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ABSTRACT: Two molecules are enantiomers if they are nonsuperimposable mirror images of each
other. Electric dipole-allowed cyclic transitions |1⟩ → |2⟩ → |3⟩ → |1⟩ obey the symmetry relation

= −R S, where R S, = (μ21
R,SE21)(μ13

R,SE13)(μ32
R,SE32) and R and S label the two enantiomers. Herein,

we generalize the concept of topological frequency conversion to an ensemble of enantiomers. We
show that, within a rotating-frame, the pumping power between fields of frequency ω1 and ω2 is
sensitive to enantiomeric excess, →2 1 = ℏ[ω1ω2CL

R/(2π)](NR − NS), where Ni is the number of
enantiomers i and CL

R is an enantiomer-dependent Chern number. Connections with chiroptical
microwave spectroscopy are made. Our work provides an underexplored and fertile connection
between topological physics and molecular chirality.

In the mid-19th century, Louis Pasteur discovered that
molecules can possess handedness, or chirality, an attribute

that influences how they interact with their surroundings.1 More
generally, the two species of a chiral molecule, referred to as
enantiomers, are nonsuperimposable mirror images of each
other and, while they feature many identical physicochemical
properties (up to very small parity violation corrections2), they
can also exhibit drastically different behavior when exposed to
chiral environments or stimuli. Thus, enantioselectivity plays a
crucial role in biological activity as well as in the synthesis,
purification, and characterization of pharmaceuticals.3−5 Tradi-
tionally, optical rotation and circular dichroism have served as
optical tools to obtain enantioselective information; however,
these techniques rely on the weak interaction betweenmolecules
and the magnetic component of the optical field. A very active
effort in chirality research consists of spatially shaping
electromagnetic fields6−8 to enhance these weak interactions.
Other techniques that rely solely on electric dipole interactions9

have been recently advocated. For instance, many efforts are
currently invested in photoelectron circular dichroism
(PECD).10−13 Yet, others focus on nonlinear optical signals
that depend on the sign of the electric fields with which the
molecules interact,14,15 including photoexcitation circular
dichroism,16 the use of synthetic chiral fields,17−20 and
microwave three-wave mixing.21−25 More precisely, the latter
technique can be understood through cyclic three-level
models26−32 where the product of three light−matter couplings
[hereafter termed the Kraĺ−Shapiro (KS) product] differs by a
phase of π between the two enantiomers. This remarkable
symmetry has been exploited to propose cyclic population-
transfer schemes26,32 or the use of cross-polarized terahertz
pulses33 to prepare the enantiomers in different energy
configurations or orientations for separation. This symmetry

has also been utilized to suggest an enantioselective general-
ization of the Stern−Gerlach34 or spin Hall35 experiments,
where spatial separation of enantiomers, rather than spins, is
achieved using artificial gauge fields.36−38 The analogy between
enantiomer and spin labels is intriguing and surprisingly
underexplored and serves as the motivation of our present
work. More specifically, we wish to demonstrate an
enantioselective analogue to the quantum spin Hall effect
(QSHE).39

On the other hand, since the pioneering work of Thouless,
Kohmoto, Nightingale, and den Nijs in relation to the quantum
Hall effect (QHE),40 notions of symmetry-protected topological
phases (SPTPs) have been at the heart of condensed matter
research and have only been exacerbated in the past 15 years
with the discovery of topological insulators.41 These notions
guarantee that certain response properties of so-called
topologically nontrivial systems are largely independent of
material specification, instead depending only on products of
universal constants and integer quantities known as topological
invariants. The discrete nature of these properties implies that
they are robust against material imperfections, thusmaking them
attractive for metrology, among other applications. While
topological protection was originally identified in translationally
invariant 2D systems, its scope has been enlarged through the
use of Floquet engineering in systems of different dimension-
ality42−45 and the consideration of the 2D phase space of 1D
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systems.46,47 Of particular interest is an elegant construction due
to Martin, Refael, and Halperin48 called topological frequency
conversion (TFC), where quantized “current” is observed. In
this Letter, we design a novel spectroscopic scheme that
generalizes TFC to the microwave spectroscopy of an ensemble
of chiral molecules. The very first link between chiroptical
spectroscopy and topology was suggested recently in work by
Ordoñez and Smirnova49 within the context of PECD. These
authors showed that the propensity field (a pseudoscalar) as a
function of ejected photoelectron direction (Berry curvature)
can be integrated over all solid angles to yield a quantized
enantiosensitive flux which is proportional to a Chern number.
Similarly, the authors showed that microwave three-wave mixing
signals can be interpreted in terms of an analogous quantity to
the propensity field.9 However, it is not clear from that work if
there exists a parameter space upon which integration of the
signals lead to topological invariants, so geometric and
topological consequences of these nonlinear spectroscopies
were not explored. In this Letter, we use TFC to identify time as
the missing parameter space and for simplicity restrict our
attention to frequency conversion rather than three-wave
mixing. The result is a signal that is proportional to enantiomeric
excess (EE), with a simple prefactor containing the sign of the
KS product. Owing to the topological nature of the signal, it
should also serve as a very sensitive detection of EE. As far as we
are aware, our work provides the first connection between
topological physics, chiroptical spectroscopy, and nonlinear
spectroscopy and anticipates a fertile ground for further
exploration.
Following the principles of enantioselective microwave three

wave-mixing,50,51 we treat the enantiomers as asymmetric tops
whose Hamiltonian is

= + +H AJ BJ CJa b c0
2 2 2

(1)

where Ja, Jb, and Jc are the angular momentum operators with
respect to the principal axes ̂a, b̂, and ̂c, respectively, and A > B >
C are the corresponding rotational constants. The eigenstates
are labeled as |J, τ, M⟩, where J = 0, 1, 2, ... is the rotational
quantum number; M = −J, −J + 1, −J + 2, ..., J is the quantum
number that characterize the projection of the total angular
momentum along the z-laboratory-fixed axis; and τ serves as the
quantum number to differentiate between states with the same J
and M. We consider the following low angular momentum
eigenstates of eq 1 with a rotational quantum number of J = 0 or J
= 1

τ

τ

τ

| = ⟩

| = ⟩

| = ⟩

M

M

0, 1, 0

1, 2,

1, 3, (2)

whereM =−1, 0, 152 (see Supporting Information section 1, SI-
1). The ground state |0, τ = 1, 0⟩, with energy ℏϵ1, and the
excited states |1, τ = 2, M⟩ and |1, τ = 3, M⟩, with energies ℏϵ2
and ℏϵ3, respectively, are coupled to each other using a set of
three orthogonally polarized time-dependent electric fields

= Ω ̂

= Ω ̂

= Ω ̂

y

x

z

t t t

t t t

t t t

( ) ( )sin( )

( ) ( )cos( )

( ) ( )cos( )
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



 (3)

where ̂x, ̂y, and ̂z denote the three laboratory-fixed axes; the
frequenciesΩ21 = ϵ2 − ϵ1 − δ,Ω32 = ϵ3 − ϵ2 − δ, andΩ31 = ϵ3 −
ϵ1 − 2δ are slightly detuned from the system’s natural
frequencies; and the field amplitudes t( )21 , t( )32 , and

t( )31 are slowly modulated. Note from the selection rules for
electric dipole interactions51 thatΔM = 0 for the z polarized field
and ΔM = ±1 for the x and y polarized field (see Figure 1).
Ignoring all states that are not coupled through the driving
electric fields, and assuming that μ| | ≪ ℏΩ′ t( ) /2i M j M

R S
ij ij, ; ,

, , the

Hamiltonian for the laser dressed R- and S-enantiomer, after
making the rotating wave approximation, is

∑ ∑

∑

∑

μ

μ

μ

= ℏϵ | ⟩⟨ | + ℏϵ | ⟩⟨ |
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2
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,
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,

21

32
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(4)

where for simplicity we have introduced the notation |1, 0⟩≡ |0,
τ = 1, 0⟩, |2,M⟩ ≡ |1, τ = 2,M⟩, and |3, 0⟩≡ |1, τ = 3, 0⟩. In eq 4,
μ ′i M j M

R S
, ; ,

, is the component of the transition-dipole moment for

the |j, M⟩ → |i, M′⟩ transition that is projected along the
polarization axis of t( )ij . Following the procedure of refs 50 and

51, the values of μ ′i M j M
R S
, ; ,

, are

μ
μ

μ
μ

μ
μ

= −

=

= −

±

±

i

i

6

2 2

3

R S b
R S

R S a
R S

R S c
R S

2, 1;1,0
,

,

3,0;2, 1
,

,

3,0;1,0
,

,

(5)

where μ μ μ, ,a
R S

b
R S

c
R S, , , are the components of the dipole

moment along the principal molecular axes. These components
are real valued and μ μ| | = | |a

R
b
S . Note that for the chosen

polarizations for the three electric fields (see eq 3) and studied
energy levels, μ ′i M j M

R S
, ; ,

, does not depend on the quantum number

M. The associated time-dependent wave function for the R- and
S-enantiomer of the system is |ψR,S(t)⟩.
Next, we consider the rotating frame

∑= | ⟩⟨ | + | ⟩⟨ |

+ | ⟩⟨ |

− ϵ −Ω

=±

− ϵ

− ϵ +Ω

U t M M( ) e 1, 0 1, 0 e 2, 2,

e 3, 0 3, 0

i t

M

i t

i t

( )

1

( )

2 21 2

2 32 (6)

such that ψ ψ| ⟩ = |∼ ⟩t U t t( ) ( ) ( )R S R S, , , in order to remove the
central frequencies Ωij. In this frame, ψℏ∂ |∼ ⟩i t( )t

R S, =

ψ|∼ ⟩t t( ) ( )R S R S, , , with the effective Hamiltonian
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After a change of basis (see SI-2), we arrive at the following
effective Hamiltonian:

μ μ μ

δ

= −
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−
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(8)

where = ℏ i
k
jjj

y
{
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0 1 0
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0 1 0x 2
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are the angular momentum operators for a spin-

1 particle and = ℏ+
i
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jjj

y
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zzzL 2
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and = ℏ−
i
k
jjj

y
{
zzzL 2

0 0 0
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are the corresponding ladder operators. We use the form of the
effective Hamiltonian in eq 8 to calculate the toplogy of the
system. Hereafter, we will assume that the slowly modulated
electric field amplitudes are

ω

ω

ω ω

=

=

= [ − − ]

t E t

t E t

t E m t t

( ) sin( )

( ) sin( )

( ) cos( ) cos( )

21 21 1

32 32 2

31 31 1 2 (9)

where ω1 and ω2 are two modulation frequencies and m is a
scalar that characterizes a nonmodulated component of the
electric field. These functional forms are inspired from the TFC
scheme reported in ref 53.
For completeness, we briefly rederive the TFC formalism

using adiabatic perturbation theory (the original paper does so
within Floquet theory48). In the rotating frame, the rate of the
system’s energy absorption for the enantiomers is given by

ψ ψ∂ = ⟨∼ |∂ |∼ ⟩E t t t t( ) ( ) ( ) ( )t
R S R S

t
R S R S, , , , . In the long time limit,

t → ∞, the time-averaged energy-absorption rate, or average
power, is

∫ ∑ ω= ′∂ ′ =
ω→∞

′t
t E tlim

1
d ( ) ( )R S

t

t

t
R S R S

iav
,

0

,
av

,

i (10a)

∫ω ω= ′ ⟨∂ ′ ⟩ω
→∞

′t
t t( ) lim

1
d ( )R S

i
t

t

i t
R S

av
,

0

,
i (10b)

where ω( )R S
iav

, is the average power at the modulation
frequency ωi.
Let |ϵ ⟩t( )l

R S, denote the l-th adiabatic state of t( )R S, , where

|ϵ ⟩ = ϵ |ϵ ⟩t t t t( ) ( ) ( ) ( )R S
l
R S

l
R S

l
R S, , , , (Figure 2). Ifω1 andω2 are

incommensurate, i.e., ω1/ω2 is irrational, t( )R S, is not
periodic. However, if we write t( )R S, = θ( )R S, =

θ θ( , )R S,
1 2 with θi = ωit (mod 2π), we notice that θ( )R S, is

quasiperiodic, θ π θ+( 2 , )R S,
1 2 = θ θ π+( , 2 )R S,

1 2 =

θ θ( , )R S,
1 2 , and the domain of θ θ( , )R S,

1 2 is a two-
dimensional torus π π= [ ⊗ [0, 2 ) 0, 2 ) . Near the adiabatic
limit where ω1 and ω2 are much smaller than the instantaneous
energy gap of t( )R S, , and if the system is initiated in the l-th
adiabatic state, i.e., ψ|∼ ⟩ = |ϵ ⟩(0) (0)R S

l
R S, , , the expected

quantities ⟨∂ ⟩ω t( )t
R S,

1
and ⟨∂ ⟩ω t( )t

R S,
2

for ψ|∼ ⟩t( )R S, , to
first order in ω1 and ω2 are

θ θ θω⟨∂ ⟩ = ⟨∂ ⟩ = ∂ ϵ − ℏω θ θt F( ) ( ) ( ) ( )t
R S R S

l
R S

l
R S, , ,

2
,

1 1 1

(11a)

θ θ θω⟨∂ ⟩ = ⟨∂ ⟩ = ∂ ϵ + ℏω θ θt F( ) ( ) ( ) ( )t
R S R S

l
R S

l
R S, , ,

1
,

2 2 2

(11b)

where θ θ θ= ⟨∂ ϵ |∂ ϵ ⟩ +θ θF i( ) ( ) ( ) h.c.l
R S

l
R S

l
R S, , ,

1 2
is the Berry

curvature of the l-th adiabatic state (see SI-3).

Figure 1. The model. (a) Cyclic three-level transitions for an
asymmetric top, such as enantiomers. Three near-resonant, linear
polarized lasers with modulated field amplitudes t( )ij interact with
these transitions. (b) Principal axes components of the dipole moments
for the R- and S-1,2-propanediol enantiomers. Note that
μ μ μ· ̂ · ̂ · ̂a b c( )( )( )a

R
b
R

c
R = μ μ μ− · ̂ · ̂ · ̂a b c( )( )( )a

S
b
S

c
S .
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According to themean-value theorem for incommensurateω1
and ω2,

54 the linear flow of θ covers the torus densely for long
enough times. Thus, the time average of F t( )l

R S, is the same as

the average of θF ( )l
R S, over the entire torus  :

∫ ∫ θ θ
π

′ ′ =
→∞ t

t F t Flim
1

d ( )
1

4
d ( )

t

t

l
R S

l
R S

0

,
2

,

 (12)

From a practical standpoint, t → ∞ means t > =π
ω

π
ω

p q2 2

1 2
,

where ≈ω
ω

p
q

1

2
for ∈ +p q,  . Substituting eqs 11a and 11b into

eq 10b gives rise to the average power lost by the fields atω1 and
ω2 when the system is initiated in the l-th adiabatic state,

ω ω= − = − ω ω
π

ℏ( ) ( )R S R S C
av

,
1 av

,
2 2

l
R S

1 2
,

. Here the average of

θ∂ ϵθ ( )l
R S,

i
is zero because θϵ ( )l

R S, is quasiperiodic in θ, and
∫ θ θ=

π
C Fd ( )l

R S
l
R S, 1

2
,


is the Chern number of the l-th

adiabatic state for the corresponding enantiomer. Thus, the
enantiomer-dependent average energy-pumping rate between
the two modulation fields ω ω= [ − ]→ ( ) ( ) /2R S R S R S

2 1
,

av
,

2 av
,

1
is quantized

ω ω
π

=
ℏ

→
C

2
R S l

R S

2 1
, 1 2

,

(13)

or in other words, after one period of the ω2 modulation, Cl
R S,

photons with frequency ω1 are produced. The photons
produced are in the same spatial modes as the incoming electric
fields. The very off-resonant nature of this process guarantees
that the molecule does not retain energy and the energy-transfer
process occurs only between the fields.
For δ = 0, θ( )R S, (see eq 8) resembles half of the Bernevig−

Hughes−Zhang Hamiltonian,55 except that the Pauli matrices
are replaced with the spin-1 angular momentum operators. As
expected, θ( )R S, is topologically nontrivial for |m| < 2, where
the Chern numbers for the upper (U) and lower (L) adiabatic
states remarkably acquire the value

= = −C m C2sgn( )sgn( )U
R S R S

L
R S, , ,

(14)

and that for the middle (M) adiabatic state CM = 0 (for an
analytical proof, see SI-4). μ μ μ= E E E( )( )( )R S

b
R S

a
R S

c
R S, ,

12
,

23
,

31
is the KS product which obeys the enantioselective symmetry
relation = −R S, because μ μ μ μ μ μ= −a

R
b
R

c
R

a
S

b
S

c
S, and we

have assumed that Eij = Eji. Therefore, = −C CL
R

L
S, and the TFC

for the two enantiomers initiated in the lower (upper) adiabatic
state at t = 0 is expected to have the same magnitude but
opposite sign, i.e., = −→ →

R S
2 1 2 1. This results begs us to

consider the fruitful analogy between enantiomer label and spin
degrees of freedom. Just like in the QSHE, where the transverse
conductivity for opposite spins bears opposite signs, so does the
TFC for opposite enantiomers. Equation 14 is the central result
of this Letter and relates a fundamental topological invariant
from chiroptical spectroscopy = ±(sgn 1)with the notions of
SPTPs. Figure 3 shows the computed value of CL

R for different
values of m when δ ≠ 0.

By analogy with eq 10a, we can compute the enantiomer-
dependent average power absorbed in the original frame as
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, 1
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where Ωij±1,2 = Ωij ± ω1,2. Thus, the quantization due to the
enantioselective TFC can be extracted from an experimentally
detected difference power spectrum of the fields interacting with
the molecule. Notice that the topology is preserved for δ ≠ 0 as
long as δ μℏ| | < | |′ E /2i M j M

R S
ij, ; ,

, . In general, we expect our scheme

to maintain the nontrivial topology with respect to changes in
experimental conditions (such as laser spot size or collection
efficiency) so long as adiabaticity still holds and the necessary
peaks in the power spectrum can be resolved.

Figure 2. Example adiabatic bands giving rise to enantioselective TFC.
The color gradient is a visual aid for the band dispersion.

Figure 3. Topological phase diagram. The value of CL
R is calculated

taking the magnitudes of the light−matter couplings to be equal, i.e.,
μ μ μ| | = | | = | | = ℏ′ ′ ′E E E DM M

R
M M

R
M M

R
2, ;1 21 3, ;2, 32 3, ;1, 31 , while the laser-

dr i v ing parameter s m and δ are var i ed . We obta in
= −C m2sgn( )sgn( )L

R R at the vicinity of δ = 0, where = −R S

is the Kraĺ−Shapiro product, which is enantioselective.
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The dynamics of the system is calculated by numerically
integrating the Schrödinger equation in the rotating frame (eq
7), and the power spectrum is obtained by returning to the
original frame. In atomic units (ℏ = 1), the electric field
amplitudes are taken to be =E E5 321 0, E32 = 6E, and

=E E331 0, where E0 = 4.0 × 10−9 a.u., the dipole moment

principal axes components are μ μ= = 0.47 a.u.a
R

a
S ,

μ μ= = 0.75 a.u.b
R

b
S , and μ μ= − = 0.14 a.u.c

R
c
S , and the

molecular transition energies are ϵ2 − ϵ1 = 4.4 × 10−8 a.u. and
ϵ3 − ϵ1 = 4.7 × 10−8 a.u. The dipole moment components and
molecular energies are extracted from a microwave three-wave-
mixing model for R- and S-1,2-propanediol.21 Using these
parameters, it is true that μ| | ≪ ℏΩ′ E /2i M j M

R S
ij ij, ; ,

, , so the rotating

wave approximation holds. The slow incommensurate modu-
lation frequencies and laser detuning are taken to be ω1 = ω2/ϕ

= δ = 1 × 10−11 a.u., where we take ϕ = −5 1
2

as in ref 48,

s a t i s f y i n g t h e p e r t u r b a t i v e c o n d i t i o n
δ ω ω μℏ| | ℏ ℏ ≪ | · |′ E, , /2i M j M

R S
ij1 2 , ; ,

, . Setting m = 1.4, the system

is in the topologically nontrivial regime.
To obtain the desired enantioselective TFC, both enan-

tiomers need to be prepared in the lowest adiabatic bands in the
rotating frame at t = 0. Suppose that before fields are turned on (
μ →′ t( ) 0i M j M

R S
ij, ; ,

, as t → −∞), the molecules start in the

ground state |1, 0⟩. Under those circumstances, the eigenstates
of eq 7 are the states |1, 0⟩, |2,M⟩, and |3, 0⟩ with eigenenergies

δ δϵ −∞ = −( ) , 0,L M U
R S

, ,
, , and the state of each molecule is

|ϵ −∞ ⟩( )L
R S, . If the electric fields are slowly turned on at a rateωr

that is much smaller than the instantaneous band gaps
|ϵ − ϵ |′t t( ) ( )l

R S
l
R S, , , both enantiomers are prepared in the

lower adiabatic state, i.e., |ϵ ⟩(0)L
R S, . Note that the modulating

frequencies ω1 and ω2 must also be much smaller than
|ϵ − ϵ |′t t( ) ( )l

R S
l
R S, , at all times. Chirped microwave fields for t

< 0 satisfy this constraint. The adiabatic protocol we choose is Eij
→ Eijα(t) and ω1,2 → ω1,2β(t), where the ramp-up functions
slowly vary at the rate ωr = 2 × 10−13 a.u. (see Figure 4)
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After a sufficiently long time (we choose t* = 2000 × 2π/ω2),
the frequency-resolved time-averaged power spectrum Pav(Ω)
lost by the fields is numerically calculated considering only t≥ 0.
This quantity is indeed enantioselective, and using eqs 15a and
15b, each enantiomer Chern number for the lower band

= − = −C C2L
R

L
S is extracted, revealing the topological nature

of this nonlinear optical phenomenon (Figure 5).

For an ensemble containing NR R-molecules and NS S-
molecules, which are all prepared in the ground state |1, 0⟩, the
expected pumping rate is

ω ω
π

=
ℏ

−→
C

N N
2

( )L
R

R S2 1
1 2

(17)

which is zero for a racemic mixture but otherwise reveals the EE |
NR − NS| and chirality sgn(NR − NS). Notice that in line with
other nonlinear chiroptical signals that depend on electric but
not magnetic dipole contributions,9 eq 17 contains no
background achiral signal, unlike traditional circular dichroism,
where both enantiomers have the same electric dipole and
magnetic dipole absorption strengths for circularly polarized
light.56

Let us briefly discuss the limits of enantioselective TFC. First,
the line widths of microwave transitions are on the order of 10−
100 kHz,57 which are smaller than the adiabatic state preparation
gap δ≈ 1MHz, as well as the light−matter interactions |μijEij|/ℏ
≈ 10 MHz inducing the topological gap, or even the smallest
difference in energies in the power spectrum (see Figure 5,Ω31±1
− Ω31±2 ≈ 1 MHz). Thus, the described protocol should be
resilient to the finite line widths of these transitions. Second,
another source of imperfections stems from laser shot noise.
Assuming that the laser beam waist area is ∼1 cm2 and
considering the field strength above, the shot noise for a time
interval t* is ∼N 109 (where N is the expected number of

Figure 4. Adiabatic state preparation. Presented are the plots for the
functions α(t) and β(t). We also feature the populations |∼ |c L

R 2 and |∼ |c L
S 2

(shifted vertically slightly to be visible) of the lower adiabatic state for
each enantiomer. As shown, the system is effectively prepared in the
lower adiabatic bands for both enantiomers.

Figure 5. Enantioselective TFC. Plotted is the difference power
spectrum for the driving electric field when coupled to a single R (red)
and S (cyan) 1,2-propanediol enantiomers. In terms of intensity,
assuming the laser beam waist area is ∼1 cm2, the change observed is
∼10−15 W·m−2 per molecule. This spectrum is enantioselective, and
using eqs 15a and 15b, we can see that the frequency conversion in the
rotating frame is topological, = −π

ω ω
π

ω ωℏ → ℏ →
R S2
2 1

2
1 2

1 2 1 2
= −2.
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photons produced by the field, see SI-5). From the power
spectrum (Figure 5), we find that for the same time interval, the
minimal magnitude of the change in the photon number due to

the TFC is
Ω *

ℏΩ
±

±

i
k
jjjj

y
{
zzzzmin

P t( )ij

ij

av 1,2

1,2
≈ × | − |N N100 R S . Therefore, as

long as the magnitude of the enantiomer excess |NR − NS| is
much larger than ∼107 molecules, the signal should be
detectable above the shot noise. In terms of percentage of the
total molecule countNR +NS, the lower end of the EE detection
limit for 1 mL of a 1 μM solution is 10−6%. We conclude with a
few comments on the observability of our predictions. First, this
study has assumed the ideal limit that the molecules are at 0 K.
Under typical experimental conditions for microwave-three
wave mixing at 7 K,21 all three rotational energy levels used in
our model are substantially thermally occupied. In this scenario,
enantioselective frequency conversion still survives; however,
the integer Chern number will be replaced by a thermal average
of the Chern numbers C C C, ,L

R
M
R

U
R . Second, the excited-state

thermal populations can be bypassed by working in a different
energy range, such as the UV−visible one involving electronic
transitions and the infrared one involving vibrations;58,59 the
price to pay in the first case is the complication introduced by
electron−vibration coupling. These complications will be
addressed in future contributions.
In summary, we have presented an enantioselective TFC

setup for an ensemble of chiral molecules. Owing to the
dependence of the topological invariant on the sign of the KS
product (eq 14), which differs by a phase of π for the two
enantiomers, the quantized time-averaged energy-pumping rate
is of opposite sign for the R- and S-molecules, just like transverse
conductivity is of opposite sign for up and down spins in the
QSHE. We show that the computed signal is nonzero for any
sample with EE and vanishes for a racemic mixture. An
intriguing consequence of eq 13 is that as long as the time scale
separations required by the model are fulfilled, the chemical
identity of the probed molecules (e.g., through the strengths of
the transition dipole moments) in the rotating frame is erased by
the signal, leading to a universal nonlinear optical response
which acknowledges the enantiomeric excess only. This
characteristic is reminiscent of the very accurate determination
of the quantum of conductance with a wide range of QHE
systems. Thus, from a metrological standpoint, the generality of
the enantioselective TFC can be exploited to accurately measure
EE by running a linear fit of the pumping rate →2 1 for a series of
experiments where ω1 (or ω2) is varied. Furthermore, if one is
concerned only with |EE|, a practical asset of the presented
methodology is that there is no need to calibrate the signal with
an enantiopure sample beforehand. We believe that the removal
of calibration counterbalances the complexity of the exper-
imental setup proposed in this Letter.
While concepts of topology have been very productive in the

exploration of new condensed matter physics phenomena, most
of them are restricted to periodic solids (see refs 60 and 61 for a
few molecular exceptions). TFC44,48 is a powerful tool that
opens doors to the application of those concepts to 0D systems
such as finite molecular and nonperiodic nanoscale systems. In
particular, this work reveals that laser-dressed chiral molecules
support SPTPs that are not adiabatically connected to their
nonlaser-dressed counterparts. It also provides a fruitful
playground to explore further conceptual connections between
topological physics and molecular chirality.49,62
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1 Rotational eigenstates

Here we present the low angular momentum eigenstates of the asymmetric top. For com-

pleteness, we reintroduce the asymmetric top Hamiltonian

H0 = AJ2
a +BJ2

b + CJ2
c , (1)

where Ja, Jb, Jc are the angular momentum operators with respect to the principal axes

â, b̂, ĉ, and A > B > C are the corresponding rotational constants. The B = C case

corresponds to a prolate top with eigenstates labeled |J,K,M〉, where J = 0, 1, 2... is the

rotational quantum number andM,K = −J,−J+1,−J+2, ..., J are the quantum numbers

that characterize the projection of the total angular momentum along the a-principal axis

and z-laboratory-fixed axis. The eigenstates of the asymmetric top Hamiltonian can be

1



expressed as superpositions of the prolate top eigenstates as follows:

|J, τ,M〉 =
∑
K

AJ,MK (τ)|J,K,M〉. (2)

Note that the quantum numbers J , M are conserved by H0, and τ serves as the quantum

number to differentiate between states with the same J and M . The eigenstates of Eq. 1

with a rotational quantum number of J = 0 or J = 1 are

|0, τ = 1, 0〉 ≡ |0, K = 0, 0〉,

|1, τ = 1,M〉 ≡ |1, K = 0,M〉,

|1, τ = 2,M〉 ≡ 1√
2
|1, K = 1,M〉 − 1√

2
|1, K = −1,M〉,

|1, τ = 3,M〉 ≡ 1√
2
|1, K = 1,M〉+

1√
2
|1, K = −1,M〉, (3)

where M = −1, 0, 11. In the main text, we do not couple the states |1, τ = 1,M〉 to others,

and thus ignore them.

2 Change of Basis

We present the necessary change of basis to obtain the effective Hamiltonian presented in

Eq. 8 in the main text. We first introduce |2, B〉 = 1√
2
(|2, 1〉 + |2,−1〉) and |2, D〉 =

1√
2
(|2, 1〉− |2,−1〉), which we refer to as the “bright” and “dark" state respectively. It is easy

to see that bright state couples to |1, 0〉 and |3, 0〉, while the dark state is uncoupled (see Eq.

7). Ignoring the dark state, the Hamiltonian in the rotating frame becomes

HR,S(t) =
1

2


−2~δ −µR,S

b√
3
E21(t) − iµR,S

c√
3
E31(t)

−µR,S
b√
3
E21(t) 0 −µR,S

a

2
E32(t)

iµR,S
c√
3
E31(t) −µR,S

a

2
E32(t) 2~δ

 (4)

2



In the complex basis | + Π〉, |0〉, | − Π〉, where |±Π〉 = 1√
2
(|1, 0〉 ± i|3, 0〉) and |0〉 = |2, B〉,

Eq. 4 becomes

HR,S(t) = −µ
R,S
b E21(t)
2
√

3~
Lx −

µR,Sa E32(t)
4~

Ly

+
µR,Sc E31(t)

2
√

3~
Lz −

δ

2~
(L2

+ + L2
−) (5)

where Lx = ~√
2


0 1 0

1 0 1

0 1 0

, Ly = ~√
2


0 −i 0

i 0 −i

0 i 0

, Lz = ~


1 0 0

0 0 0

0 0 −1

 are the angular

momentum operators for a spin-1 particle and L+ = ~
√

2


0 1 0

0 0 1

0 0 0

, L−= ~
√

2


0 0 0

1 0 0

0 1 0


are the corresponding ladder operators. Eq. 5 is the effective Hamiltonian used to study the

topology of the system presented in the main text.

3 Adiabatic perturbation theory

For completeness, we briefly review adiabatic perturbation theory. Let |ψ̃(t)〉 =
∑

l c̃l(t)|εl(t)〉

be the solution of the time-dependent Schrödinger equation (TDSE) i~∂t|ψ̃(t)〉 = H(t)|ψ̃(t)〉,

where {|εl(t)〉} are the adiabatic eigenstates satisfying H(t)|εl(t)〉 = εl(t)|εl(t)〉. Employing

the TDSE, the following differential equation is obtained for c̃l(t),

i~∂tc̃l(t) = εl(t)c̃l(t)− i~
∑
l′

〈εl(t)|ω · ∇ωt|εl′(t)〉c̃l′(t), (6)

where ω = (ω1, ω2). Ignoring non-adiabatic terms in Eq. 6 for l′ 6= l,

c̃l(t) ≈ c̃l(0)e−i
´ t
0 dt
′[εl(t

′)−i~〈εl(t′)|ω·∇ωt|εl(t′)〉]/~. (7)

3



Hereafter, we assume that the system is initialized in the l−th adiabatic state |ψ̃(0)〉 = |εl(0)〉.

Eq. 7 is a statement of the adiabatic theorem and implies that the system shall remain in

the l−th adiabatic state, |ψ̃(t)〉 ≈ (phase factor)× |εl(t)〉.

However, we are interested in O(~ω) non-adiabatic corrections to Eq. 7. We rewrite

c̃l′ = ~ωc̃l(t)al′(t) for l′ 6= l,

|ψ̃(t)〉 = c̃l(t)[|εl(t)〉+
∑
l′ 6=l

~ωal′(t)|εl′(t)〉], (8)

and insert this ansatz into Eq. 6,

εl(t)c̃l(t)al′(t)~ω +O(~2ω2) = ~ωεl′(t)c̃l(t)al′(t)− i~〈εl′(t)|ω · ∇ωt|εl(t)〉c̃l(t) +O(~2ω2),

(9)

where we used ∂tal′(t) = ~ω · ∇ωtal′(t). Solving for al′(t), the O(~ω) wavefunction is,

|ψ̃(t)〉 = c̃l(t)

|εl(t)〉 − i~∑
l′ 6=l

|εl′(t)〉〈εl′(t)|ω · ∇ωt|εl(t)〉
εl(t)− εl′(t)

 . (10)

Calculating Pav(ω1) and Pav(ω2)

Here, 〈ψ̃(t)|∂ωitH(t)|ψ̃(t)〉 and Pav(ωi) are derived when the system is initiated in the

adiabatic state |εl(0)〉 and evolved near the adiabatic limit. Employing Eq. 10 for |ψ̃(t)〉,

and making the change of variables (ω1t, ω2t) = (θ1, θ2), the following expression to O(~ω)

is obtained:

〈ψ̃(t)|∇ωtH(t)|ψ̃(t)〉 = 〈εl(θ)|∇θH(θ)|εl(θ)〉 −
{
i~
∑
l′ 6=l

〈εl(θ)|∇θH(θ)|εl′(θ)〉〈εl′(θ)|ω · ∇θ|εl(θ)〉
εl(θ)− εl′(θ)

+ h.c
}

= ∇θεl(θ)−
{
i~〈∇θεl(θ)|ω · ∇θ|εl(θ)〉+ h.c]

}
= ∇θεl(θ)− ~ω × v̂⊥Fl(θ), (11)

where ω × v̂⊥ = (ω2,−ω1) and Fl(θ) = i〈∂θ1εl(θ)|∂θ2εl(θ)〉 + h.c. is the Berry curvature of

4



the l−th band.

4 Analytical evaluation of Chern numbers

Here, we analytically compute the Chern numbers for the bands of the system in the main

text when δ = 0. We follow the procedure described in2. We first consider the three-level

Hamiltonian:

H(θ) =
∑
s=±1

sh3(θ)|s〉〈s|+
{

[h1(θ)− ish2(θ)]|s〉〈0|+ h.c.
}
, (12)

where h1(θ), h2(θ), h3(θ) are real valued. Next, we invoke the unitary transformation

U(θ) =
∑

s=0,±1 e
isα(θ)|s〉〈s|, such that tanα(θ) = h2(θ)/h1(θ), to define the real valued

Hamiltonian,

H′(θ) = U(θ)H(θ)U †(θ)

=
∑
s=±1

sh3(θ)|s〉〈s|+
√
h21(θ) + h22(θ)(|s〉〈0|+ h.c.). (13)

A set of eigenstates for H′(θ) can be defined as |ε′l(θ)〉 =
∑

s=0,±1 cl,s(θ)|s〉, where the

coefficients cl,s(θ) are real. The eigenstates of H(θ) are

|εl(θ)〉 = U †(θ)|ε′l(θ)〉 =
∑
s=0,±1

cl,s(θ)e−isα(θ)|s〉. (14)

The Berry connection for the l−th band is

Al(θ) = i〈εl(θ)|∇θ|εl(θ)〉

= ∇θα(θ)
∑
s=±1

sc2l,s(θ), (15)

5



where we used the fact that
∑

s=0,±1 cl,s(θ)∇θcl,s(θ) = 1
2
∇θ
∑

s=0,±1 |cl,s|2 = 0. The Berry

curvature is defined as the z-component of the curl of the Berry connection, i.e., Fl(θ) =

(∇θ ×Al(θ)) · ẑ. Note that there are singularities in the Berry connection when ∇θα(θ) =

h1(θ)∇θh2(θ)−h2(θ)∇θh1(θ)
h21(θ)+h

2
2(θ)

is undefined; they occur at the critical points where h1(θ) = h2(θ) =

0.

Considering Eqs. 8 and 9 from the main text and taking δ = 0, the values hR,S1 (θ),

hR,S2 (θ), hR,S3 (θ) are

hR,S1 (θ) = −µ
R,S
b E21 sin(θ1)

2
√

6
,

hR,S2 (θ) = −µ
R,S
a E32 sin(θ2)

4
√

2
,

hR,S3 (θ) =
µR,Sc

2
√

3
E31[m− cos(θ1)− cos(θ2)], (16)

and the aforementioned singularities occur at the θ = (θ1, θ2) values θ00 = (0, 0), θ0π = (0, π),

θπ0 = (π, 0), and θππ = (π, π). Physically, these critical points indicate geometric conditions

where certain components of light-matter coupling vanish.

Figure 1: Contour integration procedure to evaluate Chern number CR,Sl . The closed curve ∂r
bounds both the pink region, which contains the singularity of AR,S

l (θ), and the blue region, which
is rest of the torus. To apply Stokes theorem, we integrate counter-clockwise (red curve) along ∂r to
find the surface integral for the pink region, and clockwise along ∂R (green curve) to find the surface
integral for the blue region. The procedure can be extended to an arbitrary number of singularities
of AR,S

l (θ).

The Chern number for the R− and S− enantiomer is proportional to the surface integral

6



of the corresponding Berry curvature over the torus T,

CR,S
l =

1

2π

ˆ

T

dθFR,S
l (θ). (17)

Using Stokes theorem, it can be written as a contour integral of the Berry connection;

however, the singularities must be removed. To motivate the general procedure, first consider

the case where the Berry connection AR,S
l (θ) contains only one singularity. The curve ∂r can

be drawn, such that it defines an infinitesimal region containing the singularity (region I) and

the rest of the torus (region II) (see Fig. 1). Applying a gauge transformation |εR,Sl (θ)〉 →

eiφ
R,S
l (θ)|εR,Sl (θ)〉 in region I can remove the singularity, AR,S

l (θ) → A′l
R,S(θ) = AR,S

l (θ) −

∇θφR,Sl (θ), while the Berry curvature is unaffected2,3. Taking∇θφR,Sl (θ) = AR,S
l (θ) achieves

this desired result. The Chern numbers can then be written as the summation of contour

integrals for each region:

CR,S
l =

1

2π

ˆ

T

dθFR,S
l (θ)

=
1

2π

˛

∂r

dθ ·A′lR,S(θ)− 1

2π

˛
∂R

dθ ·AR,S
l (θ)

=
1

2π

˛

∂r

dθ · [AR,S
l(θ)−∇θφR,Sl (θ)]− 1

2π

˛
∂R

dθ ·AR,S
l (θ)

= − 1

2π

˛

∂r

dθ · ∇θφR,Sl (θ)

= − 1

2π

˛

∂r

dθ ·AR,S
l (θ). (18)

In going from the first to the second line, we applied Stokes theorem in region I by traversing

∂r in a counterclockwise fashion, and in region II by doing so in a clockwise way (see Fig.

1).

If the Berry connection AR,S
l (θ) contains multiple singularities θij, then local gauge

transformations must be carried out in multiple regions to remove all of them. Then the

7



Chern number results in

CR,S
l = −

∑
ij

1

2π

˛

∂rij

dθ ·AR,S
l (θ) (19)

where the curves {∂rij} enclose an infinitesimal region around each of the singularities θij.

Therefore, the Chern number can be calculated by studying the behavior of AR,S
l (θ) near

the singularities.

Let q = (q1, q2) be a small displacement from the point θij. Since sin(x) ≈ x and

sin(π + x) ≈ −x as x→ 0, then

αR,S(θ00 + q) ≈ βR,S,

αR,S(θ0π + q) ≈ −βR,S,

αR,S(θπ0 + q) ≈ −βR,S,

αR,S(θππ + q) ≈ βR,S, (20)

where tan βR,S =
√
3µR,S

a E32q2
2µR,S

b E21q1
. The gradients∇qαR,S(θ) near the critical points can be readily

evaluated in polar coordinates, |q|eiγ = q1 + iq2,

∇qαR,S(θ00 + q) = −∇qαR,S(θπ0 + q)

= −∇qαR,S(θ0π + q)

= ∇qαR,S(θππ + q)

≈ 1

|q|
(
√

3µR,Sa E32)(2µ
R,S
b E21)

(
√

3µR,Sa E32)2 sin2 γ + (2µR,Sb E21)2 cos2 γ
γ̂. (21)

The line integral of ∇qαR,S(θ00 + q) over a small circle in the limit when |q| → 0,

8



˛
|q|→0

dq · ∇qαR,S(θ00 + q)

=
( ˆ π/2−

0

dγ +

ˆ 3π/2−

π/2+
dγ

+

ˆ 2π

3π/2+
dγ
) (

√
3µR,Sa E32)(2µE21)

(
√

3µR,Sa E32)2 sin2 γ + (2µR,Sb E21)2 cos2 γ

=
( ˆ sgn[(µR,S

a E32)(µ
R,S
b E21)]∞

0

dx+

ˆ sgn[(µR,S
a E32)(µ

R,S
b E21)]∞

−sgn[(µR,S
a E32)(µ

R,S
b E21)]∞

dx

+

ˆ 0

−sgn[(µR,S
a E32)(µ

R,S
b E21)]∞

dx
) 1

1 + x2

=2πsgn[(µR,Sa E32)(µ
R,S
b E21)]. (22)

In the second line, we split the integral into three parts, noticing that the integral in the

remaining infinitesimal regions around γ = π/2 and γ = 3π/2 vanish given that the integrand

is finite,
´ π/2+
π/2−

dγ(·) =
´ 3π/2+
3π/2−

dγ(·) = 0. In the third line, we let x =
√
3µR,S

a E32

2µR,S
b E21

tan γ,

and dx =
√
3µR,S

a E32

µR,S
b E21

sec2 γdγ and recognized that x → sgn[(µR,Sa E32)(µ
R,S
b E21)]∞ as γ →

(π/2)−, (3π/2)− and x→ −sgn[(µR,Sa E32)(µ
R,S
b E21)]∞ as γ → (π/2)+, (3π/2)+.

The procedure of Eqs. (21) and (22) can be repeated for the other critical points, yielding,

˛
|q|→0

dq∇qαR,S(θ0π + q) = −2πsgn[(µR,Sa E32)(µ
R,S
b E21)],

˛
|q|→0

dq∇qαR,S(θπ0 + q) = −2πsgn[(µR,Sa E32)(µ
R,S
b E21)],

˛
|q|→0

dq∇qαR,S(θππ + q) = 2πsgn[(µR,Sa E32)(µ
R,S
b E21)]. (23)

Using Eqs. 15 and 19, the Chern number for the l-th band is

9



CR,S
l = −

∑
ij

1

2π

˛

∂rij

dθ ·AR,S
l (θ)

= −sgn[(µR,Sa E21)(µ
R,S
b E32)]

∑
s=±1

s[|cR,Sl,s (θ00)|2 − |cR,Sl,s (θ0π)|2 − |cR,Sl,s (θπ0)|2 + |cR,Sl,s (θππ)|2]

(24)

For |m| < 2 the Chern numbers for the upper, middle, and lower adiabatic states can be

seen to yield,

CR,S
U = 2sgn[m(µR,Sa E32)(µ

R,S
b E21)(µ

R,S
c E31)],

CR,S
M = 0,

CR,S
L = −2sgn[m(µR,Sa E32)(µ

R,S
b E21)(µ

R,S
c E31)]. (25)

For |m| > 2, all CR,S
l = 0. For the benefit of the reader, Table 1 provides an example

calculation of the upper band Chern number CR,S
U for |m| < 2

Table 1: Example Chern number calculation. Shown are the values of the |s = ±1〉 ampli-
tudes |cR,SU,s (θ00)|2 for the upper band eigenstate at the singularity points θij for |m| < 2.
Using these values and Eq. 24, we find that CR,S

U = 2sgn[m(µR,Sa E32)(µ
R,S
b E21)(µ

R,S
c E31)].

|cR,SU,s (θ00)|2 |cR,SU,s (θ0π)|2 |cR,SU,s (θπ0)|2 |cR,SU,s (θππ)|2
s = 1 1

2
− 1

2
sgn[(µR,Sc E31)]

1
2

+ 1
2
sgn[m(µR,Sc E31)]

1
2

+ 1
2
sgn[m(µR,Sc E31)]

1
2

+ 1
2
sgn[(µR,Sc E31)]

s = −1 1
2

+ 1
2
sgn[(µR,Sc E31)]

1
2
− 1

2
sgn[m(µR,Sc E31)]

1
2
− 1

2
sgn[m(µR,Sc E31)]

1
2
− 1

2
sgn[(µR,Sc E31)]

5 Laser shot-noise

The laser shot noise is defined as the width of the photon distribution of the driving field.

In the main text the laser field strength is assumed to be approximately E = 10−9 a.u., or

10



500 V
m . Assuming that the laser-beam waist area is A = 1cm2, its power is given by,

P =
cAε0E

2

8π

=
3× 108m

s × 1 cm2 × 1m2

1002cm2 × 8.85× 10−12 C2

J·m × (500V
m)2

8π

= 3mW (26)

where c is the speed of light and ε0 is the permittivity of free space. The frequencies of the

molecular transitions in the main text are on the order of v = 10GHz. Then the expected

number of photons produced by the laser after a long enough time t∗ = 2000× 2π/ω2 which

guarantees TFC is

N =
Pt∗

hv
=

3× 10−3W× 8× 10−3s
6.63× 10−34J·s× 10× 109s−1

= 4× 1018 (27)

The photon distribution is taken to be Poissonian. The standard deviation of this distribution

is
√
N , so the laser shot noise is

√
N ∼ 109.
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