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Abstract

Chromatin organization is important for many DNA-templated
processes in eukaryotic cells such as replication and tran-
scription. Recent studies have uncovered the capacity of
epigenetic modifications, phase separation, and nuclear ar-
chitecture and spatial positioning to regulate chromatin orga-
nization in both plants and animals. Here, we provide an
overview of the recent progress made in understanding how
chromatin is organized within the nucleus at both the local and
global levels with respect to the regulation of transcriptional
silencing in plants. To be concise while covering important
mechanisms across a range of scales, we focus on how
epigenetic modifications and chromatin remodelers alter local
chromatin structure, how liquid-liquid phase separation physi-
cally separates broader chromatin domains into distinct drop-
lets, and how nuclear positioning affects global chromatin
organization.
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Introduction

In eukaryotes, the nucleosome is the fundamental unit of
chromatin composed of DNA wrapped around a histone
octamer [1]. Nucleosome position and density are highly
correlated with the accessibility of the underlying DNA
because they can impact transcriptional activity by
preventing other factors, such as transcription factors and
DNA methyltransferases, from accessing their binding

sites [2,3]. Genomic regions with low nucleosome density
are generally accessible, correlate with the transcription
start or termination sites of actively transcribed genes
[4,5], and are enriched with activating epigenetic marks
such as H3K27ac [5]. Conversely, regions with high
nucleosome density are generally inaccessible, contain
inactive genes or repressed transposons, and are enriched
with silencing epigenetic marks such as DNA methylation
and H3K27me3 [6**]. In Arabidopsis, the strongest
interchromosomal interactions are observed within peri-
centromeric heterochromatin and telomeric regions [7,8].
Heterochromatic regions with silencing epigenetic marks
(e.g., DNA methylation and H3K9me2) are generally
associated with higher-order chromatin structures. The
formation of both local chromatin interactions and higher-
order chromatin structures is largely dependent on chro-
matin remodelers. On the one hand, the proper posi-
tioning of nucleosomes requires these chromatin
remodelers to establish specific epigenetic modifications.
On the other hand, chromatin remodelers and other
chromatin reader proteins can recognize epigenetic marks
to modify chromatin structure.

Chromatin liquid-liquid phase separation (LLPS)
physically separates broader chromatin domains into
distinct droplets and impacts global chromatin organi-
zation and transcription [9]. The formation of
membrane-less nuclear bodies via LLLPS has also been
found to widely participate in the processes of chro-
matin modification and transcriptional regulation [10].
At the global scale of chromatin positioning within the
nucleus, recent studies have started to uncover mech-
anisms by which plants can spatially organize chromatin
within specific compartments and have identified mo-
lecular factors that may be functional equivalents of
established organizational mechanisms in animals.

"To provide a brief overview of transcriptional regulation
across multiple scales of chromatin organization in
plants, this review focuses on the relationship between
silencing epigenetic marks (e.g., DNA methylation and
H3K27me3) and local chromatin structure in both
constitutive and facultative heterochromatin, the
physical separation of broader chromatin domains into
distinct droplets by LIPS, and the function of nuclear
positioning in global chromatin organization.

www.sciencedirect.com

Current Opinion in Plant Biology 2022, 69:102261


mailto:xuehua.zhong@wisc.edu
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.pbi.2022.102261
https://doi.org/10.1016/j.pbi.2022.102261
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbi.2022.102261&domain=pdf
www.sciencedirect.com/science/journal/13695266
www.sciencedirect.com/science/journal/13695266

2 Epigenetics and gene regulation

Local chromatin remodeling

The eukaryotic genome is partitioned into transcrip-
tionally active euchromatin and silent heterochromatin.
Constitutive heterochromatin, composed of tandem
DNA repeats and transposons, is stably condensed and
usually enriched with DNA methylation and H3K9
methylation. In contrast, facultative heterochromatin is
associated with genomic regions enriched for H3K27
methylation. Emerging evidence indicates that chro-
matin remodelers are widely involved in the formation of
constitutive and facultative heterochromatin by modu-
lating DNA methylation and H3K27me3, respectively.
In eukaryotes, there are four families of chromatin
remodelers including switch/sucrose non-fermentable
(SWI/SNF), imitation switch (ISWI), chromodomain
helicase DNA-binding (CHD), and INOsitol requiring
80 (INO8O0). The ability of these chromatin remodelers
to regulate transcriptional state by opening and closing
chromatin architecture has been well documented [11].

Figure 1

Here, we review the recent progress outlining the rela-
tionship between chromatin remodelers and local
chromatin structure in transcriptional silencing.

Chromatin remodeling in DNA methylation-marked
heterochromatin

Constitutive heterochromatin is composed of highly
condensed chromatin largely enriched with DNA
methylation, which contributes to the establishment
and maintenance of higher-order chromatin structures.
In  Arabidopsis, the chromatin remodeler DDM1
(Decreased DNA Methylation 1) is required for the
maintenance of DNA methylation in constitutive het-
erochromatin [12], whereas the interspersed DNA
methylation within transposon- or repeat-containing
euchromatic regions is mainly mediated by the RNA-
directed DNA methylation (RdADM) pathway [13].
The RADM pathway requires small interfering RNAs
(siRNAs) and long noncoding scaffold RNAs produced
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Chromatin remodelers function in chromatin organization and transcriptional regulation. (a) The SWI/SNF2 chromatin remodeling protein DDM1
binds H2A.W and changes the properties of chromatin to allow DNA methyltransferases to access histone H1 containing regions. (b) The CLSY family of
chromatin remodelers associates with the H3K9me2 reader protein SHH1 and enables Pol IV recruitment. (¢) DRD1 interacts with DMS3 and RDM1 to
change nucleosome positioning and facilitate the association of Pol V with chromatin. (d) SWI3B, a subunit of the SWI/SNF chromatin remodeling
complex, functions with the Pol V transcript-binding protein IDN2 to establish nucleosome positioning and mediate de novo DNA methylation and
transcriptional silencing. MORC family proteins interact with SWI3D and the DNA methylation binding proteins SUVH2/9 to mediate heterochromatin
condensation and gene silencing. (e) Chromatin remodelers function in PRC-enriched facultative heterochromatin regulation. Important abbreviations:
DDM1, Deceased in DNA Methylation 1; CLSY, SNF2 domain-containing protein CLASSY; SHH1, SAWADEE Homeodomain Homolog 1; Pol 1V, DNA-
dependent RNA polymerase 1IV; DRD1, Defective in RNA-Directed DNA methylation 1; DMS3, Defective in Meristem Silencing 3; RDM1, RNA-Directed
DNA Methylation 1; Pol V, DNA-dependent RNA polymerase V; IDN2, Involved in De Novo 2; MORC, Microrchidia; SUVH2/9, SU(VAR)3-9 homolog
protein 2 and SU(VAR)3-9 homolog protein 9; Pol I, DNA-dependent RNA polymerase Il. CHR11/17, imitation of switch (ISWI)-like chromatin-remodeling
protein 11 and 17; PIE, Photoperiod-Independent Early flowering; INO80, INOsitol requiring 80; PRC complex, Polycomb Repressive Complex; CLF,
Curly LeaF; PKL, PicKLe, CHD3-type chromatin remodeling protein; BRM, BRahMa, SWI/SNF chromatin remodeling protein.
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by the DNA-dependent RNA polymerases Pol IVand Pol
V to mediate DNA methylation in all sequence contexts
(CG, CHG, and CHH, where H = A, Cor T) [14].

DDM1 encodes a SWI/SNF2 chromatin remodeler that
can shift nucleosomes in an ATP-dependent manner
m vitro [15]. Loss of DDM1 causes a profound reduction
of DNA methylation and H3K9me2, leading to tran-
scriptional activation in heterochromatin [16,17]. Given
that nucleosomes are barriers to DNA methyl-
transferases, DDM1 enables cytosine methylation of
nucleosome-wrapped DNA by remodeling heterochro-
matin to allow DNA methyltransferases to access histone
H1-containing regions [12,18,19]. DDM1 was also re-
ported to directly bind H2ZA.W and mediate its deposi-
tion, resulting in the alteration of chromatin properties
and transposon silencing (Figure la) [20*]. In Arabi-
dopsis, H2A.W uniquely marks silent genes and trans-
posons in constitutive heterochromatin [21]. While the
loss of H2ZA.W has no impact on the repression of genes
and transposons, it would be interesting to further
investigate how the incorporation of HZA.-W by DDM1 in
heterochromatin contributes to transposon silencing.
Additionally, a recent study showed that the combined
loss of H1 and H2AW greatly increases chromatin
accessibility and DNA methylation in heterochromatin,
suggesting that the maintenance of heterochromatin
requires both H2A.-Wand H1 [22*].

The CLASSY (CLSY) family of putative SWI2/SNF2
chromatin remodeler proteins facilitates Pol IV occu-
pancy and the d¢ novo establishment of DNA methyl-
ation [23]. CLSY1 and CLSY2 associate with SAWADEE
HOMEODOMAIN HOMOLOG1 (SHH1) and are
required for H3K9me?2 recognition and Pol IV recruit-
ment for chromatin remodeling in leaf tissue, while
CLSY3 and CLSY4 recognize CG methylation and are
specifically expressed in the ovules (Figure 1b)
[23,24*]. The tissue-specific expression of different
CLSYs indicates that chromatin remodelers may be
important for DNA methylation patterning and gene
regulation during plant cell differentiation.

DRD1 (Defective in RNA-directed DNA methylation
1) is another helicase-like SWI2/SNF2 chromatin
remodeler, which physically interacts with DEFEC-
TIVE IN MERISTEM SILENCING 3 (DMS3) and
RNA-DIRECTED DNA METHYLATION 1 (RDM1)
to form the DDR complex [25]. DRDI1 acts both
downstream and in conjunction with DMS3 and RDM1,
serving as a bridge between the DDR complex and Pol V
[26]. A recent cryo-EM structure of the DDR complex
revealed that the binding of DRDI1 can stabilize the
coiled-coil domain of DMS3, which converts the DMS3
dimer within the complex from an open to a closed state
[26]. This indicates that DRD1 triggers the formation of
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the DDR complex, which subsequently recruits Pol V to
specific genomic loci (Figure 1c).

The SU(VAR)3-9 homolog proteins SUVHZ2/9 interact
with the DDR complex and bind methylated DNA to
recruit Pol V to specific regions [27,28]. Pol V then
produces long noncoding RNAs that interact with the
RNA-binding protein INVOLVED IN DE NOVO 2
(IDN2), which associates with the SWI/SNF complex
protein SWI3B to establish nucleosome positioning and
mediate transcriptional silencing [29]. These results
suggest that ATP-dependent chromatin remodelers are
involved in positioning nucleosomes, facilitating DNA
methylation, and transcriptional silencing.

The Arabidopsis MICRORCHIDIA (AtMORC1-7)
family of proteins is required for heterochromatin
condensation and transcriptional silencing [30—32].
Loss of AtMORC6 induces large-scale nuclear reor-
ganization and chromatin interaction changes coupled
with the de-repression of silenced genes and trans-
posons [7]. In C. elegans, ceMORC1 displays no DNA
sequence preference but can trap and compact loops
of DNA to form topologically entrapped foci that
enforce chromatin compaction [33]. AtMORCS6 in-
teracts with the DNA methylation binding protein
SUVH9 and the SWI/SNF chromatin remodeler
SWI3D to mediate transcriptional silencing and chro-
matin condensation (Figure 1d) [30]. A recent study
showed that MORC7, which associates with Pol V and
RdDM components # vivo, is localized to specific
chromatin regions and facilitates the establishment of
RdADM [32*]. These results indicate that MORCs are
recruited to RADM sites via interactions with RdADM
components, and then function as molecular in-
termediaries or a memory component between DNA
methylation, higher-order chromatin structures, and
transcriptional silencing [32%].

Chromatin remodeling in PRC-directed facultative
heterochromatin

As a key silencing mark in facultative heterochromatin,
H3K27me3 is mainly enriched at transcription start sites
or within gene bodies and is involved in chromatin or-
ganization for both local and long-distance interactions
across the Arabidopsis genome [7,34*]. Deposition of
H3K27me3 is catalyzed by the polycomb repressive
complex (PRC), which establishes and maintains the
transcriptionally repressed heterochromatin. Emerging
evidence shows that chromatin remodelers play an
important role in regulating facultative heterochromatin
silencing and three-dimensional (3D) genome architec-
ture [35—39%*].

In N. ¢rassa, the chromatin remodeler ISW (imitation
switch) is required for stable PRC-chromatin interaction
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in the repression of PRC target genes, proper nucleosome
organization, and the assembly of facultative hetero-
chromatin [35,36]. ISW and its accessory proteins
interact with each other to form an ATP-utilizing chro-
matin assembly and remodeling factor complex, which
interacts with chromatin targets and remodels the chro-
matin landscape at H3K27-methylated regions [35,36].
In Arabidopsis, the chromodomain helicase DNA binding
family remodeler PICKLE (PKL), is thought to promote
H3K27me3-harbored nucleosome retention by associ-
ating with the SWRI1-family remodeler PHOTOPE-
RIOD INDEPENDENT EARLY FLOWERINGI1
(PIE1) and the PRC complex [37]. PIE incorporates
histone variant H2A.Z, which in turn promotes
H3K27me3 deposition followed by H3K27me3 retention
by PKL and the formation of mature nucleosomes from
prenucleosomes [37]. These results indicate that ATP-
dependent chromatin remodelers contribute to both
the construction and maintenance of H3K27me3-
enriched facultative heterochromatin. Additionally, to
prevent an inappropriate association and activity of the
PRC complex at active genes, the SWI/SNF chromatin
remodeler BRAHMA (BRM) directly binds to these re-
gions to restrict the function of the PRC complex [38].
This observation suggests the existence of a high preci-
sion mechanism of chromatin remodelers in the regula-
tion of chromatin homeostasis during plant growth
and development.

To investigate the mechanisms of diverse chromatin
remodelers in 3D chromatin organization, a recent study
examined genome-wide chromatin interactions in mu-
tants of all four families of chromatin remodelers by
using Hi-C and showed that BRM, INO80, and PKL are
involved in nucleosome density, while the ISWI chro-
matin remodelers CHR11 and CHR17 regulate nucle-
osome distribution patterns [39%*]. In all these
chromatin remodeler complex mutants, the genome-
wide H3K27me3 reduction was accompanied by
chromatin-interaction compartment switch [39%*].
This revealed the different regulatory mechanisms of
chromatin remodelers in both linear nucleosome distri-
bution pattern and density, which promote PRC-
dependent H3K27me3 deposition and 3D chromatin
structure formation (Figure le).

Phase separation and chromatin
condensation

Beyond local chromatin structure, broader chromatin
domains can organize by forming liquid- or gel-like
droplets through either the intrinsic phase separation
properties of chromatin itself or through interactions
with other associated factors in the nucleus [9]. The
LLPS property of chromatin is correlated with chro-
matin organization and gene transcription [34]. Histone
tail-driven LIPS of chromatin is highly dependent on
nucleosome spacing and the associated linker histone

H1 [40]. Together with DNA methylation, H1 increases
nucleosome spacing, condenses heterochromatin, and
globally controls nucleosome positioning to silence
transposons and suppress intragenic antisense tran-
scripts [41,42]. H1 also enforces the separation of
euchromatic and heterochromatic regions by impeding
the RADM pathway in GC-rich heterochromatin [43*].
The highly disordered C-terminal tail of H1 and DNA
have been shown to act as scaffolds for phase-separated
heterochromatin both 7 vitzro and in HelLa cells [44,45].
It is possible that Arabidopsis H1.1 and H1.2 proteins,
predicted to also contain C-terminal intrinsically disor-
dered regions (IDR, http://www.pondr.com), may have
similar function in the formation of heterochromatin
foci. Before reaching this conclusion, more experiments
are needed to exclude the possibility that H1 increases
nucleosome spacing via its mere binding to linker DNA
to condense heterochromatin independent of phase
separation. Besides, it has been shown that histone
variant HZA.W is able to promote chromatin condensa-
tion though long-range, fiber-to-fiber interaction by its
C-terminal SPKK motif 7 vitro and organize hetero-
chromatin into chromocenters in the central cell nu-
cleus [46]. Furthermore, histone variant H2B.8 has also
been shown to aggregate transcriptionally inactive
chromatin into phase-separated condensates in sperm
cells [477]. Together, these studies suggest that histone
H1 and histone variants may directly regulate nucleo-
some stability and chromatin environment by phase
separation (Figure 2b).

Apart from the intrinsic phase separation properties of
chromatin, LLPS-driven chromatin condensation also
occurs through interactions with chromatin reader pro-
teins. Heterochromatin protein 1 (HP1) couples its self-
oligomerization and H3K9me3 binding capacity to drive
the formation of phase-separated condensates and
chromatin compaction [48,49]. In plants, the H3K9me2
reader protein ADCP1, a functional analog to HP1, also
mediates heterochromatin phase separation and chro-
mocenter formation [50,51].

Additionally, many membrane-less subnuclear organ-
elles and nuclear bodies that are formed by LLLPS have
been found to participate in chromatin modifications
and gene regulation in plants (Figure 2¢) [10]. In the
nucleus, these membrane-less condensates are involved
in the formation of the nucleolus, which functions in
rRNA biosynthesis and ribosome biogenesis [52]; nu-
clear speckles, which are involved in gene regulation and
the association of transcription factors and chromatin
remodeling factors [53]; and Cajal bodies, which are
involved in RNA silencing and snRNP biogenesis [54].
For example, ARGONAUTE4 (AGO4) forms a specific
nuclear body that colocalizes with the Pol V subunit
NRPD1b and Cajal bodies [55]. This suggests that
AGO4 and its related siRNA complex both function in
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Phase separation and chromatin condensation at the nuclear periphery. (a) In the nucleus, chromatin is highly organized into different chromosome
territories. Heterochromatin within gene-poor regions is typically found at the nuclear periphery, whereas gene-rich euchromatin is in the nuclear interior.
(b) ADCP/AGDP binds H3K9me2, which is established by a self-reinforcing loop between DNA methyltransferases (DRM2 and CMT2/3) and H3K9
methyltransferases (SUVHs), and mediates heterochromatin phase separation and chromocenter formation. Histone linker H1 is proposed to condense
heterochromatin and regulate nucleosome position. Histone variants (e.g., H2A.W and H2B.8) are also involved in promoting the formation of nuclear
condensates. (c) Plant lamin-like proteins CRWN1/4 and PWO1 function together to link inaccessible chromatin domains and the nuclear matrix. PNET2
is a nuclear membrane protein associated with CRWN1 and KAKU4, and drives heterochromatin to the nuclear periphery. Phase-separated assemblies
of proteins and nucleic acids are termed nuclear bodies (e.g., AGO4 body and PcG body). AGO4 bodies colocalize with Pol V subunits and Cajal bodies
to establish DNA methylation. PcG bodies are condensates of Polycomb-group (PcG) proteins, which control H3K27me3. Important abbreviations: Pol V,
DNA-dependent RNA polymerase V; AGO4, Argonaut 4; CRWN1/4, CROWDED NUCLEI 1 and CROWDED NUCLEI 4; PWO1, PROLINE-
TRYPTOPHAN-TRYPTOPHAN-PROLINE INTERACTOR OF POLYCOMBS1; PNET2, Plant Nuclear Envelope Transmembrane 2; DRM2, Domains
Rearranged Methyltransferase 2; CMT2/3, CHROMOMETHYLASE 2 and CHROMOMETHYLASE 3; SUVHs, SU(VAR)3-9 HOMOLOG proteins; ADCP/

AGDP, Agenet Domain Containing Protein 1/Agenet Domain (AGD)-Containing P1.

the de novo DNA methylation process, which then re-
quires distinct nuclear bodies and subnuclear compart-
ments. Furthermore, Polycomb-group (PcG) proteins
aggregate to form a PcG body in nuclear speckles and are
involved in transcriptional regulation by altering chro-
matin organization [56]. EMBRYONIC FLOWERI1
(EMF1) and LIKE HETEROCHROMATIN PRO-
TEIN1 (LHP1) are required for the formation of PcG
bodies and mediate phase-separated condensates to
promote H3K27me3 modification [57], and EMBRYO
DEFECTIVE 1579 (EMB1579) forms liquid-like con-
densates and recruits the DNA Damage Binding Protein
1 (DDB1), Cullin 4 (CUL4), and MULTIPLE SUP-
PRESSOR OF IRA 4 (MSI4) to promote CLF-PRC2
mediated H3K27me3 modification at the FLC locus
[58*]. Despite these observations, the phase separation
property of the PcG proteins has yet to be demonstrated
in plants. It will be interesting to uncover whether

Arabidopsis PcG proteins are involved in chromatin
condensation though LLPS.

Spatial chromatin organization

At a higher scale than phase separation, chromatin
positioning within the nucleus also plays a role in
chromatin organization. In animals, lamin proteins form
the nuclear matrix that interacts with chromatin at the
nuclear periphery, thereby acting as the primary scaffold
for 3D genome organization [59]. In §. pombe, Amol
associates with the RNA processing complex RIXC and
the histone chaperone complex FACT to tether het-
erochromatin to the nuclear periphery [60]. In mam-
mals, X chromosome inactivation represents an extreme
case of nuclear positioning of chromatin whereby the
entire inactivated X chromosome is tethered to the
nuclear periphery [61]. This suggests that the epige-
netic maintenance of heterochromatin may require its
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positioning at the nuclear periphery. Of current interest
to the plant community is the classification of equiva-
lent factors and mechanisms in plants that could drive
the localization of heterochromatin to the nu-
clear periphery.

In Arabidopsis, heterochromatin positioning at the nu-
clear periphery requires plant-specific, lamin-like
CROWDED NUCLEI proteins CRWN1 and CRWN4 in
addition to non-CG DNA methylation [62*]. Tt was
shown that CRWNI1 binds to inaccessible chromatin
domains at the nuclear periphery and that ¢or/ mu-
tants abolish this binding. CRWN1 and CRWN4 localize
specifically to the nuclear periphery during interphase
[63]. From prometaphase to anaphase, CRWN1 localizes
to the condensed chromatin and then localizes back to
the nuclear periphery during telophase [64]. Subse-
quently, during late telophase, CRWN1-4 are all local-
ized to the nuclear periphery [64]. The mechanism by
which CRWNI1 can localize itself to the nuclear pe-
riphery is thought to occur through an interaction with
SUN1 and SUN2, which are components of the
LINKER OF NUCLEOSKELETON AND CYTO-
SKELETON (LINC) complex [65]. This suggests that
CRWN1 is likely a key factor in chromatin positioning at
the nuclear periphery.

In addition, CRWN1 and CRWN4 also physically asso-
ciate with PROLINE-TRYPTOPHAN-TRYPTOPHAN-
PROLINE INTERACTOR OF POLYCOMBS1 (PWO1)
[66%*]. PWOL1 forms foci located partially at the subnu-
clear periphery and interacts with plant nuclear matrix
and nuclear envelope proteins, CRWN1/4 and SUNI.
Additionally, pwol and crwnlcren? mutants affect the
expression of a similar set of genes, suggesting that
PWO1 and CRWNI1 act in the same complex to link
chromatin repression to the nuclear periphery [66%*].

Most recently, PNET?2 was characterized as a nuclear
membrane protein associated with the nuclear matrix of
Arabidopsis  [67**]. Proximity labeling experiments
support a close association of PNET2 and KAKU4,
another lamin-like protein in Arabidopsis [68]. The
PNET2 C-terminal domain can also be engaged by
KAKU4 at the nuclear periphery, thus strengthening the
proposed association between PNET2 and KAKU4.
Additionally, both PNET2 and KAKU4 are closely
associated with nucleosome core histone H2 proteins. It
is believed that PNET2 physically binds CRWNT1 to
properly localize itself beneath the inner nuclear
membrane (Figure 2c).

Despite these discoveries, the exact mechanisms that
drive heterochromatin localization to the nuclear pe-
riphery remain relatively unknown in plants. Further
efforts to understand exactly how the identified nuclear
matrix constituents and their associated factors are

coordinating the nuclear positioning of chromatin will
help to increase our understanding of global chromatin
organization in plants.

Furthermore, plants also possess structural maintenance
of chromosome (SMC) complexes, which, much like the
factors involved in chromatin organization at the nuclear
periphery, are less studied compared to their animal
homologs. SMC complexes are thought to function in
chromosome condensation and chromatin organization
through loop extrusion whereby genomic DNA is pulled
through the complex to form gradually larger loops of
intrachromosomal DNA [69]. In plants, it has been
shown that the SMC complexes, condensin and cohesin,
are involved in transcriptional silencing [70,71]. SMC4,
a core subunit of condensins I and II, contributes to the
silencing of pericentromeric transposons without
affecting DNA methylation and is also required for
chromocenter condensation [71]. It was recently
demonstrated that condensin II is also required for the
proper positioning of rDNA arrays within the nucleus
[72*]. The currently known functions of condensin and
cohesin highlight the potential role of SMC complexes
in mediating proper spatial chromatin organization
in plants.

Perspectives

Genome organization is distinct in different cell types
and is also subject to dynamic changes during plant
developmental transitions as well as in response to
diverse environmental stresses. The past decade has
witnessed tremendous progress in our understanding of
the function of genome organization on transcriptional
regulation and other cellular processes. Epigenetic
modifications, including DNA methylation, histone
modifications, histone variants, and both short and long-
range chromatin interactions have been instrumental in
packing and shaping plant genomes (Figure 1). While
epigenome profiling and global epigenome perturbation
by genetic mutant studies have revealed significant as-
sociations between epigenetic features and chromatin
organization, these approaches are largely correlative
and challenge to dissect the direct and causal roles of
epigenetic modifications. Recent structural and
biochemical investigations of chromatin remodelers
(e.g., DRD1) have contributed significantly to deci-
phering the regulatory principles of epigenetic modi-
fying machinery in genome organization and
transcriptional regulation. However, such studies also
offer limited insights into these mechanisms in the
context of native chromatin environments under phys-
iological conditions. Recently developed CRISPR/
dCas9-mediated epigenome editing technology offers a
potentially powerful tool to address these challenges.

Emerging studies have suggested the potential role of
liquid—liquid phase separation and spatial chromatin
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positioning in genome organization and transcriptional
regulation. The phase separation properties (i.e., IDR
domains) of histone variants (H2B.8 and linker histone
H1), chromatin-binding proteins (ADCP/AGDP and
EMB1579), and nuclear bodies (AGO4 bodies and PcG
bodies) have been implicated in the regulation of
chromatin dynamics and transcription in plants
(Figure 2). Despite this progress, direct evidence for the
functional significance of phase separation is largely
lacking in plants. Delineating the links between the cell
signaling pathways upstream of chromatin phase-
separation and its biological functions is another chal-
lenge for future studies. The development of the
mammalian CRISPR genome organization system to
reposition specific genomic loci to the nuclear periphery
[58] offers an exciting tool to reprogram 3D genome
positioning and nuclear organization in plants. Future
efforts towards chromatin organization-based epige-
nome manipulation will further broaden our under-
standing of transcriptional regulation and lead to the
development of innovative epigenetic strategies for
agricultural improvements.
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