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It was recently realized that the three-dimensional O(N) model possesses an extraordinary boundary
universality class for a finite range of N > 2. For a given N, the existence and universal properties of this
class are predicted to be controlled by certain amplitudes of the normal universality class, where one applies
an explicit symmetry breaking field to the boundary. In this Letter, we study the normal universality class
for N =2, 3 using Monte Carlo simulations on an improved lattice model and extract these universal
amplitudes. Our results are in good agreement with direct Monte Carlo studies of the extraordinary
universality class serving as a nontrivial quantitative check of the connection between the normal and

extraordinary classes.
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Introduction.—When a physical systems is in the vicin-
ity of a continuous phase transition, various observables
develop power-law singularities which have a character of
universality: they are determined by the gross features of
the system, such as dimensionality and symmetry, and not
by the details of local interactions. Renormalization-group
(RG) theory allows us to understand the emergence of
universality as the result of the existence of fixed points in a
suitably defined flow of Hamiltonians. Accordingly, sys-
tems exhibiting identical critical behavior define a given
universality class (UC) [1]. The presence of a boundary
gives rise to rich phenomena, which have attracted a large
amount of experimental [2] and theoretical [3-5] studies.
General RG arguments show that a given bulk UC class,
describing the critical behavior far away from the boundary,
potentially admits different surface UCs [1]. Further, sur-
face critical exponents and other universal data generally
differ from those of the bulk [3,4]. Surface UCs also
determine the critical Casimir force [6—12]. While boun-
dary criticality is a mature subject, it has recently received
renewed attention driven in part by advances in conformal
field theory [13-23] and developments in topological
phases of quantum matter. Many topological phases
including quantum Hall states, topological insulators,
and certain quantum spin liquids possess protected boun-
dary states. While it was initially thought that this pro-
tection relies on the presence of a bulk energy gap,
examples where the boundary state survives in some form
even as the bulk gap closes were later discovered [24-32].
The study of such “gapless topological states” and their
boundaries lies in the domain of boundary critical phenom-
ena. As gapless topological states were investigated in the
context of quantum magnets [33—41], it was realized that
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even for the simplest model of classical magnets—the
O(N) model—basic questions about the boundary phase
diagram remain open [42—44].

The much investigated classical O(N) model [45] pro-
vides a prototypical example of boundary criticality. In
three dimensions, for N = 1, 2, the bulk-surface phase
diagram hosts a surface transition line, where the bulk is
disordered and the surface critical behavior belongs to that
of 2D O(N) UC. This line terminates at the bulk transition
line dividing it into ordinary and extraordinary surface
UCs; the termination point is the so-called special UC [3,4].
Surprisingly, the surface phase diagram for N > 2 is still
not fully settled. For d = 3 and N > 2 there is no surface
transition for a disordered bulk [45], thus the topology of
the phase diagram does not necessarily dictate the existence
of the extraordinary UC or the special multicritical point
[46,47]. Yet, a recent field-theoretical analysis in Ref. [42]
has pointed out that if one treats N as a continuous
parameter, the extraordinary UC survives for a range
2 <N < N, where N, is a currently unknown constant.
Further, the extraordinary UC in the region 2 < N < N,
exhibits a surface order parameter correlation function that
falls off as

1

($(x) - $(0)) ~ (logx)?’

(1)

thus, it was labeled the “extraordinary-log” UC in
Ref. [42]; this should be contrasted to the extraordinary
transition for N =1 or in d > 3 where the above corre-
lation function approaches a constant at large separation. In
fact, for N = 3 a recent numerical simulation [43] finds
firm evidence of a special transition with exponents
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differing from those of the ordinary UC and a phase
consistent with the extraordinary-log UC, implying
N.> 3 [48]. For N =2, the “logarithmic” character of
the extraordinary phase was also verified numerically [44].

Reference [42] showed that for a given N the existence of
the extraordinary-log phase and its properties [such as the
exponent ¢ in Eq. (1)] are determined by certain universal
amplitudes of the normal boundary UC. The latter is
realized when an explicit symmetry breaking field is
applied to the boundary [3,4,49,50].

Motivated by these recent developments, in this Letter
we study the normal surface UC of the three dimensional
O(N) model, for N=2 and N =3, by means of
Monte Carlo (MC) simulations of an improved lattice
model [45], where the leading bulk irrelevant scaling field
is suppressed. Through a finite-size scaling analysis of MC
data we determine certain universal amplitudes of the
normal UC. Such amplitudes are per se of interest, as they
provide a quantitative description of the normal UC; for
N =1 they have been studied in Ref. [51]. Furthermore,
exploiting the analysis of Ref. [42], our results confirm the
existence of the extraordinary-log UC for N = 3, and allow
us to compute the universal exponent ¢ in Eq. (1) for N =2
and N = 3. Our results are in good agreement with the
value of g found in direct studies of the extraordinary phase
in Refs. [43,44].

Model—We study the classical lattice ¢* model
by means of MC simulations. It is defined on a three-
dimensional Lj x Ly x L lattice, with periodic boundary
conditions (BCs) along the lateral directions with size L,
and open BCs along the remaining direction. The reduced
Hamiltonian H, such that the Gibbs weight is exp(—H), is

H = _ﬂzqzi 'sz _ﬁszq_éi . g’j - Es : Zﬁzl
(i) (ij)s

ies

+ 318+ g - 17, )

where (EX is an N-components real field on the lattice site x
and the first sum extends over the nearest-neighbor pairs
where at least one site belongs to the inner bulk. The second
and third sums extend over the lattice sites on the surface.
The last term in Eq. (2) is summed over all lattice sites. In
Eq. (2) the coupling constant f determines the critical
behavior of the bulk, while /3, controls the surface coupling.
Finally, we have introduced a symmetry-breaking boun-

dary field i, = h,éy along the Nth direction.

For A — o0, the Hamiltonian (2) reduces to the hard spin
O(N) model. In the (3, 1) plane, the bulk exhibits a second-
order transition line in the O(N) UC [45,52,53]. For N = 2
the model is improved for A = 2.15(5) [53], i.e., the lead-
ing bulk irrelevant scaling field with dimension y; =
—0.789(4) [54] is suppressed. At 4 =2.15 the model is
critical for # = 0.508 749 88(6) [55]. For N = 3 the model

is improved for 2 = 5.17(11) and the suppressed leading
irrelevant scaling field has dimension y; = —0.759(2) [56].
At A =5.2, the model is critical at § = 0.68798521(8)
[56]. Improved models are instrumental to obtain accurate
results in critical phenomena [45], in particular in boundary
critical phenomena [43,51,57-65], because the broken
translational invariance generically gives rise to additional
scaling corrections, which cumulate to those arising from
bulk irrelevant operators. The latter are suppressed for
improved lattice models, hence enabling a more accurate
analysis.

In the MC simulations presented here we set  and 4 to
the central value of the bulk critical point in the improved
models, and B, = . Note that the boundary parameters f,,
h, are chosen to be identical on the two surfaces: this
realizes the normal UC on both surfaces, and allows us to
compute improved estimators of surface observables by
averaging them over the two surfaces. The geometry is
fixed by L =L MC simulations are performed by
combining Metropolis, overrelaxation, and Wolff single-
cluster updates [66]; details of the algorithm are reported in
Ref. [43], and the implementation of the Wolff algorithm in
the presence of a symmetry-breaking surface field is
discussed in Ref. [51]. The inclusion of a boundary field
breaks the O(N) symmetry to O(N-1). Accordingly, we
distinguish the components of J) defining g;’; = (¢,0),
where ¢ is the component parallel to the surface field,
and ¢ is a (N — 1)-component vector orthogonal to it. As
discussed below, we measure the magnetization profile (o)
and various surface-surface and surface-bulk two-point
functions.

Besides the model realizing the normal UC, we also
perform some MC simulations of the ¢* model with
periodic BCs, with the aim of determining the bulk field
normalization. In this case, the Hamiltonian is as in Eq. (2),
without the surface terms.

Normal universality class.—In this section, we discuss
the normal surface UC of the O(N) model in d = 3. Unless
otherwise stated, all operators in this section [e.g.,

(;S = (¢, 0)] denote continuum fields; when referring to
fields of the lattice model (2), we use the subscript “lat.” To

leading order, the bulk field (751m oS (Z The boundary
operator spectrum contains two ‘“protected” operators
whose existence is mandated by bulk conservation laws
and whose scaling dimensions are known exactly
[49,50,67]: (i) The “tilt” operator ¢ of dimension At =
d—1 =2, whichis an O(N-1) vector (i = 1...N — 1). This
operator is induced on the boundary when the symmetry
breaking field iz)s is tilted—thus the nomenclature [68].
(ii) The displacement operator D of dimension A, =
d = 3, which is an O(N-1) scalar. Perturbing the boundary
with this operator is equivalent to moving the location of
the boundary, justifying the name “displacement.” These
are believed to be the two lightest boundary operators.
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In particular, on the lattice the boundary field ¢}, o #'. The
boundary operator product expansion (OPE) holds for
z—-0:

o(x.2) = (;;W +bp(22)MD(x) + ...,

¢'(x,2) = b,(22)> 26 (x) + ..., (3)

where A, is the bulk scaling dimension of c;S The
coefficients a,, b,, bp are universal, assuming that the
bulk and boundary operators are normalized. a, and b, will
be the main target of this Letter—as was shown in
Ref. [42], their ratio controls the existence and universal
properties of the extraordinary-log phase (in the absence of
a boundary magnetic field). Defining

z( a, \>? N-=2
=_ 4 - 4
“ 2(47:17,) 2 @)

the extraordinary-log phase exists when a > 0. Further, the
exponent ¢ in Eq. (1) is given by

N-1
2ra

q= (5)
We extract a, and b, from the following correlators,
which in a semi-infinite geometry take the form

(21)2—A¢

(6)

The bulk field ¢, a = 1...N, is normalized so that in
an infinite geometry (¢“(x)p”(0)) = 5°x=%s, while '
is normalized so that in a semi-infinite geometry
(f(x)#/(0)) = 8x~*. Thus, in a lattice model, to fix the
normalizations above and to find a,, b, we will need to
measure four different correlators. On the lattice, we expect
both finite size scaling corrections and corrections to
scaling [69].

Results.—We study first the XY UC. In order to
determine the normalization of the bulk field, we have
simulated the ¢* model for N = 2, with periodic BCs and at
the critical point, for lattice sizes L = 32-192. In Fig. 1(a)

s

(o(2)) :W’

(#(0)¢’ (x.2)) = 6;;b,

-

we show the two-point function (f(x) - ¢(0)), rescaled to
the expected decay x~?2+. Here and below we use
A, =0519088(22), A, = 1.51136(22) [70]. We fit the
MC data to

(#0) - 30) =N [148.(5) " + o], )

where the leading finite-size correction o L™¢ is due to the
energy operator in the OPE of ¢ x ¢“, while the correction
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FIG. 1. Bulk two-point function for (a) N =2 and (b) N = 3,
rescaled to the large-distance decay exponent 2A,,. Error bars are
smaller than symbol size.

o x~2 comes from the next-to-leading irrelevant operator in

the action and from descendant operators in the expansion

of the lattice field (Z,- in terms of continuum fields [69].
Equation (7) holds for (x/L) < 1 and x 2 x,, with x; a
nonuniversal length governing the two-point function at
short distance. The analysis of various fits [71-73] to
Eq. (7) allows us to infer [69]
Npak = 0.28152(15), B, =2.758(10).  (8)

Next, we study the surface critical behavior. As dis-
cussed above, in order to implement the normal UC, we
simulated the ¢* model at the critical point with open BCs
and a symmetry-breaking surface field. Preliminary MC
data suggested a reduction of corrections to scaling for a
surface field A, = 1.5f,. Our MC simulations reported
below have thus been done at this value of A, for lattice
sizes L =32-192. To extract the normalization of the
surface field component ¢, we have computed its two-point
function along the surface. We show it in Fig. 2(a), rescaled
to its expected large-distance decay exponent 4. In this case

finite-size corrections are rather small, such that we fit the
data to [74]

(@(x) - $(0)) = Nx7(1 + Cx72), ©)

where, analogous to Eq. (7), the leading correction to
scaling o x> originates from the expansion of the
lattice operator in terms of continuum ones. Fits to
Eq. (9) deliver [69]

N, =0.328(3). (10)

In Fig. 2(c), we show the magnetization profile (¢(z)) as
a function of the distance from the surface z, and rescaled
to its asymptotic decay exponent Ag. For this quantity,
scaling and finite-size corrections are relevant and we fit
MC data to

(o) = Male 20> 145, (5 2) ]
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FIG. 2. Plots of surface observables. (a) and (b) Two-point
functions of the surface field component ¢, for N =2 and N = 3,
rescaled to the large-distance decay exponent 4. (c¢) and (d) Order-
parameter profile as a function of the distance from the surface,
rescaled to the large-distance decay exponent A,. (e) and
(f) Surface-bulk correlation functions of the field component
@, tescaled to the large-distance decay exponent 2 + A.

where the perturbation of the surface action with the
displacement operator D produces the replacement
7 — 7+ z9, with z; a nonuniversal constant, and the
leading finite-size correction originates from the OPE (3)
[69]; the latter is also known as distant wall correction
[6,75,76]. Fits to Eq. (11) allow us to estimate [69]

M, = 0.7540(3),

B, =121(6),  zo=1.018(6).

(12)

In Fig. 2(e) we show the surface-bulk correlation
function (p(0)@(0,z)) of the field component ¢, where
one point is on the surface and the other a distance z away
from the surface, so that the vector separating the two
points is orthogonal to the surface; the correlations are
rescaled to the large-distance decay exponent 2+ A,.
These correlations are affected by significant scaling
corrections, while finite-size corrections, though not neg-
ligible, are smaller than in the case of (c(z)). Together with
the relatively fast large-distance decay, ~z~>~%#, this makes
the analysis of the surface-bulk correlations more involved.
A good ansatz for the MC data is

30 50.2) = My(e+ 207 145,12

feGt zO>-2], (13)

where we have included the corrections considered in
Egs. (9) and (11) [69]. To avoid overfitting, in fits to
Eq. (13) we plug in the result for z, of Eq. (12), varying its
value within one error bar quoted there. From the various
fits we estimate
M, = 0.3146(8), B, =-0.7(2). (14)
In the analysis of the MC data for the Heisenberg
normal UC, we proceed analogous to the case N =2,
using the critical exponents A, = 0.518920(25) and A, =
1.5948(2) [56]. To extract the normalization of the bulk
field ¢, we simulated the ¢* model for N = 3, periodic
BCs, and at the critical point, for lattice sizes L = 32-192.
In Fig. 1(b) we show the two-point function of ¢, rescaled
to the expected decay x~>2¢. From fits of the correlations to
Eq. (7) we obtain [69]
Nipa = 0.31230(15), B, =2432(7). (15)
Concerning the surface critical behavior, preliminary
MC simulations of the model (2) with N = 3 suggested a
reduction of subleading corrections for a surface field
hy, = 1.4p3,. Here, we present results for this choice of
h,, and lattice sizes L = 32—192. In Fig. 2(b) we show the

surface correlations. Fits of (¢(x) - ¢(0)) to Eq. (9) allow
us to estimate [69]

N, =0.481(3). (16)

Fits of the order-parameter profile (6(z)), shown in
Fig. 2(d), deliver the following results:
M, = 0.7062(2),

B, =107(5),  zo=1.031(4).

(17)

In Fig. 2(f) we show the surface-bulk correlation
function (¢(0) - (0, z)). We fit it to Eq. (13), employing
the estimate of z;, given in Eq. (17). From the various fits we
obtain [69]

M, = 0.4674(8), B, =-0.7(1). (18)

Discussion.—According to the discussion above of the
normal UC and of the scaling forms in Ref. [69], the results

of our scaling analysis of MC data allow us to extract
universal amplitudes a,, b, of the normal UC via
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TABLE I. Final results: universal amplitudes a,, b,, and bp in
Eq. (3) together with the corresponding value of a, Eq. (4). We
also tabulate a,, found in Refs. [43,44] by direct MC simulations
of the extraordinary region. For N = 1 we present the values of
a,, bp extracted from MC results of Refs. [51,58].

N [ bt bD a Aeo
1 2.60(5) 0.244(8)
2 2.880(2) 0.5254) 0.300(5) 0.27(2) [44]
3 3.136(2) 0.529(3) 0.190(4) 0.15(2) [43]
2% M, 2%M,
Ay = —F——o—, b, = .
VNour/N 4VN = 1\/Npu/N\ /N,

(19)

a, is obtained from the amplitude of the order-parameter
profile M, (11) and the normalization of the bulk field
Nk (7), while b, is obtained in terms of the amplitude of
the surface-bulk correlations M, (13), and the bulk and
surface normalizations Ny, (7); N o (9). We collect our
results for a,, b, in Table I, including the value of «
obtained from a, and b, via Eq. (4). For both N =2 and
N =3, a > 0, which indicates that the extraordinary-log
UC exists, in accord with MC results of Refs. [43,44].
Reference [42] predicts that a controls various universal
properties of the extraordinary-log phase, including the
exponent g in Eq. (1), which is related to « via Eq. (5). @
found here agrees well with a extracted from direct MC
simulations of the extraordinary region [43,44], listed in
Table I as a,,. This provides a highly nontrivial check of the
theory in Ref. [42]. As pointed out in Ref. [43], the error bar
on a, should be taken with a grain of salt given the
difficulty of fitting to the form in Eq. (1) and the presence of
subleading logarithmic corrections. Thus, we expect the
method for determining o presented here to be more
reliable than directly simulating the extraordinary-log
phase. We also present results for the coefficients a,, bp
in Eq. (3) for the normal UC of the Ising model (N = 1)
[69,77-84], extracted from MC studies in Refs. [51,58]. A
numerical conformal bootstrap study of the normal UC of
the O(N) model with N > 2 was conducted in parallel to
our work [68]. Our results for a, and b, are within the
bounds produced by positive bootstrap and agree reason-
ably well with the approximate truncated bootstrap results.
For N = 1, both a, and b in Table I agree within error bars
with the truncated bootstrap findings of Ref. [85].

We conclude by outlining some possible future direc-
tions. It will be interesting to extend the calculations
presented here to the O(N) model with N > 3, with an
eye to determining the critical value N, where the extraor-
dinary-log UC disappears. N =4 is a natural first target
since bootstrap calculations [68], as well as previous MC
simulations [86], suggest that the extraordinary transition

still exists in this case. Another extension is to study the
free energy density for the normal UC in the geometry
considered here, which combined with the coefficient B, in
Eq. (11) and a,, allows one to determine the OPE
coefficient b, in Eq. (3), as well as the universal coefficient
Cp, characterizing the boundary OPE of the energy-

momentum tensor TZZZ:? —/CpD [67]. (In fact, this is
how for the Ising model b in Table I was obtained [87].)
Further interesting avenues for future research would be to
consider the N — 0 limit [88-93], which describes the
physics of dilute polymers [1,45,94], and O(N) loop
models [95,96], which provide an extension of the standard
O(N) model to noninteger values of N.
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