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Abstract
We consider the Cauchy problem and the source problem for normally hyper-
bolic operators on the Minkowski spacetime, and study the determination
of solutions from their integrals along light-like geodesics. For the Cauchy
problem, we give a new proof of the stable determination result obtained by
Vasy and Wang (2021 Commun. Math. Phys. 384 503–32). For the source
problem, we obtain stable determination for sources with space-like singular-
ities. Our proof is based on the microlocal analysis of the normal operator of
the light ray transform composed with the parametrix for strictly hyperbolic
operators.
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1. Introduction

Consider the n + 1-dimensional Minkowski space (Rn+1, g), n ! 2 where g = −dt2 + dx2
1 +

· · · + dx2
n. Hereafter, we use z = (z0, z1, . . . , zn) = (t, x1, . . . , xn) for the coordinates on Rn+1.

Let " = −∂2
0 +

∑n
j=1 ∂

2
j be the d’Alembertian where ∂ j = ∂

∂z j , j = 0, 1, 2, . . . , n. The nor-
mally hyperbolic operators on (Rn+1, g) are of the form

P(z, ∂) = " +
n∑

j=0

A j(z)∂ j + B(z) (1)

where A j, B are real or complex valued smooth functions in z, see e.g. [2]. In this paper, we
study the determination of solutions of the Cauchy problem and the source problem of (1) from
their integrals along light-like geodesics on (Rn+1, g), called the light ray transform. In addition
to their own interest, these integral geometry problems arise from some inverse problems in
cosmology which concern the determination of primordial gravitational perturbations from the
cosmic microwave background, see [14] for further discussions.
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To describe the light ray transform, we parametrize the future pointing light-like geodesics
as follows: for (x, θ) ∈ C .

= Rn × Sn−1, the light-like geodesics from (0, x) in the direction
(1, θ) is given by γy,θ(s) = (s, x + sθ), s ∈ R. Then the light ray transform is

L f (x, θ) =

∫

R
f (s, x + sθ)ds, f ∈ C∞

0 (Rn+1). (2)

It is worth mentioning that the light ray transform depends on the choice of the parametrization,
see [9, corollary 6.2]. Although light-like geodesics are preserved under conformal transfor-
mations, the light ray transform is not. It is also known that L is injective on C∞

0 (Rn+1) see
for example [10] which is a result of Fourier slice theorem and the analyticity of the Fourier
transform of f .

For t0 < t1, we denote M = (t0, t1) × Rn and S = {t0} × Rn. For simplicity, we assume
t0 = 0. Consider the Cauchy problem

P(z, ∂)u(z) = 0, on M

u = f1, ∂tu = f2 on S.
(3)

Here, u is a function on M. We also consider u as a function on Rn+1 by de!ning u = 0 outside
of M. Let χ0 ! 0 be a smooth cut-off function in C∞

0 ((t0, t1]) not identically vanishing. Our
main result is the stable determination of u from Lχ0u.

Theorem 1.1. Let u be the solution of (3) on M with Cauchy data f1 ∈ Hs+1(S), f2 ∈
Hs(S), s ! 0 supported in a compact set V of S. Suppose that the coef!cients A j(z) in (1)
are real valued smooth functions. Then f1, f2 are uniquely determined by Lχ0u. Furthermore,
there exists C > 0 such that

‖u‖Hs+1(M) # C‖( f1, f2)‖Hs+1(S)×Hs(S) # C‖Lχ0u‖Hs+n/2+δ(C) (4)

where δ = 0 for n ! 3 and δ = −1/4 for n = 2.

The theorem for n = 3 was proved in [14] when χ0 is the characteristic function χ[t0,t1]

for [t0, t1] in R. Here, the result is generalized to n ! 2 and the Sobolev order in the stability
estimate (4) is improved. We decided to replace χ[t0,t1] by χ0 to avoid some technicalities (see
the proof of lemma 3.1). In fact, by the continuity of L (see proposition 4.2), the difference of
Lχ[t0,t1]u and Lχ0u can be made arbitrarily small in a proper sense. Despite these differences,
the main point of this note is to give a new proof which explores the microlocal structure of the
light ray transform. It is expected that the new approach would work in more general settings.
Let us recall the approach in [14] and point out the differences. For the Cauchy problem (3),
one can use the parametrix E constructed by Duistermaat and Hörmander to represent the
solution up to a smooth term. Roughly, we write f = ( f1, f2) and solution of (3) as u = E f
thus Lu = LE f. In [14], it is shown that LE can be modi!ed to an elliptic pseudo-differential
operator on S modulo some lower order Fourier integral operators by integrating in θ variable.
Then a microlocal parametrix can be constructed from which the stability estimate follows.

In this paper, we will look at the normal operator E∗L∗LE which seems natural to examine
for an integral geometry problem. It turns out that the composition is not good as it stands.
We !rst explain the issue in section 3 by using a model problem. In fact, the issue is related
to the microlocal structure of the normal operator N = L∗L. As shown in [16] and reviewed
in section 4, the Schwartz kernel of N is a paired Lagrangian distribution. By judicious use
of the kernel on one of the Lagrangians, we show that the composition E∗NE can be slightly
modi!ed to behave well within the clean FIO calculus of Duistermaat and Guillemin, yielding
a pseudo-differential operator on S. The rest of the proof goes as in [14].
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We remark that in [16], it is shown that for globally hyperbolic Lorentzian manifolds without
conjugate points, the normal operator of the light ray transform also has a paired Lagrangian
structure. The parametrix construction for the Cauchy problem for strictly hyperbolic operators
works in this generality as well. Thus we believe that the new method would give stability esti-
mates as in theorem 1.1 and injectivity of the light ray transform for functions with suf!ciently
small support in such settings. These will be pursued somewhere else.

In section 7, we analyze the source problem from the same point of view

P(z, ∂)u = f , on M

u = 0 for t < t0,
(5)

that is we determine u on M from Lχ0u. As pointed out however not addressed in [14], this
problem arises from the inverse Sachs–Wolfe problem when the entropy perturbation cannot
be ignored in Bardeen’s equation. For the source problem, there is a parametrix E constructed
by Melrose and Uhlmann [13] whose Schwartz kernel is a paired Lagrangian distribution. As
for the composition LE, our idea is to consider L∗LE = NE which turns out to be a paired
Lagrangian distribution in view of a composition result of Antoniano and Uhlmann [1]. We
will show that by considering the information on the other Lagrangian of the pair, one can
stably determine f when the wave front set is space-like, see theorem 7.1. The case of light-
like singularities is unclear. In view of the results in [16], one may not be able to determine
light-like singularities of f in a stably way. For sources with special type of singularities such
as conormal, it is possible to recover light-like singularities as in [16] but the result may depend
on the coef!cients A j in P(z, ∂).

As pointed out by one of the referees, it would be interesting to study the problem of
simultaneously determining both the Cauchy data and the source term, and information of
the coef!cients in (1). Problems of similar nature have been explored in various settings, see
for instance [11, 12]. We believe that the method developed here will be useful at least for
identifying the singularities.

The note is organized as follows. We analyze a model problem in sections 2 and 3 where
we can use oscillatory integral representations to explain the idea of the proof. Then we exam-
ine the argument from the Lagrangian distribution point of view and prove theorem 1.1 in
sections 4–6. Finally, we study the source problem in section 7.

2. A model problem

We start with a model problem for which we can give an elementary proof using oscillatory
integrals. Another motivation to consider a simpler example !rst is that through the explicit
calculation, we can explain some subtlety of the problem which helps to explain the treatment
for general cases.

Theorem 2.1. Let n ! 3 be an odd integer and s ! 0. Let u be the solution of the Cauchy
problem

"u = 0, on M

u = f1, ∂tu = f2, on S
(6)

where ( f1, f2) ∈ Hs+1(S) × Hs(S) are supported in a compact set V ⊂ S. Then Lχ0u uniquely
determines u on M and f1, f2 on S. Moreover, we have the estimate

‖ f1‖Hs+1(S) + ‖ f2‖Hs(S) # C‖Lχ0u‖Hs+n/2(C)
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for C > 0 depending on n and V .

In this section, we collect the oscillatory integral representations of the solution to the
Cauchy problem and the normal operator of the light ray transform.

First, consider the solution of the Cauchy problem (6). It will become convenient to consider
the Cauchy problem on a larger set

"u = 0, on N = (−T, T) × Rn

u = f1, ∂tu = f2, on S
(7)

where T > t1. Let (τ , ξ), ξ ∈ Rn be the dual variables in T∗N to (t, x), x ∈ Rn. Using Fourier
transform in the x variable, we get

u(t, x) = (2π)−n
∫

Rn
ei(x·ξ+t|ξ|)ĥ1(ξ)dξ + (2π)−n

∫

Rn
ei(x·ξ−t|ξ|)ĥ2(ξ)dξ

= E+h1 + E−h2, (8)

where

ĥ1 =
1
2

( f̂ 1 +
1

i|ξ| f̂ 2), ĥ2 =
1
2

( f̂ 1 −
1

i|ξ| f̂ 2).

Here, h1, h2 are the re-parametrized Cauchy data for the Cauchy problem. Thus, E± are
represented by oscillatory integrals

E± f (t, x) = (2π)−n
∫

Rn

∫

Rn
ei((x−y)·ξ±t|ξ|) f (y)dy dξ. (9)

The phase functions are φ±(t, x, y, ξ) = (x − y) · ξ ± t|ξ| and amplitude function a(t, x, ξ) = 1.
In particular, χ0E± : E ′(S) → D′(N ) are Fourier integral operators with canonical relations

C±
wv = {(t, x, ζ0, ζ ′; y, ξ) ∈ T∗N\0 × T∗S\0 : y = x ± tξ/|ξ|, ζ ′ = ξ, ζ0 = ±|ξ|}. (10)

Following the standard notation for Fourier integral operators see e.g. [4], we have χ0E± ∈
I−

1
4 (N , S; C±

wv). It suf!ces to determine h1, h2 because we can easily !nd f1, f2 from

f1 = h1 + h2, f2 = i∆
1
2 (h1 − h2). (11)

Next, consider the light ray transform. On C = Rn × Sn−1, we use the standard product
measure. Let L∗ be the adjoint of L. Consider the normal operator N = L∗L. It is computed in
[10, theorem 2.1] that

N f (t, x) =

∫

Rn+1
KN (t, x, t′, x′) f (t′, x′)dt′ dx′

where the Schwartz kernel

KN(t, x, t′, x′) =
δ(t − t′ − |x − x′|) + δ(t − t′ + |x − x′|)

|x − x′|n−1 . (12)

In particular, KN can be written as an oscillatory integral

KN(t, x, t′, x′) =

∫

Rn+1
ei(t−t′)τ+i(x−x′)·ξk(τ , ξ)dτ dξ (13)
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where

k(τ , ξ) = Cn
(|ξ|2 − τ 2)

n−3
2

+

|ξ|n−2 , Cn = 2π|Sn−2|. (14)

Here, for s ∈ R, sa
+, Re a > −1 denotes the distribution de!ned by sa

+ = sa if s > 0 and sa
+ = 0

if s # 0. Below, we denote by Ψm(X ) the set of pseudo-differential operators of order m on a
smooth manifold X .

3. The composition as oscillatory integrals

Consider the determination of h1, h2 from Lχ0u = Lχ0E+h1 + Lχ0E−h2. We will analyze the
normal operator

E∗L∗Lχ0E, where E = E±. (15)

There are issues about the composition as it is, and we will !ne tune the operator as follows.
We choose a smooth cut-off function χ ∈ C∞

0 (R) with suppχ ⊂ (t1, T), χ ! 0 and not vanish-
ing identically. Note that χ0χ = 0. Then we consider the composition E∗χL∗Lχ0E. We will
show that the operator is a pseudo-differential operator on S. The principal symbol is non-
vanishing so the operator can be microlocally inverted. The necessity of the cut-off function χ
is demonstrated in the next result.

Lemma 3.1. For n ! 3 odd, the compositionχL∗Lχ0E± ∈ I−n/2+1/4(N , S; C±
wv) are elliptic

Fourier integral operators.

Proof. We prove for E+ below because the treatment for E− is identical. The Schwartz kernel
of χNχ0E+ is

K(t, x, z) = (2π)−2n
∫

Rn

∫ t1

t0

∫

Rn

∫

Rn

∫

R
ei(t−t′)τ+i(x−x′)·ξ ei((x′−z)·η+t′|η|)

× χ(t)χ0(t′)k(τ , ξ)dτ dξ dη dt′ dx′

= (2π)−n
∫ t1

t0

∫

Rn

∫

R
ei(t−t′)τ+i(x−z)·ξ+it′|ξ|χ(t)χ0(t′)k(τ , ξ)dτ dξ dt′

where we integrated in x′, η. We make a change of variable s = τ − |ξ| so

k(s, ξ) = Cn
s

n−3
2

− (s + 2|ξ|)
n−3

2
+

|ξ|n−2 .

Then

K(t, x, z) = (2π)−n
∫ t1

t0

∫

Rn

∫

R
ei(t−t′)s+i(x−z)·ξ+it|ξ|χ(t)χ0(t′)k(s, ξ)ds dξ dt′

= (2π)−n
∫ t1

t0

∫

Rn
ei(x−z)·ξ+it|ξ|χ(t)χ0(t′)A(t − t′, ξ)dξ dt′

(16)

where A is de!ned by

5
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A(σ, ξ) =

∫

R
eiσsk(s, ξ)ds =

∫ 0

−2|ξ|
eiσsCn

s
n−3

2 (s + 2|ξ|) n−3
2

|ξ|n−2 ds

= Cn2n−2
∫ 0

−1
e2iσ|ξ|ss

n−3
2 (s + 1)

n−3
2 ds. (17)

For n = 3,

A(σ, ξ) = 2C3

∫ 0

−1
e2iσ|ξ|sds = C3

1
iσ

(1 − e−2iσ|ξ|)|ξ|−1.

Then

K(t, x, z) = C3

∫ t1

t0

∫

Rn
ei(x−z)·ξ+it|ξ|χ(t)χ0(t′)

1
i(t − t′)|ξ|dξ dt′

+ C3

∫ t1

t0

∫

Rn
ei(x−z)·ξ−it|ξ|+2it′|ξ|χ(t)χ0(t′)

−1
i(t − t′)|ξ|dξ dt′

= K1(t, x, z) + K2(t, x, z) (18)

where K1, K2 denotes the !rst and second integral above. For K1, because χ(t) is supported
away from [t0, t1], we see that (t − t′)−1 is integrable in t′. This is where we need the cut-off
function! So we get

K1(t, x, z) = C̃3

∫

Rn
ei(x−z)·ξ+it|ξ|χ̃(t)|ξ|−1dξ

with a non-vanishing constant C̃3 and χ̃(t) ! 0 not vanishing identically. This implies that
K1(t, x, z) is the Schwartz kernel of an Fourier integral operator, denoted by K1, associated
with canonical relation C+

wv with a symbol of order −1. Note that the symbol |ξ|−1 is singular
at ξ = 0 but this can be removed by introducing a smooth cut-off function supported near
ξ = 0, which amounts to changing K1 by a smoothing operator.

For K2, we have

K2(t, x, z) = C3

∫ t1

t0

∫

Rn
ei(x−z)·ξ−it|ξ|+2it′ |ξ|χ(t)χ0(t′)

−1
i(t − t′)|ξ|dξ dt′.

As t − t′ > 0, we can use integration by parts (note that χ0 is compactly supported in (t0, t1)) to
conclude that K2 is a smoothing. We remark that if χ0 were the characteristic function χ[t0,t1],
one would obtain some additional Fourier integral operators as a result of the boundary terms
from integration by parts. The operators are more regular because the symbols are of order
−2. With some adjustments, one can handle these terms in the rest of the argument for proving
theorem 2.1. However, we chose to avoid the technicality and used χ0.

We conclude that K in (18) is a Fourier integral operator associated with C+
wv with a symbol

a(t, ξ) of order −1. Thus K in (18) can be written as

K(t, x, z) =

∫

Rn
ei(x−z)·ξ+it|ξ|a(t, ξ)dξ

where a(t, ξ) is a symbol of order −1. The leading order term is

a0(t, ξ) = C3

∫ t1

t0

χ(t)χ0(t′)
1

i(t − t′)|ξ| dt′. (19)

6
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For n ! 5 odd, we use (17) and apply integration by parts to get

A(σ, ξ) = Cn
2n−3

iσ|ξ|

∫ 0

−1
eiσ2|ξ|s(s

n−3
2 (s + 1)

n−3
2 )′ds

= (−1)Cn
2n−3

iσ|ξ|

∫ 0

−1
eiσ2|ξ|s n − 3

2

(
s

n−3
2 −1(s + 1)

n−3
2

+ s
n−3

2 (s + 1)
n−3

2 −1
)

ds.

Repeating the integration by part n−3
2 times, we get

A(σ, ξ) = (−1)
n−3

2 Cn
1

(2iσ|ξ|) n−3
2

(
n − 3

2
)!
(∫ 0

−1
eiσ2|ξ|s(s + 1)(n−3)/2 ds

+

∫ 0

−1
eiσ2|ξ|ss(n−3)/2 ds

)
+

∑

k, j!1,k+ j=(n−3)/2

ck, j

×
∫ 0

−1
eiσ2|ξ|ss(n−3)/2−k(s + 1)(n−3)/2− j ds

where ck, j are constants. So far, the boundary terms from integration by parts vanish. We
continue with integration by parts to get

A(σ, ξ) = (−1)
n−3

2 Cn
1

(2iσ|ξ|) n−3
2 (2iσ|ξ|)

(
n − 3

2

)
! +

M∑

k=1

ak(σ)|ξ|− n−3
2 −1−k

+ (−1)
n−3

2 Cn
1

(2iσ|ξ|) n−3
2 (2iσ|ξ|)

(
n − 3

2

)
!e−iσ2|ξ|

+
M∑

k=1

bk(σ)e−iσ2|ξ||ξ|− n−3
2 −1−k

where ak, bk are smooth in σ for σ *= 0, and M is some integer depending on n. We remark that
for n even, integration by parts will eventually lead to singular integrals. This is why we cannot
deal with n even at this point. We let

a0(σ) = b0(σ) = (−1)
n−3

2 Cn
1

(2iσ)
n−3

2 +1
(
n − 3

2
)!

We see that

A(σ, ξ) =
M∑

k=0

ak(σ)|ξ|− n−3
2 −1−k +

M∑

k=0

bk(σ)e−iσ2|ξ||ξ|− n−3
2 −1−k.

Finally, using (16), we get

7
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K(t, x, z) =

∫ t1

t0

∫

Rn
eit|ξ|+i(x−z)·ξχ(t)χ0(t′)

M∑

k=0

ak(t − t′)|ξ|− n−3
2 −1−kdξ dt′

+

∫ t1

t0

∫

Rn
e−it|ξ|+2it′|ξ|+i(x−z)·ξχ(t)χ0(t′)

×
M∑

k=0

bk(t − t′)|ξ|− n−3
2 −1−kdξ dt′. (20)

By the same arguments as for n = 3, we see that K is an FIO associated with C±
wv with a symbol

of order −(n − 3)/2 − 1. The leading order term of the symbol is

a0(t, ξ) = Cn

∫ t1

t0

χ(t)χ0(t′)
1

i(t − t′)|ξ| n−3
2 +1

dt′. (21)

To summarize, for n ! 3 odd, χNχ0E+ is an FIO with canonical relation C±
wv of order

−(n − 3)/2 − 1 + n/2 − (2n + 1)/4 = −n/2 + 1/4.

The principal symbol is clearly non-vanishing. This completes the proof. "
Next, we prove

Lemma 3.2. For n ! 3 odd,

(a) E∗
+χNχ0E+ and E∗

−χNχ0E− are elliptic pseudo-differential operators in Ψ−n/2+1/2(S).
(b) E∗

−χNχ0E+ and E∗
+χNχ0E− are smoothing operators on S.

Proof. For (a), we consider E∗
+χNχ0E+. We know that the Schwartz kernel for E∗

+ is

KE∗
+

(w, t, x) = (2π)−n
∫

Rn
e−i(x−w)·η−it|η| dη.

Using the notations in lemma 3.1, the kernel of E∗
+χNχ0E+ is

K(w, z) = (2π)−2n
∫

Rn

∫

Rn

∫

R

∫

Rn
e−i(x−w)·η−it|η|ei(x−z)·ξ+it|ξ|a(t, ξ)

× χ(t)dξ dt dx dη

= (2π)−n
∫

R

∫

Rn
ei(w−z)·ηa(t, η)χ(t)dη dt

= (2π)−n
∫

Rn
ei(w−z)·ηc(η)dη

where c(η) =
∫

R a(t, η)χ(t)dt is a symbol of order − n−3
2 − 1. Thus, the composition

E∗
+χNχ0E+ is a pseudo-differential operator of order −n/2 + 1/2 on S.

Let us !nd the leading order term of c(η), denoted by c0(η). For n ! 3 odd, we use a0(t, η)
in (19) and (21) to get

c0(η) =

∫

R

∫ t1

t0

Cn
1

i(t − t′)
n−3

2 +1
|η|− n−3

2 −1χ(t)χ0(t′)dt′ dt.

8
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In the integral, t > t′ so the integrand it positive. Thus, c0(η) is non-zero. The proof for
E∗
−χNχ0E− is identical.

For (b), let us consider E∗
−χNχ0E+. Then the Schwartz kernel is

K(w, z) = (2π)−2n
∫

Rn

∫

Rn

∫

R

∫

Rn
e−i(x−w)·η+it|η|ei(x−z)·ξ+it|ξ|a(t, ξ)

× χ(t)dξ dt dx dη

= (2π)−n
∫

R

∫

Rn
ei(w−z)·η+2it|η|a(t, η)χ(t)dη dt

= (2π)−n
∫

Rn
ei(w−z)·ηc(η)dη.

Because χ(t) is supported on t > t1 > 0, the integration in t implies that the symbol c(η) decays
to in!nite order as |η| →∞. So the operator is smoothing. "

Using the two lemmas, we can !nish the proof of theorem 2.1.

Proof of theorem 2.1. Let u be the solution of (6). We start with

χL∗Lχ0u = χL∗Lχ0E+h1 + χL∗Lχ0E−h2.

We apply E∗
± to get

E∗
+χNχ0u = E∗

+χNχ0E+h1 + E∗
+χNχ0E−h2

E∗
−χNχ0u = E∗

−χNχ0E+h1 + E∗
−χNχ0E−h2.

(22)

From lemma 3.2, E∗
+χNχ0E+, E∗

−χNχ0E− ∈ Ψ−n/2+1/2(S) are elliptic pseudo-differential
operators. There are parametrices Q± ∈ Ψn/2−1/2(S) such that

Q±E∗
±χNχ0E± = Id +R±

with R± smoothing operators. We also know from lemma 3.2 that E∗
+χNχ0E−, E∗

−χNχ0E+

are smoothing operators. So we get from (22) that

Q+E∗
+χNχ0u = h1 + R1h1 + R2h2

Q−E∗
−χNχ0u = h2 + R3h1 + R4h2

where Ri, i = 1, 2, 3, 4 are smoothing operators.
Finally, for any ρ ∈ R, we get the estimate

‖h1‖Hs(S) # C‖Q+E∗
+χNχ0u‖Hs(S) + Cρ‖h1‖Hs−ρ(S) + Cρ‖h2‖Hs−ρ(S)

‖h2‖Hs(S) # C‖Q−E∗
−χNχ0u‖Hs(S) + Cρ‖h1‖Hs−ρ(S) + Cρ‖h2‖Hs−ρ(S)

(23)

for C > 0, Cρ > 0. We know that

Q± : Hs
comp(S) → Hs−n/2+1/2

loc (S)

is bounded. For E∗
±, one can show directly using the oscillatory integral representations or

using the clean FIO calculus see lemma 6.3 later, that E∗
±E± ∈ Ψ0(S). Then we derive that

9
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E∗
± : Hs

comp(N ) → Hs
loc(S) is bounded. Finally, L∗ : Hs

comp(C) → Hs+1/2
loc (Rn+1) is bounded for

n ! 3, see proposition 4.2 in section 4. We thus conclude that

E∗
±χL∗ : Hs

comp(C) → Hs+1/2
loc (N )

is bounded. Therefore, from (23), we get

‖h1‖Hs(S) # C‖Lχ0u‖Hs+n/2−1(C) + Cρ‖h1‖Hs−ρ(S) + Cρ‖h2‖Hs−ρ(S)

‖h2‖Hs(S) # C‖Lχ0u‖Hs+n/2−1(C) + Cρ‖h1‖Hs−ρ(S) + Cρ‖h2‖Hs−ρ(S).
(24)

Now, as shown in [14, theorem 8.1], L is injective on L1
comp(Rn+1) hence on L2

comp(Rn+1). For
s ! 0, we know that u in (6) belongs to L2

comp(Rn+1) hence the injectivity result can be applied.
One can drop the last two terms in each of the inequalities in (24) by using the same argument
in [14, theorem 1.1]. We get

‖h1‖Hs+1(S) # C‖Lχ0u‖Hs+n/2(C), ‖h2‖Hs+1(S) # C‖Lχ0u‖Hs+n/2(C).

In terms of f1, f2 see (11), we get

‖ f1‖Hs+1(S) + ‖ f2‖Hs(S) # C‖Lχ0u‖Hs+n/2(C).

This completes the proof of theorem 2.1. "

4. Representation of operators

To understand the mechanism behind the composition in lemmas 3.1 and 3.2, we will exam-
ine the arguments from the Lagrangian distribution point of view. Note that the signature of
g is (−, +, . . . , +). On the dual space Rn+1

(τ ,ξ), we let Γtm
± = {(τ , ξ) ∈ Rn+1 : τ 2 > |ξ|2, ±τ > 0}

be the set of future/past pointing time-like vectors, and Γtm = Γtm
+ ∪ Γtm

− . Let Γsp = {(τ , ξ) ∈
Rn+1 : τ 2 < |ξ|2} be the set of space-like vectors. Finally, let Γlt

± = {(τ , ξ) ∈ Rn+1 : τ 2 =
|ξ|2, ±ξ0 > 0} be the set of future/past pointing light-like vectors. We also let Γlt = Γlt

+ ∪ Γlt
−.

We see that in (14), the symbol k(τ , ξ) is supported in Γsp, is homogeneous of degree −1 in
(τ , ξ) and smooth away from Γlt. Moreover, k(τ , ξ) ∼ dist((τ , ξ),Γlt)(n−3)/2, for (τ , ξ) space-
like near Γlt. Therefore, k(τ , ξ) looks like a symbol for a pseudo-differential operator of order
−1 with a conormal singularity at Γlt. This is an example of paired Lagrangian distribution
introduced in [6], as proved in [16] for general globally hyperbolic Lorentzian manifolds. In
this section, we brie"y recall the notion of paired Lagrangian distributions and the construction
for the Minkowski spacetime.

To de!ne paired Lagrangian distributions, we !rst consider the following model problem.
Let X̃ = Rn = Rk × Rn−k, 1 # k # n − 1, and use coordinates x = (x′, x′′), x′ ∈ Rk, x′′ ∈
Rn−k. Let Λ̃0 = {(x, ξ, x,−ξ) ∈ T∗(X̃ × X̃ )\0 : ξ *= 0} be the punctured conormal bundle of
Diag in T∗(X̃ × X̃ ), and

Λ̃1 = {(x, ξ, y, η) ∈ T∗(X̃ × X̃ )\0 : x′′ = y′′, ξ′ = η′ = 0, ξ′′ = η′′ *= 0}

which is the punctured conormal bundle to {(x, y) ∈ X̃ × X̃ : x′′ = y′′}. The two Lagrangians
intersect cleanly at Σ̃ = {(x, ξ, y, η) ∈ T∗(X̃ × X̃ )\0 : x′′ = y′′, ξ′′ = η′′, x′ = y′, ξ′ = η′ = 0}

10
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which is of codimension k. For this model pair, the paired Lagrangian distribution Ip,l(Rn ×
Rn; Λ̃0, Λ̃1) consists of oscillatory integrals (see [3, section 5])

u(x, y) =

∫
ei[(x′−y′)·η′+(x′′−y′′)·η′′]b(x, y, η)dη (25)

modulo C∞
0 (Rn × Rn), where b satis!es the following estimates. We remark that the order

here is different from that in [3] because we work on the product space. First, in the region
|η′| # C|η′′|, |η′′| ! 1, b satis!es

|(Qb)(x, y, η)| # C〈η′′〉p+k/2〈η′〉l−k/2

for all Q which is a !nite product of differential operators of the form Dη′ , η′jDη′m , η′′j Dη′′m .
Second, in the region |η′′| # C|η′|, |η′| ! 1, b satis!es the standard regularity estimate

|(Qb)(x, y, η)| # C〈η′〉p+l

for all Q which is a !nite product of differential operators of the form η′jDη′m , η′jDη′′m . We use the

notation Ip,l(Rn × Rn; Λ̃0, Λ̃1) to denote the space of operators A : E ′(Rn;Ω
1
2
Rn) → D′(Rn;Ω

1
2
Rn )

where Ω
1
2
Rn denotes the line bundle of half-densities on Rn, whose Schwartz kernel KA is a

paired Lagrangian distribution with values in Ω
1
2
Rn×Rn .

Let X be a C∞ manifold of dimension n. LetΛ0,Λ1 be two conic Lagrangian submanifold of
T∗(X × X )\0 such that Λ0 ∩ Λ1 cleanly at a codimension k, 1 # k # 2n − 1 submanifold Σ.
From [6, proposition 2.1], we know that all such intersecting pairs (Λ0,Λ1) are locally symplec-
tic diffeomorphic to each other. Let χ : T∗(X × X )\0 → T∗(X̃ × X̃ )\0 be a canonical trans-
formation such that χ(Λ0) ⊆ Λ̃0,χ(Λ1) ⊆ Λ̃1. Then the set of paired Lagrangian distributions
Ip,l(X × X ;Λ0,Λ1) are de!ned invariantly by conjugating elements of Ip,l(R̃n × R̃n; Λ̃0, Λ̃1)
by Fourier integral operators with canonical relation χ, see [6] for more details. For any
u ∈ Ip,l(X × X ;Λ0,Λ1), u is an Fourier integral operator of order p + l onΛ0\Σ and an Fourier
integral operator of order p on Λ1\Σ. The principal symbols satisfy certain compatibility
conditions at Σ. In particular, the principal symbol of u on Λ1\Σ is singular at Σ.

To see that the kernel (12) is a paired Lagrangian distribution, we make a symplectic change
of variables on T∗Rn+1\0

x̃ = x + tξ/|ξ|, t̃ = t, s = τ − |ξ|, ξ = ξ.

We can choose an Fourier integral operator with symbol of order 0 which quantizes the
symplectic change of variable and transform KN to

KN (̃t, x̃, t̃′, x̃′) =

∫

Rn+1
ei(̃t−̃t′)s+i(̃x−x̃′)·ξk(s, ξ)ds dξ (26)

modulo a smooth term, where

k(s, ξ) = Cn
s

n−3
2

− (s + 2|ξ|)
n−3

2
+

|ξ|n−2 + Cn
s

n−3
2

+ (s + 2|ξ|)
n−3

2
−

|ξ|n−2

= Cn
s

n−3
2

− (s + 2|ξ|)
n−3

2
+

|ξ|n−2 . (27)

11
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The symbol k(s, ξ) satis!es the product type estimate with p = −n/2, l = n/2 − 1. In fact,
for |ξ| # C|s|, |s| ! 1, we have

|k(s, ξ)| # C|s|−1.

One can verify the same estimate for Qk where Q is the !nite product of differential operators
of the form sDs, sDξm . For |s| # C|ξ|, |ξ| ! 1, we have

|k(s, ξ)| # C
|s| n−3

2 |ξ| n−3
2

|ξ|n−2 # C|ξ|−n/2+1/2|s|n/2−3/2

and one can verify the estimate for Qk where Q is the !nite product of differential opera-
tors of the form Ds, sDs, ξ jDξm . So KN is a paired Lagrangian distribution. The two associated
Lagrangians are

Λ0 = {(t, x, τ , ξ; t′, x′, τ ′, ξ′) ∈ T∗Rn+1\0 × T∗Rn+1\0 : t = t′, x = x′, τ = −τ ′, ξ = −ξ′}

(28)

which is the punctured conormal bundle of the diagonal in Rn+1 × Rn+1 and

Λ1 =
{

(t, x, τ , ξ; t′, x′, τ ′, ξ′) ∈ T∗Rn+1\0 × T∗Rn+1\0 : x = x′ + (t − t′)ξ/|ξ|

τ = ±|ξ|, τ ′ = −τ , ξ′ = −ξ} .
(29)

The two Lagrangians intersect cleanly at

Σ =
{

(t, x, τ , ξ; t′, x′, τ ′, ξ′) ∈ T∗Rn+1\0 × T∗Rn+1\0 : t = t′, x = x′,

τ = −τ ′, ξ = −ξ′, τ 2 = |ξ|2
}

.
(30)

In fact, Λ1 is the "ow out of Σ under the Hamilton vector !eld H f of f (τ , ξ) = 1
2 (τ 2 − |ξ|2).

Theorem 4.1 (Theorem 3.1 of [16]). For the Minkowski light ray transform L de!ned
in (2), the Schwartz kernel of the normal operator N = L∗L belongs to I−n/2,n/2−1(Rn+1 ×
Rn+1;Λ0,Λ1), in which Λ0,Λ1 are two cleanly intersection Lagrangians de!ned in (28) and
(29). The principal symbols of N on Λ1\Σ are real valued and non-vanishing.

The principal symbols of KN on Λ0\Λ1 and Λ1\Λ0 can be found explicitly, see [16] for
details. We only need the symbol on Λ1\Λ0 where the kernel KN ∈ I−n/2(M × M;Λ1). To
!nd the symbol, we can use (12) and write KN as

KN(t, x, t′, x′) =

∫

R
ei(t−t′−|x−x′ |)τ (t − t′)−(n−1)

+ dτ

+

∫

R
ei(t−t′+|x−x′ |)τ (t − t′)−(n−1)

− dτ (31)

for t *= t′. This gives another oscillatory integral representation of KN with a real phase function
valid for t *= t′. The principal symbol is non-vanishing and positive in this representation.

Using the estimates for paired Lagrangian distributions for the "ow out model one can derive
the Sobolev estimates for L and L∗.

Proposition 4.2 (Corollary 3.2 of [16]). The Minkowski light ray transform L :
Hs

comp(Rn+1) → Hs+s0/2
loc (Rn × Sn−1) and its adjoint L∗ : Hs

comp(Rn × Sn−1) → Hs+s0/2
loc (Rn+1)

are continuous for s0 = 1/2 when n = 2 and for s0 = 1 when n ! 3.

12
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5. Parametrix for the Cauchy problem

A linear differential operator P : C∞(Rn+1) → C∞(Rn+1) of second order is called normally
hyperbolic if the principal symbol P(z, ζ) .

=σ(P)(z, ζ) = g∗(ζ, ζ), (z, ζ) ∈ T∗M, see [2, page
33]. Note that P(z, ∂) in (1) is exactly the normally hyperbolic operator on (Rn+1, g). The
operator is strictly hyperbolic of multiplicity one with respect to the Cauchy hypersurfaces
St = {t} × Rn, t ∈ R, see de!nition 5.1.1 of [4]. This means that all bicharacteristic curves of
P are transversal to St and for (̄z, ζ̄) ∈ T∗St\0

P (̄z, ζ) = 0, ζ|T̄zS = ζ̄

has exactly one solution. As before, we also use S0 = S. It is convenient to use D j = −ı∂ j, j =
0, 1, 2, . . . , n in which ı2 = −1. Consider the Cauchy problem

P(z, D)u(z) = 0, on M

u = f1, Dtu = f2 on S.
(32)

We use Duistermaat–Hörmander’s parametrix construction, see e.g. [4]. The restriction
operator ρ0 : C∞(N ) → C∞(S) is an FIO in I1/4(N , S; C0) with canonical relation

C0 = {(z, ζ, z̄, ζ̄) ∈ T∗N\0 × T∗S\0 : z̄ = z, ζ̄ = ζ|T̄zS}. (33)

We consider the canonical relation Cwv de!ned by

Cwv =
{

(w, ι, z̄, ζ̄) ∈ T∗N\0 × T∗S\0 : (w, ι) is on the bicharacteristic

strip through some (̄z, ζ) such that ζ̄ = ζ|T̄zS and P (̄z, ζ) = 0
}

.
(34)

The next result is straight forward from theorem 5.1.2 of [4].

Proposition 5.1. There exists E1 ∈ I−1/4(N , S; Cwv), E2 ∈ I−5/4(N , S; Cwv) such that

P(z, D)Ek ∈ C∞(N ), k = 1, 2

ρ0E1 − Id ∈ C∞(S), ρ0E2 ∈ C∞(S)

ρ0DtE1 ∈ C∞(S), ρ0DtE2 − Id ∈ C∞(S).

(35)

Now we can represent the solution of (32) as u = E1 f1 + E2 f2 modulo a smooth term. Note
that this is not the same representation used in section 2 because the Cauchy data are not re-
parametrized to h1, h2. It is natural to decompose Cwv as the disjoint union of C+

wv and C−
wv

which are

C±
wv =

{
(w, ι, z̄, ζ̄) ∈ T∗N\0 × T∗S\0 : ι is future/past

pointing light − like and lies on the bicharacteristic strip through

some (̄z, ζ) such that ζ̄ = ζ|T̄zS and P (̄z, ζ) = 0
}

.

(36)

These are (10) under the parametrization in section 2. We can decompose (for k = 1, 2)

Ek = E+
k + E−

k , E±
k ∈ I1−k−1/4(N , S; C±

wv).

13
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We will !nd the relation of the principal symbols of E±
1 , E±

2 . We remark that the Maslov bundle
and the half density bundle can be trivialized because the Lagrangians involved allow global
parametrization. We will not show these factors in the notations below.

Lemma 5.2. Let e±
k , k = 1, 2 be the principal symbol of E±

k on Λ± = (C±
wv)′ respectively.

Suppose that the sub-principal symbol of P(z, D) is purely imaginary, in which case P(z, D) is
of the form

P(z, D) = " +
n∑

j=0

ıA j(z)D j + B(z) (37)

where Aj(z) are real valued smooth functions. Then e±
k , k = 1, 2 are real valued and

e+
1 > 0, e+

2 > 0, e−1 > 0, e−2 < 0.

Proof. We can !nd the principal symbols following the argument in [4, page 117]. For Ek ∈
I1−k−1/4(N , S; Cwv), k = 1, 2, if ek is the principal symbol of Ek, then it satis!es

1
ı
LHpek + psubek = 0 (38)

where LHp denotes the Lie derivative and psub denotes the sub-principal symbol of P(z, D).
This is a transport equation along the bicharacteristics. The initial conditions are determined
as follows. For (̄z, ζ̄) ∈ T∗S, we have two cotangent vectors (̄z, ζ±) corresponding to it in T∗N
where (regarding ζ̄ as a covector on S)

ζ+ = (τ , ζ̄), ζ− = (−τ , ζ̄)

where τ = |ζ̄|. From the initial conditions in (35), we have

e1(̄z, ζ+; z̄, ζ̄) = e1(̄z, ζ−; z̄, ζ̄) > 0

e2(̄z, ζ+; z̄, ζ̄) = −e2(̄z, ζ−; z̄, ζ̄) > 0
(39)

which are all real valued. Let γ±(s), s ∈ R be bicharactersitics such that γ±(0) = (̄z, ζ±) ∈
T∗N . Along γ±(s), the equation (38) can be written as

∂sek(s) + a(s)ek(s) = 0, ek(0) = e±
k (γ±(0)) (40)

where a(s) = ıpsub(γ±(s)). Solving (40), we obtain that

ek(s) = ek(0)e−
∫ s

0 a(β)dβ . (41)

Consider the operator (37). In local coordinates, let p2(z, ζ) be the symbol modulo S0(T∗N ),
namely

p2(z, ζ) = g(ζ, ζ) +
n∑

j=0

ıA j(z)ζ j

where g(ζ, ζ) = −τ 2 + |ξ|2, ζ = (τ , ξ). We have modulo symbols of order 0

14
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psub(z, ζ) =
n∑

j=0

ıA j(z)ζ j −
1
2ı

n∑

j=0

∂2 p2(z, ζ)
∂z j∂ζ j

=
n∑

j=0

ıA j(z)ζ j

− 1
2ı

n∑

i, j=1

∂2(hi jζ iζ j)
∂z j∂ζ j

.

If the subprincipal symbol psub(z, ξ) is pure imaginary, the coef!cients of the transport
equation (40) are real valued. We can tell from (41) that e±

k are real valued and the signs are
determined by the initial conditions in (39). This completes the proof. "

6. The composition as Lagrangian distributions

In this section, we re-examine the composition in section 3 from the point of view of Lagrangian
distributions and complete the proof of theorem 1.1. Let us outline the main ingredients. We
look at E∗χNχ0E, with E = E±

k , k = 1, 2 in proposition 5.1.

(a) As χ · χ0 = 0, from section 4, we know that χNχ0 ∈ I−n/2(Rn+1, Rn+1;Λ1). Note that the
role of χ is to keep the kernel of N away from the diagonal Λ0 where the principal symbol
is singular!

(b) We will show that Λ1 intersects Λ± cleanly with excess one so the composition χNχ0E ∈
I∗(N , S; Cwv) as a result of Duistermaat–Guillemin’s clean FIO calculus with the order ∗
to be determined.

(c) We can compose the operator in (b) with E∗ by using clean FIO calculus again to conclude
that E∗χNχ0E ∈ Ψ∗(S).

This is what is behind the calculations in section 3. In the follows, we carry out the details
of the above arguments. In this section, we assume that n ! 2 is an integer.

Lemma 6.1. Consider Λ1 de!ned in (29). Then Λ1 intersects Λ± = (C±
wv)′ cleanly with

excess one.

Proof. We check by the de!nition of clean intersection. We use the following parametriza-
tion for Λ1

Λ1 =
{

(t, x, τ , ξ; t′, x′, τ ′, ξ′) ∈ T∗Rn+1\0 × T∗Rn+1\0 : x = x′ + (t − t′)ξ/|ξ|,

τ = ±|ξ|, τ ′ = −τ , ξ′ = −ξ} .

For Λ±, we use (10)

Λ± = {(̃t, x̃, τ̃ , ξ̃; z, η) ∈ T∗Rn+1\0 × T∗Rn\0 : x̃ = z ± t̃η/|η|, ξ̃ = −η, τ̃ = ∓|η|}.

We consider Λ+ below. The case for Λ− is similar. Let X = Λ1 × Λ+ and Y = T∗M ×
Diag(T∗M) × T∗S. These are submanifolds of T∗M × T∗M × T∗M × T∗S. We show that
for p ∈ X ∩ Y , TpX ∩ TpY = Tp(X ∩ Y).

First of all, Λ1 is parametrized by (t, t′, x′, ξ′) ∈ A .
= R × R × Rn × Rn. Also, Λ+ is

parametrized by (̃t, z, η) ∈ B .
= R × Rn × Rn as

x̃ = z + t̃η/|η|, τ̃ = −|η|, ξ̃ = −η.
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Consider p ∈ X ∩ Y and if we write p = (t, t′, x′, ξ′, t̃, z, η) ∈ A × B, we must have

t′ = t̃, x′ = z + t̃η/|η|, |η| = |ξ′|, ξ′ = −η. (42)

Thus, X ∩ Y is parametrized by (t, t̃, z, η) ∈ D .
= R × R × Rn × Rn as

t, x = z + tη/|η|, τ = −|η|, ξ = η, t′ = t̃, x′ = z + t̃η/|η|,

τ ′ = |η|, ξ′ = −η, t̃, z, η.

We !nd that tangent vector δp ∈ Tp(X ∩ Y) is given by

δp =
(
δt, δz + η/|η|δt + tα dη, +η/|η|δη, δη,

δ̃t, δz + η/|η|δ̃t + t̃α dη,−η/|η|δη,−δη,

δ̃t, δz + η/|η|δ̃t + t̃α dη,−η/|η|δη,−δη, δz, δη
)

(43)

where α = ∂η(η/|η|). Next, we compute TpX and TpY and !nd their intersection. For δp ∈
TpX , we use variables in A and B to get

δp =
(
δt, δx′ − (δt − δt′)ξ′/|ξ′| − (t − t′)β dξ′,∓ξ′/|ξ′|δξ′,−δξ′, δt′, δx′,

± ξ′/|ξ′|δξ′, δξ′, δ̃t, δz + η/|η|δ̃t + t̃α dη,−η/|η|δη,−δη, δz, δη
)

where β = ∂η(η/|η|)|η=ξ′ . For δp ∈ TpY , we see that

δt = δt′, δx′ = δz + η/|η|δ̃t + t̃α dη, ±ξ′/|ξ′|δξ′ = −η/|η|δη, δη = −δξ′.

Also, at the intersection we use (42) and (t, t̃, z, η) as variables to get

δp =
(
δt, δz + η/|η|δt + tα dη,−η/|η|δη, δη, δ̃t, δz + η/|η|δ̃t + t̃α dη,

− η/|η|δη,−δη, δ̃t, δz + η/|η|δ̃t + t̃α dη,−η/|η|δη,−δη, δz, δη
)
. (44)

Comparing (43) and (44), we proved TpX ∩ TpY = Tp(X ∩ Y).
To !nd the excess, we see that codim(X ) = 8n + 6 − (4n + 3) = 4n + 3, codim(Y) =

(8n + 6) − (6n + 4) = 2n + 2. Also, dim(X ∩ Y) = 2n + 2. So the excess (see e.g. [7,
appendix C.3])

e = codim(X ) + codim(Y) − codim(X ∩ Y) = 4n + 3 + 2n + 2 − (6n + 4) = 1.

This completes the proof of the lemma. "

Lemma 6.2. The compositionχNχ0E±
k ∈ I−n/2+1/4+1−k(N , S; C±

wv) and the principal sym-
bol is non-vanishing.

Proof. Because χ(t)χ0(t) = 0, we know from section 4 that χNχ0 ∈ I−n/2(N , N ;Λ1). One
can apply the clean calculus directly to see that χNχ0E±

k ∈ I−n/2+1/4+1−k(N , S; C±
wv) using

lemma 6.1. For p = (t, x, τ , ξ, y, η) ∈ Λ±, let Cp be the !ber over p in T∗M × T∗M × T∗S
which is connected and compact. Then the principal symbol of the composition at p is given
by

∫

Cp

σ(χNχ0)(t, x, τ , ξ, t′, x′, τ ′, ξ′)σ(E±
k )(t′, x′, τ ′, ξ′, y, η) (45)
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where σ(χNχ0), σ(E±
k ) denote the principal symbols of χNχ0, E±

k respectively and the inte-
gration is over the !ber Cp, see [8, theorem 25.2.3]. Note that both symbols are real valued and
non-vanishing on the !ber thus they do not change signs. Also, the Maslov factors are constant.
We see that the principal symbol of the composition is real valued and non-vanishing. "

Lemma 6.3. For j, k = 1, 2, we have

(a) E±,∗
j χNχ0E±

k ∈ Ψ−n/2+1/2+2− j−k(S) are elliptic.
(b) E+,∗

j χNχ0E−
k , E−,∗

j χNχ0E+
k are smoothing operators on S.

Proof. First of all, E±,∗
j ∈ I−1/4+1− j(S, M; C±,−1

wv ) and χNχ0E±
k ∈

I−n/2+1/4+1−k (M, S; C±
wv). Let Λ± = (C±

wv)′ and Λ±,−1 = (C±,−1
wv )′. We !rst prove that

Λ±,−1 intersect Λ± cleanly with excess one.
We consider the plus sign. Recall that

Λ+ = {(t, x, τ , ξ; z, η) ∈ T∗Rn+1\0 × T∗Rn\0 : x = z + tη/|η|, ξ = −η, τ = |η|} (46)

and it can be parametrized by (t, z, η) ∈ B = R × Rn × Rn. Let X = Λ+,−1 × Λ+ and Y =
T∗S × Diag(T∗M) × T∗S. We see that

X ∩ Y =
{

(̃z, η̃, t̃, x̃, τ̃ , ξ̃; t, x, τ , ξ, z, η) : x = z + tη/|η|, ξ = −η, τ = |η|

η = η̃, τ = τ̃ , ξ = ξ̃, t = t̃, x̃ = x, z̃ = z
}

.

So this set is parametrized by t, z, η. For p ∈ X ∩ Y , the tangent vector δp ∈ Tp(X ∩ Y) is

δp =
(
δz, δη, δt, δz + η/|η|δt + t∂η(η/|η|)δη, η/|η|δη,−δηδt, δz + η/|η|δt

+ t∂η(η/|η|)δη, η/|η|δη,−δη, δz, δη
)
. (47)

Next, for p ∈ X which is parametrized by (t, z, η, t̃, z̃, η̃), the tangent vector is given by

δp =
(
δz̃, δη̃, δ̃t, δz̃ + η̃/|η̃|δ̃t + t̃∂η̃(η̃/|η̃|)δη̃, η̃/|η̃|δη̃,−δη̃δt, δz + η/|η|δt

+ t∂η(η/|η|)δη, η/|η|δη,−δη, δz, δη
)
. (48)

If δp also belongs to TpY , we see that

δt = δ̃t, δx = δ x̃, δτ = δτ̃ , δη = δη̃

which implies δz = δz̃, so (48) agree with (47). This shows the intersection is clean. To !nd the
excess, we see that codim(TpX ) = (8n + 4) − (4n + 2) = 4n + 2 and codim(TpY) = (8n +
4) − (6n + 2) = 2n + 2. Also codim(Tp(X ∩ Y)) = (8n + 4) − (2n + 1) = 6n + 3. Thus the
excess

e = 4n + 2 + 2n + 2 − 6n + 3 = 1.

Now we can use the clean FIO calculus [8, theorem 25.2.3] to conclude that E±,∗
j χNχ0E±

k ∈
Ψ−n/2+1/2+2− j−k(S). Note that both principal symbols of E±,∗

j and χNχ0E±
k are real and

non-vanishing hence they do not change signs. Also, the Maslov factors are constants. The
principal of the composition is the integration of the product of principal symbols so is also
non-vanishing. This proves part (a).

Part (b) can be seen from a wave front set analysis using e.g. [4, theorem 1.3.7]. "
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Proof of theorem 1.1. The idea is similar to that for theorem 2.1, despite that the
parametrization of the Cauchy data is different. We write the solution of (32) as

χ0u = χ0E+
1 f1 + χ0E+

2 f2 + χ0E−
1 f1 + χ0E−

2 f2.

Next, we apply χL∗ to Lχ0u to get

χNχ0u = χNχ0E+
1 f1 + χNχ0E+

2 f2 + χNχ0E−
1 f1 + χNχ0E−

2 f2. (49)

Now we apply E+,∗
1 and use part (b) of lemma 6.3 to get

E+,∗
1 χNχ0u = E+,∗

1 χNχ0E+
1 f1 + E+,∗

1 χNχ0E+
2 f2 + R1 f1 + R2 f2 (50)

with R1, R2 smoothing operators. In the following, we use R1, R2 to denote generic smoothing
operators which may change line by line. From lemma 6.3 part (a), we see that E+,∗

1 χNχ0E+
1 ∈

Ψ−n/2+1/2(S) and E+,∗
1 χNχ0E+

2 ∈ Ψ−n/2−1/2(S).
On the other hand, we apply E−,∗

1 to (49) to get

E−,∗
1 χNχ0u = E−,∗

1 χNχ0E−
1 f1 + E−,∗

1 χNχ0E−
2 f2 + R1 f1 + R2 f2. (51)

From lemma 6.3 part (a), we see that E−,∗
1 χNχ0E−

1 ∈ Ψ−n/2+1/2(S) and E−,∗
1 χNχ0E−

2 ∈
Ψ−n/2−1/2(S). It follows from lemma 5.2 and the composition results lemmas 6.2 and 6.3 that

σ(E+,∗
1 χNχ0E+

1 ) > 0, σ(E−,∗
1 χNχ0E−

1 ) > 0

σ(E+,∗
1 χNχ0E+

2 ) > 0, σ(E−,∗
1 χNχ0E−

2 ) < 0.

Let Q+, Q− ∈ Ψn/2−1/2(S) be parametrices for E+,∗
1 χNχ0E+

1 , E−,∗
1 χNχ0E−

1 respectively. We
know that the principal symbols of Q± are positive. Applying Q± to (50) and (51), we get

Q+E+,∗
1 χNχ0u = f1 + B+ f2 + R1 f1 + R2 f2 (52)

Q−E−,∗
1 χNχ0u = f1 + B− f2 + R1 f1 + R2 f2 (53)

where

B+ = Q+E+,∗
1 χNχ0E+

2 , B− = Q−E−,∗
1 χNχ0E−

2 .

From (52), we get

Q+E+,∗
1 χNχ0u − Q−E−,∗

1 χNχ0u = (B+ − B−) f2 + R1 f1 + R2 f2.

Note that B± ∈ Ψ−1(S) are elliptic. Also, the principal symbol of B+ is positive but the prin-
cipal symbol of B− is negative. Thus B+ − B− ∈ Ψ−1(S) is elliptic. Let W ∈ Ψ1(S) be a
parametrix for B+ − B−. We get

WQ+E+,∗
1 χNχ0u − WQ−E−,∗

1 χNχ0u = f2 + R1 f1 + R2 f2. (54)

So we solved f2 up to smooth terms. We can use f2 for example in (52) to get

Q+E+,∗
1 χNχ0u − B+(WQ+E+,∗

1 χNχ0u − WQ−E−,∗
1 χNχ0u) = f1 + R1 f1 + R2 f2. (55)
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From this point, we can follow the proof of theorem 2.1 line by line. In fact, WQ± ∈
Ψn/2+1/2(S) and Q+, B+WQ± ∈ Ψn/2−1/2(S) so

WQ± : Hs
comp(S) → Hs−n/2−1/2

loc (S)

Q+, B+WQ± : Hs
comp(S) → Hs−n/2+1/2

loc (S)

are bounded. For E±,∗
k , k = 1, 2, we have E±,∗

k : Hs
comp(N ) → Hs+1−k

loc (S) is bounded. Finally,

L∗ : Hs
comp(C) → Hs+1/2

loc (Rn+1) is bounded for n ! 3, see proposition 4.2. We obtain that

E±,∗
1 χL∗ : Hs

comp(C) → Hs+1/2
loc (N )

is bounded. Thus using (54) and (55), we get

‖ f1‖Hs+1(S) # C‖Lχ0u‖Hs+n/2(C) + Cρ‖ f1‖Hs−ρ(S) + Cρ‖ f2‖Hs−ρ(S)

‖ f2‖Hs(S) # C‖Lχ0u‖Hs+n/2(C) + Cρ‖ f1‖Hs−ρ(S) + Cρ‖ f2‖Hs−ρ(S).

The rest of the proof are as in theorem 2.1. For n = 2, one just need to use that L∗ : Hs
comp(R2 ×

S1) → Hs+1/4
loc (R3) is bounded from proposition 4.2. "

We conclude the proof of theorem 1.1 with two remarks.

Remark 6.4. In the proof of theorem 1.1, we actually constructed operators A1, A2 such that

A1Lχ0u = f1 + R1 f1 + R2 f2, A2Lχ0u = f2 + R′
1 f1 + R′

2 f2

where R1, R2, R′
1, R′

2 are smoothing operators. The operators A1, A2 can be used to determine
wave front set of f1, f2 from Lχ0u.

Remark 6.5. There are other ways to !ne tune the normal operator E∗L∗LE in (15) to prove
theorem 1.1. We outline one possible construction and leave the details to interested readers.
Instead of using χ compactly supported in (t1, T), we let ρT̃ be the restriction operator to ST̃ =

{T̃} × Rn for some T̃ ∈ (t1, T). In particular, ρT̃ ∈ I1/4(ST , M; C0) in which

C0 = {(y, η, t, x, τ , ξ) ∈ T∗ST̃\0 × T∗M◦\0 : y = x, η = ξ}

see (5.1.2) of [4]. Recall from lemma 6.2 that χNχ0E± ∈ I−n/2+1/4(N , S; C±
wv). Note that the

composition C±
wv,0 = C0 ◦ C±

wv is given by

C±
wv,0 = {(y, η, x, ξ) ∈ T∗ST̃\0 × T∗S\0 : y = x ± T̃ξ, η = ξ}

which is a canonical graph. One can show that the composition is clean as in lemma 6.2 and
obtain that

ρT̃Nχ0E± ∈ I−n/2+1(ST̃ , S; C±
wv,0). (56)

In particular, the principal symbol is non-vanishing. Now, (56) is an elliptic FIO of canonical
graph type. We can !nd parametrix Q± ∈ In/2−1(S, ST̃ ; C±,−1

wv,0 ) such that

Q±ρT̃Nχ0E± = Id +R±

where R± are smoothing operators. The rest of the argument goes as in the proof of theorem 1.1.
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7. The source problem

In this section, we consider the source problem

P(z, D)u = f , on M

u = 0 for t < t0
(57)

where f is compactly supported in M. Consider the determination of f from Lχ0u where
we assume in addition that supp f ⊂ suppχ0. Before stating the main result, we explain the
difference to the Cauchy problem.

According to [13], there exists a parametrix E for (57) such that P(z, D)E = Id modulo
a smoothing operator. The Schwartz kernel of E belongs to I−3/2,−1/2(M × M;Λ0,Λ1). It
suf!ces to look at Lχ0E f. It is natural to apply L∗ and study L∗Lχ0E f = Nχ0E f. The Schwartz
kernel of N belongs to I−n/2,n/2−1(M × M;Λ0,Λ1) so both N and E are paired Lagrangian
distributions of the "ow-out type. One can apply the composition result in [1] to conclude that
Nχ0E ∈ I−n/2−1,n/2−2(M × M;Λ0,Λ1). It is possible to !nd a parametrix for Nχ0E within
the class of paired Lagrangian distributions, however the remainder term belongs to Iµ(M ×
M;Λ1) for some µ ∈ R rather than smooth, see [5, 15]. Moreover, although the parametrix
is good for reconstructing space-like singularities, time-like singularities are lost and it is not
clear whether one can determine light-like singularities of f . Below, we will assume that WF( f )
is contained in Γsp and use the kernel of Nχ0E on Λ0\Λ1 to stably determine f . We remark
that in general relativity, space-like singularities correspond to particles moving slower than
the speed of light.

For δ > 0, let Γsp
δ = {(t, x, τ , ξ) ∈ T∗M : τ 2 − |ξ|2 > δ}.

Theorem 7.1. Suppose that f ∈ E ′(M) is supported in a compact set V of M and that
WF( f ) ⊂ Γsp

δ for some δ > 0. Let u be the solution of (57). Then there exists C > 0 (depending
on δ) such that

‖ f ‖Hs(M) # C‖Lχ0u‖
Hs+3− s0

2 (C)

with s0 in proposition 4.2 and s ! 0.

Proof. Because WF( f ) ⊂ Γsp
δ , there exists an elliptic pseudo-differential operator χ(D) ∈

Ψ0(M) whose symbol χ(x, ξ) is supported in Γsp
δ/2 such that χ(D) f = f modulo a smooth

term. Thus, Nχ0E f = Nχ0Eχ(D) f modulo a smooth term. Because E ∈ I−3/2,−1/2(M ×
M;Λ0,Λ1), we claim that Eχ(D) ∈ Ψ−2(M) with principal symbol χ(τ , ξ)σ0(E)(τ , ξ) sup-
ported in Γsp

δ/2. Here, σ0(E) denotes the principal symbol of E on Λ0. To see this, we can

split E = E0 + E1 such that E0 ∈ Ψ−2(M) and WF(E1) is suf!ciently close to Λ1. Then we
know that E0χ(D) ∈ Ψ−3(M) and E1χ(D) is a smoothing operator as the result of a wave front
analysis using e.g. theorem 1.3.7 of [4] because the symbol of χ(D) is supported away from
Λ1.

It follows from the same argument that Nχ0Eχ(D) ∈ Ψ−3(M) with principal symbol
χ(τ , ξ)σ0(E)(τ , ξ)σ0(Nχ0)(τ , ξ) which is non-vanishing. Thus, we can !nd a parametrix Q ∈
Ψ3(M) of Nχ0Eχ(D) such that

QNχ0Eχ(D) = Id + R

where R is a smoothing operator. For f ∈ E ′(M) with WF( f ) ⊂ Γsp
δ , we actually have

QNχ0E = Id + R where we changed R to another smoothing operator. Finally, we get that
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for any ρ ∈ R,

‖ f ‖Hs(M) # C‖Nχ0E f ‖Hs+3(M) + Cρ‖ f ‖Hs−ρ(M)

for some C, Cρ > 0. Using the estimate of L∗, we arrive at

‖ f ‖Hs(M) # C‖Lχ0E f ‖
Hs+3− s0

2 (C)
+ Cρ‖ f ‖Hs−ρ(M)

with s0 in proposition 4.2. Let u be the solution of (57) with source f . We get

‖ f ‖Hs(M) # C‖Lχ0u‖
Hs+3− s0

2 (C)
+ Cρ‖ f ‖Hs−ρ(M). (58)

By using the injectivity of L as in the proof of theorem 2.1, we can get rid of the last term
as in theorem 1.1 of [14]. We denote by Hs

V (M) the function space consisting of f ∈ Hs(M)
supported in V . Then the inclusion of Hs

V (M) into Hs−ρ
V (M), ρ > 0 is compact. We claim that

‖ f ‖Hs(M) # C‖Lχ0u‖
Hs+3− s0

2 (C)
(59)

for f with WF( f ) ⊂ Γsp
δ . We argue by contradiction. Assume the above is not true. We can get

a sequence f ( j), j = 1, 2, . . . with unit norm in Hs
V (M) and WF( f ( j)) ⊂ Γsp

δ such that Lu( j) goes
to 0 in Hs+3− s0

2 (C) where u( j) is the solution of (57) with source f ( j). By (58), we conclude that
1 = ‖ f ( j)‖Hs(M) # C′

ρ‖ f ( j)‖Hs−ρ(M) for some constant C′
ρ. This gives a weak limit f in Hs(M)

along a subsequence, which thus converges strongly in Hs−ρ(M). Therefore, ‖ f ‖Hs−ρ(M) is
bounded below by 1/C′

ρ, thus non-zero. Now we use the regularity estimate of the source
problem ‖u‖Hs+1(M) # C‖ f ‖Hs(M) to conclude that Lχ0u = 0 with u the solution of (57) with
source f . By the injectivity of L we get χ0u = 0 which gives f = 0 from the equation (57).
We reached a contradiction which means (59) holds. This !nishes the proof. "

Acknowledgments

The author thanks the anonymous referees for providing many suggestions to improve the
manuscript. This work is partly supported by NSF grant DMS-2205266.

Data availability statement

All data that support the !ndings of this study are included within the article (and any
supplementary !les).

ORCID iDs

Yiran Wang https://orcid.org/0000-0002-4521-2221

References

[1] Antoniano J and Uhlmann G 1984 A functional calculus for a class of pseudodifferential operators
with singular symbols Pseudodifferential Operators and Applications (Proceedings of Symposia
in Pure Mathematics vol 43) (Notre Dame, Ind.) pp 5–16 Amer. Math. Soc., Providence, RI

21

https://orcid.org/0000-0002-4521-2221
https://orcid.org/0000-0002-4521-2221


Inverse Problems 38 (2022) 084001 Y Wang

[2] Bär C, Ginoux N and Pfäf"e F 2007 Wave Equations on Lorentzian Manifolds and Quantization
vol 3 (ESI Lectures in Mathematics and Physics) (Zürich: European Mathematical Society) pp
viii+194

[3] de Hoop M, Uhlmann G and Vasy A 2015 Diffraction from conormal singularities Ann. Sci. Éc.
Norm. Supér. 48 351–408

[4] Duistermaat J J 1995 Fourier Integral Operators vol 130 (Progress in Mathematics) (Boston:
Birkhäuser) pp x + 142

[5] Greenleaf A and Uhlmann G 1989 Nonlocal inversion formulas for the x-ray transform Duke Math.
J. 58 205–40

[6] Guillemin V and Uhlmann G 1981 Oscillatory integrals with singular symbols Duke Math. J. 48
251–67

[7] Hörmander L 2007 The Analysis of Linear Partial Differential Operators: III. Pseudo-Differential
Operators (Classics in Mathematics) (Berlin: Springer) pp viii + 525 Reprint of the 1994 edition

[8] Hörmander L 2009 The Analysis of Linear Partial Differential Operators: IV. Fourier Integral
Operators (Classics in Mathematics) (Berlin: Springer) pp viii + 352 Reprint of the 1994 edition

[9] Lassas M, Oksanen L, Stefanov P and Uhlmann G 2018 On the inverse problem of !nding cosmic
strings and other topological defects Commun. Math. Phys. 357 569–95

[10] Lassas M, Oksanen L, Stefanov P and Uhlmann G 2020 The light ray transform on Lorentzian
manifolds Commun. Math. Phys. 377 1349–79

[11] Lin Y-H, Liu H and Liu X 2021 Determining a nonlinear hyperbolic system with unknown sources
and nonlinearity (arXiv:2107.10219)

[12] Liu H and Uhlmann G 2015 Determining both sound speed and internal source in thermo- and
photo-acoustic tomography Inverse Problems 31 105005

[13] Melrose R and Uhlmann G 1979 Lagrangian intersection and the Cauchy problem Commun. Pure
Appl. Math. 32 483–519

[14] Vasy A and Wang Y 2021 On the light ray transform of wave equation solutions Commun. Math.
Phys. 384 503–32

[15] Wang Y 2018 Parametrices for the light ray transform on Minkowski spacetime Inverse Problems
Imaging 18 229–37

[16] Wang Y 2021 Microlocal analysis of the light ray transform on globally hyperbolic Lorentzian
manifolds (arXiv:2104.08576)

22

https://doi.org/10.24033/asens.2247
https://doi.org/10.24033/asens.2247
https://doi.org/10.24033/asens.2247
https://doi.org/10.24033/asens.2247
https://doi.org/10.1215/s0012-7094-89-05811-0
https://doi.org/10.1215/s0012-7094-89-05811-0
https://doi.org/10.1215/s0012-7094-89-05811-0
https://doi.org/10.1215/s0012-7094-89-05811-0
https://doi.org/10.1215/s0012-7094-81-04814-6
https://doi.org/10.1215/s0012-7094-81-04814-6
https://doi.org/10.1215/s0012-7094-81-04814-6
https://doi.org/10.1215/s0012-7094-81-04814-6
https://doi.org/10.1007/s00220-017-3029-0
https://doi.org/10.1007/s00220-017-3029-0
https://doi.org/10.1007/s00220-017-3029-0
https://doi.org/10.1007/s00220-017-3029-0
https://doi.org/10.1007/s00220-020-03703-6
https://doi.org/10.1007/s00220-020-03703-6
https://doi.org/10.1007/s00220-020-03703-6
https://doi.org/10.1007/s00220-020-03703-6
https://arxiv.org/abs/2107.10219
https://doi.org/10.1088/0266-5611/31/10/105005
https://doi.org/10.1088/0266-5611/31/10/105005
https://doi.org/10.1002/cpa.3160320403
https://doi.org/10.1002/cpa.3160320403
https://doi.org/10.1002/cpa.3160320403
https://doi.org/10.1002/cpa.3160320403
https://doi.org/10.1007/s00220-021-04045-7
https://doi.org/10.1007/s00220-021-04045-7
https://doi.org/10.1007/s00220-021-04045-7
https://doi.org/10.1007/s00220-021-04045-7
https://doi.org/10.3934/ipi.2018009
https://doi.org/10.3934/ipi.2018009
https://doi.org/10.3934/ipi.2018009
https://doi.org/10.3934/ipi.2018009
https://arxiv.org/abs/2104.08576

	Some integral geometry problems for wave equations
	1.  Introduction
	2.  A model problem
	3.  The composition as oscillatory integrals
	4.  Representation of operators
	5.  Parametrix for the Cauchy problem
	6.  The composition as Lagrangian distributions
	7.  The source problem
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


