TWISTED SCHUBERT POLYNOMIALS

RICKY INI LIU

ABSTRACT. We prove that twisted versions of Schubert polynomials defined by 6w0 =
x{‘_lxg_z co Zpoq and Gy, = (8; + 0;)6,, are monomial positive and give a combinatorial
formula for their coefficients. In doing so, we reprove and extend a previous result about
positivity of skew divided difference operators and show how it implies the Pieri rule for
Schubert polynomials. We also give positive formulas for double versions of the &,, as well

as their localizations.

1. INTRODUCTION

The operators T; = s; + 0; on the polynomial ring Clxy,...,z,| (where s; switches z;
and x;,q, and 9; = xl_’—;H is the divided difference operator) satisfy the Coxeter relations

and therefore define a twisted action of the symmetric group on polynomials. The action of
these operators, particularly on the quotient Clxy, ..., z,]|/I where I is the ideal generated
by symmetric polynomials with no constant term, has been studied previously due to its
relation to: the Chern-Schwartz-MacPherson (CSM) classes of Schubert cells in flag varieties
[1,12], Maulik-Okounkov stable envelopes [20], 22], and Demazure-Lusztig operators and Hecke
algebras [14, I5]. Similar operators have also been considered in the context of generalized
Schubert, key, and Grothendieck polynomials [13].

In this paper, we consider a twisted analogue of Schubert polynomials defined for permu-
tations w € S,, by &, = x?’le’Q v Xy for w =wy =n---321, and S,,, = T;6,. (An
important note: we do not, as in many of the references above, consider these as classes
modulo / but instead as polynomials in their own right.) The minimum degree part of &,
is the usual Schubert polynomial &,,. It is well known [3] [5, O] that Schubert polynomials
are monomial positive. Although the operators 7; do not in general preserve monomial pos-
itivity, our main result is that the polynomials &, are always monomial positive, and we
give a combinatorial formula for their coefficients in Theorem in terms of certain chains
in Bruhat order.

Our proof of Theorem is entirely algebraic and is closely related to the study of skew
divided difference operators (see [12], I8, [19]), which arise when applying the twisted Leibniz
rule for ordinary divided difference operators. It was shown in [I8] that the skew divided
difference operators can always be expressed in terms of the usual divided difference operators
0, for 1 < j with positive coefficients. We extend and give an alternate proof of that result
here, and as an application, we demonstrate how this result can be used to derive the Pieri
rule for Schubert polynomials. N

We also define a “double version” of the twisted Schubert polynomials &, (x,y) in two sets
of variables (which, up to signs, correspond to equivariant CSM classes of Schubert cells).
Our combinatorial formula naturally extends to this setting, and we also give a positive
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formula for the localizations &, (Yuw(1), - - - » Yuw(n); Y1, - - - » Yn)- (An equivalent formula for these
localizations can also be found in [2] 25].)

We begin by reviewing background on the symmetric group, divided difference operators,
and Schubert polynomials in §2. In §3, we study the twisted operators T; and relate them
to skew divided difference operators. In particular, we prove that they exhibit certain pos-
itivity properties, and we compute their actions on elementary and complete homogeneous
symmetric polynomials. In §4, we apply the results of the previous section to prove that &,
are monomial positive and give a combinatorial formula for their coefficients. We also give a
formula for the double polynomials &, (x,y) and their localizations. We conclude in §5 with
some closing remarks.

2. BACKGROUND

In this section, we give some background about the symmetric group, divided difference
operators, and Schubert polynomials.

2.1. The symmetric group. Let S,, denote the symmetric group on [n| = {1,2,...,n}.
We will write s;; for the transposition switching ¢ and j, and we will abbreviate s; = s; ;41
for the simple transposition switching ¢ and i+ 1. We denote the permutation n---321 € .S,
by Wo-

For any w € S, a reduced expression or reduced word is an expression s;, S;, - - Sigu) for w
as a product of simple transpositions of minimal length ¢(w). Any two reduced expressions
for w can be transformed into one another by applying a sequence of Coxeter relations of the
form s;8;118; = Siy18:8i41 and s;5; = s;8; for |i — j| > 1. (In other words, the third Coxeter
relation s? = 1 is not needed.)

A product of simple transpositions can be visualized in terms of a wiring diagram consisting
of n wires passing from left to right, where an occurrence of s; indicates that the ith and
(i + 1)st wires from the top should switch places. A reduced word is one whose wiring
diagram has no two wires crossing more than once.

For any reduced expression w = s;,8;, - - - §;,, We can associate to each s;, a pair (o, Om)

by

(*) Sim " Simi1 * " Sip = Simg1 " Sip " SamBm

with a,, < B,,. Explicitly,

Ay, = Sigsiz_l e 8im+1 (Zm)7

Bm = SigSiy_y *** Sigyy (im + 1).

In terms of the wiring diagram, number the wires 1,...,n on the right. At the mth crossing
(counting from the left), the two wires that cross are «,,, and 3,,. From this description, it
is easy to see that the pairs (a,, 5,) are all distinct, ranging over all pairs o < /3 such that

w(a) > w(f).
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Example 2.1. The values of «,, and f3,, for w = s152538158251 are shown below.

1

2
3
4

34 24 14 23 13 12

We may use «,, and (3,, to compute the change in w upon removing some transpositions
from its reduced expression.

Proposition 2.2. Let w = s;,8;, -+ 5;, be a reduced expression with o; and [3; defined as
above. Let J C [{] be any subset. Then

v:”s,-j:w-”sajgj.

jeJ jgJ
(Here and elsewhere, products such as Hj s;; are taken from left to right in increasing
order of index j.)

Proof. By equation (%), wsa,3, = 8iSi, - 5i, - - 5i,- lterating over all j ¢ J (in increasing
order) gives the result. O

The (strong) Bruhat order on S, is defined such that if w = s;,s;,---s;, is a reduced
expression, then v < w in Bruhat order if v = [];;s;; for some subset J C [{]. (This
definition does not depend on the choice of reduced expression for w.) The cover relations
in Bruhat order are given by v < vsg, where ((vsy) = (v) + 1.

For more information on the symmetric group, see for instance [6].

2.2. Divided difference operators. The symmetric group 5,, acts on the polynomial ring
Clzy,...,x,| by permuting the variables: (wf)(z1,...,2n) = f(Zwa),- .-, Tww)). For any
1 <i < j <n, we define the divided difference operator

1-— Sij

Oy =

T, —x;
If j =i+ 1, then we write 0; = 0,41 for the simple divided difference operators.
It is straightforward to verify the following proposition.

Proposition 2.3. The divided difference operators satisfy the following relations for distinct
i, 7, k, and [:

(1) 0 = —0ji,
(2) d;; =0,

(3) 050k = Ou0ij,

(4) 0ij0jk = 00y + OjiOi,

() 050k0;5 = Ojx0;;Oji,

(6) OijW = WOyy—1(3)w1(j) for all w € S,

(7) 0;(PQ) = 0;5(P) - Q + s;5(P) - 0;5(Q) for all P,Q € Clxy,...,z,).
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If w has reduced expression s;,s;, - - - Siguy then we define 0, = 9;,0;, - - - 8%(“)). This does

not depend on the choice of reduced expression since the 0; satisfy the nil-Coxeter relations
@, @), and ().

In [19], Macdonald defines the skew divided difference operators 0, for v,w € S, such
that, for any P,Q € Clxy, ..., z,),

0u(PQ) = > (0w P) - 0,Q.
vESH
One can compute 0,/, by applying the Leibniz rule repeatedly for 0, = 0;,0;, - - - 0;, and
then using relation (6) to move all of the elements of S,, to the left.
Explicitly, for any subset J C [¢], let ¢, = H§=1 @;j(J), where @;(J) = s, if j € J and 0y,

if j ¢ J. Then
aw/v = 'Uil Z PJ,
J

where J ranges over all subsets of [¢] for which [] jes Si; 1s a reduced expression for v. The
value of d,,/, will not depend on the choice of reduced word for w. Clearly 9,,/, = 0 unless
v < w in Bruhat order.

Example 2.4. Let w = $159535251 and v = $1. Then we may take either J = {1} or {5},
which gives

@w/v = SI1(8162836281 + 6182638231)
= 093054093019 + 021013054013
= 093054093019 — 012013054013.

The previous example shows that the naive expansion of 9,/, when expressed in terms
of 0;; for i < j may contain negative coefficients. However, it was proved in [I§] that one
can always rewrite it in a form that has only positive coefficients. (See Example below
for how to do this for the case in Example ) We will generalize this positivity result in
Theorem [3.4] below.

2.3. Schubert polynomials. For any permutation w € S, the Schubert polynomial S, is
defined by

Gy = Ouptuy (T 2572 2 1).
In other words, &,, = 21 "5 2.2, 1, and &, = 9,8, if L(ws;) = L(w) — 1.

Schubert polynomials exhibit a stability property in that &, is unchanged under the
embedding S,, — S,,41 in which S,, acts on the first n letters of [n+1]. Hence it is often natural
to instead define Schubert polynomials &, for w € S, that is, when w is a permutation of
the positive integers that fixes all but finitely many elements. In this context, the Schubert
polynomials &,, for w € S, form a basis for the polynomial ring Cl[zy, zs, .. .].

It is well known that the expansion of a Schubert polynomial in the monomial basis always
has nonnegative coefficients. One common description is as follows. A pipe dream or rc-graph
is a type of wiring diagram in which each box (7, j) with ¢,5 > 1 is filled with either a cross
or a pair of elbows. Such a diagram corresponds to a permutation w if the wire entering in
row 7 exits in column w(z). A pipe dream is called reduced if no two pipes cross more than
once. The weight of a pipe dream is z;,z;, - - -, where 4y, 79, ..., are the rows containing the
crosses of the pipe dream. Then &,, is the sum of the weights of all reduced pipe dreams
corresponding to w. See [3], 5], 9] for more details.
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Example 2.5. The following are the two reduced pipe dreams for the permutation w = 2431.
Hence G, = 222913 + 1123523.

J J
e o
f
J J
/ )

The Schubert polynomials arise in the study of the flag variety %, = GL,(C)/B (where
B is the subgroup of upper triangular matrices). Specifically, they are polynomial represen-
tatives of the classes of Schubert varieties in the cohomology ring H*(.%,) = H*(%#,;C) =
Clzy,...,x,)/I, where I is the ideal generated by symmetric polynomials in zy, ..., z, with
no constant term. Since multiplication in H*(.%#,) corresponds to intersection of Schubert
varieties, one can deduce that in the expansion

Gu : 61} = 20511610’

the generalized Littlewood-Richardson coefficients (or Schubert structure constants) ct, are
always nonnegative integers. It is an important open problem to give a combinatorial de-
scription of the coefficients ¢, —see [7, [§] for some partial progress.

For instance, in the special case that &, is an elementary or complete homogeneous
symmetric polynomial, we have the following Pier: rule for Schubert polynomials (see, for

instance, [16], 2], 23]).

Theorem 2.1. Let v € S, and let egf) be the mth elementary symmetric polynomial in

T1,...,Tg. Then
61} : 65,’? = 26107

where w € S, ranges over all permutations such that there exists a sequence
U << USq1by < USaibySaghy < T USaibySaghy ** " Saphy = W,

where a; < k < b; for all v, and the a; are distinct.

Similarly, if one replaces ™ with hgi), the mth complete homogeneous symmetric polyno-

mial in x1,...,T, then the same result holds except that instead the b; are distinct.

We will deduce this Pieri rule using the action of skew divided difference operators in

Corollary below.
The definition of Schubert polynomials easily implies that for v,w € S,,

6. - {ewvl if L(wot) = O(w) — £(v),

0 otherwise.

In particular, if ¢(v) = ¢(w), then 0,6,, = 1 if v = w, and 0 otherwise. Using this, one can
deduce the following result from Macdonald [19].

Proposition 2.6 ([19]). Let u,v,w € S, such that {(u) + {(v) = {(w). Then O0y/wS., = c,

uv -
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Proof. By the discussion above, the coefficient ¢ is equal to

00(6uy) = Y 0 (DujurSy) - S,

Ul

By degree considerations, the only nonzero terms can arise when ¢(v) = ¢(v'), in which case
we must have v = v'. Thus the right hand side simplifies to 0,,/, 8., as desired. O

For more information regarding skew divided difference operators and Schubert polyno-
mials, see [12, [I8] 19)].

One can also define the double Schubert polynomials in two sets of variables x4, ..., x, and
Y1, Yn by
6w(x7 y) - aw*1w0 H (xz - yj)7
i+j<n
where the divided difference operators act on the x-variables but not the y-variables.

Just as &, is monomial positive, G, (z,y) is a polynomial in x; — y; with positive coef-
ficients. In fact, the combinatorial description of &, in terms of pipe dreams extends to
Guw(z,y) by weighting a cross in row ¢ and column j by x; — y;.

The double Schubert polynomials represent the classes of Schubert varieties in the equi-
variant cohomology ring H3.(.%,), where T' = (C*)" is the n-dimensional torus. According
to GKM theory [10], there is an injective map

H’;(g’fJ — @ H'}:(eﬂ) - @ C[yh e 7yn]a
wGSn wGSn

where e, is the T-fixed point corresponding to w € 5,,. We define the localization of &, at
w to be the specialization

Su(wy, y) = Su(Yuw)s - - > Yuw(n): Y1s - - - s Yn)-

Then the localization of G, at w is the image of the Schubert class in H}.(e,).
The following formula (sometimes called Billey’s formula [4]) gives a combinatorial expres-
sion for these localizations.

Theorem 2.7 ([4]). Let w™" = s;,84, - -+ i, be a reduced expression, and define o; and B; as

in (x). Then
Gv(wyvy) = Z H(y,ﬁj - yozj)a
J jed

1

where J ranges over all subsets of [¢] for which []..; s, is a reduced word for v™'.

jed
Note that &,(wy,y) is a polynomial in y, — y,, b > a, with positive coefficients. We will
give a generalization of this formula in Theorem below.

3. TWISTED OPERATORS

In this section, we introduce a twisted version of divided difference operators and discuss
some of their properties. In particular, we relate them to operators d,,, which are closely
related to skew divided difference opearators. We will prove that these ,,, can be expressed
positively in terms of 0;;, 7 < j. We will then compute their action explicitly on elementary
and complete homogeneous symmetric polynomials e,,(x1, ..., zx) and hy,(z1,. .., zx), which
will imply the Pieri rule for Schubert polynomials.
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3.1. Definitions. Define twisted operators

For any expression w = s;, - - - s;, (not necessarily reduced!), one can expand To, = T}, - - - T,

to obtain an expression in terms of divided difference operators and the action of S,. By
moving all the elements of S, to the left using relation (6]), we can write

T, = Z vgw/v

VES,

for some operators 5w /v in the algebra generated by the 0;;.
As in Section , we can give an explicit formula for 9,,/,:

510/1} - U_l Z PJs
J

where J ranges over all subsets of [¢] for which []..;s;, = v, where this expression is not

jeJ
necessarily reduced. (Recall that ¢, = H§:1 ©;(J), where ;(J) = s;, for j € J and 9;; for

J & J.) As we will see, By /o Will not depend on the initial choice of expression for w.
Note that if we start with a reduced expression for w, then the only difference between
the definitions of 9,,/, and 0, is that J] je Si; must be a reduced expression for v in 9,/

but not in 5w /v 1t follows that 0, /, is the maximum degree part of 5w Jo-
Example 3.1. Let w = 5159535251 and v = s; as in Example Then we may take either
J ={1}, {5}, {1,2,4}, or {2,4,5}, which gives
5w/v = SI1<8182(938281 -+ 8182838251 -+ 8182838281 + 8182838251)
= 093034003012 + 021013034013 + 024012 + 021014
= 003034093012 — 012013034013 + 024012 — 012014.

The operators 5w /v are well-defined due to the following proposition.

Proposition 3.2. The operators T; satisfy the Coxeter relations T? = 1, T;T; = T;T; for
i — 7| > 1, and T;T;1T; = Ty TiTi41. The operators T,, and Oy, do not depend on the
choice of (not necessarily reduced) expression w = s;, -+ - S,
Proof. Any two expressions for w can be obtained from one another by repeatedly applying
Coxeter relations to some contiguous subexpression. By fixing the subset J outside this
subexpression, we find that it suffices to show that T}, and 0,,, are well-defined whenever
w appears in some Coxeter relation. This follows from a straightforward calculation. For
example, if w = s;s;115; and v = s;, then
Owjv = 8;1(8i5i+15i + 0i0i415;) = Oi41,i+20;,i41 + 041,05 142,
whereas if w = s;,15;5;11, then
aw/v = Sz’_l(ai—l-lsz‘ai—l-l) = az’,i+2ai+1,i+2'

But these two expressions can be equated using relations and . Similarly, if v = id,
then in both cases, 0,y = Ou + 0;+2. The other cases follow similarly. O

The operators T, satisfy the following Leibniz rule.
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Proposition 3.3. Let P,Q € Clxy, ..., z,].
(a) For any i € [n — 1],

T(PQ) = (0P)- Q + () - (T}Q).

(b) For any permutation w € S,

Tw(PQ) = Z ( w/v -, Q Z w/v : v/uQ)

v

Proof. For (a), the right hand side equals

Q- SiQ) _ PQ — (s:P)(5:Q)

Ti — Ti41 Ti — Ti+1

P—Sip

Ty — Ti41

Q+ (s:P) - (SiQ + + (8iP)(8:Q)-

The first term then equals 0;(PQ) while the second equals s;(PQ), and these sum to T;(PQ),
as desired.

For (b), let s;, ---s;, be an expression for w. By iteratively applying (a), we get a term
containing 7,Q for every subset J C [¢] such that [],., T = T,. The coefficient of T,Q in

this term is then exactly ¢, so summing over all J gives v(0,,,P) by definition. U

3.2. Positivity. We will show that 5w/v can always be expressed as a polynomial in 9,;,
1 < j, with positive coefficients by proving the following theorem.

Theorem 3.4. Let v,w € S,,. Choose a reduced expression wov = s;, - - - s;,, and define o,

and B, as in (x). Then
w/v Z H aa]ﬁ]a

J j¢J

where J C {1,...,0} ranges over all subsets such that []
reduced).

jeg Si; = Wow (not necessarily

This theorem generalizes the analogous positivity result proved in [18] for 0,,/,,, which was
the same except that the expression for wyw had to be reduced.

Exa~mple 3.5. Let w = 5189838281 and v = s; as in Example 3.1} Although the expression
for 0/, in that example does not have positive coefficients, using the relation we can
rewrite it as

510/1) = 093034093019 — 012013034013 + 024012 — 012014
= 053034(013023 + 012013) — (D23012 — 013023) 034013 + 014024
= 093034013023 + 013023034013 + 014004,
which does have positive coefficients.

From Theorem [3.4] we can obtain a positive formula more directly using the reduced
expression wov = s189535152. As seen in the diagram below, the values of 0,5, for j = 1,...,5
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are Osq, 014, Oaa, O13, Oog.

N S

34 14 24 13 23

Since wow = s = 515152, we can take J = {2}, J = {5}, or J = {1,4,5}. Thus taking the
terms Oy, 5, for j ¢ J gives

Ow/v = 034024013053 + 034014024013 + 0140a4.

One can check that this formula can be transformed into the previous one by an appropriate
application of the relations in Proposition [2.3]

The proof of Theorem [3.4] will follow directly from the following lemma.
Lemma 3.6. Let v,w € S, and i € [n — 1] such that {(s;v) > ¢(v). Then

aw/v - ~siw/siv + aaﬂgw/s,-va

where o = v~ (i) < B=v"1(i +1).

Proof. Consider any expression s;w = s;,5;, - - - 5;, starting with s; = s;,. To compute 551,10 Jsiv>
we must find a subset J C {0,1,...,¢} such that [[,.;si;; = s;v and then use relation

to move these terms to the left. If 0 € J, then J \ {0} defines a subword of s;, ---s;, = w
whose product is v, so these terms contribute 0/, t0 Osuw/sw- If 0 ¢ J, then J defines a

subword of s;, - --s;, = w whose product is s;v, so these terms contribute 9,0y/s,», Where
B = (siv)1(i) = v (i+1) and @ = (s;v) " 1(i+1) = v7'(i). (Note a < 8 since £(s;v) > £(v).)
It follows that

asiw/siv = 8w/v - 804,38w/siv-
Rearranging gives the desired equality. 0

It is now straightforward to deduce Theorem [3.4]
Proof of Theorem[3.4 We induct on £(wgv). When £(wv) = 0, v = wy, S0 51”/” can only be

nonzero when w = wy as well, in which case 9,,, = 1, as desired.
Otherwise, choose a reduced expression wyv = s;, ---s;,. Let © = n — 4, so that s; =

wos;, Wy and wys;v = S, -+ S;,. Then £(s;v) > £(v), so by Lemma E, gw/v = Os,w/siv +
OapOw/s;v, Where
o = U_1<i> = Sie ce SiQSilwo(i) = Sie e Si28i1 (Zl -+ 1) = Siz R Siz(il) =,
B=v1(i+1)=s;,spsqwoli+1) = i, - 83,83, (i1) = 85, -~ 83, (11 + 1) = Br.
By the inductive hypothesis, we have that
aw/v = asiw/siv + aa1ﬂ1aw/sw - Z H aoejﬂj + ao4151 Z H aajﬁjv

Jo1<j¢d’ J"1<¢ g
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where J', J" C {2,... .0}, [l,cp 81, = wosiw = sj,wow, and [];c;» si; = wow. Thus either
J={1}uJ" or J = J" implies [[;c;si; = wow, so the right hand side equals the desired
expression > ; [ T4, Oa,s;- O

3.3. Polynomial action. The operators 5w /v act particularly nicely on the elementary sym-

metric polynomaials esﬁ) and complete homogeneous symmetric polynomials hgﬁ)
For any subset A C [n], denote

1< <t i1<-<im
01,0 im €A AT im€A

By convention, eg(A) = ho(A) = 1 and e,,(A) = h,,(A) = 0 for m < 0. We will abbreviate
e = en({1,...,k}) and A = ho({1,... k}).
We then have the following action of divided difference operators.

Lemma 3.7.

(en1(A\{i}) ifi€AjéA,
Oijem(A) = ¢ —enm1(A\{J}) ifig A jeA,
0 otherwise;
Oijhm(A) = § —hm_1(AU{i}) ifi¢g A je A,
0 otherwise.

\

Proof. We prove the result for h,,(A), as the proof for e,,(A) is similar. Suppose i € A and
j ¢ A. Then

Ms

azjxi Clibm—k A\{Z})

(Zml i ) k(AN {i})
1 (AU (),

The second case then follows by relation (), and the third case follows since h,,(A) will be
symmetric in x; and x;. 0

e
I
o

Ms

We can then use the expansion given in Theorem to give an explicit description of

the action of 510 /v On egf) and hgf). In order to state the result, we will need the following
proposition.

Proposition 3.8. Let v,w € S, and fir 1 < k < n. Then, up to reordering commuting
transpositions, there is at most one way to write W = VSq,p, = * * Sa,b, With a; < k < b; for all
i such that ay,...,a; are distinct (or alternatively, such that by, ... b, are distinct). This is
possible if and only if each nontrivial cycle of v=*w contains ezactly one element larger than
k (resp. at most k).
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Proof. Note that if the a; are distinct, then s,,;, and s, will commute if b; # b;. Therefore

it suffices to show that there is at most one way to write v~!w = Sayby * ** Sa;p, With the a;
distinct, by < by < --- < b, and a; < k < b; for all 4.

If by = --- = b, = b and b1 # b, then 54,454 - Sq,p 18 the cycle (b a, a—1 -+ ay).
Since the other transpositions cannot involve any of these elements, this cycle must occur
in v lw. Note that b is the only element in this cycle larger than k, and a4, ..., a, are then

uniquely determined by the order of the elements in the cycle. Applying the same logic
to the remaining distinct values of b; and the remaining cycles of v~!w gives the desired

result. OJ
If the expression in Proposition [3.8| with a4, ..., a; distinct exists, and moreover

(1) U(v) < UvSarb,) < U(VSabiSashy) <+ + < UVSaiby Sasby *** Sarb,) = L(w),

then we will write Ag(v,w) = {ay,...,a;}, otherwise we will say that Ag(v,w) does not

exist. Equivalently, by the proof of Proposition , Ag(v,w) exists if and only if each
nontrivial cycle of v~'w has exactly one element larger than k, and if for each such cycle
(bay ar—y -+ ay) with b > k, we have

(1) v(b) > v(ay) > v(agy) > -+ > v(a,),
or equivalently,
w(ay) > w(ag) > -+ > w(a,) > w(b).
Note that condition (I) and hence condition (1) are unchanged upon reordering commuting
transpositions.

Remark 3.9. If Ag(v,w) exists, then it will consist of all elements a < k in a nontrivial cycle
of v™1w, that is, such that v~'w(a) # a. Hence [k] \ Ag(v,w) consists of all a < k such that
v(a) = w(a).

Similarly, if the expression in Proposition [3.8 with by, . .., b; distinct exists along with (t),
then we will write By (v, w) = {by, ..., b}, otherwise By(v, w) will not exist.

We can now state the action of d,,, on egf) and hgf).

Theorem 3.10. Let v,w € S,,. Then
(k) _ {em—|A|(V€] \A) if A= Ax(v,w) exists,

5w/v €m .
0 otherwise;

5w/vh(k) _ hm—5|([k] U B) if B = By(v,w) exists,
m 0 otherwise.
Proof. We prove the claim for egi), as the proof for A is similar.

Consider the parabolic subgroup S x S,_r C S,,, where S} acts on the first k letters and
S, acts on the last n — k letters. Choose a reduced word

WV = S4;Siy **° Sip . Sip+15ip+2 s Si[ =70 -U,

where k # dpi1,...,0; (so that u = s; ., ---5;, € Sp X Sp_y) and v’ = s;, -+ s; is a minimal
length (left) coset representative of Sy x S,,_x. Then for ¢ < p, oy < k < f3,;, while for ¢ > p,
either oy < B, <k or k < oy < f34.
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It follows from Lemma that 0, e = 0if g > p. Thus, in Theorem! the contribu-

tion of a subset J to 8“,/1,675 , namely [];4; 0a;s, el will be zero unless {p+1,....0} C J.
Moreover, by Lemma u each apphcatlon of aa ip; for j < p decreases the degree by 1 and
removes o, from the elementary symmetric functlon so we must also have that the «; for
j ¢ J are distinct. Thus J contributes Cm—|ar|([K] \A’), where A" = {a; | j ¢ J}. We
therefore need only show that there is a subset J that gives a nonzero contribution if and
only if Ag(v,w) exists, in which case J is unique and A" = Ag(v, w).

Suppose A(v,w) exists, and consider any cycle (b a, -+ a1) = Sa,pSash " * Sa,p Of V1w,
Then (1) implies wov(b) < wov(ay) < -+ < wyv(a,). Since ay,...,a, < b, it follows that
(a1,b), ..., (a,,b) must occur as some (a;, ;) coming from the v" part of wov = v'u (that
is, with j < p). Moreover, since v’ is a minimal coset representative of Sy x S, _, it must
preserve the order of the a; as they are all at most k. It follows that (aq,b), ..., (a,,b) must
occur in that order. Now let J be the set of all j such that («;, 3;) # (a;,b) for any i and
any cycle of v~'w. By Proposition [2.2]

-1
Hsij :wgv-Hsajﬁj = WV -V W = WyW.
jedJ Jj¢J

It follows that this set J gives a nonzero contribution to 510 /vegﬁ) and that A" = Ag(v,w).
Since the order in which the s, s, appear is determined by the reduced word chosen for wgv,
none of the reorderings of || j¢J Sa;B; Can occur, so J is unique. The converse direction is
similar. O

As a corollary, we can deduce the Pieri rule for Schubert polynomials.

Corollary 3.11. Let v,w € Sy, with m = f(w) —L£(v). The coefficient of S, in the Schubert
expansion of &, - el is 1 if A= Ag(v,w) exists with |A| = m, and 0 otherwise.

Similarly, the coefficient of &,, in the Schubert expansion of &, - A s 1 if B = Bi(v,w)
exists with |B| = m, and 0 otherwise.

Proof. By Proposition | the coefficient of &, in &, em is 0, /vegf). But 8w/v is the
maximum degree part of 3w /v, 50 this coefficient is just the constant term of 0w /vem . The
result then follows from Theorem since we must have |A| = m to get a nonzero constant
term. The proof for thi) is similar. 0

Note that if |[A| = ¢(w)—£(v), then we must have that in (1), the length goes up by exactly
1 at each step. This is then easily seen to be equivalent to the phrasing of the Pieri rule in

Theorem 211

4. TWISTED SCHUBERT POLYNOMIALS

In this section, we will apply the twisted operators to define twisted Schubert polynomials.
We will then use the results of the previous section to prove that these polynomials are
monomial positive as well as give a combinatorial interpretation for their coefficients. We
will also define double versions of these polynomials and prove a positivity property for them
and their localizations.
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4.1. Definition. Define twisted Schubert polynomials éw for w € S, by

Gy = Tyt (T 2y ™2y ).
Hence éwo = x?_1$;_2 -+-x,_1, and éwsi = Tiéw. (This holds for all i and w with no
restrictions since the T; satisfy the Coxeter relations.)

It is important to note that &,, does not have the same stability property as &, that is,
the value of &, depends on n.

Example 4.1. Using the recursion above, we can calculate S, for all w € Ss.

= 2
6813251 = $1$2
= 2
Gsysy = T1T5 + 2172

.2 2
Gsysy = 2173 + 27
2

S,, = r175 + 1172 + 22123 + 74
6 2 2

sy = ToX3 + T1T3 + X5 + Toxz + X1 + T2
=~ 2 2
Gig = T2x5 + 1172 + 20073 + x5 + T2 + 273 + 1

Note that these are all polynomials with positive coefficients. However, the calculation to
obtain these polynomials is not inherently positive. For instance, ;3 = ToS;, = ($2+02)8s,,
but

026, = Tox3 — 1 + To + 13 + 1

has a negative coefficient.

4.2. Monomial positivity. Using the results of the previous section, it is straightforward
to prove that the G,, are all monomial positive.

Theorem 4.2. For w € S,

n—1
Sv=>  [[Ilww
UL yeeyUn—1 =1 j<i
J¢EA;
where u, = wtwy, and the sum ranges over all sequences Ui, Us, ..., Up_1 Such that A; =
Ai(ug, uip) exists.
In particular, the polynomial S,, has nonnegative coefficients when expressed in the mono-
mial basis.

Proof. Write

= _ .n—1_mn—2 _ (n=1) (n-2) (1)
Suo =7 Ty " Tpor =€y €,y €y

n—1 (4)

By Proposition (b), we can then express any Sy, = Ty-1uy (Suy) = Top-1uy (IIZ &) as
a sum of products

n—1
éw = Z H ul(guz-o-l/uzeEZ))

UL yeeeyUp—1 2=1
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Hence by Theorem [3.10, for each sequence wuy,us, ..., Up_1,U, = w ‘wy for which A; =
A;(u;, uiy) exists, we get a contribution of

ﬂu@'(ei—Ai|([i] \ A4)) = 1:[ H i)

i=1 j<i
JEA;

as desired. U
Note that by Remark [3.9] if j < i, then j ¢ A; if and only if u;(j) = w41 ().

Example 4.3. Let w = 123 € Ss, so that u3 = w™'wy = 321. There are then nine
possibilities for us and uy, as shown in the diagram below. Each edge is labeled with the set
{u;(7) | j <1, j & Ai(us, uig1)} (or is left unlabeled if that set is empty).

VING SIN AN

321 231 132 213 123 213 123

Summing the contribution for each chain gives
éug:l'gxg'($3+2)+J]3'(ZL‘3+2)+$2'[E1+1' (ZL‘Q—I—l)

= x2x§ + 2x913 + :L’% + 223 + 129 + 19 + 1.

4.3. Relation to &,,. Since T; = s; + 0;, the part gf S, of minimum degree is just G,,.
We can verify that the combinatorial description for &, in the previous section recovers the
known combinatorial descriptions of &,,.

In order for uy, ..., U, 1,u, = w wy to contribute to &,,, we must have the A;(u;, u;; 1)
be as large as possible. This implies that we must have u; = id and | A;(u;, wit1)| = €(uwip1) —
{(u;) for all 7 (so that in (f), the length must go up by exactly 1 at each step).

We claim that these conditions imply that u;(b) = b for b > ¢. Indeed, if the claim holds
for w;, then in (f) we must have ¢(u;) + 1 = €(u;Sq,p,). This is only possible if by =i + 1
(since otherwise a1 < i+ 1 < by and w;(a1) < w;(i +1) =7+ 1 < wu;(by) = by). But since we
can reorder commuting transpositions without changing the validity of (), this implies that
actually all b; must equal ¢ + 1. Hence u;+1(b) = u;(b) = b for b > i + 1.

We must therefore have u; 1 = w;- (i +1ap ap—y -+ a1) with i + 1 =wu;(i + 1) > u;(ay) >
-+- > w(a,). In particular, letting a} = wu;(a;) so that i +1 > a} > --- > a;, we can write
this as

woui )y = wou; (i +1aj -+ al).

Given a reduced pipe dream for w with pipes labeled 1, ..., n along the top, define wyu; !
to be the permutation obtained by reading the order of the pipes down the left side of the
(n+1—1)th column, followed by n—i,n—i—1,...,2,1. Then woui_1 and wou;rll are related
exactly as dictated by the equation above, where af, ..., al. are the locations of the elbows in
column n — . Therefore the locations of the crosses in this column correspond to elements
of A;(u;,u;r1). (These are the rows in which the wires go straight across this column as
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implied by Remark |3 ) One can also check that u, = w™lwy, u; = id, and that the length
condition on wu; and u;y; is equivalent to the pipe dream being reduced. It follows that this
map gives a bijection between pipe dreams and sequences uyq, . .., u, contributing to G,,, as
desired.

Example 4.4. The pipe dream for 2431 shown below corresponds to the sequence uy, ug, us, uy
as shown.

J
(" JA/ woupl = 2431wy = 2314
wouz ' = 2431  wuz = 2314
J wouy ' = 3421wy = 2134
Y, wouy' =4321  wy = 1234

Note A;(u;,u;+1), which are the numbers at most ¢ in the same location in both w; and
u;11, give the location of the crosses in column 4 — ;.

4.4. Double polynomials. Just as one can define double Schubert polynomials, one can de-
fine a “double version” of the twisted Schubert polynomials in two sets of variables x4, ..., x,
and y1,...,Yn by
6w(£7 y) = T’w_lwo H (xz - yj)7
i+j<n
where the operators T; act only on the z-variables. Using a similar argument as in Theo-
rem 4.2 we can give a combinatorial formula for &(z, y).

Theorem 4.5. Forw € S,

Z H H (xuz'(j) — Yn—i);

ULy.oyUn—1 =1 j<1i
JEA;
where u, = wlwy, and the sum ranges over all sequences Ui, Us, ..., Un_1 Such that A; =
Ai(ug, uiy) exists.
In particular, &, (x,y) is a polynomial with nonnegative coefficients in variables x; — y;.
Proof. Write

n—1 1

i+j<n =1 j=1
For fixed i, let 2 = z; — y, 4, so that H;zl(:vj — Yn_i) = H§':1 2. For any polynomial
f(x1,...,xn), we have Oup(f(2),...,2))) = (Ouwf)(x),...,2)), so Lemma and Theo-

rem still hold if we replace z; with 2’ in the definition of e,,.
Hence, using Proposition as in Theorem 4.2, we get that

éw(:v,y) = Z Huz ( i Jus 1:[(379' - yn—i))

UL yeeeyUn—1 =1 Jj=1

= Z H H (xui(j) ~ Yn—i),

ULyenUpn—1 1=1 j<i
J¢A;
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as desired. O

Example 4.6. Let w = 123 € S3 as in Example [4.3] Using the same diagram as in that
earlier example, we replace any x; coming from an edge label in the top row with z; — 1,
and any z; from an edge label in the second row with z; — y». This gives

é1z3($,y) =(@o—y)(@3—w1) (w3 —y2+2) + (z3 — 1) - (w3 — Y2+ 2)
+ (@2 —y1) - (1 —y2) +1- (22 —y2 + 1)
= (IL+zo—y)(1+ a3 —y1)(1 + 23 — y2) + (22 — 1) (21 — ¥1)-

It is easy to check that the bijection described in §4.3] also explains the connection between
the combinatorial formulas for &,,(z,y) and &, (z,y).

4.5. Localization. Define the localization of év at w to be the specialization

So(wy, ¥) = Su(Yu@), - -+ Ywm)i Y1, - - -+ Yn)-
In this section, we will give a combinatorial formula for this localization which, as in the
ordinary Schubert case, will be a polynomial in y, — y,, b > a, with positive coefficients.

Example 4.7. Let v = 123. Using the formula for élgg(x,y) in Example m, we can
compute the localizations at w for each w € S3. After some simplification and factorization,
we get the following formulas for &qa3(wy, y):

w = 321: L+ (y2 — v1)(ys — v2)

w = 312: I4+y2—u

w = 231: L4+ ys —yo

w = 213: (I+ys — 1)1+ ys — y2)

w = 132: I+y—y)(L+ys — 1)

w = 123: A+ —y)I+ys —y1) (1 +y3 — 1)

Note the conspicuous factors of 1 + y, — y, whenever a < b and w™'(a) < w™!(b) in
this example. These are precisely the pairs that do not appear as some (a;, 3;) for a given
reduced word w™! = s;, -+ - s;,.

We are now ready to state a formula for the localizations of &,. (An equivalent formula

can also be found in [2], 25].)
Theorem 4.8. Let v,w € S, and let w™ = s;, - - - si, be a reduced expression with o; and
B; defined as in (x). Then the localization of S, at w equals

Sowy,y)= [  C+wm—v)- > [[ws —va).

1<a<b<n J jed
w1 (a)<w™1(b)

where the sum ranges over all subsets J C [¢] such that v=! = []

reduced).

jes Si; (not necessarily

Note that we should have that &,(wy, y) is the minimum degree part of S, (wy, y). Indeed,
in this case we can ignore the first product and restrict to the case when J has minimum
possible size ¢(v). This formula then immediately reduces to Theorem 2.7

To prove this result, we first prove the following lemma which gives a recurrence for these
localizations.
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Lemma 4.9. Forv,w € S, i € [n — 1],

(1 + Yw(i+1) — yw(i))Gv(wsiya 3/) = (yw(i—l-l) - yw(i))Gvsi (wya 3/) + Gv(wya y).
Proof. We have

~ ~ ~ 1 ~ 1 ~
Gus, = 16, (2,y) = (i +0;)6, = ——&, + (1 — —) 5:6,.
Ti — Tiy1 Ty — Tiq1
Hence plugging in y,,(;) for x; gives
~ 1 ~ 1 ~
Sus;(wy,y) = ———— 6, (wy,y) + (1 - —) S, (wsiy, y).
Yw(i) — Yw(i+1) Yw() — Yw(i+1)
Clearing denominators and rearranging gives the desired result. 0

Observe that if all of the localizations of S, are known, then Lemma can be used to find
all of the localizations of &,,, (and hence, by iterating, for all twisted Schubert polynomials).
Similarly, if all of the localizations at w are known, Lemma [4.9 can be used to find all of the
localizations at ws; (and hence, by iterating, at all permutations).

We can now prove the localization formula.

Proof of Theorem[4.8. Denote
Pwy= [ O+w-uw),

1<a<b<n
w(a)<w™1(b)

Qo.w) = [[(ws, —va))

J jeJ
as in the desired expression. It is easy to verify that (v, w) does not depend on the reduced
expression for w™! (by checking that it is unchanged upon applying the relevant Coxeter
relations).

We first check that (N‘Sv(wy,y) = P(w)Q(v,w) when v = wp. In this case, note that the
only way to have w(i) # j for all i + 7 < n is if w = wy. Therefore,

~ [locs(Wp — ya) if w = wy,
Sup(wy,y) = H (Yui) = y5) = {0 < otherwise.

i+j<n
It is easy to check that the only way for the desired formula to be nonzero for v = wy is if
w = wp, in which case P(wg) =1 and Q(wo,wo) = [[,,(¥s — ¥a), as desired.

Suppose £(w) < (ws;). If w™' = s;, ---s;, is a reduced expression, then so is s;w™! =
SioSiy * ** Si, With 79 = ¢. Since any subexpression for v~ in s;w™! either contains the initial
si, or does not, we find that
(8) Q(U7 wsi) = (yw(i+1) - yw(i))Q<U8i7 U)) + Q(U, U})

Multiplying both sides by P(w) and using the identity (1 4 Yuw(it1) — Yw(@)) P(ws;) = P(w)
shows that
(9) (14 Yu+1) = Yue) P(ws) Q(v, ws:) = (Yu(itr) — Yuw) P(w)Q(vsi, w) + P(w)Q(v, w).

Similarly, replacing v with vs; in gives
(10) Q(vsi, ws;) = (yw(i+1) - yw(i))@(vaw) + Q(vsi, w).
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Combining (8) and to eliminate Q(vs;, w) gives
(11) (1 = Wu(i+1) — Yu)*) QU W) = (Yu(i) — Yuii+1))QVSi, ws;) + Q(v, ws;).
Multiplying both sides by P(ws;) = P(w)/(1 + yuw(i4+1) — Yuw()) then gives

(12) (1+yw(i)_yw(i+1)>P(w)Q(vvw) = (yw(z‘)_yw(i+1))P(w3i)Q<U3iawsi)+P(wsi)Q<ansi)'

Together, (9) and imply that P(w)Q (v, w) satisfies the recurrence satisfied by S, (wy,y)
in Lemma|.9| (regardless of whether £(w) or £(ws;) is larger), so we must have that &, (wy, y) =

P(w)Q(v,w) everywhere, as desired. O

5. CONCLUSION

In this paper, we have discussed the twisted Schubert polynomials and shown that they
have various positivity properties. Still, many questions remain. For instance, the recent
results in [2] (see also [I1l 17, 24]) imply that the class in H*(.#,) = Clxy,...,x,]/I cor-
responding to &, for w € S, when written in the Schubert basis has coefficients with
predictable signs. (This class is, up to an appropriate change of signs, equal to the Chern-
Schwarz-MacPherson class of a Schubert cell in the flag variety.) However, a combinatorial
interpretation for these coefficients has not yet been described.

It would be interesting to investigate the extent to which the operators T; preserve mono-
mial positivity. For instance, is it the case that T,&,, is always monomial positive?

Finally, in [13], many variants of Schubert, key, and Grothendieck polynomials are con-
sidered by varying the operators 7T;, and various positivity and enumerative properties are
explored. Thus it would be interesting to investigate the extent to which the phenomena
appearing here generalize to these other variants.
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