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Abstract. Empirical game-theoretic analysis (EGTA) is a general
framework for reasoning about complex games using agent-based sim-
ulation. Data from simulating select strategy profiles is employed to esti-
mate a cogent and tractable game model approximating the underlying
game. To date, EGTA methodology has focused on game models in nor-
mal form; though the simulations play out in sequential observations and
decisions over time, the game model abstracts away this temporal struc-
ture. Richer models of extensive-form games (EFGs) provide a means to
capture temporal patterns in action and information, using tree represen-
tations. We propose tree-ezploiting EGTA (TE-EGTA), an approach to
incorporate EFG models into EGTA. TE-EGTA constructs game models
that express observations and temporal organization of activity, albeit
at a coarser grain than the underlying agent-based simulation model.
The idea is to exploit key structure while maintaining tractability. We
establish theoretically and experimentally that exploiting even a little
temporal structure can vastly reduce estimation error in strategy-profile
payoffs compared to the normal-form model. Further, we explore the
implications of EFG models for iterative approaches to EGTA, where
strategy spaces are extended incrementally. Our experiments on several
game instances demonstrate that TE-EGTA can also improve perfor-
mance in the iterative setting, as measured by the quality of equilibrium
approximation as the strategy spaces are expanded.

1 Introduction

Empirical game-theoretic analysis (EGTA) (Wellman 2016) employs agent-based
simulation to induce a game model over a restricted set of strategies. The
methodology is salient for games that are too complex for analytic description
and reasoning. Complexity in dynamics and information can be expressed in
a simulator, but abstracted from the game model. In typical EGTA practice,
simulation data is used to estimate a normal-form game (NFG) model, associ-
ating a payoff vector with each combination of strategies available to the agents.
But game theory offers richer model forms that capture sequentiality in agent
play and conditional information. Specifically, extensive-form game (EFG) mod-
els represent the game as a tree, where nodes or sets of nodes represent states,
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and edges represent player moves and chance events. Whereas NFGs treat agent
strategies as atomic objects, EFGs afford a finer-grained expression of the obser-
vations and actions that define these strategies, capturing structure that may
be shared among many strategies. The goal of this work is to take advantage of
extensive-form structure, at flexible granularity, for complex game environments
described by agent-based simulation. Our approach, Tree-Ezploiting EGTA (TE-
EGTA), follows the basic framework of EGTA, but employs a parameterized
EFG model to leverage part of the game’s tree structure.

Taking advantage of extensive form necessitates two key modifications to the
EGTA process. First, we require methods to estimate the more complex model
form: an abstracted game tree parameterized by player utilities at terminal nodes
and probability distributions over successors for stochastic events represented by
chance nodes in the tree. These stochastic events, together with information-set
structure, model the imperfect information available to the players. We introduce
straightforward techniques to estimate these game-tree parameters, and describe
how the structure intuitively affords more effective use of available simulation
data. Second, we require methods for extending extensive-form models as the
strategy space is expanded, across iterations of the EGTA process. We introduce
techniques for iterative augmentation of empirical game-tree models with new
(best-response) strategies, within a standard approach that incorporates deep
RL within EGTA (Lanctot et al. 2017).

To establish the benefits of tree-exploitation for EGTA, we show that an
extensive-form empirical game model provides (with high probability) a more
accurate approximation of the true game than a normal-form model constructed
from the same simulation data. As it is generally intractable to construct a
game tree expressing the full fidelity of the game simulated, our approach is
designed to operate on highly abstracted models capturing only selected tree
structure. To ground the meaning of such abstractions, we provide an algorithm
that produces a coarsened model given the full game and a description of what to
abstract away. We demonstrate the efficacy of TE-EGTA through experiments
on three stylized games, and over varying levels of abstraction. We compare TE-
EGTA to normal-form EGTA on two key performance measures. The first is the
average error incurred from estimating the true player payoffs for all strategy
combinations in the empirical game. The second is the regret of empirical-game
solutions with respect to the full multiagent scenario, computed over successive
empirical game models in an iterative EGTA process.

Outline. Section 2 provides technical preliminaries, including a formal exposi-
tion of the EFG representation and precise elaboration of the EGTA framework
and process. Sect. 3 delineates our algorithmic contribution, TE-EGTA, start-
ing with the structure of an extensive-form empirical game model and how to
estimate its parameters from simulation data (Sect.3.1). We then give a the-
oretical procedure for generating a (usually) coarsened extensive-form model
from the underlying game (Sect. 3.2), and explain how to iteratively refine the
model via simulation-aided strategy exploration (Sect. 3.3). In Sect. 4, we present
theoretical results on the advantage of TE-EGTA over normal-form EGTA in
approximating true payoffs given a set of strategy profiles. All proofs are avail-
able in the full version. In Sect. 5, we report experiments that demonstrate the
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improvement in strategy-profile payoff estimation (Sect. 5.1) and in model refine-
ment using the PSRO approach (Lanctot et al. 2017) (Sect. 5.2) produced via
tree exploitation. Sect. 6 concludes.

2 Preliminaries

2.1 Extensive-Form Games (EFGs)

An eztensive-form game (EFG) is a standard model for strategic multi-agent sce-
narios where agents act sequentially with potentially varying degrees of imper-
fect information about the history of game play. Early algorithmic work on
EFGs showed how to generalize the Lemke-Howson method for computing Nash
equilibria (NE) for two-player games with perfect recall (Koller et al. 1996).
Well-known game-theoretic methods such as replicator dynamics (Gatti et al.
2013) and fictitious self-play (Heinrich et al. 2015) have also been adapted for
EFGs. The task of successful abstraction with exploitability guarantees has also
been investigated: Kroer and Sandholm (2018) gave a framework for analyzing
abstractions of large-scale EFGs, and Zhang and Sandholm (2020) introduced the
notion of small certificates carrying proofs of approximate NE. Other works have
developed algorithms that search for optimal strategies or approximate equilib-
ria that minimize exploitability (Johanson et al. 2012; Lockhart et al. 2019).
In this paper, we will only consider games with perfect recall, so no player can
forget what it observed or knew earlier.

Tree Structure. Formally, a finite, imperfect-information EFG is a tuple G :=
(N,H,V {Z, }2;07 {11, };;1, X, P,u). The components of G are defined as follows
(see Fig.1 for an illustrative example):

-~ N = {0,...,n} is the set of players. Player 0 represents Nature, a non-
strategic agent respomnsible for stochastic events that impact the course of
play; the remaining players are strategic rational agents.

H is the finite game tree, rooted at a node hg, that captures the dynamic
nature of interactions. Each node h € H represents a state of the game, also
identified with a history of actions (see below) beginning at the initial state hg
which corresponds to the null history (). The leaves or terminal nodes T C H
represent possible end-states of the game. We refer to the non-terminal nodes
of H as decision nodes, represented by the set D = H\ T.

V : D — N assigns a player to each decision node h.

For each player j € N, Z; is a partition of V~=1(j) where each I € Z; is an
information set (infoset) of j. All nodes h € I are indistinguishable from the
viewpoint of player j.

At each information set I € Z;, player j has a set of available actions II;(I).
A node h where V(h) = 0 is called a chance node. X (h) is the set of actions
available to Nature (i.e., possible outcomes of the stochastic event) at h, and
P(- | h) is the probability distribution over X (h).

The wtility function uw : T — R™ maps each terminal node to a real-valued
vector of players’ utilities {u;(t)}7_;.
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The directed edge connecting any h € I to its child child[h] represents a state
transition resulting from V'(h)’s move, and is labeled with an action m € ITy (1, (I)
if Vi(h) # 0, or an outcome x € X (h) otherwise. We denote by ¢(h, j) the history
of actions belonging to player j up to node h.

Strategies and Payoffs. A pure strategy for player j € N \ {0} specifies the
action m; € II;(I) that j selects at information set I € Z;. More generally,
a mized strategy or simply strategy o;(- | I) defines a probability distribution
over IT;(I) at each information set of agent j; that is, action 7; is selected with
probability o;(m; | I). The vector o = (01,...,0,) is called a strategy profile,
and o_; represents the combination of strategies for players other than j. We
denote the set of all strategies available to player j by X; and the space of
joint strategy profiles by X' = x7_; ;. Let 7;(¢,0;) denote the probability that
node ¢ is reached if player j adopts strategy o; and all other players (including
Nature) always choose actions that lead to h when possible; the probability that
t is reached under strategy profile o is given by its reach probability, r(t,o) =
Hje N Tj(t,05). Likewise, the contribution of Nature to the reach probability
of t is 1o(t) = [lnem, cexn)nope0) £ (€] h). We define the payoff from joint
strategy profile o to player j as its expected utility over all end-states: U; (o) :=
ZteT U (t)r(tv U)-

Best Response Formulation and Regret. A best response (BR) of player
j € N\ {0} to o_; is a strategy o; € arg max,: e, Uj(o’, ;) that maximizes
the payoff for j given o_;. The regret of player j from playing o is given by
Reg;(0) = max, e, Uj(0j,0_;)—Uj(o). The total regret of the strategy profile
o is the sum: Reg(o) = Z?:l Reg;(o). For ¢ > 0, an e-Nash equilibrium is a
strategy profile o such that Reg; (o) < ¢ for every player j € N\ {0}; a strategy
profile o with Reg(o) = 0 is a Nash equilibrium.
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Fig. 1. EFG representation of GAME;, our running example also used in our exper-
iments. Dashed lines indicate outgoing edges to nodes omitted from this illustration.

Running Example. Consider the two-agent strategic scenario depicted in
Fig. 1, which we call GAME;. First, Player 1 chooses an action from II; =
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{m4}10,; then, a single stochastic event X (7i) € {A, B} occurs, outcome A hav-
ing probability P(A | nt) dependent on Player 1’s choice 7i. Player 2 observes
the outcome e € {A, B} but not Player 1’s chosen action, which induces two
information sets for Player 2. Player 2 also has ten actions to choose from in
each information set, ITgqa = {7, }1%; and Il = {7\5}12,. Each leaf with
history (7%, e, 7%,) is labeled with the 2-dimensional vector of Player 1 and 2’s
realized utilities. Neither the conditional probabilities P(A | 7%) nor the leaf

utilities u(ni, e, Wge) are known a priori to the game analyst.

2.2 Empirical Game-Theoretic Analysis (EGTA)

The framework of EGTA was developed for the application of game-theoretic
reasoning to scenarios too complex for analytic description, accessible only in
the form of a procedural simulation (Wellman 2016). Over the years, EGTA has
been applied to multifarious problem domains including recreational strategy
games (Tuyls et al. 2020), security games (Wang et al. 2019), social dilemmas
(Leibo et al. 2017), and auctions (Wellman 2020). There is also substantial work
on methodological questions such as how to decide which strategy profiles to
simulate (Fearnley et al. 2015; Jordan et al. 2008), and how to reason statistically
about estimated game models (Areyan Viqueira et al. 2020; Tuyls et al. 2020;
Vorobeychik 2010). Recently, EGTA has received newfound attention, as the
simulation-based approach meshes well with powerful new strategy generation
methods from deep reinforcement learning (RL) (Lanctot et al. 2017).

== simulate | ———— " 7 A
Strategy Profile

Define
Strategy Set
(Strategy
exploration)

Analyze
Empirical Game

Fig. 2. Schematic illustration of EGTA. TE-EGTA modifies two subprocesses to incor-
porate the tree structure of EFGs: accumulation of simulation data into the game model
(enclosed in blue, described in Sect. 3.1); and the procedure for augmenting X with new
strategies (enclosed in red, described in Sect. 3.3). Black (resp. grey) arrows represent
the sequence of operations (resp. direction of possible information flow). (Color figure
online)

The main feature of EGTA is its construction of an empirical game model
G of a much larger game of interest, called the true game G, from simulation
data. A typical EGTA process (see Fig.2) iteratively refines and extends G
by cumulative simulation over an incrementally growing strategy space. Gisa
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simplification of the underlying G since: (1) it is defined on restricted subsets
ﬁ'j C X; of the players’ true-game strategy spaces, and the restricted strat-
egy profile space, given by Y= X;Lzlffj is typically a vast reduction of X; (2)
some information revelation and conditioning structure may be abstracted away.
Moreover, we assume that G is accessible only through a high-fidelity but expen-
sive simulator that executes a given strategy profile in G and outputs limited
observation histories and noisy utility samples. G is thus also an approximation
of GG since its parameters must be estimated from this simulation data.

Almost all EGTA literature to date expresses game models in normal form,
given by a (multi-dimensional) matrix of payoff estimates for combinations of
agents’ strategies from the restricted set. The multi-agent scenarios themselves
are typically dynamic in nature, as represented by an agent-based simulator;
agent strategies are generally conditional on partial observations. For example,
a normal-form game model for GAME; in Sect. 2.1 would treat each pure strategy
ﬂé/ of player 2 as atomic, abstracting away the nuanced conditioning on whether
A or B happened, and record estimated utility vectors for strategy combinations
of the form (%, 7%) from restricted set.

As our objective is to extend EGTA to extensive-form modeling, we will
call this normal-form baseline NF-EGTA. In NF-EGTA, the sole simulator out-
put of concern is the noisy sample of players’ payoffs, from which we compute
estimates {UjNF (o)}, of the true utilities {U;(0)}7_; to obtain the empirical
game model G. We then analyze or solve this tractable, multi-dimensional game
matrix by standard techniques to obtain a result for the next iteration. Termi-
nation may be decided by a criterion such as the true-game regret of a solution
(i.e., the maximum payoff increase achievable by any player j by deviating to a
strategy in X; rather than b)) ;) falling below a specified threshold. If termination
criteria are not met, we expand the restricted strategy sets through a process
called strategy exploration (Balduzzi et al. 2019; Jordan et al. 2010), and update
G through further simulation and model induction.

Game Model Estimation. Consider the process of estimating a normal-form
model for an underlying extensive-form game implicitly represented by traces
from the simulator. Suppose we simulate each strategy profile in 3 m times. Each
simulated play traces a path through the game tree ending at some undisclosed
terminal node t € T" and returns a vector of noisy payoffs for all players sampled
from a distribution with expectation u(t). Let {u}}7_, denote the realized payoff
sample at the end of the " simulation for i = 1,...,m; Typically, NF-EGTA’s
payoff estimate UM (o) is the simple average of these samples. UN (o) is an
unbiased estimator of the true payoff, as shown in Proposition 1. In practice,
the number of samples m that can be acquired is limited by the computational
cost of simulation. This begs the question: can incorporating tree structure into
G improve the accuracy of estimated payoffs, relative to NF-EGTA, for a fixed
simulation budget m? We address this question in Sect. 3.1.

Proposition 1. For every player j € N \ {0} and strategy profile o € >,
E[0} (0)] = Uj(o).
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Policy-Space Response Oracles (PSRO). A fully automated implementa-
tion of the iterative EGTA framework of Fig. 2 requires the ability to automati-
cally generate new strategies based on analysis of the empirical game model at
a given point. Phelps et al. (2006) first introduced automated strategy gener-
ation to EGTA via genetic search, and Schvartzman and Wellman (2009) first
employed RL for this purpose. The advent of deep RL methods brought sig-
nificant new power to this approach, which is now the predominant means of
accumulating a set of restricted strategies in EGTA algorithms.

Lanctot et al. (2017) developed a general framework for interleaving empir-
ical game modeling with deep RL techniques, which they termed policy-space
response oracles. A key idea of PSRO is that of a meta-strategy solver (MSS),
an abstract operation that implements the “Analyze Empirical Game” block of
Fig. 2. The output of an MSS is a strategy profile, which provides the other-
agent context for a BR calculation performed by deep RL. The policy generated
by RL as a BR to the MSS result is then added as a new strategy to expand
the current restricted strategy space, leading to another round of simulation
and induction for the next EGTA iteration. The MSS concept provides a useful
abstraction for expressing a variety of approaches to strategy exploration (Wang
et al. 2022). For example, using Nash equilibrium as an MSS yields the double
oracle (DO) algorithm (McMahan et al. 2003). If the MSS simply returns the
uniform distribution over the restricted strategy sets, the algorithm reduces to
fictitious play.

Prior work has extended the DO algorithm to exploit game-tree structure.
Bosansky et al. (2014) developed a sequence-form double-oracle algorithm for
zero-sum EFGs that maintains a restricted game model based on partial action
sequences. The XDO algorithm of McAleer et al. (2021) for two-player zero-sum
games computes a mixed BR at each information set, as compared to normal-
form DO which mixes policies only at the root level. It modifies PSRO for EFGs
while still using a normal-form empirical model. The benefits over normal-form
demonstrated by these works suggest EGTA can be similarly extended to exploit
game-tree structure beyond the strategy exploration block.

3 Tree-Exploiting EGTA

We call our approach for augmenting empirical game models to incorporate
extensive-form game elements tree-exploiting EGTA (TE-EGTA). In the typi-
cal normal-form treatment of EGTA, the underlying game is parameterized by
entries in a payoff matrix {U;(o)};en fo}.0ex." TE-EGTA instead parameter-
izes the underlying game to capture the EFG tree structure through a set of leaf
utilities {u(t)}ter, and conditional probability distributions that are dependent
on possibly unobserved previous choices made in the game play and estimated
from observations of stochastic events.

! More general approaches based on regression have been proposed (Sokota et al. 2019;
Vorobeychik et al. 2007), which also amount to parameterized representations of a
payoff function.
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We assume that the structure of decisions and stochastic events in the empir-
ical EFG model is given (typically a high-level abstraction of the game tree
implicitly represented by the simulator, as discussed in Sect. 3.2). This ensures
that the order of player choices and stochastic events in the empirical game
tree matches the order in the true game, from root to leaf. In particular, the
true game’s information sets must be a refinement of the empirical game’s infor-
mation sets. Given this structure, we treat observations of Nature’s actions as
conditioned on past game play. The empirical game tree therefore must associate
with each chance node a conditional probability distribution over the relevant
set of outgoing edges. Leaves of the tree are associated with payoff estimates,
which depend on the entire path from the root.

Each simulation of a strategy profile yields sample payoffs, as well as a trace
of publicly or privately observable actions from both the players and Nature that
are made over the course of the game. This is a key point of contrast with the
normal-form model, for which only payoffs are relevant. The trace of actions tells
us which leaf node in the abstract model is reached and what stochastic event
outcomes were realized along the way.

To explain our tree-exploiting estimation approach, we first restate the
expression for U;(o) in a way that explicitly factors in probabilities of specific
observations of stochastic events. We assume that a game theorist working with
the black-box simulator’s partial observations in order to formulate an empirical
model is aware of the game’s rules, and so can surmise where in the game the
observation has occurred. We also assume that the observation labels used by the
simulator allow the game theorist to distinguish the observations from each other
and associate them with the appropriate chance nodes. A stochastic observation
during gameplay is captured in the tree by an edge e € ¢(t,0) from a chance
node h such that V(h) = 0 to a node with history he. The reach probability of
he from the perspective of Nature is ro(he) = P(e | h), and recall ro(t) is the
joint probability of Nature’s choices along the path from the root to t. Hence,

Uj(o) =Y ui(t) [T et ox)ro(t). (1)
k=1

teT

3.1 TE-EGTA Game Model Estimation

The probabilities 7 (t, ok ), for all terminal nodes ¢, are directly determined by
the strategy profile o. Hence, to estimate U;(o) based on Eq. (1), we need
estimates for u(t) and {rq(¢)}+cr. These are, in fact, the game parameters for
TE-EGTA (leaf utilities and conditional probabilities respectively) that we intro-
duced above. We denote the respective estimates by {1;(t)}7_; and {7o(t)}ier-

A key feature of TE-EGTA is that, in modeling the payoff of strategy pro-
file o, we estimate the parameters using all relevant simulation data, not just
the data from simulating o. Different strategy profiles may lead to overlapping
or identical paths being taken through the game tree, with some probability.
We compute #,;(t) as the sample average of player j’s payoffs across simulation
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runs that terminate at node t. Similarly, we estimate chance node probabilities
using all simulations. Suppose a chance node h is reached m; times across all
simulation data, and the node with history he (reflecting Nature’s choice e) is
reached mpe < my times. The empirical probability of observing the stochastic
outcome represented by e in the game tree is 7=. Note that mj, can never be
zero because the algorithm for constructing the empirical game model includes
only nodes that are reached in simulation. Finally, we give player j’s estimated

payoff for strategy profile o:

U7 (0) =3 ay(t) [[ ratton) | J[ ke
k=1

mp
teT e€p(t,0)

Recall that each strategy profile o in Y is simulated m times, resulting in m
game play sequences for each. Some strategies that end at different terminal
nodes t; and to may still include the same node h in their respective paths and
result in the same observation e € X (h). The observation occurs with the same
probability for both strategies since their histories diverge only at node he. This
feature is what allows the empirical game model to take into account the role of
different decision points in the formulation of player strategies in a way that the
normal-form model does not.

To illustrate the difference in model estimation between NF- and TE-EGTA,
consider the following example from GAME;. Suppose we simulate the strategy
profile (7}, 73) 10 times, and obtain the following payoff samples for Player 1:
99,95, 100, 96, 95, 100, 92, 95, 93, 94; we also observe outcome A of the stochastic
event in the first 6 of these 10 simulations. NF-EGTA would simply average
the 10 payoff samples and record UNF (n), 7}) = 95.9. In contrast, TE-EGTA
distinguishes the 6 samples corresponding to the leaf (n{, A,7},) from the 4
samples corresponding to the leaf (71, B, Wé ), and separately averages them to
get the estimates 41 (7], A, 7} ,4) = 97.5 and 44 (7], B, 7}5) = 93.5. Now, suppose
we also have data from 10 simulations of another strategy profile (7}, 73), 73 #
73, A being realized in 5 of these simulations. From this experience, our overall

1

estimated probability of A conditioned on m; is 181‘;’0 = 0.55. Thus, using all

relevant sample data, UZ (z}, 73) = 0.55 x 97.5 4 (1 — 0.55) x 93.5 = 95.7.

The following proposition shows that, like NF-EGTA, TE-EGTA produces
unbiased estimates of strategy-profile payoffs. However, our theoretical results
in Sect.4 suggest that TE-EGTA offers more accurate payoff estimates with a
high probability.

Proposition 2. For every player j € N \ {0} and strategy profile o € >,
Evr(ro) U2 (0)] = Uj(o).

3.2 The Game Model as an Abstraction

Abstraction methods have extended the state of the art in solving imperfect-
information games over the years (Sandholm 2010), particularly poker. An
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abstraction algorithm takes as input a complete game description and produces
a simpler version of the tree. TE-EGTA incorporates some of the tree structure
from the true game into the empirical game model; in order to ground this game
model as a coarse abstraction of the underlying game, we describe Coarsen, an
algorithm that coarsens a game tree by abstracting away chance nodes.

We express coarseness as the fraction of chance nodes from the true game
that are included in the empirical game model. An empirical game that matches
the true game’s structure would include all of them; conversely, an empirical
game in normal-form would include none of them. We are primarily concerned
with games represented by agent-based simulation where the representation of
the true game as an EFG is intractable, and thus we would not expect to obtain
a coarsened model by actually applying Coarsen. Our intent is to contextualize
a coarsened game as one that could in principle be produced by abstracting away
chance nodes.

Coarsen Algorithm for coarsening an input game G

Require: Input game G, partition C' C C and map p: C' — X
Copy H' = H, with each node h represented by its history
for ¢ € C’, beginning at the chance node furthest from the root do
Let I;(c) be the set of infosets induced by each event e € X(c) for player j.
Compute power set Z* of intersections Z = ﬂlelj(c>{h | he € I} of all the
histories h across I;(c).
for Z € Z* do
{I},II}(I})}, H" = Coarsenlnfosets (I;(c), Z, p, G)
Assign X'(c) = X(c) \ p(c)
T}, II; = CondenseBranching ({1}, IT;(I})}, T})
end for
end for
Assign X'(c) = X(c) for all ¢ ¢ C'.
Assign all player j’s infosets not conditioned on chance events from any ¢ € C’ to Z;
For all nodes h that preceded or did not follow any nodes in C’, assign V' (h) = V(h)

return G/ = (Na H/a V/) {Zl}?:la {Hjl'}?:th)

The algorithm is given a partition of both G’s chance nodes C = {h € H |
V(h) = 0} and the set of outcomes X (h) for each chance node, denoting what to
exclude from the coarsened tree. One important restriction on G is that the child
nodes of a given chance node in C’ must all belong to the same player so that
they can be collapsed into one node. We denote the abstracted game by G’ =
(N, H' V! AT {1}, X') whose components are defined as in Sect. 2.
The nodes identified, information sets, and action spaces will necessarily differ
from those of G, depending on what information is coarsened and where. Without
loss of generality, Coarsen treats both G and G’ as binary trees in order to
limit the branching factor of G’. CoarsenInfosets transforms the intersecting
information sets of the children of each ¢ € C’ into a new information set for G’
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whose action space is the Cartesian product of the old infosets’ action spaces. To
keep the branching factor equal to 2, CondenseBranching transforms these
action spaces (comprised of tuples) into binary (sub-)trees where each edge is
part of an action tuple.

3.3 Tree-Exploiting PSRO

Recall the PSRO framework for iterative EGTA with deep RL, introduced
in Sect. 2.2. Like EGTA more generally, past work within the PSRO framework
has relied on normal-form representations of the empirical game, even though the
games of interest are inherently sequential. We call PSRO that uses a normal-
form (resp. tree-exploiting) empirical game NF-PSRO (TE-PSRO). In addition
to exploiting extensive structure for estimation (Sect.3.1), TE-PSRO also takes
advantage of the tree representation for managing the restricted strategy space.
A single pure strategy profile can result in multiple different paths depending on
Nature’s choices. If a new best response for a given infoset is part of the profile,
new paths with their own new utilities and stochastic distributions at Nature’s
decision points are discovered and added to the empirical game tree. If one of
those paths includes moves from other players that are already part of the game
tree, then additional samples from this new combination can be included in the
(tighter) estimation of the old parameters pertinent to that path.

Consider the empirical game in Fig. 3a with restricted strategy sets I, o4,
and I1yp for each information set as shown; the true game here is GAME;. Let
BRi(024,025) and (BRga(01), BRep(01)) denote the respective best responses
from GAME; (the true game) to the strategy profile (o1, (024,025)). Suppose,
in an iteration, BR1(024,025) = 7}, BRoa(01) = 73,4, and BRggp(01) = Thp.

(b) Update after best-response computa-
(a) Starting empirical game tree.  tion.

Fig. 3. Two successive steps of possible TE-PSRO instantiation on GAME;.

In the next round, the new best-response elements are considered in conjunc-
tion with the pre-existing strategy combinations from the restricted set, as well as
other players’ new best responses. The resulting trajectories are shown in Fig. 3b:
(1) BRy x ITg4 X II2p highlighted in yellow; (2) I1; x BRga X ITop highlighted in
blue; (3) ITy X ITg4 X BRgp highlighted in orange; and (4) (BR1, BRga, BR2p)
highlighted in purple. See the full paper for more detail. This expansion of the
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empirical game tree captures finer-grained structural information about the true
game than simply adding a matrix entry for each new best-response combination.

4 Payoff Estimation Improvement: Theoretical Results

To develop a formal framework for comparing the efficacy of payoff estima-
tion (Sect.3.1) by TE-EGTA and NF-EGTA, we apply the concept of uniform
approximation of a game (Areyan Viqueira et al. 2020) to our setting. Consider
a true EFG G and an empirical game G with the same set of players and with
restricted set ¥ constructed from accumulated simulation data upon termina-
tion of EGTA. Let Uj (o) be the estimate in G of an arbitrary player j’s true
payoff under strategy profile o.

Definition 1. The {.,-norm between games G and G is given by

1G=Glle= max [Uj(o)=Uj(a)|.

JEN\{0},0eX

If || G — G ||< ¢, then G is said to be a unifor e-approzimation of G.

Note that in this definition, the maximization is only over the restricted set
Y C X An important consequence of G being a uniform approximation of G
upon EGTA’s termination is that a strategy profile that is an approximate Nash
equilibrium in G is an approximate Nash equilibrium in G as well:

Proposition 3. If G is a uniform e-approzimation of G and o is a y-Nash
equilibrium of G' for some v > 0, then Reg;(a) < 2¢ + v for each player j €
N\ {0} upon the termination of EGTA.

The main result of this section is that for a given EFG, under reasonable
assumptions, TE-EGTA induces an empirical game model that is a tighter uni-
form approximation of the EFG than that induced by NF-EGTA, with a high
probability. Given an arbitrary true game G, let Gnp and G denote respec-
tively the empirical game models induced by the application of NF-EGTA and
TE-EGTA to G over the same restricted set 3.2 We further assume an upper
and a lower bound for all agent payoff samples returned by the simulator. Let ¢
be the number of strategy profiles from the restricted set that, after each profile
is sampled m times, result in a path taken through the tree that includes the
first edge of (t). ¢ can be as small as 1 and as large as O(]Y};]) for some j € N
depending on the game structure and when the selected EGTA method termi-
nates. Combined with Proposition 3, we have the following result, which also

2 In the iterative application of EGTA, the NF- and TE- variants may produce different
choices of strategies to add; hence, strategy sets covered at a given iteration number
tend to diverge. However, for comparing model estimation accuracy, however, it
makes sense to start with a common baseline of strategy space. Our experiments
(Sect. 5) provide empirical corroboration that the benefits accrue as well when we
examine the trajectory of models produced within the iterative PSRO framework.
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implies a tighter upper bound for player regret in G under approximate equi-
libria in the empirical game model computed using payoffs estimated through
TE-EGTA.

Theorem 1. For any § € (0,1) and the same number m of game simulation
repetitions in each iteration of either type of EGTA, there exist positive constants
enr and g such that Zﬁ = ﬁ, and with probability at least 1 — 6 w.r.t. the

randomness in the simulator payoff output, Gyr (respectively, GTE) is a uniform
enp-approximation (respectively, € rg-approximation) of G.

5 Experiments

We conducted two sets of experiments comparing TE-EGTA with varying levels
of tree structure exploitation to NF-EGTA. Each set used three different EFGs,
chosen so that the corresponding empirical game models induced by our flexible
tree-exploiting framework would vary in size and complexity. We implemented
a simulator for each game that produced observations in accordance with the
corresponding stochastic events, and end-state payoff samples that were normally
distributed about the true utilities at the respective terminal nodes with a noise
variance € = 0.1. The first game was GAME; (Sect.2.1). In our experiments, for
each instance of GAME;, we randomly assigned P(A | %) from UJ0, 1] for each
7t € II; and u(t) from {0,0.25,...,4.75,5} for each leaf utility. During each
game play sample, the simulator returned the realized outcome A or B of the
single stochastic event and a noisy payoff vector.

The second game was GAMEs, an extension of GAME; having a second
stochastic event eg € {C, D} after Player 2’s turn and a second turn for Player 1
afterward. Player 1 only observes its first action and the second event es. Thus
Player 2 has 2 information sets whereas Player 1 has 1+2-10 = 21. For its second
turn, Player 1 has ten options depending on which outcome of es it observed:
i = {m\:}1% and II;p = {7’ }%,. See the full version of this paper for
an illustration. For each instance of GAME2 and each 7, (respectively, m%p),
we sampled P(C | A,7h,) (respectively, P(C | B, b)) from U[0,1]. Each leaf
utility was chosen uniformly at random from the set {0,0.1,...,9.9,10}. We
experimented with two game model forms: one for when the simulator returned
a noisy payoff vector and e; only, and one for when it returned the vector and
outcomes of both events.

The final game was GAME3, which begins with a stochastic event e; €
{A,B,C,D}. Player 1 observes the event and then takes a turn, choosing one
of four possible actions. Next, Player 2 observes the event (but not Player 1’s
action) and also chooses from four possible actions. This 3-round sequence is
repeated twice, but in each subsequent sequence, the only outcomes available to
Nature and the agents are the remaining ones that have not yet been chosen.
For instance, if e; = A, then Nature can only output e; € {B,C,D} dur-
ing its second turn and ez € {B,C, D} \ {e2} during its third. Likewise, the
players are restricted to the actions that they have not yet played in the pre-
vious 3-round sequence(s). Since the players are only unable to observe the
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other player’s actions during the current 3-round sequence, each player has
4+43.3+43.33%.2 = 3652 information sets. To compare the effects of varying
degrees of tree exploitation, we examined three different game model forms: (1)
simulator reports observation e; only; (2) simulator reports e; and e only; and
(3) simulator reports all three events. We believe that a model that includes
only the first stochastic event would generally yield only a negligible difference
in accuracy from a model that includes only the second (or third) stochastic
event.

Each iteration of EGTA had a fixed budget of 500 total samples available for
all strategy combinations to be fed into the simulator for GAME; and GAME;.
Due to the larger size, we allotted 5000 total samples for GAME3. We ran the
experiments for GAME; on a standard laptop (Quad-Core Intel Core i7 Proces-
sor, 2.7 GHz, 16 GB RAM). Each repetition of both TE-PSRO and NF-PSRO
for GAME; finished in less than 1min. We ran the experiments for GAME, and
GAME3 on a single core of the Great Lakes Slurm cluster at the University of
Michigan, with 786MB of memory. NF-PSRO on GAME, consistently finished
within 6 min, and took 4-90 min for GAME3;. TE-PSRO required between 3 min
and 5h for GAME, (depending on the MSS used, see Sect. 5.2), and at most 1h
for GAME3. All figures include the metrics’ initial values at time-step 0.

5.1 TE-EGTA Payoff Estimation

The aim of the first set of experiments was to assess the improvement in strat-
egy profile payoff estimation produced by incorporating the EFG tree structure
into the empirical game model. We ran NF-EGTA and TE-EGTA on each true
game with the same number m = 500 of simulations for each strategy-profile
payoff vector estimation. To update the game model for either variant of EGTA,
we implemented the PSRO framework using an oracle that returns the best
response to the other player’s strategy for GAME; and GAME;. However, the size
of GAME3 made a best response oracle infeasible, so we instead used Q-learning
to compute an approximate best response from the true game. For newly selected
strategy profiles that were simulated in each iteration, we computed estimated
payoffs U]NF (o) (resp. UjTE (o)) for NF-EGTA (resp. TE-EGTA) from accumu-
lated simulation data using the approach described in Sect. 2.2 (resp. Sect. 3.1).
We evaluated the estimation error for that iteration of either variant as the
average absolute difference between true and estimated payoffs for all players
over all strategy combinations in the current empirical game. We repeated this
operation for 25 initial restricted sets, each consisting of a single randomly cho-
sen policy, and reported the estimation error averaged over all 25 repetitions for
each iteration of PSRO in Fig. 4.

As the plots show, TE-EGTA achieves significantly lower payoff estimation
error compared to NF-EGTA across all games. It is also clear that while the vast
number of infosets in GAME3 led NF-EGTA to perform worse as more strategy
combinations were added despite an unchanging sample budget m; such was not
the case for TE-EGTA, which converged very quickly. We attribute this to the
relatively small number of actions (2, 3, or 4) available at each information set, as
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Fig. 4. Average estimation error of strategy payoffs over the course of EGTA’s run-
time. Shaded areas represent the standard error of the mean. The estimation errors
at iteration O are identical since the restricted sets for both models contain the same
randomly chosen policy; hence, they are omitted.

well as the large number of infosets relative to the total number of game paths.
Q-learning returned a best response for every infoset that could be reached,
given o, so the empirical game ceased growing after only a few iterations. Finally,
we note that the more stochastic events included in é, the more tree structure
is exploited by TE-EGTA, and the lower the resulting payoff error. In fact, the
inclusion of even a single stochastic event or round in the model dramatically
decreased the payoff error in comparison to NF-EGTA.

5.2 Iterative Model Refinement in PSRO

Our second set of experiments compared the power of NF-PSRO and TE-PSRO
to iteratively explore the EFG’s strategy space and fine-tune their respective
empirical game models. PSRO terminates once no new best responses can be
added to X. To evaluate the efficacy of this iterative fine-tuning, we computed
the regret Reg(o) (as defined in Sect.2.1) in the true game G of the solution o
returned by the MSS in every iteration.

For NF-PSRO, we used the Python-Gambit interface to represent the empir-
ical game and used Gambit’s 1cp solver as the MSS. The solver takes as input an
NFG or EFG, converts it into a linear complementarity program, and solves for
all NE. We also used the 1lcp as the TE-PSRO solver for GAME; and GAME,. It
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Fig. 5. Average regret of solution profiles over the course of PSRO’s runtime. Shaded
areas represent standard error of the mean.

is important to note that Gambit’s solvers can become intractable for medium
or large game trees. However, when possible, we intentionally chose an MSS that
finds exact solutions to the empirical game in order to minimize any error/vari-
ability in the solutions resulting from the iterative process of adding strategies
and fine-tuning the empirical game models. For medium-to-large game trees like
GAME3, we used counterfactual regret minimization (CFR) (Zinkevich et al.
2007) to find an approximate NE and Q-learning to learn an approximate best
response from the true game. We used CFR as the MSS for GAME; as well for
comparison to the exact lcp solver. As in Sect. 5.1, we repeated PSRO for 25
different restricted sets, each consisting of a single, randomly chosen strategy
profile. We report the regret curves, averaged over 25 repetitions, in Fig. 5.
TE-PSRO converged on average to a regret at least as tight as NF-PSRO
using the same simulation budget and regardless of which pure o the initial
restricted set contained. It also converged in fewer iterations, particularly in
GAME; and GAME;3 as more tree structure was included in G. Additional plots in
the full version of this paper demonstrate the same result for different numbers
of samples. However, the standard error shadings for GAME; overlap mainly
due to the high volatility in NF-PSRO regret in earlier iterations. Since, in
each iteration, we add new, pertinent best responses to ZAJ, we hypothesize that
their absence from the previous strategy space caused the regret to increase. A
one-sided two-sample t-test on each of the iterations of GAME;’s regret curves
established that TE-PSRO’s regret improvement was statistically significant.
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These results suggest that including even some tree structure in G results in
PSRO converging at least as quickly and to a solution that has lower regret in
the true game.

6 Conclusions and Future Work

This study represents a first step towards the goal of leveraging extensive-form
structure within the EGTA framework. Our work complements prior research
that showed benefits of exploiting tree structure in game reasoning and learn-
ing, for example studies that demonstrated advantages of extensive form in tech-
niques based on the double oracle algorithm (Bosansky et al. 2014; McAleer et al.
2021). In future work, we hope to draw on further insights from this line of work,
combining the best features of techniques from game reasoning, machine learn-
ing, and simulation-based game modeling. One particularly fruitful direction
may be consideration of strategy exploration methods that explicitly consider
extensive structure in the currently defined strategy space.
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