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Abstract— The Robotic locomotion community is interested

in optimal gaits for control. Based on the optimization criterion,

however, there could be a number of possible optimal gaits.

For example, the optimal gait for maximizing displacement

with respect to cost is quite different from the maximum

displacement optimal gait. Beyond these two general optimal

gaits, we believe that the optimal gait should deal with various

situations for high-resolution of motion planning, e.g., steering

the robot or moving in “baby steps.” As the step size or

steering ratio increases or decreases, the optimal gaits will

slightly vary by the geometric relationship and they will form

the families of gaits. In this paper, we explored the geometrical

framework across these optimal gaits having different step sizes

in the family via the Lagrange multiplier method. Based on the

structure, we suggest an optimal locus generator that solves all

related optimal gaits in the family instead of optimizing each

gait respectively. By applying the optimal locus generator to

two simplified swimmers in drag-dominated environments, we

verify the behavior of the optimal locus generator.

I. INTRODUCTION

Mobile robots move by using the interaction between the
robot and its environment to convert internal joint motion
into motion of the body. For robots whose joint motion is
bounded (as compared to the continuous rotation afforded by
wheels and propellers), it is often useful to focus attention
on gaits—cyclic shape inputs that produce characteristic net
displacements and individually remain within the joint limits.
These gaits can then be sequenced into motions that are
guaranteed to respect the joint limits.

The maximum displacement a system can produce in each
gait cycle is typically on the order of the system’s body
length [1]. Motion plans over long distances are therefore
dominated by repetitions of a gait that maximizes speed
or efficiency under constraints on effort or time [2], [3].
Much locomotion research thus focuses on identifying or
understanding such gaits. A perspective that we have found
useful [4] is that these gaits lie at points in the control space
where the gradient of induced displacement with respect to
the gait parameters is in equilibrium with the gradient of the
effort function.

Beyond maximum-speed or maximum-efficiency gaits for
crossing large distances, motion plans must often incorporate
gaits that are optimized for different criteria, e.g., steering the
system or taking “baby steps” that—although less efficient
than the system’s “natural stride”—allow for finer-grained
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Fig. 1: (a) Step-optimal gait trajectories for the drag-
dominated three-link swimmer. Based on the constrained
displacement, the different behavior of the robots can be
identified: Robots try to minimize their joint motions for ac-
complishing the given displacement. (b) Step-optimal gaits in
natural metric coordinates. Gait size decreases with displace-
ment. (c) The geometric meaning of Lagrange multipliers
is that the gradient of the cost and constraint functions are
parallel to each other at the optimal point. To generate an
optimal trajectory, the gait parameter optimization vector is
needed.

motion plans. These gaits correspond to the solutions of
constrained optimization problems in which the constraints
are defined on the per-cycle displacement, e.g. the magnitude
of net displacement for “baby steps” as illustrated in Fig. 1(a-
b), or the ratio between net rotation and net translation for
a specified steering rate.

For any given displacement constraint, it is relatively
straightforward to directly optimize for a gait that maximizes
some notion of speed or efficiency while satisfying the con-
straint [5]. Families of gaits—e.g., related by different step
sizes or steering rates—can then be generated by individually
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optimizing over a sampling of constraint values. To the best
of our knowledge, however, there has been little to no work
on the relationship between these “step-optimal” gaits across
changes in the generating constraint.

In this paper, we identify the mathematical structure
underlying the step-optimal gait optimization problem, and
present a process for generating families of step-optimal
gaits without individually optimizing each gait. From our
proposed perspective, step-optimal gaits can be seen as points
in control space where the level sets of the gait cost and
constraint functions are tangent to each other (such that their
gradients with respect to the gait parameters are parallel).
Curves passing through these osculation points, as illustrated
in Fig. 1(c), contain sets of step-optimal gaits, and can
be naturally parametrized by the values of the generating
constraint function.

Formally, the location of step-optimal gaits at points where
the gradients of the cost and constraint functions are parallel
is a classic Lagrange-multiplier solution to a constrained
optimization problem. [6] To generate the locus of step-
optimal gaits across constraint values, we take a derivative
of the Lagrange-multiplier structure, producing a Hessian
matrix for the given optimality condition. [7] Given a starting
point on the step-optimal curve (which we can find by
optimizing for a single value of the constraint function), we
generate a step-optimal curve by projecting the gradient of
the constraint function onto the null-space of the Hessian,
and then flowing in the direction of the resulting vector.

To demonstrate our approach, we generate families of
step-optimal forward-displacement gaits for three- and four-
link swimmers immersed in viscous fluids. The three-link
swimmer is a standard reference system in locomotion, and
its dynamics have two properties that make the swimmer
particularly useful for illustrating the Lagrange-Hessian tech-
nique: the net displacement induced by a gait corresponds to
the amount of constraint curvature that the gait encloses, and
the time-energy cost of executing a gait corresponds to its
metric-weighted pathlength through the shape space [8]. As
illustrated in Fig. 1, the step-optimal gaits found through
the Lagrange-Hessian approach are thus solutions to the
weighted isoareal/isoperimetric problem—a set of concentric
circles stretched along the “rich” axis of the shape space.

II. GAIT OPTIMIZATION

A. Unconstrained Gait Optimization
For the purposes of our analysis in this paper, a gait

is a cyclic trajectory � in the shape of a system, e.g., an
oscillation of its joint angles. When a system executes a gait,
its interactions with its environment generate a characteristic
displacement g� over each cycle, and the system incurs an
associated cost s�. Displacement may be along one or more
directions; in this paper, we assume for simplicity of notation
(and without loss of generality) that displacement can be
projected down to a single “interesting” direction. Common
costs include some notion of opportunity (e.g., how long
does it take to execute the gait?) and effort (e.g., how much
energy must the system expend to execute the gait?).

For a given notion of cost and a space of candidate gaits �,
an optimal gait for maximizing the speed or efficiency of a
system is one which maximizes the ratio between the induced
displacement and the incurred cost,

�opt = argmax
�

g�
s�

. (1)

If we parametrize � with a set of parameters p, then taking
the derivative of the righthand side of (1) with respect to p
gives the first-order condition for gait optimality as

rpg� � g�
s�

rps� = 0, (2)

i.e., an optimal gait is one for which any gains in displace-
ment that can be achieved by varying the parameters are
in equilibrium with the extra costs incurred. Note that the
lefthand side of (2) defines a vector field which can be flowed
along to find a solution to (2).

Example: Weighted area-perimeter problem. For many
systems, induced displacement increases with amplitude
(bigger shape changes push the system further), but at a
diminishing rate (leverage against the environment decreases
at extreme angles, so the system gets less displacement per
amount of shape change). By a similar token, incurred cost
tends to increase monotonically with gait amplitude (large
cycles take more time to execute at a given shape velocity,
or take more shape velocity—and thus power—to execute in
a given time).

The structure of such gait optimization problems is thus
qualitatively similar to a weighted area-perimeter problem
in which the goal is to enclose as much “rich” area as
possible in a field whose quality diminishes with radius,
while minimizing the perimeter of the encircling curve. To
intuitively understand the gait optimization dynamics, we
can therefore construct a toy problem of this form and use
it to generate simple plots that highlight features of the
optimization process.

For instance, if we take the “field quality” as being q =
(1 � ↵2

1 � ↵2
2), as illustrated in Fig 2(a), the closed curve

maximizing the ratio of enclosed quality to perimeter is the
dashed circle, which lies at the point where the diminishing
quality of the field is balanced against the cost of expanding
the circle to cost more area.

B. Constrained gait optimization

While maximum-speed and maximum-displacement gaits
are important for moving a system over long distances, a
gait-based planner may also need access to gaits for which
the induced displacement is smaller than that of the gait
satisfying (1), e.g., to allow for following specified paths
with more accuracy, or for station-keeping without shape
drift. These gaits, which we call step-optimal, are solutions
to the optimization problem

�s-opt = argmax
�

g�
s�

| g� = gc, (3)

where gc is a specified induced displacement.
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Fig. 2: Example system for explaining the geometric intuition for a Lagrange multiplier method. (a) Constraint curvature
underlying contours is expressed by a circular paraboloid (1�↵2

1�↵2
2). To describe an elliptical gait, two gait parameters are

defined: p1 is the semi-major axis of the elliptical gait, and p2 is the semi-minor axis square. Then, the optimal parameters
make the elliptical gait a circular gait, denoted by the red dotted line. (b) p⇤ is a trajectory of optimal parameters for any
given displacement. The red line in Fig (b) is a parameter locus for the optimal gait. The set of the dashed lines represents
a level set of a cost and the set of the solid lines represent a level set of a net displacement. (c) The vector field is generated
by the negative gradient of the Lagrangian function with given �⇤. The gray line represents the vector field. The stationary
line of the Lagrangian Function is illustrated by the red line. Any point on the stationary line is the set of step-optimal gait
parameters corresponding to the specific displacement level.

To find sets of gait parameters satisfying this condition, we
first note that because g� is fixed, (3) reduces to the problem
of finding the minimum-cost gait for a given displacement,

�s-opt = argmin
�

s� | g� = gc. (4)

This minimization is a classic optimization problem with
a well-known solution via Lagrange multipliers (see the
Appendix), in which the gradients of the cost function s�
and the constraint function g� are parallel to each other and
scaled by an (initially unknown) factor �.1

To find the optimum, we introduce � as a Lagrange
multiplier, and use it to define a Lagrangian function L over
the gait parameters,

L(p,�) = s�(p)� �(g�(p)� gc). (5)

The parameters of the step-optimal gait can then be found
by solving for the point (p⇤,�⇤) where the derivative of L
with respect to both the gait parameters and the Lagrange
multiplier is zero,

rp,�L = 0. (6)

As in the unconstrained optimization case, the lefthand side
of (6) defines a vector field which can be flowed along to its
equilibrium to find the solution.

Example: Weighted Isoareal Problem The constrained ver-
sion of the weighted area-perimeter problem is the weighted
isoareal problem: find the shortest closed curve that encircles
a given weighted area. The contours in Fig. 2 represent
level sets of the cost function (dashed) and net displacement
(solid). The points where these curves touch minimize the

1The unconstrained optimum can be seen as a special case of the
constrained optimum, in which � = g�/s�.

cost along the displacement level set, and so also maximize
area per perimeter on that level set.

C. Optimal Locus Generator

The key idea behind this paper replaces iterative gait opti-
mization for net displacement with solving one system whose
solutions represent optimal gait families. Here, we describe
our approach for the optimal locus generator, which is based
on the Lagrange multiplier method; additional discussion of
Lagrange multipliers may be found in the Appendix.

Fig. 2 illustrates the geometric intuition underlying the
Lagrange multiplier method: the gradient of the cost is
parallel to the gradient of the displacement at each stationary
point p⇤, regardless of the level of constraints gc. With
respect to gc as a variable, p⇤ formulates the trajectory
representing a family of optimal gait parameters whose
members correspond to each constrained displacement. From
the geometric interpretation, we deduce that the Lagrange
multiplier is the value normalizing the gradient of the net
displacement with respect to the gradient of the cost at the
optimal point p⇤ [7], [9]. From this, we can �⇤ as a function
of p:

�⇤ =
rpg⇤T ·rps⇤

||rpg⇤||2
. (7)

Then, the gradient of the Lagrangian function can be
expressed as a function of p⇤. It is natural to ask: “What if we
choose �⇤ derived at the non-optimal point when generating
the gradient of the Lagrangian?” The normalizing property
of �⇤ results in the same norm and sign of rpg as those
of rps. We know that the gradient of the Lagrangian is
constructed by the summation of the normalized gradient of
the objective function and the constraint. Thus, rpL(p,�⇤)
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Fig. 3: Geometry and shape variables of the example systems. The systems are articulated swimmers. (a) The shape of
the three-link swimmer is described by two shape variables. (b) The shape of the four-link swimmer is described by three
shape variables. (c) Two optimal gaits of viscous three-link swimmer: Maximum-displacement optimal gait and Maximum-
efficiency optimal gait. These two gaits are found in [3], [8]

can be interpreted as the vector pointing in the direction of
increasing the objective and the constraint function at the
same time. As shown in Fig. 2, the behavior of the negative
gradient vectors of the Lagrangian acts as the optimizer
which minimizes the cost with some constraint function. This
implies that the norm of the gradient acts as a measure of
the optimality of the gait.

Rather than optimizing gaits for all constraints several
times, it is desirable to evaluate the trajectory of p⇤ directly.
To derive the solution vector pointing in the direction of from
the current optimal parameter to the next optimal parameters,
we used the property that the optimal point p⇤ should be
the stationary point of the Lagrangian function satisfying the
second derivative test.

The solution vector is directly related to the null space
of the Hessian of the Lagrangian function with �⇤. The
eigenvector of the Hessian corresponding to non-zero eigen-
values will point in the direction of either increasing or
decreasing the gradient of the Lagrangian. On the other hand,
the eigenvector for zero eigenvalues will aim in the direction
of not changing the gradient. This implies that ṗ⇤ is in the
null space of the Hessian:

ṗ⇤ ✓ N
�
r2

pL (p⇤)
�
, (8)

where N is a null space. The Hessian matrix of the La-
grangian function is:

r2
pL⇤ = r2

ps
⇤ � �⇤r2

pg
⇤ �rpg

⇤ ·rp�
⇤T (9)

and

rp�
⇤ =

1

||rpg⇤||2
�
r2

pg
⇤ ·rps

⇤ +rpg
⇤ ·r2

ps
⇤�

� 2

||rpg⇤||4
�
r2

pg
⇤ ·rpg

⇤� �rpg
⇤T ·rps

⇤� . (10)

For higher dimensional parameter spaces, the null space of
the Lagrangian function contains not only the desired vectors
keeping the solution on the stationary point but also trivial
null vectors that do not change the gait cycle itself. For
example, suppose that lower order Fourier coefficients are

chosen as gait parameters. It could be possible that many
different sets of parameters generate the same gait cycle
because the gait cycle is not affected by the same phase
shift of coefficients between shape variables at each order
of the Fourier coefficient. Furthermore, there might be more
than one desired vector if the objective function is osculated
with the constraint function. To prevent choosing only these
trivial null vectors, p⇤ is evaluated by projecting the negative
gradient of displacement onto the null space so that the gait
cycle can be changed at each iteration.

ṗ⇤ = ProjN (�rpg) (11)

III. SWIMMER LOCOMOTION AS A WEIGHTED ISOAREAL
PROBLEM

Here, we apply the Lagrangian optimal locus generator
to a set of example systems: drag-dominated articulated
swimmers. For viscous swimmers, the displacement resulting
from a specific gait is approximately equivalent to the amount
of constraint curvature enclosed by the gait. In effect, this is
an application of the optimal locus generator to a weighted
isoareal problem.

A. Drag-dominated Swimmers

We focus on the 3- and 4-link drag-dominated (viscous)
swimmers [8], [10], [11] in our analysis. These systems are
shown in Fig. 3(a,b). The positions of the articulated swim-
mers are the locations and the orientations of their centroids
and mean orientation lines, g = (x, y, ✓) 2 SE(2). The
shapes of the articulated swimmers are parametrized by their
joint angles, r = (↵1,↵2) for the three-link swimmer and
r = (↵1,↵2,↵3) for the four-link swimmer. Displacement
is approximately equal to the weighted area enclosed by a
gait; area weighting (in the form of constraint curvature),
with accompanying example gaits, is shown in Fig. 3(c).

B. Application of the Optimal Locus Generator

Here, we generate optimal gaits for specific amounts of
displacement of the viscous swimmers. We set the initial
(seed) gait as the maximum-efficiency gait from [8], as in
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Fig. 4: Optimal gaits for viscous three-link and four-link systems. (a) The four step-optimal gaits for the viscous three-link
system. (b-c) The four step-optimal gaits for the viscous four-link system. Each line shows the step-optimal gait corresponding
each constrained x displacement of the maximum efficiency gait: 1, 3

4 , 2
4 , 1

4 of x net displacement of the maximum efficiency
gait. (d) The metric ellipse field (Tissot indicatrix) for the three-link system from [12], and (e) four-link system. (f) Efficiency
gradually decreases as x net displacement decreases. The red solid line represents three-link swimmer, and the black dashed
line represents the four-link swimmer.

Fig. 3(c). Gait parameters p⇤ are derived from this seed gait;
the solution vector ṗ⇤ is given by Equation (8). In this paper,
ṗ⇤ is found numerically with a fourth-order Runge-Kutta
method (specifically, MATLAB’s ode45), using singular
value decomposition to find null vectors. At each iteration,
to verify that each evaluated point p⇤ is a minimizer, we
check the norms of the Lagrangian, and perform the second-
derivative test (described in the Appendix, Theorem 2). If
p⇤ is not a minimizer or reaches a specified minimum
displacement, the integration is stopped.

We applied the optimal locus generator to the viscous
three-link swimmer to find the optimal gaits family in the
x-direction over a single cycle. Each member of the step-
optimal gait family induces different step sizes with a range
from the net displacement induced by the maximum efficient
gait to nearly stopping motion. Four gaits in Fig. 4(a)
represent the step-optimal gaits that generate 1, 3

4 , 2
4 , 1

4 of x
net displacement of the maximum efficiency gait among the

members of the family. As the constrained net displacement
decreases, the curve shape gradually changes to an elliptical
shape so that the optimal gait curve contains as much of the
constraint curvature as possible while minimizing the path
length; the corresponding metric stretch is illustrated in Fig.
4(d).

This optimization approach works regardless of the dimen-
sion of the shape space, as long as the cost and the constraint
functions are well-defined. Fig. 4(b-c) demonstrates the op-
timal locus generator results for the viscous four-link system
in the x-direction. The four gaits in Fig. 4(b-c) are chosen
by the same criteria as them in 4(a). Because D(�A) can
be interpreted as a vector field in three-dimensional shape
spaces, every step-optimal gait maximizes the flux of the
vector field through a surface bounded by the curve while
minimizing the path length. Corresponding metric stretch is
illustrated in Fig. 4(e).

Fig. 4(f) shows each system’s efficiency at the given net
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displacement. As expected, the initial, globally optimal gait
has maximum efficiency. As net displacement decreases, the
efficiency also gradually decreases.

IV. CONCLUSION

In this paper, we identified a method for moving across
the optimal gaits in the family by expanding the geometric
concept of the Lagrange multiplier method; By identifying
every possible step-optimal gait for each supplied cost and
constraint at once, this method needs less computational cost
than optimizing each optimal gaits of the family one at a
time. We demonstrated this step-optimization method on two
drag-dominated systems: a viscous three-link and four-link
swimmer. The optimal locus generator successfully generated
the trajectory representing all of the optimal parameters for
maximum-efficiency gaits at all displacements.

A line of future work is investigating how to expand the
optimal locus generator to inertia-dominated systems. The
cost for these systems is based on the acceleration during the
gait, rather than the path length. This work will require an
evaluation of the Hessian of both the cost function (including
acceleration) and the net displacement function.

We believe that this work acts as the foundation for new
research, including the identification of the efficient steering
gait family, by understanding how to optimize with respect to
multiple constraints. Furthermore, it is possible to investigate
how to capture the most important components of a high-
dimensional shape space in an intrinsically two-dimensional
structure from the feasibility of the optimal locus generator
with shape spaces of any number of dimensions.

APPENDIX

Theorem 1 (Lagrange Multipliers Theorem). Let there be a
set of parameters p 2 Rn, s : Rn ! R be a cost/objective
function on p, and g : Rn ! R be a constraint function on
p. We assume that s and g are C2 continuous with respect to
p; that is, they are continuous and have a first and a second
derivative everywhere.

We define L : Rn ⇥R ! R to be a Lagrangian function.2
Every optimal solution (p⇤,�⇤) to the optimization problem

Minimize s(p) subject to g(p) = gc,

where gc is the desired value of the constraint function, must
satisfy the necessary conditions of optimality [6], [9]

rp,�L(p⇤,�⇤) = 0, (12)

where
L(p,�) = s(p)� �(g(p)� gc) (13)

Theorem 2 (Second Derivative Test). Let (p⇤,�⇤) be sta-
tionary points of the Lagrangian L. Because its constituent

2The method of Lagrange multipliers allows us to find critical points of
a cost function with respect to constraints. In our case, there is only one
constraint equation.

functions are C2 continuous, L is twice differentiable. We
define the bordered Hessian, r2

pL:

r2
pL =

"
0 rpg⇤T

rpg⇤ r2
pL⇤

#
, (14)

where g⇤, s⇤ are the values of the constraint and cost
functions at the stationary point p⇤, and r2

pL⇤ is the Hessian
of the Lagrangian with respect to p at the stationary point
p⇤ [7].

The following are true for the stationary points (p⇤,�⇤).
• If r2

pL(p⇤,�⇤) is positive definite, then p⇤ is a local
minimizer subject to g(p) = gc. This is a sufficient
optimality condition for our case.

• If r2
pL(p⇤,�⇤) is negative definite, then p⇤ is a local

maximizer subject to g(p) = gc.
• If r2

pL(p⇤,�⇤) is indefinite, then p⇤ is neither a local
maximizer nor local minimizer subject to g(p) = gc.

ACKNOWLEDGMENT
We thank Noah J. Cowan, Siming Deng, and Nathan Justus

for many insightful discussions, and the NSF for support via
Grants CMMI-1653220.

REFERENCES

[1] R. L. Hatton and H. Choset, “Geometric motion planning: The
local connection, Stokes’ theorem, and the importance of coordinate
choice,” The International Journal of Robotics Research, vol. 30,
no. 8, pp. 988–1014, July 2011, publisher: SAGE Publications Ltd
STM. [Online]. Available: https://doi.org/10.1177/0278364910394392

[2] S. Ramasamy and R. L. Hatton, “Soap-bubble optimization of gaits,”
in 2016 IEEE 55th Conference on Decision and Control (CDC), Dec.
2016, pp. 1056–1062.

[3] D. Tam and A. E. Hosoi, “Optimal Stroke Patterns for Purcell’s
Three-Link Swimmer,” Physical Review Letters, vol. 98, no. 6, p.
068105, Feb. 2007. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevLett.98.068105

[4] S. Ramasamy and R. L. Hatton, “Geometric gait optimization beyond
two dimensions,” in 2017 American Control Conference (ACC), May
2017, pp. 642–648, iSSN: 2378-5861.

[5] R. L. Hatton, Z. Brock, S. Chen, H. Choset, H. Faraji, R. Fu,
N. Justus, and S. Ramasamy, “The geometry of optimal gaits for
inertia-dominated kinematic systems,” 2021.

[6] E. K. Chong and S. H. Zak, An introduction to optimization. John
Wiley & Sons, 2004.

[7] R. Fletcher, Practical methods of optimization. John Wiley & Sons,
2013.

[8] S. Ramasamy and R. L. Hatton, “The Geometry of Optimal Gaits
for Drag-Dominated Kinematic Systems,” IEEE Transactions on
Robotics, vol. 35, no. 4, pp. 1014–1033, Aug. 2019. [Online].
Available: https://ieeexplore.ieee.org/document/8758237/

[9] D. KALMAN, “Leveling with Lagrange: An Alternate View
of Constrained Optimization,” Mathematics Magazine, vol. 82,
no. 3, pp. 186–196, 2009, publisher: [Mathematical Association
of America, Taylor & Francis, Ltd.]. [Online]. Available: https:
//www.jstor.org/stable/27765899

[10] E. M. Purcell, “Life at low Reynolds numbers,” American Journal of
Physics, vol. 45, no. 1, pp. 3–11, January 1977.

[11] S. D. Kelly and R. M. Murray, “Geometric phases and robotic
locomotion,” Journal of Robotic Systems, vol. 12, no. 6, pp.
417–431, June 1995, iSBN: 0741-2223. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620120607

[12] R. L. Hatton, T. Dear, and H. Choset, “Kinematic Cartography
and the Efficiency of Viscous Swimming,” IEEE Transactions on
Robotics, vol. 33, no. 3, pp. 523–535, June 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7859387/

8878

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 01:27:00 UTC from IEEE Xplore.  Restrictions apply. 


