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Abstract— Traditional geometric mechanics models used in
locomotion analysis rely heavily on systems having symmetry
in SE(2) (i.e., the dynamics and constraints are invariant
with respect to a system’s position and orientation) to simplify
motion planning. As a result, the symmetry assumption prevents
locomotion analysis on non-flat surfaces because the system
dynamics may vary as a function of position and orientation.
In this paper, we develop geometric motion planning strategies
for a mobile system moving on a position space whose manifold
structure is a cylinder: constant non-zero curvature in one
dimension and zero curvature in another. To handle this non-flat
position space, we adapt conventional geometric mechanics
tools - in particular the system connection and the constraint
curvature function - to depend on the system orientation. In
addition, we introduce a novel constraint projection method
to a variational gait optimizer and demonstrate how to design
gaits that allow the example system to move on the cylinder
with optimal efficiency.

I. INTRODUCTION
Self-powered locomotion, in which systems coordinate

their internal degrees of freedom to move through a
complex environment, is an important capability for both
living organisms and robots [1]. To study this, geometric
mechanics has been widely applied to develop effective
motion plans for locomoting systems [2]. The geometric
mechanics framework divides a system’s configuration space
into two constituent spaces: a position space and a shape
space. The position space locates the system, and the shape
space corresponds to the system’s internal shape (such as
its joint angles). Our on-going research, along with many
others [3]-[11], seeks to create a rigorous formulation for
those systems to move through a series of self-deformations.

Often, one must look at a simpler system to gain an initial
understanding of the fundamental principles. A common
locomotion model is the so-called three-link mobile robots
[12] [13], because its mathematical formulation is tractable
and yet elucidates many challenges common to more
complicated multi-link systems. Much of the mathematical
elegance of the three-link robots arises from their inherent
symmetry, which corresponds to the specification that the
system’s dynamics and constraints are invariant to changes in
the system’s position and orientation [6][7][12]. Other than
a few exceptions in [9] and [10], most existing studies of
three-link locomoting systems avoided symmetry-breaking
problems and limited their analyses to planar surfaces.
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Fig. 1. Isometric view (left) and top view (right) of the quasi-static
system on cylinder moving on a inner cylindrical surface using the optimal
efficiency gait.

In this paper, we are interested in systems locomoting on
non-flat terrains, which violates the symmetry assumption.
To this end, we study a novel three-link model called the
system-on-cylinder. This new model allows us to explore to
what extent the conventional geometric concepts, such as the
local connection and the Lie bracket techniques, can be used
in motion planning on a curved position space [14].

Using this three-link model, we show that a rotational
asymmetry arises when the system’s mechanical constraints
vary over the position space, and that the overall system
motion over a gait depends on the initial orientation of the
system body. Furthermore, we present a gait optimization
strategy adapted from [17]-[19] that addresses the rotational
asymmetry of the system-on-cylinder.

II. BACKGROUND

Our work is based on a series of developments in
geometric mechanics community, including [2]-[17]. In this
section, we review several key concepts and notations in
the framework of geometric mechanics that our paper will
closely follow.

A. Geometric Locomotion Model

For a three-link system, the configuration space Q
naturally decomposes into a position space G and a shape
space M , such that the position g 2 G locates the system
in the world frame, and the shape r 2 M tells the relative
arrangements of each component of the system. For systems
with first-order dynamics, there exists a linear relationship
(which itself is a function of shape) between changes in the
system’s shape and changes in its position

g̊ = �A(r)ṙ, (1)

in which g̊ represents the system body frame velocities, and
ṙ represents the shape velocities. Equation (1) is called the
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kinematic reconstruction equation, in which the matrix A(r)
is the local connection and acts as a Jacobian-like matrix
linking the shape velocities and the position velocities [2].
Each row of �A(r) relates one position component with
respect to all of the system shape components.

B. Gaits

A gait is a cycle ⌦ in the shape space that produces a
displacement g⌦ in the position space. One line of effort
to find good gait designs [13]-[14] focuses on measuring
how “non-canceling” the system dynamics are over periodic
shape changes. The core principle is that the net displacement
g⌦ of a gait can be approximated – although the accuracy
of the approximation depends on the choice of the system
body frame – by a surface integral of the constraint curvature
D(�A) of the local connection [14]

g⌦ =

˛
⌦
�gA ⇡

¨
⌦a

D(�A). (2)

The right side of (2) is formally known as the corrected
body velocity integral (cBVI) [14]. The core contribution
in this line of work is to recognize the approximated
displacement induced by a gait depends only on the gait’s
path in the shape space. In (2), D(�A) captures both
how changes in A across the shape space prevent the
net-induced motions from cancelling out over a cycle, and
how translations and rotations in the induced motions couple
into “parallel parking” effects that contribute to the net
displacement.

C. Identifying Optimal Gaits

When evaluating the design and performance of three-link
robots, we care about finding the best gaits that
achieve specific objectives, such as yielding the maximum
displacement g⌦ or moving with optimal efficiency g⌦

s
(efficiency is defined as the gait displacement divided by
the gait execution cost s)1. Although several gait design
strategies exist in [19]-[20], in this paper we focus on using
the variational gait optimizer introduced in [17]. This gait
optimizer has several advantages. First, it encodes geometric
mechanics insights into a fast and theoretically-sound
variational algorithm. Second, the optimizer automatically
converges to locally optimal results while providing easy
ways to specify different cost functions.

The variational gait optimizer uses a gradient-descent
based solver to facilitate optimization. For example, to find
the optimal efficiency gait, the optimizer searches for gaits
along the gradient of efficiency g⌦

s with respect to the gait
parameterization p until the gradient goes to zero [17]

rp
g⌦
s

=
1

s
rpg⌦ � g⌦

s2
rps. (3)

1The gait displacement g⌦ can be calculated using (2), and the gait
efficiency g⌦

s can be calculated under different system assumptions as
specified in [17] and [18]. In our study, we use the weighted pathlength
cost in [19] for drag-dominated systems.

Fig. 2. (Left) the shape variables ↵1 and ↵2 are the control joint angles
of the system-on-cylinder. (Right) the position variable ✓ is the angular
coordinate of a cylindrical system, whose origin is located at some point
along the cylinder centerline. z is the vertical distance between the cylinder
contact point and the origin of the cylindrical system. � is the orientation
of the link in 3D projected onto local tangent plane (shaded blue).

After factoring out a common coefficient of 1
s , the first part

of the gradient rpg⌦ contributes towards the displacement
maximization

rpg⌦ ⇡ rp

¨
⌦a

D(�A) =

˛
⌦
(rp?⌦)y(D(�A)), (4)

where the net displacement is approximated by the area
integral of D(�A), which is then transformed into the
interior product of boundary gradient and integrand using
the Leibniz’s rule [21]. Similarity, rps in the second part
of the gradient constrains the growth of the gait trajectory
by measuring how variations in the gait affect the cost of
executing it.

III. MECHANICAL MODEL OF THE SYSTEM ON
CYLINDER

To study how non-flat surfaces break the symmetry of
three-link systems and subsequently affect their motion,
we start with a simple model designed to constrain its
locomotion to a cylindrical surface. In this section, we
first describe the mechanical structure of this model we
call the system-on-cylinder, and then we investigate what
geometric mechanics tools can be used to analyze the
system’s locomotion.

A. System Setup

The system-on-cylinder consists of three rigid links with
semi-circular “friction“ pads located at the link centers. The
friction pads are assumed to be in contact with the inner
wall of the cylinder at all time as if the pads were magnetic
and the cylinder metal. Each pad provides linear drag forces
with respect to the velocities along and perpendicular to the
corresponding link, and a linear torque with respect to the
link’s angular velocity. For simplicity, we assume gravity has
no effect on the friction model. We specify the links in the
system to be connected by 3D joints. Each 3D joint has full
yaw (↵), pitch (�) and roll (�) degrees of freedom as shown
in Fig.3.

Using the cylindrical coordinates, each contact point
between the friction pad and the cylindrical surface defines
a local tangent plane with the coordinates [✓, z] as shown
in Fig.2. Furthermore, we specify the orientation of the link
using the angle � between the link itself and the cross-section
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Fig. 3. An example drawing of the 3D joint connecting the links of the
system-on-cylinder. The joint angles ↵, �, and � move in tandem. Given
a particular system orientation � and the control angles ↵, the compliant
angles � and � can determined accordingly.

of the cylinder, projected onto the local tangent plane. For a
cylindrical surface with a constant radius R, the position and
orientation of each link i can be uniquely defined by the set
of position variables [✓i, zi, �i] in Fig.2. For the rest of the
paper, we will use the middle-link position space variables
to represent the system positions ✓, z and orientation �.

To succinctly describe the system configurations, we
impose two important mechanical constraints:

1) Each friction pad has one and only one contact point
with the inner cylindrical surface, and the pads are
perpendicular to the local tangent planes of the cylinder
wall at the contact points.

2) Both ends of the middle link have the same distance to
the cylinder center line, so that middle link is parallel
to the local tangent plane.

With constraint 1), the 3D joints can be controlled by the
three rotational joint angles ↵, �, and � in sequence and form
a unique system shape. Adding in constraint 2), we ensure
that when one of the three angles of a 3D joint is controlled,
the other two can be uniquely determined by functions of
the control angles and the system orientation �. We choose
the two yaw angles [↵1, ↵2] as the shape variables and they
dictate the links’ relative positions with respect to each other.
Subsequently, the pitch and roll angle pairs (� and �) become
compliant. The relationship between the joint angles ↵,�, �
and the orientation variable � are purely geometric, and it
can be described by the following equations 2

(2(R� d) + l sin�)2 + l2(cos�+ · · ·
cos� cos(↵� �))2 � 4(R� d)2 = 0, (5)

and

l(sin(�o + ↵) cos � � cos(↵+ �) sin� sin �)(cos�+ · · ·
cos(�+ ↵) cos�) + cos� sin �(2d� 2R+ l sin�) = 0,

(6)

2The control and compliant angle relationships in (5) and (6) are purely
geometric, established by both the two mechanical constraints imposed on
the system configuration and the curvature of the cylindrical surface. The
two equations calculate the � and � angles for the distal link (i.e. link i+1)
in the system but can be adapted for the proximal link (i.e. link i� 1) with
appropriate sign changes.

where R is the cylinder radius, l is the link length, and d
is the friction pad height. The equations provided above are
for the system moving on the inward surface of the cylinder,
but they can be generalized to the system moving on the
outward cylindrical surface with a few sign switches.

The complexity of (5) and (6) makes it hard to obtain
analytical solutions whenever � and � are involved. For this
reason, we represent many of the variables as the sum of
partial derivatives and solve them numerically.

B. Orientation-Dependent Local Connection

When establishing the mechanical setup of the
system-on-cylinder, we assume that the drag forces
induced by the friction pads dominate the dynamics, and
inertial effects are immediately damped out. This allows us
to make the system-on-cylinder a quasi-static model and
reduce the second-order dynamics down to the first-order.
At each link, the drag force is linearly related to directional
velocity

2

4
Fx

Fy

⌧

3

5 =

2

4
cx 0 0
0 cy 0
0 0 c✓

3

5

2

4
g̊x
g̊y
g̊✓

3

5 , (7)

in which g̊i is the body velocity of each link, cx, cy are the
drag coefficients along and perpendicular to the link, and c✓
is the rotational drag coefficient. Given that the total force on
a quasi-static system should equal to zero, we can transform
the force on each link to the center link frame and yield this
following equation

 
X

i=3

J>
i c Ji

!

| {z }
M

ï̊
g
ṙ

ò
= 0, (8)

where c is the diagonal drag matrix in (7), and Ji =
TgLg

�1
i (Jw

i )flTeLg maps between the body velocity of the
system and the body velocity of local link i. The 3 ⇥ 5 M
matrix is called the system full Jacobian matrix.

The inverse left lifted action

TgLg
�1
i =

2

4
cos(�i) sin(�i) 0
� sin(�i) cos(�i) 0

0 0 1

3

5 (9)

rotates the world velocity of each link to the link’s frame,
and

‡(TeLg) =

2

66664

cos(�) � sin(�) 0 0 0
sin(�) cos(�) 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3

77775
(10)

maps from the system body velocity to the system world
velocity. Jw

i is the Jacobian that maps between the world
velocity of the system and that of each link, and can be
calculated as
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Jw
i =

2

64
1 0 @R✓i

@�
@R✓i
@↵1

@R✓i
@↵2

0 1 @zi
@�

@zi
@↵1

@zi
@↵2

0 0 @�i

@�
@�i

@↵1

@�i

@↵2

3

75 . (11)

Taking the left three columns of the system full Jacobian
M to be the matrix w1 and the right two columns to be w2,
we can calculate the body velocity by

g̊ = �w�1
1 w2ṙ = �Ab(g,r)ṙ. (12)

Equation (12) is the reconstruction equation for the
quasi-static system on cylinder.

In the following sections, we drop the subscripts so that
Ab(g,r) becomes A. It is clear that from the derivation
above, the connection A acquires an extra dependency on
the system orientation �. Fig.4 visualizes this orientation
dependency by portraying the vector field formed by the first
row of A that varies with respect to different � values. The
effect of � comes from the expression of the system full
Jacobian M , and therefore it implicitly reflects how curvature
changes in different directions of the cylinder surface affect
instantaneous system motion.

C. Orientation-Dependent Constraint Curvature Function

The orientation-dependent connection A also affects how
the net displacement over a gait g⌦ is approximated using the
Lie bracket averaging techniques, such as the corrected body
velocity integral (cBVI). This is because the cBVI is the area
integral of the curvature of the connection A as shown in
(2); when values of A change with the system orientation,
so will the system’s cBVI. We recognize the cBVI as an
important aid to search for a system’s effective gait cycle, so
in this section we examine how system orientations can be
accounted for in the cBVI to correctly approximate the gait
displacement for the system-on-cylinder.

For small amplitude gaits in the shape space of the
system, the resulting motion can be captured by the use
of Lie brackets. With a specified input shape velocity ṙ,
the system-on-cylinder at configuration q = (r, g) has
position velocity ġ = TeLgA ṙ within the local tangent
plane shown in Fig.3 3. Moving with velocity ṙ = [↵̇1, ↵̇2]
can be interpreted as flowing along the vector field X(q)
defined over the full configuration space [14]

X(q) = q̇ =

ï
ṙ
ġ

ò
(13)

If we define two unit-magnitude input shape velocities

ṙ1 = [1, 0]> and ṙ2 = [0, 1]>,

then the following Lie bracket gives the average velocity
vector achieved by infinitesimally flowing along the vector
fields, evaluated at the initial configuration q0 = (r0, g0)
in the system world frame

3The term TeLg is the lifted action that maps the system’s body velocity
to its position space spatial velocity [14]

[q̇1, q̇2] =

ïÅ
ṙ1
ġ1

ã
,

Å
ṙ2
ġ2

ãò
(14)

=

"�
@ṙ2
@r ṙ1 �

@ṙ1
@r ṙ2

�
+
Ä
@ṙ2
@g ġ1 �

@ṙ1
@g ġ2

ä
Ä
@ġ2
@r ṙ1 �

@ġ1
@r ṙ2

ä
+
Ä
@ġ2
@g ġ1 � @ġ1

@g ġ2
ä
# ����

r0
g0

.

(15)

Taking g0 = e (placing the origin at the initial position
of the system) eliminates the lifted action terms [14]. Upon
simplification, the bottom three rows of the total Lie bracket
in (15) can be separated out into three major components,
and the final form of the total Lie bracket can be represented
as

[q̇1, q̇2]
��
qe

=

2

6666666666666666666666664

~0

�
Å
@A2

@r1

��
r0
�0

� @A1

@r2

��
r0
�0

ã

| {z }
�dA

+

ÅÅ
@(TeLg)

@g

��
q0
A2

��
r0
�0

ã
A1

��
r0
�0

ã

�
ÅÅ

@(TeLg)

@g

��
q0
A1

��
r0
�0

ã
A2

��
r0
�0

ã

| {z }
[A1,A2]

+

Å
@A2
@g

��
r0
�0

A1

��
r0
�0

ã

�
Å
@A1

@g

��
r0
�0

A2

��
r0
�0

ã

| {z }
rotational asymmetry term

3

7777777777777777777777775

, (16)

where qe is the identity configuration of the system in the
world frame, and r0, �0 are the initial shape and orientation
of the system.

Different than three-link system in SE(2) which only
contains the exterior derivative (�dA) and the local Lie
bracket [A1, A2], for the system-on-cylinder a third term
shows up due to the orientation-dependent connection A.
The combinatory effect of the exterior derivative, the local
Lie bracket, and the rotational asymmetry term is captured
by the notation D(�A), which is the curvature of the
connection r0 evaluated at system identity configuration qe.

D(�A) = �dA + [A1, A2] + rotational asymmetry term.
(17)

The effects of the exterior derivative and the local Lie
bracket have been carefully reviewed in [14] for three-link
systems in SE(2) and are not repeated here. However,
the rotational asymmetry term is a new appearance; it is
caused by the cylinder surface curvature which breaks the
system symmetry assumption. Nevertheless, there exists an
underlying parallelism between the previously discovered
local Lie bracket and the new rotational asymmetry
term. Whereas the local Lie bracket neglects the effect
of local connection A and explains the Lie bracket
non-commutativity induced by TeLg (the amount of rotation
between the world frame and system body frame), the
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Fig. 4. (Top) the forward-directional connection vector fields (first row of A) of the system-on-cylinder when the system is orientated at �0 =
0, ⇡

6 ,
⇡
4 ,

⇡
3 ,

⇡
2 , and ⇡ with respect to the world frame. (Bottom) the system constraint curvature function (CCF) in the forward direction (first row of

D(�A)) of the system-on-cylinder at various orientations. The red regions indicate positive CCF values whereas black regions indicate negative CCF
values. As � changes, both the connection vector fields and the CCF plots stretch in patterns related to the different surface curvatures at different directions
along the cylindrical surface.

rotational asymmetry term neglects the effect of TeLg and
explains the Lie bracket non-commutativity induced by the
different values of A at different position g in the world
frame.

IV. MOTION PLANNING USING CONSTRAINED
VARIATIONAL GAIT OPTIMIZATION

In section III, we have formulated equations that capture
the effect of rotational asymmetry on the system locomotion
for the system-on-cylinder. Equation (12) and (17), in
particular, establish theoretical foundations to estimate
displacement over a gait on the cylindrical surface at
different system orientations. In this section, we employ
those equations in a motion planning strategy to find the
optimal efficiency gait. This optimizer is based on the
framework originally presented in [17], which assumed
rotation symmetry of the system equations of motion. In
this work, we extend the framework to handle the rotational
asymmetry by first lifting the shape space of gaits to the
shape-and-orientation space, and then restricting variations
in the gaits to those that respect the shape-orientation
constraints that appear in the local connection.

We have shown in section II that the gradient of the gait
efficiency with respect to the gait parametrization can be
represented in (3). Among the two differential terms, rps is
evaluated independent of the change in system orientation
�, so we will follow the standard calculus operations in
[17]. The calculation of rpg⌦, however, uses sign-definite
regions of D(�A) as shape change attractors and needs to
account for the system orientation appropriately. Because
D(�A) takes different values as a function of different
system orientation �, we expand the shape space to include
� as its third dimension, and augment the local connection
as Ã = [A1 A2 0]. The corresponding augmented curvature

D(�Ã) contains three components.4 Using the Leibniz rule
5, (4) can be represented in the generalized form

rp

¨
⌦a

D
Ä
�Ã
ä
=

˛
⌦
(rp⌦)yD

Ä
�Ã
ä

=

˛
⌦

h
(rp?⌦)yD

Ä
�Ã
ä
k?

+ (rp ⌦)yD
Ä
�Ã
ä
k 

i
,

(18)

in which the local basis ek is tangent to the current gait
trajectory, e? is normal to the gait in its local tangent plane,
and e is binormal to the gait [18].

Equation (18) essentially provides the gradient of the net
displacement of a 3D gait trajectory if the shape variables
are all freely controllable. However, this is not the case for
the system-on-cylinder. Movement of any point on the gait
⌦ along the augmented � dimension is constrained by the
point’s movement along ↵1 and ↵2 dimensions following the
velocity constraint

�̇ = A�

ï
↵̇1

↵̇2

ò
, (19)

where A� is the third row of the original connection matrix
without the shape space augmentation. Calculation of the gait
performance gradient should satisfy this relationship.

To respect the velocity constraint, We utilize the fact that
constraints imposed on the gradient of the boundary with
respect to boundary variations can be equivalently applied to
the gradient of an integral with respect to those variations.

4For systems with 3D shape space, the exterior derivative, local Lie
bracket and rotational asymmetry term in (16) each have three components,
corresponding to the available pairs of basis vectors as specified in [19].

5The Leibniz rule provides a powerful way to contract D(�A) along
rpg⌦ to produce a differential one-form that can be integrated over the
gait ⌦ [21].
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Fig. 5. The process of constraint plane projection. At each waypoint pi
along the gait, the correct movement of pi in the augmented 3D shape space
(left) is along the gait expansion vector (blue arrow; middle) calculated by
(18), then projected onto the constraint plane Ci (orange plane; middle and
right).

Because we use waypoints p to describe the boundary of a
gait, enforcing the velocity constraint on the gait segment
adjoining each waypoint pi ensures that the gradient of the
gait also abides by the constraint. To satisfy the constraint at
the waypoint level, we construct a constraint plane local to a
waypoint pi, so that moving along ↵1 and ↵2 in � direction
is calculated by (19). A local constraint plane Ci at waypoint
pi is defined by the point [↵1i,↵2i,�i], and the normal vector
n̂i of the local constraint plane can be formulated as

n̂i =

ï
�r1

A� ·�r1

ò
⇥
ï

�r1
A� ·�r2

ò
. (20)

where �r1 = ṙ1�t = [1, 0]> and �r2 = ṙ2�t = [0, 1]>

are two unit-magnitude inputs in the ↵1, ↵2 subspace.
The process of finding rpg⌦ for an optimal efficiency gait

can then be implemented as a two-step process. First, move
the trajectory of the gait in a direction such that it maximizes
the flux of a vector field corresponding to the augmented
D(�A),6 as if all three variables in the 3D shape space are
freely controllable. Second, project the gradient vector to the
velocity constraint plane at the gait boundary, and then use
the projected gradient as the direction to expand or contract
the shape of the gait.

V. DISCUSSION

We ran the constrained variational gait opitmization on
the system-on-cylinder to find two sets of gait. The first set
maximizes the displacement in the forward direction (with
the gradient rpg⌦), and the second set maximizes the gait
operation efficiency (with the gradient specified in (3)). To
examine the effect of system orientation on its locomotion,
the optimal gaits are generated starting from various starting
orientation �0. Fig.6 and Fig.7 illustrate the stack of gaits
under the two performance metrics in the augmented 3D
shape space.

Because the gradients of both the maximal displacement
gaits and the optimal efficiency gaits include the orientation
dependent term rpg⌦, the optimal gaits of either set take
different shapes and correspondingly different position space
trajectories at various values of system orientations �. We
observe that maximal displacement gaits generally enclose

6The vector field associated with D(�A) is formed by associating each
local plane in R3 shape space (i.e. spanned by two out of the three local basis
vectors ek, e?, e ) with its normal vector. Existence of this vector field is
due to the separation of the constraint curvature in to local components in
high-dimensional shape space

Fig. 6. The maximal displacement gaits (left) and the resulting position
space trajectories (right) corresponding to different starting orientation �0.
The bold lines show the optimal displacement gait at �0 = 0. See the
supplementary video for simulations.

Fig. 7. The optimal efficiency gaits (left) and the resulting position space
trajectories (right) corresponding to different starting orientation �0. The
bold lines show the optimal efficiency gait at �0 = 0. See the supplementary
video for simulations.

as much sign-definite region as possible, while the optimal
efficiency gaits tighten up pathlength and sacrifice areas
with low absolute values in exchange for lower cost along
the gait. The balance between large net displacement over
gait and the cost of executing the gait is illustrated in
Fig.8. Optimal gaits that start from and evolve around
� 2 {�⇡, 0,⇡} appear larger than those of other � values,
which correctly relates back to the calculated values of the
constraint curvature functions (CCFs), which are the rows
of D(�A). For the CCF values corresponding to position
variable x, sign-definite areas are wider in range and larger
in values at � 2 {�⇡, 0,⇡}.

One thing to note is that, whereas we required our
designed gait to return to the same starting shape (i.e. the
control angles ↵1 and ↵2 resume their original values at
the beginning of the gait), we did not specify the same for
the system orientation �. As such, it is possible for the
system executing the optimal gait to end up at a different
orientation than where it starts. Despite this slack we give to
our algorithm, we discovered that both the optimal efficiency
and the maximal displacement gaits produce very little
net rotation. This corresponds to the observation that the
optimal gaits and the CCF in the � direction are relatively
axial-symmetric around the center of shape space, therefore
accumulative system rotation largely cancels itself over each
gait cycle.

VI. CONCLUSIONS

In this paper, we examined how position space curvature
affects the motion of a quasi-static three-link system on a
cylindrical surface, specifically through the derivation of the
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Fig. 8. Superposition of the maximal displacement and the optimal efficient gaits for the system-on-cylinder, starting from initial orientation �0 =
0, ⇡

6 ,
⇡
4 ,

⇡
3 ,

⇡
2 , and ⇡ in the world frame. The red dashed lines indicate the maximal displacement gaits, and the red sold lines indicate the optimal

efficiency gaits. Bot sets of the gaits are plotted over the fitted CCF planes, which best fit the oriented curve of the optimal efficiency gaits in the
augmented 3D shape space. The red shaded regions indicate positive CCF values whereas black regions indicate negative values.

connection A and the constraint curvature function D(�A).
We showed that the surface curvature of a cylinder breaks
the system symmetry by inducing a change in the connection
vector fields with respect to the system orientation �.
This dependency on orientation propagates to the use of
the Lie brackets to approximate large system motion. As
a result, we discovered a rotational asymmetry term that
appears in D(�A) of systems on non-flat surfaces, which
encodes information of the position space curvature. In
addition, we extended the existing variational gait optimizer
by introducing a new constraint projection procedure to
our gradient calculation, so that orientation dependency
of the system locomotion is carefully preserved during
optimization.

As an example of symmetry-breaking systems, the
system-on-cylinder paves the way for future motion planning
of systems locomoting on a more diverse set of surfaces.
Specifically, surfaces that exhibit periodicity are of interest as
the cyclical curvature pattern can be leveraged in open-loop
gait design. We also plan to expand our work to cover
other systems, such as the high Reynolds swimmers or the
kinematic snake model in a realistic environment where
gravity matters. In a broader scope, we hope to use our
findings to develop a motion planning framework for general
symmetry-breaking systems. Such framework would ideally
explain symmetry-breaking phenomenon induced not only
by position space curvature but also by non-conservative
external actuation, such as directional forces acting on the
locomoting systems.

REFERENCES

[1] Aguilar, Jeffrey, et al. ”A review on locomotion robophysics: the study
of movement at the intersection of robotics, soft matter and dynamical
systems.” Reports on Progress in Physics 79.11 (2016): 110001.

[2] Hatton, Ross L., and Howie Choset. ”Geometric motion planning: The
local connection, Stokes’ theorem, and the importance of coordinate
choice.” The International Journal of Robotics Research 30.8 (2011):
988-1014.

[3] Walsh, Gregory C., and S. Shankar Sastry. ”On reorienting linked
rigid bodies using internal motions.” IEEE Transactions on Robotics
and Automation 11.1 (1995): 139-146.

[4] Hatton, Ross L., et al. ”Geometric visualization of self-propulsion in
a complex medium.” Physical review letters 110.7 (2013): 078101.

[5] Avron, Joseph E., and Oren Raz. ”A geometric theory of swimming:
Purcell’s swimmer and its symmetrized cousin.” New Journal of
Physics 10.6 (2008): 063016.

[6] Melli, Juan B., Clarence W. Rowley, and Dzhelil S. Rufat. ”Motion
planning for an articulated body in a perfect planar fluid.” SIAM
Journal on applied dynamical systems 5.4 (2006): 650-669

[7] Ostrowski, James Patrick. The mechanics and control of undulatory
robotic locomotion. Diss. California Institute of Technology, 1996.

[8] Kelly, Scott D., and Richard M. Murray. ”Geometric phases and
robotic locomotion.” Journal of Robotic Systems 12.6 (1995): 417-431.

[9] Dear, Tony, et al. ”The three-link nonholonomic snake as a hybrid
kinodynamic system.” 2016 American Control Conference (ACC).
IEEE, 2016.

[10] Grover, Jaskaran, et al. ”Geometric motion planning for a three-link
swimmer in a three-dimensional low Reynolds-number regime.” 2018
Annual American Control Conference (ACC). IEEE, 2018.

[11] Gong, Chaohui, et al. ”Geometric motion planning for systems with
toroidal and cylindrical shape spaces.” Dynamic Systems and Control
Conference. Vol. 51913. American Society of Mechanical Engineers,
2018

[12] Shammas, Elie A., Howie Choset, and Alfred A. Rizzi. ”Geometric
motion planning analysis for two classes of underactuated mechanical
systems.” The International Journal of Robotics Research 26.10
(2007): 1043-1073.

[13] Hatton, Ross L., and Howie Choset. ”Connection vector fields for
underactuated systems.” 2008 2nd IEEE RAS EMBS International
Conference on Biomedical Robotics and Biomechatronics. IEEE,
2008.

[14] Hatton, Ross L., and Howie Choset. ”Nonconservativity and
noncommutativity in locomotion.” The European Physical Journal
Special Topics 224.17-18 (2015): 3141-3174.

[15] Hatton, Ross L., and Howie Choset. ”Kinematic cartography for
locomotion at low Reynolds numbers.” Proc. Robot. Sci. Syst. VII
(2011).

[16] Hatton, Ross L., and Howie Choset. ”Connection vector fields and
optimized coordinates for swimming systems at low and high Reynolds
numbers.” Dynamic Systems and Control Conference. Vol. 44175.
2010.

[17] Ramasamy, Suresh, and Ross L. Hatton. ”Soap-bubble optimization of
gaits.” 2016 IEEE 55th Conference on Decision and Control (CDC).
IEEE, 2016.

[18] Ramasamy, Suresh, and Ross L. Hatton. ”Geometric gait optimization
beyond two dimensions.” 2017 American Control Conference (ACC).
IEEE, 2017.

[19] Ramasamy, Suresh, and Ross L. Hatton. ”The Geometry of Optimal
Gaits for Drag-Dominated Kinematic Systems.” IEEE Transactions on
Robotics 35.4 (2019): 1014-1033.

[20] Hatton, Ross L., Faraji, Hossein F., Brock, Zachary et al. Geometric
Motion Planning for Inertial Systems (in preparation). In: (2020) (cit.
on pp.2).

[21] Flanders, Harley. ”Differentiation under the integral sign.” The
American Mathematical Monthly 80.6 (1973): 615-627.

[22] Kobayashi, Shoshichi, and Katsumi Nomizu. Foundations of
differential geometry. Vol. 1. No. 2. New York, London, 1963.

3649

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 01:16:05 UTC from IEEE Xplore.  Restrictions apply. 


