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Abstract

We consider the Cauchy problem and the source problem for normally hyper-
bolic operators on the Minkowski spacetime, and study the determination
of solutions from their integrals along light-like geodesics. For the Cauchy
problem, we give a new proof of the stable determination result obtained by
Vasy and Wang (2021 Commun. Math. Phys. 384 503-32). For the source
problem, we obtain stable determination for sources with space-like singular-
ities. Our proof is based on the microlocal analysis of the normal operator of
the light ray transform composed with the parametrix for strictly hyperbolic
operators.
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1. Introduction

Consider the n + 1-dimensional Minkowski space (R"*!, g),n > 2 where g = —df* + dx? +
-+ + dx2. Hereafter, we use z = (20,21, - - - »Zu) = (t, X1, . . ., X,) for the coordinates on R"*+!.
Let 0= -9 + 23:1 (9]2 be the d’Alembertian where 9; = %,j =0,1,2,...,n. The nor-
mally hyperbolic operators on (R"*!, g) are of the form

P(z,0) =0+ Aj)0;+ B() (1)

J=0

where A, B are real or complex valued smooth functions in z, see e.g. [2]. In this paper, we
study the determination of solutions of the Cauchy problem and the source problem of (1) from
their integrals along light-like geodesics on (R"*!, g), called the light ray transform. In addition
to their own interest, these integral geometry problems arise from some inverse problems in
cosmology which concern the determination of primordial gravitational perturbations from the
cosmic microwave background, see [14] for further discussions.
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To describe the light ray transform, we parametrize the future pointing light-like geodesics
as follows: for (x,0) € C = R" x §""!, the light-like geodesics from (0, x) in the direction
(1, 0) is given by v,9(s) = (s, x + s6), s € R. Then the light ray transform is

Lf(x,0) = / f(s,x+s0)ds, f e CP@®R™. 2)
R

It is worth mentioning that the light ray transform depends on the choice of the parametrization,
see [9, corollary 6.2]. Although light-like geodesics are preserved under conformal transfor-
mations, the light ray transform is not. It is also known that L is injective on Ci°(R"*!) see
for example [10] which is a result of Fourier slice theorem and the analyticity of the Fourier
transform of f.

For 1y < t;, we denote M = (fy,1;) x R" and § = {fp} x R". For simplicity, we assume
to = 0. Consider the Cauchy problem

P(z,0)u(z) =0, on M

(3
u=f1, Ou=fronS.

Here, u is a function on M. We also consider u as a function on R"+! by defining u = 0 outside
of M. Let x, > 0 be a smooth cut-off function in C;°((#, #;]) not identically vanishing. Our
main result is the stable determination of u from Lyu.

Theorem 1.1. Let u be the solution of (3) on M with Cauchy data f; € HTY(S), f> €
H*(S),s = 0 supported in a compact set 'V of S. Suppose that the coefficients Aj(z) in (1)
are real valued smooth functions. Then f, f» are uniquely determined by Lxyu. Furthermore,
there exists C > O such that

H”HHHI(M) < CH(fl’fZ)”HSJFl(S)xHS(S) < C||LX0“||Hs+n/2+6(C) “)
where 6 =0 forn >3 and § = —1/4 forn = 2.

The theorem for n = 3 was proved in [14] when X, is the characteristic function X,
for [y, #;] in R. Here, the result is generalized to n > 2 and the Sobolev order in the stability
estimate (4) is improved. We decided to replace X[;,.,] by X, to avoid some technicalities (see
the proof of lemma 3.1). In fact, by the continuity of L (see proposition 4.2), the difference of
Lx{15.1,1u and Lxou can be made arbitrarily small in a proper sense. Despite these differences,
the main point of this note is to give a new proof which explores the microlocal structure of the
light ray transform. It is expected that the new approach would work in more general settings.
Let us recall the approach in [14] and point out the differences. For the Cauchy problem (3),
one can use the parametrix E constructed by Duistermaat and Hérmander to represent the
solution up to a smooth term. Roughly, we write f = (f1, f2) and solution of (3) as u = Ef
thus Lu = LEf. In [14], it is shown that LE can be modified to an elliptic pseudo-differential
operator on S modulo some lower order Fourier integral operators by integrating in 6 variable.
Then a microlocal parametrix can be constructed from which the stability estimate follows.

In this paper, we will look at the normal operator E*L*LE which seems natural to examine
for an integral geometry problem. It turns out that the composition is not good as it stands.
We first explain the issue in section 3 by using a model problem. In fact, the issue is related
to the microlocal structure of the normal operator N = L*L. As shown in [16] and reviewed
in section 4, the Schwartz kernel of N is a paired Lagrangian distribution. By judicious use
of the kernel on one of the Lagrangians, we show that the composition E*NE can be slightly
modified to behave well within the clean FIO calculus of Duistermaat and Guillemin, yielding
a pseudo-differential operator on S. The rest of the proof goes as in [14].
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We remark thatin [16], it is shown that for globally hyperbolic Lorentzian manifolds without
conjugate points, the normal operator of the light ray transform also has a paired Lagrangian
structure. The parametrix construction for the Cauchy problem for strictly hyperbolic operators
works in this generality as well. Thus we believe that the new method would give stability esti-
mates as in theorem 1.1 and injectivity of the light ray transform for functions with sufficiently
small support in such settings. These will be pursued somewhere else.

In section 7, we analyze the source problem from the same point of view

Pz, u=f, onM

u=0 fort< iy,

®)

that is we determine u on M from Lyu. As pointed out however not addressed in [14], this
problem arises from the inverse Sachs—Wolfe problem when the entropy perturbation cannot
be ignored in Bardeen’s equation. For the source problem, there is a parametrix E constructed
by Melrose and Uhlmann [13] whose Schwartz kernel is a paired Lagrangian distribution. As
for the composition LE, our idea is to consider L*LE = NE which turns out to be a paired
Lagrangian distribution in view of a composition result of Antoniano and Uhlmann [1]. We
will show that by considering the information on the other Lagrangian of the pair, one can
stably determine f when the wave front set is space-like, see theorem 7.1. The case of light-
like singularities is unclear. In view of the results in [16], one may not be able to determine
light-like singularities of f in a stably way. For sources with special type of singularities such
as conormal, it is possible to recover light-like singularities as in [ 16] but the result may depend
on the coefficients A; in P(z, 0).

As pointed out by one of the referees, it would be interesting to study the problem of
simultaneously determining both the Cauchy data and the source term, and information of
the coefficients in (1). Problems of similar nature have been explored in various settings, see
for instance [11, 12]. We believe that the method developed here will be useful at least for
identifying the singularities.

The note is organized as follows. We analyze a model problem in sections 2 and 3 where
we can use oscillatory integral representations to explain the idea of the proof. Then we exam-
ine the argument from the Lagrangian distribution point of view and prove theorem 1.1 in
sections 4—6. Finally, we study the source problem in section 7.

2. A model problem

We start with a model problem for which we can give an elementary proof using oscillatory
integrals. Another motivation to consider a simpler example first is that through the explicit
calculation, we can explain some subtlety of the problem which helps to explain the treatment
for general cases.

Theorem 2.1. Let n > 3 be an odd integer and s > 0. Let u be the solution of the Cauchy

problem
Ou=0, onM ‘
(6)
u=f1, Ou=fr,onS

where (f1, f2) € HTY(S) x H*(S) are supported in a compactset V' C S. Then Ly yu uniquely
determines u on M and fi, f» on' S. Moreover, we have the estimate

[Aillst1is) + 1 f2llmscs) < CllLxou|| st

3
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for C > 0 depending onn and V.

In this section, we collect the oscillatory integral representations of the solution to the
Cauchy problem and the normal operator of the light ray transform.
First, consider the solution of the Cauchy problem (6). It will become convenient to consider
the Cauchy problem on a larger set
Ou=0, on N=(-T,T) x R"

@)
u=fy, Ou=f,, onS

where T > t;. Let (7, £), £ € R" be the dual variables in T*N to (¢, x), x € R". Using Fourier
transform in the x variable, we get

u(t, x) = 2m)" / SEHID], (6)dE + (2m) " / D] ()
R7 Rn

=E h +E_hy, (8)
where
N 1 - 1 - N 1 - 1 -
h == + = s hy = = - .
1 2(f1 1|§\f2) 2 2(f1 1|§\f2)

Here, hj,h, are the re-parametrized Cauchy data for the Cauchy problem. Thus, E. are
represented by oscillatory integrals

E . f(t,x)= (27‘(’)_"/ / ei((X—y‘){il\é\)f(y)dy de. 9)

The phase functions are ¢ (¢, x, y,£) = (x — y) - £ £ ¢|¢| and amplitude function a(z, x, §) = 1.
In particular, xoE. : £'(S) — D'(N) are Fourier integral operators with canonical relations

CE = {(t,x,60, (59,6 € T'N\O x T*S\0:y = x £ 1£/|¢], ¢ = €, ¢ = +[¢]}. (10)

Following the standard notation for Fourier integral operators see e.g. [4], we have xoE+ €
Ii W, S; Cffv). It suffices to determine h;, h, because we can easily find f1, f, from

fi=hi+hy,  fr=iA3(h — hy). (11)

Next, consider the light ray transform. On C = R" x §"~!, we use the standard product
measure. Let L* be the adjoint of L. Consider the normal operator N = L*L. It is computed in
[10, theorem 2.1] that

Nf(t, x) = / Ky(t,x, ¢, x) (¢, x")dt dx’
Rnt+1

where the Schwartz kernel

0t—7 —|x =X+ -1+ |x— x|

Kn(t,x,1,x") = (12)
‘)C _ x/|n—1
In particular, Ky can be written as an oscillatory integral
Ky(t,x,1,x') = / ei(t—t’)r+i(x—x’)'fk(7-, £)drd¢ (13)
Rn+l
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where

n=3
2

(&> = 7))
3
Here, fors € R, 5%, Rea > —1 denotes the distribution defined by s4 =5 ifs >0andsq =0

if s < 0. Below, we denote by U"(X) the set of pseudo-differential operators of order m on a
smooth manifold &

k(1,8) = C, C, = 2m|S"|. (14)

3. The composition as oscillatory integrals

Consider the determination of hy, hy from Ly u = LxoE+hi + LxyE_h,. We will analyze the
normal operator

E*L*LyoE, whereE =E.. (15)

There are issues about the composition as it is, and we will fine tune the operator as follows.
We choose a smooth cut-off function x € Cg°(R) with supp x C (#;,T), x = 0 and not vanish-
ing identically. Note that x,x = 0. Then we consider the composition E*xL*Lx,E. We will
show that the operator is a pseudo-differential operator on S. The principal symbol is non-
vanishing so the operator can be microlocally inverted. The necessity of the cut-off function x
is demonstrated in the next result.

Lemma3.1. Forn > 3 odd, the composition xL*LxoE+ € I""*tV/4N,S; CE

) are elliptic
Fourier integral operators.

Proof. We prove for E; below because the treatment for E_ is identical. The Schwartz kernel
of xNxoE+ is

K(t,x,2) = (2’/T)_2n/ /tl/ / /ei(t—t’)7+i(x—x’)~§ ei((X’—z)~r]+t’\n\)
R 1 n nJR
X X(Oxo(k(T, &)dT dé dn dr’ dx’
n . / . i
= (27r)*n/ / /el(t—t YT Hi(x—z)-&+if ‘E‘X(I)Xo(t/)k(T, £)dr dé a7
1 nJR
where we integrated in x’, 7. We make a change of variable s = 7 — |£] so

57 (s+20hy

k(s, &) = C,
€2
Then
I N
K(t,x,2) = 2m)™" / / / s HO=EHIELy (1) o (7 )k (s, €)ds dE d7
nJR
(16)
—@m)" / /R I (1) o (DA — )€ dF
) n
where A is defined by
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0 n—3 ,,2;3
A0, = /R e7'k(s, £)ds = / oo ST GH2ED T

“2l¢| €[>
2 0 2i . n=3 n—3
=C2" / X7l (s + 1)"T ds. (17)
-1
Forn =3,
0o 1 )
A(0.§) = 2C; / 7lds = G (1 — e 7 Ehjg .
-1 ag
Then
1
K(t,x,2) = Cs / / e Z““"ﬁ‘x(r)x()(t) ,)md&df
+ C3/ / i(x—2)-&— lt‘fH—th ‘{‘X(t)xo(t) t,)‘£|d§ dt/
= Ki(t,x,2) + Kx(1, x,2) (18)

where K, K, denotes the first and second integral above. For K, because x(f) is supported
away from [to, 1;], we see that (t — #)~! is integrable in ¢. This is where we need the cut-off
function! So we get

Ki(tx.2) = G [ 900 0)e] g
RN

with a non-vanishing constant 63 and (#) > 0 not vanishing identically. This implies that
Ki(t, x,z) is the Schwartz kernel of an Fourier integral operator, denoted by K, associated
with canonical relation C;, with a symbol of order —1. Note that the symbol |¢|~! is singular
at £ = 0 but this can be removed by introducing a smooth cut-off function supported near
& = 0, which amounts to changing K; by a smoothing operator.

For K>, we have

Ka(t,x,9) = Cs / / o 1) g

- ’)\f |
Ast—{ > 0, we can use integration by parts (note that x,, is compactly supported in (7, #1)) to
conclude that K is a smoothing. We remark that if y, were the characteristic function X411,
one would obtain some additional Fourier integral operators as a result of the boundary terms
from integration by parts. The operators are more regular because the symbols are of order
—2. With some adjustments, one can handle these terms in the rest of the argument for proving
theorem 2.1. However, we chose to avoid the technicality and used .

We conclude that K in (18) is a Fourier integral operator associated with C
a(t, &) of order —1. Thus K in (18) can be written as

+ with a symbol

wv

K(t,x,2) = / eIt gz, ) de

where a(t, ) is a symbol of order —1. The leading order term is
|
alt. ) = € [ Ol e (19)
o(t,§ 3 g X0 t’)| 5\

6
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For n > 5 odd, we use (17) and apply integration by parts to get
2”73 0 H n— n—3
A0,6) = C,—— / 755" (s 4+ 1)"7 Y ds
iol¢| )

2"_3 /0 io2)els b — 3 n—3 n—3
i02[€]s ( T_l( "
e — (s s+ 1)
olgl 2

i

~ (-G,
4" s+ 1)"7’3*1) ds.

. . . _3 .
Repeating the integration by part “5= times, we get

A& = (DT () (/oei"z“(s+ 1372 g
ciolep=" 2 "\

0
+/ eiaZEsS(n3)/2ds> + E Ck,j
-1 '

k.jzlk+ j=(n-3)/2

0
x/ eioz\g\ss(n—3)/2—k(s+1)(n—3)/2—jds
—1

where ¢, ; are constants. So far, the boundary terms from integration by parts vanish. We
continue with integration by parts to get

13 l n— 3 M n—3
A0, =D =6 e ( )I DG e —
Qo))" Qiole)) \ 2 /;1 KOl
13 1 n—3 ‘
+ (_l)T Cn - T ( >!elo'2£
Qic|¢]) 7 iol€) 2

M
i n=3_q_
+ Zbk(0)67102‘5‘|£‘7 >=—1—k

k=1

where ay, by are smooth in ¢ for o # 0, and M is some integer depending on n. We remark that
for n even, integration by parts will eventually lead to singular integrals. This is why we cannot
deal with n even at this point. We let

1 n—3

n-3
(@) = bo(@) = (=T Cr i (5

)!

We see that

M M
A(o,8) = Zak(0)|§\_%""‘ + Zbk(a)e—i”z\f\‘ﬂ—%—l—k.

k=0 k=0

Finally, using (16), we get
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h : : M n-3
K@&mz/“/eMWWﬂ%mmngwa—ﬂng**@m’
fo JR k=0
1
n / : / e A H-DEy () ()
1o n
M 3
X bt —1)[g[T e dr (20)
k=0
By the same arguments as for n = 3, we see that K is an FIO associated with C:£ with a symbol
of order —(n — 3)/2 — 1. The leading order term of the symbol is
" / 1 /
ao(t,§) = Cn/ XOxo(t) ———— 5 dr. 21
. it — 1)lg|" !

To summarize, for n > 3 odd, YNx,E- is an FIO with canonical relation C=, of order
—n—3)/2—14+n/2—-Q2n+1)/4=—n/2+1/4.
The principal symbol is clearly non-vanishing. This completes the proof.
Next, we prove

Lemma 3.2. Forn > 3 odd,

(@) EY XxNxoE and E* xNxoE are elliptic pseudo-differential operators in GH2S),
(b) E* xXNxoEy and E', xNxoE_ are smoothing operators on S.

Proof. For (a), we consider E’, XNxoE . We know that the Schwartz kernel for £, is

Ke (w,t,x) = 2m)™" [ e mwm=idl gy
+ -

Using the notations in lemma 3.1, the kernel of E", xNxoE 1 is

K('LU, Z) _ (27_[_)—2}1/ / // e—i(x—m)ﬂ]—it‘n‘ei(x—z)f—‘,-it‘f‘a(t’ 5)
n n R n

x x(1)d¢ drdx dn

= (271')_"// (s, n)x(H)dn dt
RJRe

=@m " [ & e(ndn
RH

where c(n) = [ a(,n)x(dt is a symbol of order —

3 — 1. Thus, the composition
E' XNxoE+ is a pseudo-differential operator of order —n/2 +1/2on S.

Let us find the leading order term of c¢(7n), denoted by co(n). For n > 3 odd, we use ao(t, )
in (19) and (21) to get

n 1 n—3
coln) = / / Co I X0 dr.
v ia—wTﬂJ‘

8
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In the integral, 7 > ¢ so the integrand it positive. Thus, co(7) is non-zero. The proof for
E* xNxoE_ is identical.
For (b), let us consider E* xNxoE. Then the Schwartz kernel is

K(w, Z) _ (27‘_)—2n/ / // e—i(x—w)v]—‘,-it\n\ei(x—z)f—‘rit\f\a(t’ g)
n n R n

x x(1)dé drdx dn

=(Qm™" / / eI g1, p)x(£)dn dt
R n

= (277)’”/ eI e(n)dn.
RH
Because x(¢) is supported on ¢ > #; > 0, the integration in ¢ implies that the symbol c(7) decays
to infinite order as || — co. So the operator is smoothing. |
Using the two lemmas, we can finish the proof of theorem 2.1.

Proof of theorem 2.1. Let u be the solution of (6). We start with
XL*Lxou = xL*LxoE+hy + xL*LxoE_h;.
We apply E7 to get

E" xNxou = E', XNxoE+h1 + E\, XNxoE_h;

(22)
E*,XNX()M = EiXNX()E+/’l1 + EiXNX()E,/’lz.

From lemma 3.2, £ xNxoE, E* XNxoE - € U2H/2(8) are elliptic pseudo-differential
operators. There are parametrices Q1 € "/2-1/2(8) such that

Q+E xNxoE+ = Id +R-

with Ry smoothing operators. We also know from lemma 3.2 that E% xNxoE_, E* xNXxoE
are smoothing operators. So we get from (22) that

Q+E1XNX()M =h +Rih + Ry
Q_E" xNxou = hy + R3hy + Ryhs

where R;,i = 1,2, 3,4 are smoothing operators.
Finally, for any p € R, we get the estimate

|h1][mss) < ClQ+EL XN xou||asesy + Collhi||las-ois) + Copllhalls—o(s) 23)
|ha[mss) < Cl[Q-EZXNxoul|mss) + Cpllhi||gs-ois) + Collhallms—rs)

for C > 0,C, > 0. We know that

Qi CH (S) N Hs—n/2+l/2(8)

comp loc

is bounded. For E7, one can show directly using the oscillatory integral representations or
using the clean FIO calculus see lemma 6.3 later, that E1E, € U%(S). Then we derive that

9
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E% : Hiop o (N) — H}, (S) is bounded. Finally, L* : Hi,, (C) — Hyt*(R"+!) is bounded for

n > 3, see proposition 4.2 in section 4. We thus conclude that

©€)— H A

E;:XL* loc

comp

is bounded. Therefore, from (23), we get

7] a3s) < CllLxoul| gstn-1iy + Collhllas-ecs) + Collha|s-rcs) o1
[h2llzses) < ClILxoul| ys+n2-10) + Collhilas—o(s) + Collhallgs—os)-

Now, as shown in [14, theorem 8.1], L is injective on L, ,(R" ") hence on L7, ,(R"*"). For

> 0, we know that « in (6) belongs to Lcomp(R"Jr 1 hence the injectivity result can be applied.
One can drop the last two terms in each of the inequalities in (24) by using the same argument
in [14, theorem 1.1]. We get

1l zs+1s) < CllLxoullpstnrzeys [1hallies) < CllEX0U stz

In terms of f, f> see (11), we get

[ fillgs+1is) + 1 f2llmses) < ClILxoul| gsniaey-

This completes the proof of theorem 2.1. |

4. Representation of operators

To understand the mechanism behind the composition in lemmas 3.1 and 3.2, we will exam-
ine the arguments from the Lagrangian distribution point of view. Note that the signature of
gis (=, 4, ..., +). On the dual space R{',), we let T/ = {(7,&) € R" 1 72 > |¢[2, +7 > 0}
be the set of future/past pointing time-like vectors, and I = I} UT"™. Let I'” = {(7,¢) €
R™1: 72 < |€]?} be the set of space-like vectors. Finally, let T = {(7,&) e R**!: 72 =
|€[2, £& > 0} be the set of future/past pointing light-like vectors. We also let I = T UT".
We see that in (14), the symbol (7, £) is supported in [*7, is homogeneous of degree —1 in
(7,€) and smooth away from I'". Moreover, k(r, &) ~ dist((r, ), I")"=3/2  for (1, &) space-
like near I'". Therefore, k(7, £) looks like a symbol for a pseudo-differential operator of order
—1 with a conormal singularity at I'’. This is an example of paired Lagrangian distribution
introduced in [6], as proved in [16] for general globally hyperbolic Lorentzian manifolds. In
this section, we briefly recall the notion of paired Lagrangian distributions and the construction
for the Minkowski spacetime.

To define paired Lagrangian distributions, we first consider the following model problem.
Let ¥ =R"=Rfx R"%1<k<n—1, and use coordinates x = (x’,x"),x’ € Rk, x" €
R"*, Let AO {Gx. & x, —5) ET (X x X)\0: & # 0} be the punctured conormal bundle of

Diag in T*(X x X), and
A ={®&ym €T x D\0:x" =)', =1 =0,6" = 0" # 0}

which is the punctured conormal bundle to {(x,y) € X x X : x” = y''}. The two Lagrangians
intersect cleanly at ¥ = {(x,&,y,m) € T*(X x X)\0: x" =", " =", X' =y, =0 =0}

10
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which is of codimension k. For this model pair, the paired Lagrangian distribution IPAR" x
R™; Ag, A1) consists of oscillatory integrals (see [3, section 5])

o) = [T Ny 25)

modulo C°(R" x R"), where b satisfies the following estimates. We remark that the order
here is different from that in [3] because we work on the product space. First, in the region
[7'] < CIn"|,|n"| = 1, b satisfies

[(@b)(x,y,m)| < C(n")yPHH/2 ()12

for all Q which is a finite product of differential operators of the form D,/, 7 JD,]n i jD .
Second, in the region |”| < C|7/|, |7f'| > 1, b satisfies the standard regularity estimate

[(Qb)(x,y,m)| < C{y )y

for all Q which s a finite product of differential operators of the form n jD - 77 jD . We use the

notation /7/(R" x R"; AO, 1) to denote the space of operators A : £'(R", Q]é,,) — D'(R"; Qﬂén)
1

where Qﬁan denotes the line bundle of half-densities on R”, whose Schwartz kernel K, is a

paired Lagrangian distribution with values in Qén R

Let X be a C* manifold of dimension n. Let Ay, A; be two conic Lagrangian submanifold of
T*(X x X)\0 such that Ag N A cleanly at a codimension k, 1 < k < 2n — | submanifold X.
From [6, proposition 2.1], we know that all such intersecting pairs (A, A ;) are locally symplec-
tic diffeomorphic to each other. Let  : T*(X x X)\0 — T*(X x X)\0 be a canonical trans-
formation such that y(Ag) C Ao, x(Ay) C A;. Then the set of paired Lagrangian distributions
IP(X x X; Ay, Ay) are defined invariantly by conjugating elements of IPI(R" x R"; AO, 1)
by Fourier integral operators with canonical relation x, see [6] for more details. For any
u € IP(X x X3 Ay, Ay), uis an Fourier integral operator of order p + [ on A\ ¥ and an Fourier
integral operator of order p on A;\X. The principal symbols satisfy certain compatibility
conditions at 3. In particular, the principal symbol of # on A\ is singular at 3.

To see that the kernel (12) is a paired Lagrangian distribution, we make a symplectic change
of variables on T*R"*1\0

x=x+/lgl, 1=t s=7-[], {=¢

We can choose an Fourier integral operator with symbol of order 0 which quantizes the
symplectic change of variable and transform Ky to

Ky, %,7,7) = / D HEDE (s, £)ds dé (26)
Rn+l

modulo a smooth term, where

-3

-3 -3 -3
T 2 T T 2 2
(s‘gn |2€\)+ Lot (s‘gn \fl

13 =3
s (s+21E)7
€]n2

k(s, &) =

=C, 27)
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The symbol k(s, £) satisfies the product type estimate with p = —n /2,1 = n/2 — 1. In fact,
for [€] < CJs|, |s| = 1, we have

lk(s, )] < Cls| .

One can verify the same estimate for Qk where Q is the finite product of differential operators
of the form sDy, sDs,,. For |s| < C|¢|, [€] > 1, we have

n=3 n=3
NEEE 2 n n/2—
k(s )| < C||£r|fc2 < Clg| 212|230
and one can verify the estimate for Qk where Q is the finite product of differential opera-
tors of the form Dy, sDy, §;Dy,,. So Ky is a paired Lagrangian distribution. The two associated

Lagrangians are

Ao ={(t,x, 7,61, %, 7,8) e T"RTNOx T'R"™™MN0:t =7, x =x, 7= —7,6 = ¢}

(28)
which is the punctured conormal bundle of the diagonal in R"*! x R"*! and
Ay ={tx,7,60,x,7,6) e TR0 x 'R0 : x = X' + (1 — )¢/ [¢] 29)
r =il = —r.& = ¢}
The two Lagrangians intersect cleanly at
L= {tx 1.t X, 7 ) e TRINOX TR N0t =7, x =X, G0,

T = _T,’£ = _51’7_2 = ‘§|2} .
In fact, A; is the flow out of ¥ under the Hamilton vector field Hy of f(7,&) = %(7’2 — ¢ \2).

Theorem 4.1 (Theorem 3.1 of [16]).  For the Minkowski light ray transform L defined
in (2), the Schwartz kernel of the normal operator N = L*L belongs to I-"/*"/>~\(R"*1 x
R™1: Ao, A1), in which Ao, Ay are two cleanly intersection Lagrangians defined in (28) and
(29). The principal symbols of N on A\\X. are real valued and non-vanishing.

The principal symbols of Ky on Ag\A; and A;\Aq can be found explicitly, see [16] for
details. We only need the symbol on A;\Ay where the kernel Ky € 1 “2M x M;Ay). To
find the symbol, we can use (12) and write Ky as

Kn(t, x, t',x') _ /ei(tft’f\xfx’\)‘r(t N t/);(n—l)dT
R

+ / el Hh=xbrp )= =Dgr (31)
R

for ¢ # 7. This gives another oscillatory integral representation of Ky with a real phase function

valid for ¢ # 7. The principal symbol is non-vanishing and positive in this representation.
Using the estimates for paired Lagrangian distributions for the flow out model one can derive

the Sobolev estimates for L and L*.

Proposition 4.2 (Corollary 3.2 of [16]). = The Minkowski light ray transform L:

H o R — HYOPRY < §'1) and its adjoint L* : Hi gy (R" x S — Hy 0P (R

are continuous for so = 1 /2 when n = 2 and for s) = 1 whenn > 3.

12
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5. Parametrix for the Cauchy problem

A linear differential operator P : C*°(R"*!) — C>®(R"*!) of second order is called normally
hyperbolic if the principal symbol P(z, () =o(P)(z,() = g*((, (), (z,() € T*M, see [2, page
33]. Note that P(z,0) in (1) is exactly the normally hyperbolic operator on (R"*!, g). The
operator is strictly hyperbolic of multiplicity one with respect to the Cauchy hypersurfaces
S = {t} x R",t € R, see definition 5.1.1 of [4]. This means that all bicharacteristic curves of
P are transversal to S; and for (Z, () € T*S;\0

P(Z, C) = O’ C‘TES = E

has exactly one solution. As before, we also use Sy = S. Itis convenienttouse D; = —10;, j =
0,1,2,...,nin which i* = —1. Consider the Cauchy problem

P(z, D)u(z) = 0, on M
u= f1,Du= f,onS.

(32)

We use Duistermaat—Hormander’s parametrix construction, see e.g. [4]. The restriction
operator pg : C*(N) — C>®(S) is an FIO in I'/*(\, S; Cy) with canonical relation

Co={z¢z20eT" N\OXxTS\0:2=2=¢

S} (33)
We consider the canonical relation C,,, defined by

Cuw = {(w,1,7,¢) € T"N\0 x T*S\0: (w, 1) is on the bicharacteristic
_ (34)
strip through some (z, ¢) suchthat{ = (|rsand P(z, () = O} .

The next result is straight forward from theorem 5.1.2 of [4].

Proposition 5.1. There exists E; € I7V4N,S; Cu), E» € I75/*(N, S; Cyy) such that

P(z,D)E, € C*(N), k=1,2
poEy —1d € C*(S), poE, € C*(S) (35)
poDEy € CF(S),  poDEx — 1d € C(S).

Now we can represent the solution of (32) asu = E| f| + E, f, modulo a smooth term. Note
that this is not the same representation used in section 2 because the Cauchy data are not re-
parametrized to Ay, hy. It is natural to decompose C,,, as the disjoint union of ngl, and C,,
which are

Coy = {(w,1,2,() € T"N\0 x T*S\0 : ¢ is future/past

wv

pointing light — like and lies on the bicharacteristic strip through (36)
some (z,¢) suchthat{ = (|z.sand P(z,{) = 0} .

These are (10) under the parametrization in section 2. We can decompose (for k = 1,2)
Ex=E +E, Efcl™ W, S;cE).

13
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We will find the relation of the principal symbols of E", E5". We remark that the Maslov bundle
and the half density bundle can be trivialized because the Lagrangians involved allow global
parametrization. We will not show these factors in the notations below.

Lemma 5.2. Let e,:—L,k = 1,2 be the principal symbol ofEki on A* = (CE,) respectively.
Suppose that the sub-principal symbol of P(z, D) is purely imaginary, in which case P(z, D) is
of the form

P(z,D) =0+ > 14,()D;+ B() (37)
j=0
where A (z) are real valued smooth functions. Then e,f, k = 1,2 are real valued and
ef >0, e >0, ¢ >0, ¢ <O0.

Proof. We can find the principal symbols following the argument in [4, page 117]. For E}, €
' V4N,S; Cuo) k = 1,2, if e is the principal symbol of Ej, then it satisfies

1
;»CH,,ek + pswver = 0 (38)

where Ly, denotes the Lie derivative and py,, denotes the sub-principal symbol of P(z, D).
This is a transport equation along the bicharacteristics. The initial conditions are determined
as follows. For (z, () € T*S, we have two cotangent vectors (Z, (*) corresponding to it in 7"\
where (regarding ¢ as a covector on S)

C+ = (T’ 6)’ C_ = (_T’ 6)
where 7 = |(|. From the initial conditions in (35), we have
61(2, <+;Z’ é) = el(z’ Ci;z’ CT) >0
_ _ (39)
62(23 C+; Z, C) = _62(2’ Ci; zZ, C) >0

which are all real valued. Let y(s), s € R be bicharactersitics such that v*(0) = (z, (%) €
T*N. Along v*(s), the equation (38) can be written as

Drei(s) + a()ex(s) = 0, e(0) = ¢ (77(0) (40)
where a(s) = 1py;,(75(s)). Solving (40), we obtain that

ex(s) = ex(0)e JoeP, (41)

Consider the operator (37). In local coordinates, let p,(z, ) be the symbol modulo SOT* N\,
namely

PO =8O+ > 1A
j=0

where g((,¢) = —7% + |€[%, ¢ = (7, €). We have modulo symbols of order 0

14
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n 1 n 82 , n
Pab(z, Q) = ;mj@cj -5 % = > AR)

J=0 J=0

1 " OP(hi ¢
211‘]‘7 szacj ’

=1

If the subprincipal symbol pg,(z,€) is pure imaginary, the coefficients of the transport
equation (40) are real valued. We can tell from (41) that eki are real valued and the signs are
determined by the initial conditions in (39). This completes the proof. |

6. The composition as Lagrangian distributions

In this section, we re-examine the composition in section 3 from the point of view of Lagrangian
distributions and complete the proof of theorem 1.1. Let us outline the main ingredients. We
look at E*xNxoE, withE = Ef k=1,2in proposition 5.1.

(a) Asx - Xo = 0, from section 4, we know that YN, € I-"/2(R"+!, R"*1; A}). Note that the
role of 'y is to keep the kernel of N away from the diagonal Ay where the principal symbol
is singular!

(b) We will show that A, intersects A cleanly with excess one so the composition YNxoE €
I'(V, S; C,,) as a result of Duistermaat—Guillemin’s clean FIO calculus with the order *
to be determined.

(c) We can compose the operator in (b) with E* by using clean FIO calculus again to conclude
that E*YNxoE € U*(S).

This is what is behind the calculations in section 3. In the follows, we carry out the details
of the above arguments. In this section, we assume that n > 2 is an integer.

Lemma 6.1. Consider A, defined in (29). Then A, intersects A* = (CE)) cleanly with
excess one.

Proof. We check by the definition of clean intersection. We use the following parametriza-
tion for A

Ay ={tx,7,60,x,7,6) e TR0 x 'R0 x = X' + (1 — )¢/ [¢],
T=xlg|, 7 = -1, ==}
For A*, we use (10)
A = {7, ?,g;z, n) € T*R™N\0 x T"R"\0: % = z:l:?n/\m,g: -, 7 = Fn|}.
We consider AT below. The case for A~ is similar. Let X = A; x AT and Y = T*" M x
Diag(T*M) x T*S. These are submanifolds of 7*M x T*"M x T* M x T*S. We show that
forpe XNV, T,XNT,Y =T,(XND).

First of all, A, is parametrized by (t,#,x',£) € A=R x R x R" x R". Also, A" is
parametrized by (7,z,1) € B=R x R" x R" as

x=z4+m/|lnl, T=-n, &=-n.

15
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Consider p € X N Y and if we write p = (1,7, x',£,1,z,17) € A x B, we must have

=1 x=z+m/nl, =1, &=-n (42)

Thus, X N is parametrized by (¢,7,2,17) € D=R x R x R" x R" as

/

t, x=z+m/nl, T=-nl, &=n =1 X =z+m/,
=, &=-n 1 z 9
We find that tangent vector ép € T,(X N Y) is given by
6p = (0t,6z + n/|n|6t + tacdn, +n/|n|én, on,
01,0z +n/ |0t + tecdn, —n /1| on, —on, (43)
01,0z + n/|n|dt + tadn, —n/|n|dn, —on, 6z, 61)

where o = 9,(n/|n|). Next, we compute T, & and 7,) and find their intersection. For dp €
T,X, we use variables in .4 and B to get

op = (0t,0x" — (61 — 6)'/I€| — (¢t — 1) B dE', 7€' /|€'16¢, =o€, 61, o,
+£&'/1€10€, 8¢, 01,6z + n/|n|ot + 1o dn, —n/|n|dn, —dn, bz, on)
where 3 = a,,(n/|n\)|n:£/. For op € T,Y, we see that
5t =01, ox' =oz+n/Inlor+1ady, +£'/|€06 = —n/Inldn, on=—5¢.
Also, at the intersection we use (42) and (2,7, z, 7)) as variables to get

6p = (0t,6z +n/|n|dt + tacdn, —n/|n|én, on, 61,6z + n/|n|6t + o dn,
—n/|nldn, —6n, 61, 6z + 1/ |n|0t + 1 dn, —n/|n|dn, —6n, 6z, 6n) . (44)

Comparing (43) and (44), we proved T,X N T,Y = T,(X N Y).

To find the excess, we see that codim(X) =8n+6 — (4n+ 3) = 4n+ 3, codim()) =
Bn+6)—(6n+4)=2n+2. Also, dim(X NY)=2n+ 2. So the excess (see e.g. [7,
appendix C.3])

e = codim(X) + codim()) — codm(X N)Y)=4n+3+2n+2 —(6n+4) = 1.
This completes the proof of the lemma. (]

Lemma6.2. The composition Y\NxoE; € I7"/> 1A+ 1=K\ S; CE

“ov) and the principal sym-
bol is non-vanishing.

Proof. Because x(£)x,(#) = 0, we know from section 4 that YNxo € I-"/>(N, N; A;). One
can apply the clean calculus directly to see that YNxoEf € I-"/>F1/4F1-KN | S; CE ) using
lemma 6.1. For p = (t,x,7,£,y,m) € A%, let C, be the fiber over pin T"M x T*"M x T*S
which is connected and compact. Then the principal symbol of the composition at p is given
by

/ N X0, X, 7,6, 8%, 7, ENa (BN ¥, 7, €y, m) (45)
C

P
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where o(xNxo), U(Eki) denote the principal symbols of YN XO,E,(i respectively and the inte-
gration is over the fiber C), see [8, theorem 25.2.3]. Note that both symbols are real valued and
non-vanishing on the fiber thus they do not change signs. Also, the Maslov factors are constant.
We see that the principal symbol of the composition is real valued and non-vanishing. ]

Lemma 6.3. For j, k= 1,2, we have

(a) Eji’*xNXoE,f € U222 S) are ellipric.
(b) ET’*XNXOE,:, E;’*XNXOE: are smoothing operators on S.

Proof. First of all, E;" € VSIS, M CEh and XNYoEE €

[PV (ML S CE ). Let A* = (C5,) and AR = (C5;7'Y. We first prove that

wv wv

A%~ !intersect A* cleanly with excess one.
We consider the plus sign. Recall that

AT ={tx,7,&m) € T*R”H\O X T'R"™N\O:x =z+m/|n|,€ =—n,7=n|} (46)
and it can be parametrized by (1,z,7) E B=R xR" x R". Let XY = AT ! x AT and Y =
T*S x Diag(T*M) x T*S. We see that

xXny= {(Z,ﬁ,zi,?,g;t,xm&z,n) cx=z+m/n).§ = —n,7=n|
n=ir=FE=Er=1T=xI=z}.
So this set is parametrized by ¢, z, 7). For p € X' N Y, the tangent vector 0p € T,(X N Y) is

6p = (0z.0n, 61,62 4 n/|n|d6t + 10,(n/|n)én. n/|n|én, —ndt, bz + n/|n|ét
+ 18, (n/|n)dn. n/|n|én, —én, 6z, ) . (47)

Next, for p € X which is parametrized by (z, z, 77,7,'2, 7)), the tangent vector is given by
6p = (02,01, 01,62 4 17/ |77]61 + 1057/ |7)o7, 17/ 117|677, — 6761, 62 + 1/ || 61
+ 19,(n/Inhdn, n/|n|én, —on, éz, ) . (48)

If 6 p also belongs to T,,), we see that
0t =01, O0x=06x, Or =07, On=20on

which implies dz = 0z, so (48) agree with (47). This shows the intersection is clean. To find the
excess, we see that codim(7,X) = (8n+4) — (4n+2) = 4n + 2 and codim(7},)) = (8n +
4) — (6n+2) = 2n+ 2. Also codim(T,(X NY)) = 8n +4) — (2n + 1) = 6n + 3. Thus the
excess

e=4n+2+2n+2—-6n+3=1.

Now we can use the clean FIO calculus [8, theorem 25.2.3] to conclude that Ef* xN XOE,(i €
/2+1/242-/-k(S) Note that both principal symbols of E;* and xNxoE} are real and
non-vanishing hence they do not change signs. Also, the Maslov factors are constants. The
principal of the composition is the integration of the product of principal symbols so is also
non-vanishing. This proves part (a).

Part (b) can be seen from a wave front set analysis using e.g. [4, theorem 1.3.7]. (]
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Proof of theorem 1.1. The idea is similar to that for theorem 2.1, despite that the
parametrization of the Cauchy data is different. We write the solution of (32) as

Xout = X0\ f1 + XoE; f2 + X0E} fi + XoE; fa.
Next, we apply xL* to Ly,u to get

XNxou = XNXoE} fi + XNXoES f> + XNXoE; f1 + XNXoE; f>. (49)
Now we apply El+* and use part (b) of lemma 6.3 to get

E["xNxou = EF"XNXoE! fi + EL XNXoES fo + Rifi + Rofa (50)

with Ry, R, smoothing operators. In the following, we use R;, R, to denote generic smoothing
operators which may change line by line. From lemma 6.3 part (a), we see that ET* XN XOEfr €
G228y and E N xoE, € U2 14S).

On the other hand, we apply E| " to (49) to get

E["xNxou = E;"XNXoE| fi1 + E{"XNXoE; f2 + Rif1 + Ry f>. (51

From lemma 6.3 part (a), we see that E;*xNxoE; € U"/>*V2(S) and E;*xNxoE, €
§"/271/2(S). It follows from lemma 5.2 and the composition results lemmas 6.2 and 6.3 that

o(E " XNXoE) >0, o(E; *XNxoE) > 0

o(E*XNxoES) > 0,  o(E;*XNxoE;) < 0.

Let 01,0~ € U"/271/%(8) be parametrices for E;*xNxoE; , E; " XNxoE; respectively. We
know that the principal symbols of Q* are positive. Applying QO to (50) and (51), we get

Q+E?_’*XNXOM =fi+Bifo+Rifi +Rf> (52)

Q E;"xNxou = fi + B_fo+Rifi + Rof> (53)
where

B, = Q.E["XNxoEf.,  B_=Q_E “XNxoE;.
From (52), we get

O Ef"XNxou — Q"E; " xNxou = (B+ —B_)f> + Rifi + Ro 2.

Note that B.. € U~ !(S) are elliptic. Also, the principal symbol of B, is positive but the prin-
cipal symbol of B_ is negative. Thus By —B_ € U~ !(S) is elliptic. Let W € ¥'(S) be a
parametrix for By — B_. We get

WO E xNxou — WQ™E;"xNxou = f2 + Rifi + Raofa. (54)
So we solved f> up to smooth terms. We can use f> for example in (52) to get

OYE*xNxou — B (WQTE*XNxou — WQ E;"*XNxou) = fi + Rifi + Rofo.  (55)
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From this point, we can follow the proof of theorem 2.1 line by line. In fact, WQ* €
G228y and QF, BLWQ*F € U2 12(8) so

WO* HS.(S)— HS"*T12(S)

comp loc
OF BLWO  : H oy (S) = HYPT%(S)

are bounded. For Eki’*, k=1,2, we have E,f* CHS (N — HT17X(S) is bounded. Finally,

comp loc
L* .

tHY o (C) — HTV2@®) is bounded for n > 3, see proposition 4.2. We obtain that

loc

ES* YL HS,, (C) — H. 2N

comp loc

is bounded. Thus using (54) and (55), we get

[ fillgst1is) < CllLxou| gsnrziey + Coll fill as—ecs) + Coll f2llms—res)

/2]y < CllLxoul| gstnrzey + Coll fillas-eis) + Cpllf2

|H.\'—p(5) .

The rest of the proof are as in theorem 2.1. For n = 2, one just need to use that L* : Hy,,,, (R* x

s — H, Otl/ *(R%) is bounded from proposition 4.2. O
We conclude the proof of theorem 1.1 with two remarks.

Remark 6.4. In the proof of theorem 1.1, we actually constructed operators Ay, A, such that
AiLxou = f1 + Rif1 + Raf2, ArLxou = fr 4+ R fi1 + R, f>

where Ry, Ry, R, R} are smoothing operators. The operators Ay, A, can be used to determine
wave front set of f}, f> from Lyu.

Remark 6.5. There are other ways to fine tune the normal operator E*L*LE in (15) to prove
theorem 1.1. We outline one possible construction and leave the details to interested readers.
Instead of using x compactly supported in (¢;, 7), we let p5 be the restriction operator to Sz =
{T} x R" for some T € (t;,T). In particular, p7 € I'/#(Sr, M; Cy) in which

Co={0nt,x, 7, e T"S\O X T"M°\0:y =x,n =&}
see (5.1.2) of [4]. Recall from lemma 6.2 that YNxoE+ € I-"/*t1/4(N, S; CE). Note that the

wv
composition Cﬁ,o = Cp o CE, is given by

Cio={0nx, O eT'S\OXx T°S\0:y = x £ T¢,n = &}

which is a canonical graph. One can show that the composition is clean as in lemma 6.2 and
obtain that

piNYoE+ € I"*TN(S7, 8 CE ). (56)

In particular, the principal symbol is non-vanishing. Now, (56) is an elliptic FIO of canonical
graph type. We can find parametrix Q1 € I"/*71(S, Sz; C,,; ) such that

O1p7NxoEL = Id+R.

where R, are smoothing operators. The rest of the argument goes as in the proof of theorem 1.1.
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7. The source problem

In this section, we consider the source problem

P(z,D)u = f,on M
(57)
u=0 forr<t

where f is compactly supported in M. Consider the determination of f from Ly,u where
we assume in addition that supp f C supp x,. Before stating the main result, we explain the
difference to the Cauchy problem.

According to [13], there exists a parametrix E for (57) such that P(z, D)E = Id modulo
a smoothing operator. The Schwartz kernel of E belongs to I-3/>71/2(M x M; Ay, Ay). Tt
suffices to look at L Ef. Itis natural to apply L* and study L*LyxEf = Nx,Ef. The Schwartz
kernel of N belongs to I-"/>"2=(M x M; Ay, A;) so both N and E are paired Lagrangian
distributions of the flow-out type. One can apply the composition result in [1] to conclude that
NxoE € I""2=112-2(M x M; Ag, Ay). Tt is possible to find a parametrix for Nx,E within
the class of paired Lagrangian distributions, however the remainder term belongs to I*(M x
M; Ay) for some p € R rather than smooth, see [5, 15]. Moreover, although the parametrix
is good for reconstructing space-like singularities, time-like singularities are lost and it is not
clear whether one can determine light-like singularities of f. Below, we will assume that WF(f)
is contained in I'*” and use the kernel of NxE on Ap\A; to stably determine f. We remark
that in general relativity, space-like singularities correspond to particles moving slower than
the speed of light.

Ford > 0,letTY = {(t,x,7,§) € "M : 7% — [£|* > 6}.

Theorem 7.1. Suppose that f € £'(M) is supported in a compact set V" of M and that
WF(f) C T for some § > 0. Let u be the solution of (57). Then there exists C > 0 (depending
on 6) such that

Il < CllLxoul] s

with sq in proposition 4.2 and s > 0.

Proof. Because WF(f) C I'}, there exists an elliptic pseudo-differential operator x(D) €
\IIO(M) whose symbol x(x, &) is supported in 1"‘;72 such that x(D)f = f modulo a smooth
term. Thus, N Ef = NxoEx(D)f modulo a smooth term. Because E € I-3/>1/2(M x
M; Ao, Ay), we claim that Ex(D) € U~2(M) with principal symbol (7, &)oo(E)(T, €) sup-
ported in Ff;’/’z. Here, oo(E) denotes the principal symbol of E on Agy. To see this, we can
split E = Ey + E; such that Ey € U2(M) and WE(E)) is sufficiently close to A;. Then we
know that Eyx(D) € U 3(M) and E, x(D) is a smoothing operator as the result of a wave front
analysis using e.g. theorem 1.3.7 of [4] because the symbol of x(D) is supported away from
Ay

It follows from the same argument that NyoEx(D) € ¥ (M) with principal symbol
X (7, §)oo(EX(T, )ao(Nx()(T, &) which is non-vanishing. Thus, we can find a parametrix Q €
T3 (M) of NxyEx(D) such that

ONYoEY(D) = Id +R

where R is a smoothing operator. For f € £ (M) with WF(f) C T'Y, we actually have
ONxE = 1d 4+ R where we changed R to another smoothing operator. Finally, we get that
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for any p € R,

£ sty < CINXOES [|st30uay + Coll fllars—ecnmy

for some C, C, > 0. Using the estimate of L*, we arrive at
1 [y < C||LX0EfHH5+3J70(C) + Coll fll sty
with s¢ in proposition 4.2. Let u be the solution of (57) with source f. We get

I sy < CllLxaul sy ) + Collf s (58)

By using the injectivity of L as in the proof of theorem 2.1, we can get rid of the last term
as in theorem 1.1 of [14]. We denote by H?, (M) the function space consisting of f € H*(M)
supported in ¥". Then the inclusion of H%, (M) into H>,”(M), p > 0is compact. We claim that
1 sy < C||LXOM\|H.Y+3J70(C) (59)
for f with WE(f) C T'y’. We argue by contradiction. Assume the above is not true. We can get
asequence f, j = 1,2,... with unitnorm in /5, (M) and WF(f?) C T’} such that Lu'? goes
to 0in H*+3~ 7 (C) where u"? is the solution of (57) with source . By (58), we conclude that
L= [[fP sy < Collf Pl is-pemy for some constant C;,. This gives a weak limit f in H*(M)
along a subsequence, which thus converges strongly in H*~*(M). Therefore, || f|| sy is
bounded below by 1/ C;,, thus non-zero. Now we use the regularity estimate of the source
problem ||u||ys+10y < C|| f||zsmy to conclude that Lyu = 0 with u the solution of (57) with
source f. By the injectivity of L we get xou = 0 which gives f = 0 from the equation (57).
We reached a contradiction which means (59) holds. This finishes the proof. U
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