
is the percent of vote shares that fall within the predicted 95% credible intervals. Predictive accuracy measures the percent of races predicted correctly across cycles. Average predicted
log-likelihoods (APLL) are predicted using the Dirichlet likelihood (for vote share predictions) and the multinomial likelihood (for winner predictions).
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Figure 4. Forecast for 2018 at one week time horizon for major party candidates. Stars indicate actual
vote share, while points and confidence intervals reflect posterior mans and 95% credible predictions. The
California election had two Democrats and we coded Sen. Angus King of Maine as Democrat. Red font for
state names indicates an incorrect prediction. This model also included a forecast for Libertarian candidate
Gary Johnson in New Mexico (posterior median 0.185, 95% CI [0.117, 0.247], outcome 0.154). MNS and MSS are
special elections held on the usual Election Day.

the Democrats were favored to win in four Republican-held seats (CO, ME, AZ, and NC) and to lose
Alabama. However, the election outcomes were predicted to be very close in many statesincluding
MS, AK, MT, SC, GA, IA, NC, IA, AZ, ME, and CO (states here are ordered by the degree to which they
favor the Democratic candidates).?

In all, the forecast was accurate, missing only two election outcomes. One miss was North
Carolina, which our model predicted as being a narrow Democratic victory and turned out to be
a narrow Republican victory. The only serious miss was Maine, where pre-election polling was
dramatically off.?> Maine was also the only case where the result fell outside of our 95% predictive
Cl, giving us 96.9% coverage.

We can compare this performance to the Economist and fivethirtyeight.com models, although
it is important to note that their methods are not public. These results are show in Table 3. Our
model outperformed the Economist model on all metrics. In addition to NC and ME, The Economist
also missed lowa and (the plurality winner in) Georgia. The 95% out-of-sample coverage rate was
90.6% as, in addition to Maine, their model also missed New Jersey and West Virginia.

We provide example outputs for candidate-level models in Supplementary Appendix J. Additional details on the predictive
posterior for the 18 closest races are shown in Supplementary Appendix K.
The last nonpartisan poll showing Sen. Collins winning re-election was reported in September, 2019.
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Figure 5. Predicted vote share densities for 2020 on Election Day for Democratic candidates. States are
arranged in order of increasing probability of Democrats winning. Solid black vertical lines indicate actual
vote shares for Democratic candidates. The plot excludes Louisiana and the Georgia special election.

Table 3. Comparing predictive accuracy in 2020 cycle to prominent media forecasts.

Model
GP+DR Economist 538 Classic 538 Delux 538 LITE
Accuracy (%) 93.75 87.5 90.63 93.75 90.63
RMSE 0.0316 0.0394 0.0421 0.0397 0.0446
80% CI Coverage 0.875 0.859 0.859 0.844

95% Cl Coverage 0.969 0.906

Comparing forecast accuracy based on final model predictions acquired from Fivethirtyeight (2020) and
(Economist 2020). The Economist provided 95% Cls while fivethirtyeight.com provided 80% Cls.

It is not as easy to directly compare performance to the fivethirtyeight.com forecasts as they
predict non-normalized voter share (not two-party vote share), provide only 80% predictive
intervals, and actually produce three predictions. Thus, for instance, the RMSE metric is not
on the same scale as our model which predicts the normalized vote share (excluding write-ins,
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third-party votes, etc.). However, the results in Table 3 indicate that our model performed at
comparable levels of accuracy and coverage as their forecasts, although ours is perhaps slightly
conservative in having a 87.5% coverage rate for the 80% Cls. Notably, our model made the same
winner prediction for all of the 2020 elections as the “Delux” model, while their other variants
missed the plurality winner in Georgia. We also have lower RMSE than all three variations. In all,
we consider this to be evidence that our model is at least as accurate as fivethirtyeight.com while
having the advantage of being a public and transparent methodology that can be studied and
improved upon by other forecasters.

Conclusion

In this article, we offer a novel approach to dynamic election prediction that combines both poll-
based and fundamentals-based forecasting. Although the model itself is somewhat complex, in
the end it includes only a few variables: polling, PVI, experience, and party. The novelty here is not
in what factors go into the model, but how they are combined to create accurate, well-calibrated
predictions.

Our approach contains two basic stages. The first step is to treat polling data as a probabilistic
representation of latent public support for a candidate, where this latent support has a linear and
nonlinear trend. By fitting a model to this trend, we can accurately predict forward to where public
opinion will be on Election Day. Second, we then incorporate predictions about this latent position
into a Dirichlet regression that uses historical data and a few simple features about the election to
estimate the degree to which polling can be used to predict elections based on historical data. A
final innovation is that we train the data completely at different time horizons to ensure that our
final predictions reflect an appropriate level of uncertainty.

While we believe that this model improves upon other Senate forecasting models in the
literature, it could be refined in several ways. First, we might better extend it to handle unusual
cases like runoff elections or special elections (e.g., the 2020 Georgia special election) or the
potential for instant runoffs in states adopting ranked-choice voting. We could, in theory, also
extend the model to account for “house effects” of various polling firms or weight more accurate
firms more highly in the candidate-level model. Likewise, we could try alternative variables to
include in the construction of the candidate-level prior or in the election-level model.?® However,
adding such complications should be done with caution as they may lead to overfitting. Many
variables (e.g., money raised or incumbency status) should be reflected in the polling data. Once
we have conditioned on latent public support, the list of accurate predictors of outcomes is much
smaller. Finally, retrospectively it is relatively easy to identify which third-party candidates should
be included in a predictions model since they appear regularly in the polling data and receive a
considerable vote share. However, future work might improve upon our efforts by more clearly
defining a rule for when to include minor candidates based on ex ante conditions.

A further shortcoming is that our model does not allow online-updating of hyperparameters:
forecasters have to learn from scratch customized hyperparameters for every new horizon. In
Table 1, the learnt length scale and noise standard deviations are somewhat constant across
horizons, while the learnt output scales shrink at earlier horizon. When computation capability
is limited, practitioners may use the same optimal hyperparameters across horizons and warp the
output scale according to the forecasting horizon.

A third extension would be to adjust the model to handle elections at different levels. This
model would be relatively straightforward to extend to, for example, gubernatorial races. How-
ever, more significant adjustments may be needed for lower (e.g., races for the U.S. House of

A simple approach might be to use regularized regression for this task and include the complexity penalty parameter in
the loyo cross validation.
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Representatives) or higher (presidential) elections. Lower-level races are unusual in that there is
even less polling data available for most races, which may require heavier reliance on contextual
factors or cycle factors such as generic ballots. Meanwhile, presidential races usually offer many
more polls, but the election-level training data is necessarily very sparse at the national level and
the state-level outcomes (state-level results) are much more correlated. Researchers wishing to
extend this basic approach to those settings should think carefully about how to construct the
election-level and candidate-level models to account for these important differences. It will also
be important to consider how well our approach to, for instance, cross validation will work given
smaller sample sizes.

Finally, it is important to remember that while we have taken steps to gauge the accuracy of
the model, there is no way feasible way to assess its true long-term out-of-sample performance
until we observe more election outcomes. We created a held-out prediction for 2018 and a true
prediction for 2020, but there is always the risk that idiosyncratic features of these election cycles
aredriving the results. It will be important to re-evaluate the model’s performancein future cycles.

Acknowledgments

We are grateful to Harry Enten at CNN for providing data and for David Carlson for help and
collaboration in an earlier attempt at modeling elections. We also appreciated the help of the
Political Analysis editorial staff as well as the comments from our reviewers.

Funding
YC and RG were supported by the National Science Foundation (NSF) under award number
11IS-1845434.

Data Availability Statement

Replication code for this article has been published in Code Ocean, a computational repro-
ducibility platform that enables users to run the code, and can be viewed interactively at
https://doi.org/10.24433/C0.4154884.v1 (Chen, Garnett, and Montgomery 2021a). A preser-
vation copy of the same code and data can also be accessed via Harvard Dataverse at
https://doi.org/10.7910/DVN/GNHESM (Chen, Garnett, and Montgomery 2021b).

Supplementary Material
For supplementary material accompanying this paper, please visit https://doi.org/10.1017/pan.
2021.42.

Bibliography

Abramowitz, A. I. 2008. “Forecasting the 2008 Presidential Election with the Time-for-Change Model.” PS:
Political Science & Politics 41 (4): 691-695.

Aitchison, J. 1982. “The Statistical Analysis of Compositional Data.” Journal of the Royal Statistical Society:
Series B (Methodological) 44 (2): 139-160.

Campbell, J. E. 2018. “The Seats-in-Trouble Forecasts of the 2018 Midterm Congressional Elections.” PS:
Political Science & Politics 51 (S1): 12-16.

Campbell, J. E., and K. A. Wink. 1990. “Trial-heat Forecasts of the Presidential Vote.” American Politics
Research 18 (3): 251-269.

Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A.
Riddell. 2017. “Stan: A Probabilistic Programming Language.” Journal of Statistical Software 76 (1): 1-32.

Chen, Y., R. Garnett, and J. M. Montgomery. 2021a. “Replication Data for: Polls, Context, and Time: A
Dynamic Hierarchical Bayesian Forecasting Model for US Senate Elections.” Code Ocean.
https://doi.org/10.24433/C0.4154884.v1

Chen, Y., R. Garnett, and J. M. Montgomery. 2021b. “Replication Data for: Polls, Context, and Time: A
Dynamic Hierarchical Bayesian Forecasting Model for US Senate Elections.”
https://doi.org/10.7910/DVN/GNHESM, Harvard Dataverse, V1.

Economist . 2020. “Forecasting the US Elections.” https://projects.economist.com/us-2020-forecast.

Yehu Chen et al. | Political Analysis 132



https://doi.org/10.1017/pan.2021.42 Published online by Cambridge University Press

PA

Erikson, R. S., and C. Wlezien. 2008. “Leading Economic Indicators, the Polls, and the Presidential Vote.” PS:
Political Science & Politics 41 (4): 703-707.

Fair, R. C. 1978. “The Effect of Economic Events on Votes for President.” The Review of Economics and
Statistics 60(2): 159-173.

Fivethirtyeight 2020. “Democrats are favored to win the Senate.”
https://projects.fivethirtyeight.com/2020-election-forecast/senate/.

Gill, J. 2020. “Measuring Constituency Ideology Using Bayesian Universal Kriging.” State Politics & Policy
Quarterly 21(1): 80-107.

Hainmueller, J., and C. Hazlett. 2014. “Kernel Regularized Least Squares: Reducing Misspecification Bias
with a Flexible and Interpretable Machine Learning Approach.” Political Analysis 22: 143-168.

Hoffman, M. D., and A. Gelman. 2014. “The No-U-Turn sampler: Adaptively Setting Path Lengths in
Hamiltonian Monte Carlo.” Journal of Machine Learning Research 15 (1): 1593-1623.

Hummel, P, and D. Rothschild. 2014. “Fundamental Models for Forecasting Elections at the State Level.”
Electoral Studies 35:123-139.

Jackman, S. 2005. “Pooling the Polls Over an Election Campaign.” Australian Journal of Political Science 40
(4): 499-517.

Jacobson, G. C. 1989. “Strategic Politicians and the Dynamics of US House Elections, 1946-86.” The
American Political Science Review 83 (3): 773-793.

Jacobson, G. C., and J. L. Carson. 2019. The Politics of Congressional Elections. Lanham, MD: Rowman &
Littlefield.

Katz, J. N., and G. King. 1999. “A Statistical Model for Multiparty Electoral Data.” American Political Science
Review 93(1): 15-32.

Klarner, C. E. 2008. “Forecasting the 2008 US House, Senate and Presidential Elections at the District and
State Level.” PS: Political Science and Politics 41 (4): 723-728.

Klarner, C. E. 2012. “State-Level Forecasts of the 2012 Federal and Gubernatorial Elections.” PS, Political
Science & Politics 45 (4): 655-662.

Klarner, C. E. 2013. “2012 Presidential, US House, and US Senate Forecasts.” PS, Political Science & Politics 46
(1): 44-45.

Klarner, C. E., and S. Buchanan. 2006. “Forecasting the 2006 Elections for the United States Senate.” PS:
Political Science and Politics 39 (4): 849-855.

Lewis-Beck, M. S., and C. Tien. 2008. “The Job of President and the Jobs Model Forecast: Obama for ‘08?”
PS: Political Science & Politics 41(4): 687-690.

Linzer, D. A. 2013. “Dynamic Bayesian Forecasting of Presidential Elections in the States.” Journal of the
American Statistical Association 108 (501): 124-134.

Lockerbie, B. 2012. “Economic Expectations and Election Outcomes: The Presidency and the House in 2012.”
PS, Political Science & Politics 45 (4): 644-64T.

MacWilliams, M. C. 2015. “Forecasting Congressional Elections Using Facebook Data.” PS, Political Science &
Politics 48 (4): 579.

Mohanty, P., and R. Shaffer. 2019. “Messy Data, Robust Inference? Navigating Obstacles to Inference with
bigKRLS.” Political Analysis 27 (2): 127-144.

Monogan, J. E., and J. Gill. 2016. “Measuring State and District Ideology with Spatial Realignment.” Political
Science Research and Methods 4 (1): 97-121.

Philips, A. Q., A. Rutherford, and G. D. Whitten. 2016. “Dynamic Pie: A Strategy for Modeling Trade-Offs in
Compositional Variables Over Time.” American Journal of Political Science 60 (1): 268-283.

Rasmussen, C. E., and C. K. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge: MIT Press.

Sobol, I. M. 1979. “On the Systematic Search in a Hypercube.” SIAM Journal on Numerical Analysis 16 (5):
790-793.

Stoetzer, L. F., M. Neunhoeffer, T. Gschwend, S. Munzert, and S. Sternberg. 2019. “Forecasting Elections in
Multiparty Systems: A Bayesian Approach Combining Polls and Fundamentals.” Political Analysis 27 (2):
255-262.

Tomz, M., J. A. Tucker, and J. Wittenberg. 2002. “An Easy and Accurate Regression Model for Multiparty
Electoral Data.” Political Analysis 10(1): 66-83.

Walther, D. 2015. “Picking the Winner (s): Forecasting Elections in Multiparty Systems.” Electoral Studies 40:
1-13.

Yehu Chen et al. | Political Analysis 133



	1 Predicting Senate Races
	2 Intuition and Related Work
	3 A Predictive Model of U.S. Senate Elections
	3.1 Background on Gaussian Process Regression
	3.2 Projecting Public Support via GP Regression
	3.3 Election-Level Model
	3.4 Discussion

	4 Empirical Evaluation
	4.1 Data and Evaluation Criteria
	4.2 Baselines
	4.3 Results

	5 Predicting the 2020 Cycle
	6 Conclusion

