
SciPost Phys. 12, 190 (2022)

The extraordinary boundary transition
in the 3d O(N) model via conformal bootstrap

Jaychandran Padayasi1, Abijith Krishnan2, Max A. Metlitski2,
Ilya A. Gruzberg1 and Marco Meineri3?

1 Department of Physics, The Ohio State University, Columbus, OH 43210, USA
2 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3 Département de Physique Théorique, Université de Genève,
24 quai Ernest-Ansermet, 1211 Genève 4, Suisse

? marco.meineri@gmail.com

Abstract

This paper studies the critical behavior of the 3d classical O(N) model with a boundary.
Recently, one of us established that upon treating N as a continuous variable, there exists
a critical value Nc > 2 such that for 2 ≤ N < Nc the model exhibits a new extraordinary-
log boundary universality class, if the symmetry preserving interactions on the boundary
are enhanced. Nc is determined by a ratio of universal amplitudes in the normal uni-
versality class, where instead a symmetry breaking field is applied on the boundary. We
study the normal universality class using the numerical conformal bootstrap. We find
truncated solutions to the crossing equation that indicate Nc ≈ 5. Additionally, we use
semi-definite programming to place rigorous bounds on the boundary CFT data of in-
terest to conclude that Nc > 3, under a certain positivity assumption which we check in
various perturbative limits.
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1 Introduction

The boundary behavior of systems that are critical in the bulk is a subject with a venerable
history [1–3] that has received renewed attention in recent years. The reason for the resur-
gent interest in boundary criticality is two-fold. First, due to advances in conformal bootstrap,
the last decade has seen significant progress in our understanding of conformal field theory
(CFT) in dimension d > 2. While most of the attention to date has focused on bootstrapping
the bulk behavior of CFTs, applications to boundary conformal field theory (BCFT) have also
been studied [4–15], the present paper builds on these developments. Second, the discovery
of topological insulators and more broadly, advances in understanding topological phases of
quantum matter has spurred a wave of interest in boundary behavior in general. Such phases
are gapped in the bulk, but may support protected gapless boundary states. While the exis-
tence of a bulk gap was originally thought to be crucial for the protection of boundary states,
recent work revealed that boundary states may survive in some form even when the bulk gap
closes [16–24]. The study of boundary behavior of such gapless bulk systems falls squarely in
the domain of boundary criticality. As the boundary behavior of certain quantum spin systems
was investigated in this light [25–30], unresolved qualitative questions about boundary criti-
cality in one of the simplest textbook statistical mechanics models—the classical O(N) model
in d = 3—were uncovered. We now discuss what these questions are and how the present
paper aims to address them.

Consider the following prototypical lattice realization of the classical O(N) model with a
boundary:

H
kB T

= −
∑

〈i j〉

Ki j~Si · ~S j . (1)

Here ~Si are classical O(N) spins (N component vectors of unit length) at the sites of a semi-
infinite d-dimensional hypercubic lattice. Ki j > 0 is a nearest neighbour coupling that is K1 if
both i and j belong to the surface layer and K otherwise. Above its lower critical dimension,
this model has a bulk phase transition at K = Kc . We are specifically interested in the boundary
phase diagram of the model (1) in bulk dimension d = 3 when N > 2, which surprisingly is
still not settled.

First, we review the situation in dimension d > 3 where more clarity exists.1 For d > 3

1Here and below, we often formally treat variables d and N as continuous.
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Figure 1: Conventionally accepted phase diagram of the classical O(N)model with a
boundary in dimension d > 3. BO stands for bulk ordered, SO - surface ordered, BD
- bulk disordered, SD - surface disordered. For d = 3 and N = 1 the phase diagram
is the same. For d = 3 and N = 2 the phase diagram has the same topology, but the
BD/SO region only has quasi-long-range surface order.

the conventionally accepted phase diagram has the schematic shape shown in figure 1.2 Let
us define the parameter κ= K1/K . For κ smaller than a critical value κc , the onset of both the
bulk and the boundary order happens at K = Kc . This boundary universality class is known as
“ordinary". For κ > κc the enhancement of the surface coupling leads to the boundary ordering
at a higher temperature than the bulk. Then for κ > κc the onset of bulk order at K = Kc in the
presence of established boundary order is known as the “extraordinary" boundary universality
class. Finally, the multicritical point at κ = κc and K = Kc is known as the “special" boundary
universality class.3

Let us now turn our attention to dimension d = 3, our main focus in the present paper.
For the case of Ising spins the boundary phase diagram remains the same as in figure 1. For
N = 2, the phase diagram has the same topology as in figure 1, however, now the region labeled
as BD/SO has only quasi-long-range boundary order (correlation functions of the boundary
order parameter fall off as a power law with a variable exponent) rather than true long range
order [32–34]. For N > 2, the boundary has a finite correlation length for K < Kc and the
only phase transition expected is at K = Kc . Thus, the topology of the phase diagram does
not mandate the existence of the extraordinary and special boundary universality classes: it
is possible that the ordinary universality class is realized for all values of κ, see figure 2b.
However, it is also possible that different boundary universality classes are realized for different
values of κ even though they would connect the same bulk-disordered/surface-disordered and
bulk-ordered/surface-ordered phases, see figure 2a. While such a scenario appears exotic, in
Ref. [31] it was argued to be realized for a finite range of N : 2 < N < Nc . Here N is formally
treated as a continuous variable and Nc > 2 is a yet unknown critical value of N .4 In this
range (and also at N = 2) the region κ� 1 realizes what was termed the “extraordinary-log"

2We note, however, that as discussed in Ref. [31] there exists a scenario where the phase diagram in figure 1
needs to be modified in dimensions 3< d < dc < 4.

3When we use the term “boundary universality class" here and below we always imply that we are at the bulk
critical point K = Kc .

4Note that Nc is almost certainly not an integer.
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Figure 2: Possible boundary phase diagrams of the classical O(N)model for d = 3 and
N > 2. Ref. [31] argued that the phase diagram on the left is realized for 2< N < Nc
with the extraordinary phase being of the “extraordinary-log" character, while the
phase diagram on the right is realized for large N . Here Nc > 2 is a yet unknown
critical value of N . See Ref. [31] for scenarios for the evolution of the phase diagram
from one on the left to one on the right with increasing N .

boundary universality class, where the boundary correlation function falls off as

〈~S~x · ~S~y〉 ∼
1

(log |~x − ~y|)q
, (2)

where q is a universal N -dependent exponent. Thus, the correlation function of the boundary
order parameter falls off extremely slowly: the boundary is almost but not quite ordered. In
contrast, Ref. [31] argued that for large N the simple phase diagram in figure 2b is realized.
Several scenarios for the evolution of the phase diagram with increasing N from that in fig-
ure 2a to that in figure 2b have been discussed in Ref. [31]—we will not attempt to resolve
which of these scenarios is realized in this paper.

Recent Monte Carlo simulations of the O(N) model in d = 3 support the above picture.
Ref. [35] studied the case N = 3 and concluded that the phase diagram in figure 2a is in-
deed realized. This agrees with the results of an earlier Monte Carlo study, Ref. [36]. Fur-
ther, the behavior in the extraordinary region found in Ref. [35] appears consistent with the
extraordinary-log universality class. In the N = 2 model the extraordinary region was recently
studied in Ref. [37]; again, results consistent with the extraordinary-log universality class were
obtained. Finally, an older study [38] of the N = 4 model also obtained the phase diagram
in figure 2a. Thus, Monte Carlo results to date indicate that the critical value Nc is very likely
greater than three and potentially greater than four.

The central goal of this paper will be to determine Nc using numerical conformal bootstrap.
Under certain assumptions, we will be able to place a rigorous bound,

Nc > 3 . (3)

In fact, our findings suggest Nc > 4, although we cannot make this claim with the same degree
of rigour as Nc > 3. We now summarize how these results are obtained.

As was shown in Ref. [31], much of the physics of the extraordinary-log universality class
including the exponent q in eq. (2) and the value of Nc is determined by yet another boundary
universality class: the normal universality class. The latter is obtained by applying an explicit
symmetry breaking field to the boundary, δH = −

∑

i∈bound
~h1 · ~Si . It is believed that for h1 6= 0

the model (1) has a single phase transition at K = Kc where the boundary realizes just one
universality class—the normal class—for all values of κ. The values of q(N) and Nc in the
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extraordinary-log phase (with h1 = 0) are then determined by certain universal boundary
OPE (operator product expansion) coefficients µσ and µt of the normal universality class (see
section 2.2). These OPE coefficients can be extracted from the two-point function of the order
parameter.

We would like to note that besides its relevance to the model with h1 = 0, the normal
universality class is interesting in its own right. In many ways, it is a natural target for confor-
mal bootstrap due to the existence of two protected boundary operators (the tilt operator and
the displacement operator discussed in section 2.2) and the sparseness of low-lying bound-
ary operator spectrum anticipated from e.g. the large-N and 4−ε expansions. We analyze the
bootstrap equations for the two-point function using two methods, which we call the truncated
bootstrap and the positive bootstrap. The truncated bootstrap utilizes the method proposed by
Gliozzi [39], where the operator spectrum is truncated by hand at a small number of low-lying
operators. Our work here is a direct generalization of the application of the Gliozzi method
to the normal boundary universality class of the 3d Ising model in Ref. [6]. We find the OPE
coefficients µσ and µt and hence the exponent q, see table 3 and figures 4a, 4b. This method
gives Nc just above 5, but unfortunately, the systematic errors associated with the truncation
of the operator spectrum are difficult to estimate. The second method we employ, the positive
bootstrap, does not suffer from such errors; however, it makes a crucial assumption of positiv-
ity of the coefficients in the expansion of the two-point function in the bulk channel. While we
cannot prove that this assumption is valid, it is consistent with the 2+ε, large-N and 4−ε ex-
pansions of the two-point function (see Appendix C). It is also consistent with the results of the
truncated bootstrap. Previously, the same assumption was made for the normal universality
class of the Ising model, which was studied with the positive boostrap in Ref. [5]. Another as-
sumption that we make is that the tilt and displacement operators are the lightest operators in
the boundary channel—again, this assumption is consistent with the 2+ ε, large-N and 4− ε
expansions. Under the two assumptions above our positive bootstrap calculations produce
rigorous bounds on µσ and µt and on q, allowing us to conclude Nc > 3, see figures 7, 8. In
addition, we provide two qualitatively different sets of assumptions which imply that Nc > 4.
One of these additional constraints is a stricter interval for µσ, which is further verified by
our truncated bootstrap results. We point out that our study here uses a more modern and
powerful version of the positive bootstrap than Ref. [5], based on semi-definite programming
techniques [40], and is, in fact, the first application of these techniques to boundary criticality.

We compare our bootstrap results to recent Monte Carlo studies of the extraordinary-log
universality class [35,37] and the recent study of the normal universality class [41] in models
with N = 2, 3, summarized in table 2. The Monte Carlo results are well within the bounds
placed by positive bootstrap and in reasonable agreement with the truncated bootstrap results.

This paper is organized as follows. In section 2 we review the general bootstrap equa-
tions for a two-point function of a scalar field in the presence of a boundary and then discuss
the particular form of these equations for the normal boundary universality class. Here we
also discuss the existence of two protected boundary operators: the tilt operator and the dis-
placement operator, as well as Ward identities associated with them. Section 3 reviews the
framework of Ref. [31] for studying the boundary behavior of the O(N) model in the κ� 1
region, explaining how the physics of the normal universality class is related to the model
with no symmetry breaking field, h1 = 0. Note that we present a derivation of the bulk +
boundary action that differs slightly from that in the original paper [31] and illuminates why
the particular ratio of OPE coefficients µσ/µt enters the action. Section 4 analyzes the two-
point function for the normal transition with the truncated bootstrap: results of this method
for µσ, µt and q for various values of N are presented here together with an attempt to esti-
mate the systematic error associated with this method. Section 5 describes how the positive
bootstrap can be used to place rigorous bounds on µσ and µt . The results of positive boot-
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strap are presented in section 6 and compared to those of the truncated bootstrap and of the
2+ε, large-N and 4−ε expansions. Some concluding remarks are given in section 7. Various
technical details are relegated to appendices. Appendix A gives a derivation of a Ward identity
relating the ratio µσ/µt to yet another universal coefficient associated with the boundary OPE
of the O(N) current. Appendix B presents some additional details and outputs of the positive
bootstrap implementation. Appendix C collects the results for the two-point function for the
normal universality class in 2+ε, large-N [31,42] and 4−ε [13] expansions. We note that to
our knowledge the 2+ε expansion results are new. Furthermore, while the 4−ε computation
of the two-point function was performed in [13], we address a mixing problem that was not
solved in this reference, and point out that the order ε results for the normal fixed point can
be used to predict OPE data of the bulk CFT to higher loop order.

2 The boundary bootstrap

The concept of the conformal bootstrap dates back to the seventies [43,44]. While it achieved
its first remarkable successes in the realm of two-dimensional CFTs in the eighties [45], only
in 2008 did it gain traction in the treatment of higher dimensional theories [46]. This break-
through was made possible by the development of a numerical method that extracts rigorous
bounds from the crossing equations without actually solving them, and it can be applied to
systems obeying some positivity conditions which we will review shortly. We will refer to this
approach as the positive bootstrap.

A large and ever growing literature has sprouted in the years since then [47]. The numer-
ical approach was later complemented by analytic techniques, which will not be the focus of
this work. More to the point, a different technology was proposed in [39] by Gliozzi. It al-
lows to extract information from the crossing equation even when positivity is not guaranteed.
This broader applicability is especially important for us because our setup falls in this category.
However, Gliozzi’s method, which we refer to as the truncated bootstrap, generates solutions
affected by a systematic error that is not easy to estimate.

The positive bootstrap was first applied to CFTs with a boundary in [5], while the truncated
bootstrap was employed for the same class of systems in [6]. In the present work, we use both
methods. In the next subsection, we briefly review the basics of the conformal bootstrap in its
BCFT incarnation. A more comprehensive account of the universal features of defects in CFTs
can be found in [7, 48]. In subsection 2.2, we then state the specific problem considered in
this work.

2.1 The crossing equation for the two-point function

Consider a d-dimensional CFT with a codimension-1 boundary – say, at xd = 0. Our main
focus is the two-point function of identical real scalar primary5 operators placed away from
the boundary:

〈φ(x)φ(y)〉 . (4)

The full conformal symmetry of the theory is broken down to a subgroup that leaves xd = 0
invariant. The following cross ratio is invariant under this subgroup:

ξ=
(x − y)2

4xd yd
. (5)

5We define primary operators in the higher dimensional sense: these are the operators which are left invariant
by the special conformal transformations which fix their insertion point.
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Figure 3: Depiction of crossing symmetry for the two-point function in BCFT.

The existence of an invariant quantity composed of two points x = (x, xd) and y = (y, yd)
implies that the two-point functions can be fixed by symmetry only up to a function of ξ.

Crucially, the correlation function (4) admits two operator product expansions (OPEs)
with overlapping regions of convergence. The first OPE channel, the bulk channel, is the usual
fusion of the two operators:

φ(x)×φ(y) =
1

(x − y)2∆φ
+
∑

k

ck Ck[x − y,∂y]Ok(y) , bulk OPE . (6)

Here∆φ is the scaling dimension of the external operators, the sum runs over all even spin
primaries of the theory except the identity, ck are real OPE coefficients in a reflection positive
theory, and the differential operators Ck[x − y,∂y] are fixed by the SO(d + 1,1) conformal
symmetry [43]. We suppressed the Lorentz indices of the operators Ok to avoid clutter, and
in fact, as we shall see in a moment, only the scalar primaries are relevant in this work. The
second OPE channel, the boundary channel, is specific to BCFTs, and consists of replacing a
local bulk operator with a sum of operators on the boundary, which we denote with a hat:

φ(x) =
aφ

(2xd)∆φ
+
∑

n

bn bCn

�

xd ,∂ 2
x

�

ÒOn(x) , boundary OPE . (7)

Again, we singled out the identity among the defect primary operators and distinguished its
OPE coefficient with the letter a. The other boundary OPE coefficients, denoted as bn, are
again real as long as the BCFT satisfies reflection positivity, and the differential operators bCn
are determined by the SO(d, 1) symmetry of the setup. The sum runs over boundary scalar
primaries.

After using eq. (6) and eq. (7) separately to compute the two-point function eq. (4), one
finds the crossing equation [48]

1+
∑

k

λk fbulk(∆k,ξ) = ξ∆φ
�

µφ +
∑

n

µn fbry(Ò∆n,ξ)

�

. (8)

This equation, illustrated in figure 3, is the starting point of the bootstrap, so let us describe in
detail its ingredients. The left-hand side is, up to a kinematical factor, the expectation value of
the bulk OPE (6). Of the primaries on the right hand side of (6), only the scalar ones acquire
nonzero expectation values [4], which are fixed by symmetry up to proportionality constants
ak. Correspondingly, we defined λk = akck. Acting with the differential operators Ck on the
one-point functions, one obtains the conformal blocks fbulk(∆k,ξ), where ∆k is the scaling
dimension of Ok. As for the right hand side of eq. (8), i.e. the boundary channel, the sum runs
over the same boundary operators as in eq. (7), and again the conformal blocks fbry(Ò∆n,ξ) are
the avatars of the differential operators bCn. They depend on Ò∆n, the dimensions of the ÒOn’s.
Since each of the external operators φ is separately fused with the boundary, the coefficient
of each conformal block is µn = b2

n, except for µφ = a2
φ

.
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The conformal blocks are known in closed form [48]6:

fbulk(∆,ξ) = ξ∆/2 2F1

�

∆

2
,
∆

2
;∆+ 1−

d
2

,−ξ
�

, (9)

fbry(∆,ξ) = ξ−∆ 2F1

�

∆,∆+ 1−
d
2

; 2∆+ 2− d;−
1
ξ

�

. (10)

For the moment, we emphasize a simple property of these functions. The bulk channel blocks
admit a power series expansion around ξ = 0, while the boundary channel blocks can be
expanded in powers of 1/ξ. This is a simple consequence of scale invariance applied to the
OPEs (6) and (7). While the contribution of heavy operators is suppressed in the bulk OPE
at small ξ, heavy boundary operators are suppressed at large ξ. Hence, crossing equates two
quite different representations of the same function.

Since the sums on both sides of eq. (8) are generically infinite, it is not obvious how to
extract concrete information from it. This is the problem addressed by the truncated and the
positive bootstrap, described in detail in sections 4 and 5 respectively. For the moment, let us
move on to the O(N) model, and describe what is known about eq. (8) in that case.

2.2 The boundary bootstrap for the normal transition

As described in the introduction, the O(N) model in d = 3 is believed to admit a normal
conformal boundary condition which breaks O(N) to O(N − 1). Our focus is the two-point
function of the lowest dimensional primary in the vector representation of O(N) in the presence
of this boundary condition. One can think of this operator as the continuum limit of the lattice
spin which appears in eq. (1). Clearly, the bulk channel OPE is unaffected by the boundary,
and it can be organized in representations of O(N). On the other hand, boundary operators
carry O(N − 1) indices.

To fix conventions, we denote by letters like a, b the indices in the fundamental represen-
tation of O(N), and we split them as a = (i, N), where indices like i, j = 1, . . . , N −1 run over
the subgroup unbroken by the boundary magnetic field. With these conventions, the lightest
O(N) vector φa has the following fusion rule:

φa ×φb ∼
∑

S

δabO+
∑

T

O(ab) +
∑

A

O[ab] , (11)

where the O(N) singlets S and the traceless symmetric tensors T have even O(d) spin, while
the antisymmetric tensors A have odd O(d) spin. Since only scalar primaries acquire one-
point functions in the presence of a boundary, only the singlet and the traceless symmetric
representations survive in the bulk channel decomposition of the two-point function.

For the boundary channel, we discuss separately the longitudinal component φN ≡ σ. As
an O(N −1) singlet, σ can acquire an expectation value, hence its boundary fusion rule reads

σ ∼ 1+
∑

bS

ÒO , (12)

where bS denotes scalar boundary primaries of non-vanishing dimensions, which are also sin-
glets under O(N − 1). On the other hand, the transverse components φi only admit O(N − 1)
vectors in their boundary OPE, which we denote as bV :

φi ∼
∑

bV

ÒOi . (13)

6Our normalization for the leading contribution of a conformal family to the boundary OPE is

φ(x)∼ (2x d)−∆φ+Ò∆n bn
ÒOn(x).
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Table 1: Bulk critical exponents from the literature. CB stands for conformal boot-
strap, MC for Monte Carlo and DE for derivative expansion. References [51], [54]
and [57] are only used for ∆ε′ . In particular, the value from [57] was taken from its
table 10, where the error is not reported. Reference [56] is only used for ∆T , and
the remaining assignments are unambiguous. As for the errors, the ones in the CB
come in two flavors. Values in bold indicate rigorous errors, while values in regular
font are from bootstrap techniques where the uncertainty is not rigorous.

N ∆φ ∆ε ∆ε′ ∆T Method [Ref.]

1 0.518149(10) 1.412625(10) 3.82951(61) - CB [50] [51]
2 0.519088(22) 1.51136(22) 3.794(8) 1.23629(11) CB [52]
3 0.518936(67) 1.59488(81) 3.759(2) 1.20954(32) CB [53], MC [54]
4 0.5190(15) 1.660(15) 3.765 1.1864(34) CB [55] [56], MC [57]
5 0.51690(55) 1.7174(15) 3.760(18) 1.1568(10) DE [58], CB [56]
10 0.51155(30) 1.8605(13) 3.807(7) 1.1003(10) DE [58], CB [56]
20 0.50645(15) 1.93719(68) 3.887(2) 1.0687(10) DE [58], CB [56]
∞ 1/2 2 4 1

Let us look in more detail at the low lying spectrum, starting with the bulk channel. All
the O(N) models have one relevant operator in the singlet scalar sector, ε, which couples
to the temperature. The leading operators in the vector (φ) and symmetric traceless (T)
representations are also relevant. Precise estimates are available for both the dimensions of
these operators and the dimension ∆ε′ of the least irrelevant operator responsible for the
leading correction to scaling. We report in table 1 the values we use as input in this work.7

Let us turn to the boundary channel. At the normal fixed point, there are two protected
boundary operators, one in the singlet bS channel and one in the vector bV channel. The former
is the displacement operator D, with dimension Ò∆D = 3. Its existence on any conformal defect
is guaranteed [7, 59], and a Ward identity enforces its presence in the boundary OPE of all
bulk operators with a one-point function. Specifically,

σ(x)∼
aσ

(2x3)∆φ
+ bD(2x3)3−∆φD(x) , x3 → 0 , µσ = a2

σ , µD = b2
D , (14)

and
µσ
µD
=

�

4π
∆φ

�2

CD . (15)

In this formula, CD is a strictly positive constant in a reflection positive theory.8 The protected
operator in the vector channel, which we call the tilt operator ti , has dimension Ò∆t = 2 [60],
and is assumed to be the lightest operator in the boundary spectrum:

φi(x)∼ bt(2x3)2−∆φ ti(x) , x3 → 0 , µt = b2
t . (16)

7After this work was completed, Ref. [49] appeared with improved Monte Carlo estimates of critical exponents
for N = 4, 5, and 10. We checked that using these new estimates did not change any of the main conclusions of
the paper.

8The displacement also appears as the leading term in the boundary OPE of the stress tensor: T 33 ∼ −
p

CDD.
Equivalently, this equation can be written as a Ward identity: ∂µTµ3 = −δ(x3)

p

CDD. Then,
p

CD 6= 0 be-
cause translational invariance is broken by the boundary, and furthermore

p

CD ∈ R by reflection positivity as
for any other OPE coefficient. All operators in this paper are normalized to one, but in the natural normalization
D → D/

p

CD, so that CD is often defined as the squared norm of the displacement in radial quantization.
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Just as the displacement operator couples to a deformation of the boundary, the tilt operator
couples to a change in the direction of the boundary magnetic field. The same argument that
leads to eq. (15) also provides a relation of three OPE coefficients in this case:

µσ
µt
= 16π2 Ct . (17)

Here, Ct determines the coefficient of the tilt operator in the boundary OPE of the O(N) sym-
metry current jµ[ab], where a and b are anti-symmetrized:

j3[Ni](x)∼
p

Ct ti(x) , x3 → 0 . (18)

In fact, the tilt operator is the leading operator in that OPE, and the only scalar. Its contribution
is nicely captured by the equation

∂µ jµ[Ni] = δ(x
3)
p

Ct ti . (19)

Eq. (19) has an obvious generalization to any defect, while eq. (18) shows that, in the codi-
mension one case, ti is identified with the boundary value of the appropriate component of
the current. For completeness, we review the derivation of eq. (17) in appendix A. Because it
determines the fate of the extraordinary-log phase, as we review in section 3, the coefficient
Ct is the main target of this paper.

As for the rest of the boundary spectrum, both the large N [42, 60] and the 4 − ε expan-
sions [13] indicate that there are no operators lighter than the displacement except for the
tilt operator. In fact, the boundary spins are frozen at the normal transition, and the lattice
intuition suggests that the only simple operators are built geometrically: locally deforming
the position of the boundary and locally changing the orientation of the boundary spins. It is
tempting to conjecture that the normal transition defines the conformal boundary condition
with the largest possible gap above the protected operators. It would be interesting to test
this possibility with the conformal bootstrap. In this work, we assume a weaker form of the
conjecture, namely that the spectrum of boundary primary operators is as follows:

Ò∆=











2 , tilt operator ti ,

3 , displacement operator D ,

≥ 3 .

(20)

With this information about the spectrum, let us move on to the crossing equation, as
defined by eq. (8). The two-point function of φa contains two O(N − 1) singlets:

Gσ(x , y) = 〈σ(x)σ(y)〉 , (21)

Gφ(x , y) =
1

N − 1

∑

i

〈φi(x)φi(y)〉 . (22)

Hence, there are two non trivial crossing equations, respectively:

1+
∑

k∈S

λk fbulk(∆k,ξ) +
∑

l∈T

λl fbulk(∆l ,ξ) = ξ
∆φ









µσ +µD fbry(3,ξ) +
∑

n∈bS
Ò∆n>3

µn fbry(Ò∆n,ξ)









, (23)

and

1+
∑

k∈S

λk fbulk(∆k,ξ)−
1

N − 1

∑

l∈T

λl fbulk(∆l ,ξ) = ξ
∆φ









µt fbry(2,ξ) +
∑

n∈bV
Ò∆n≥3

µn fbry(Ò∆n,ξ)









. (24)
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Our focus is the linear combination GS = Gσ + (N − 1)Gφ , which projects the bulk channel
onto the O(N) singlet:

N +
∑

k∈S

Nλk fbulk(∆k,ξ) = ξ∆φ



µσ + (N − 1)µt fbry(2,ξ) +µD fbry(3,ξ) +
∑

Ò∆n≥3

µ̃n fbry(Ò∆n,ξ)



 . (25)

In the boundary channel, we collected together all operators with dimensions equal or above
that of the displacement. Correspondingly, µ̃n = µn for bS operators, and µ̃n = (N − 1)µn
for bV operators. Of course, other linear combinations contain information about the traceless
symmetric spectrum in the bulk. In particular, Gσ − Gφ projects out the singlet. We will not
explore the related constraint in this paper.

3 Intermezzo: from the normal fixed point to the extraordinary
phase

We now review the main idea of [31], which allows us to relate the OPE data of the normal
transition to the scenarios for the boundary phase diagram of the O(N) model without any
explicit symmetry breaking field, as we described them in the introduction. Our presentation
here differs slightly from that in [31], elucidating why the ratio of OPE coefficients µσ/µt
plays a prominent role.

We will be interested in a model where at some intermediate length-scale (much larger
than the UV cut-off) the boundary spontaneously breaks the O(N) symmetry. At this length-
scale, we expect the renormalization group trajectory to pass close to the normal fixed point.9

This is true of the lattice model (1) in the regime κ� 1. Indeed, when κ=∞, the boundary
spins are frozen along some fixed direction, acting as a symmetry breaking field. When κ is
large but finite, the boundary order is expected to persist at least up to some large intermediate
length scale. To describe the system at distances equal to or larger than this length scale, we
can start with the normal boundary fixed point and deform it with a perturbation that restores
the full O(N) symmetry at the level of the action.

One can restore the O(N) symmetry by adding dynamical degrees of freedom which
compensate for the variation of the original non-symmetric action. Let Snormal be the
bulk+boundary action at the normal fixed point, with the symmetry breaking field pointing
along the N th direction. The variation of this action under the broken O(N) rotation is cap-
tured by integrating the divergence of the current in the path integral:

δSnormal =

∫

d3 xωi ∂µ jµ[Ni](x) , (26)

where ωi are the infinitesimal angles which parametrize the rotation. We can then use the
Ward identity (19) to write

δSnormal =
p

Ct

∫

d2xωi ti(x) . (27)

We see that we can cancel this variation by introducing a coupling of the tilt operator with
new boundary fields πi(x) and assign to them the transformation law

δπi(x) = −ωi . (28)

9More precisely, as we shall see in a moment, the normal fixed point is augmented by (N − 1) decoupled
massless bosons, the π fields in eq. (30).
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The action

Snormal +
p

Ct

∫

d2xπi(x) ti(x) (29)

is invariant under O(N) at zeroth order in πi . The final step is to make the new fields dynam-
ical, and this can be achieved with a kinetic term invariant under the shift (28) and under the
unbroken O(N − 1) subgroup, which is realized linearly. It is natural to reinterpret the πi ’s as
components of a O(N) unit vector ~n = (πi ,

p
1−π2), and to add the non-linear sigma model

to complete the action:

S = Snormal +
1

2g

∫

d2x (∂ ~n(x))2 +
p

Ct

∫

d2xπi(x) ti(x) . (30)

When g = 0, the πi are frozen to be constants, and (30) reduces to the action of the normal
fixed point, where the direction of the magnetisation is fixed by πi . We will be interested in
the stability of the g = 0 fixed point.

Because the coefficient of the last term in eq. (30) is fixed by the requirement of O(N)
invariance, it is not renormalized along the RG flow. On the contrary, the coupling g has an
interesting β function, which we address shortly. The action (30) needs additional couplings to
restore O(N) invariance to higher orders in πi: the coefficients of the ones which are relevant
or marginal at g = 0 must be fine tuned, and their values do not affect β(g) at quadratic
order [31]. Finally, we check that there is no additional O(N) singlet which is relevant or
marginal at the normal fixed point. This fact follows from the spectra of the non-linear sigma
model and of the normal fixed point. On one hand, with the exception of (∂ n)2, there are no
relevant or marginal operators built out of πi in two dimensions which are classically O(N)
invariant. On the other hand, the normal fixed point has no relevant O(N−1) singlet operators
at all, as we explained in section 2.2. The only O(N−1)-invariant marginal operators involving
this sector are of the kind f ( ~π2)πiti , but these are not classically O(N) invariant either, and
so they are exactly the operators whose coefficients will need to be fine-tuned order by order
in πi .

We conclude that there is a one-parameter flow controlled by the β function of g, which
reads [31]

β(g) = αg2 +O(g3) , (31)

with
α=

π

2
Ct −

N − 2
2π

=
1

32π
µσ
µt

−
N − 2

2π
, (32)

where we used eq. (17) in eq. (32).
Hence, the stability of the g = 0 fixed point is decided by the sign of α. When α > 0,

a small initial g flows to zero logarithmically and the extraordinary-log universality class is
realized. Here the O(N) invariant bulk correlation functions in the isotropic scaling limit
(~x , xd)→ λ(~x , xd), λ→∞, match those of the normal fixed point up to corrections in powers
of 1/ logλ (the latter can be computed perturbatively in g). However, due to the logarithmic
approach to the g = 0 fixed point and anomalous dimension of the field ~n, correlation func-
tions along the boundary decay logarithmically [31]:

〈na(~x)nb(0)〉 ∼
δab

(log |~x |)q
, q =

N − 1
2πα

. (33)

We expect the two-point function of the bulk field 〈φa(x)φb(y)〉 to exhibit the same logarith-
mic decay in the limit xd fixed, |~x | →∞.

When α < 0, the g = 0 fixed point is unstable, the long distance physics depends on the
closest stable fixed point and various scenarios open up [31]. We will not attempt to resolve
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Table 2: Monte Carlo results for surface criticality in the classical O(N) model. The
values of µσ and µt are from the recent study [41] of the normal boundary univer-
sality class, and αnorm is obtained from these using (32). αeo is from the studies of
the extraordinary phase (with h1 = 0), where it was extracted from the boundary
correlation function (33) [35,37].

N µσ µt αnorm αeo

2 [37,41] 8.29(1) 0.276(4) 0.300(5) 0.27(1)
3 [35,41] 9.83(1) 0.280(3) 0.190(4) 0.15(2)

the infra-red physics in this regime here, instead, we concentrate on computing the value of
α.

Equation (32) is a concrete target for the bootstrap. We know that α > 0 for N = 2
because Ct > 0, and vice versa α < 0 at large N [31, 42, 60]. In the following sections, we
use the truncated and the positive bootstrap to identify the sign and magnitude of α in part of
the remaining range. Our findings are consistent with α changing sign once for N > 2; we let
N = Nc > 2 be the zero of α, such that the extraordinary-log universality class is realized for
2 ≤ N < Nc . Extracting information about Nc is a key goal of this work.

Recent Monte Carlo simulations of the O(N) model support the existence of the extraordi-
nary-log universality class for N = 2 and N = 3 [35, 37]. The value of α in these models has
been extracted from the logarithmic decay of the boundary two-point function, eq. (33), and
is listed in table 2 as αeo. A recent Monte Carlo study [41] directly investigates the normal
universality class in models with N = 2,3 and extracts the values of µσ, µt. We collect these
data in table 2 together with the associated value of α obtained via eq. (32) and listed as
αnorm. We note that αeo and αnorm found by Monte Carlo are in reasonable agreement, as
predicted by the RG analysis above. Since αnorm has slightly smaller error bars, to simplify the
presentation we will use αnorm when comparing our bootstrap results for α to Monte Carlo.
In fact, as pointed out in [35], the error bar on αeo needs to be taken with a grain of salt,
given the difficulty of fitting the function (2) and the presence of slowly decaying subleading
corrections that are not accounted for in the fit.

4 The truncated bootstrap

The gist of the truncation method [39] is that finite truncations of the infinite sums in the cross-
ing equation (8) provide an approximation to the low lying CFT data. In the boundary boot-
strap, given the lack of rigorous positivity constraints for the bulk channel OPE coefficients, the
truncation method proves to be a natural starting point for exploration. It makes no assump-
tion of positivity and has been used to explore both unitary and non-unitary CFTs [6,61–65].
However, truncating the OPE is plagued by systematic errors that in most cases are difficult to
estimate, as we expound later in this section.

Consider the crossing equation (25), which involves both OPE coefficients of interest to us,
µσ and µt. To start with, we linearize the constraint by expanding around a value of the cross-
ratio ξ where the regions of convergence of both channels (i.e., bulk and boundary) overlap.
In the boundary bootstrap literature, this is usually chosen to be ξ = 1. Simultaneously, we
also truncate the infinite sums to a finite number of operators. We label the truncations of
eq. (25) in this paper by pairs of integers (nbulk, nbry) standing for the number of operators
left in each channel (not counting for the bulk identity which is always present). The linear
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system of equations hence obtained from the GS crossing equation (25) look like

−
nbulk
∑

k=1

Nλk fbulk(∆k, 1)+µσ+(N −1)µt fbry(2, 1)+µD fbry(3,1)+
nbry−3
∑

n=1

µ̃n fbry(Ò∆n, 1) = N , (34)

−

�nbulk
∑

k=1

Nλk ∂
m
ξ fbulk(∆k,ξ)

�

�

�

ξ=1

�

+ (∆φ)mµσ + (N − 1)µt ∂
m
ξ (ξ

∆φ fbry(2,ξ))
�

�

�

ξ=1

+µD ∂
m
ξ (ξ

∆φ fbry(3,ξ))
�

�

�

ξ=1
+

nbry−3
∑

n=1

µ̃n ∂
m
ξ (ξ

∆φ fbry(Ò∆n,ξ))
�

�

�

ξ=1
= 0 , (35)

where (∆φ)m is the Pochhammer symbol. Of course, there are infinitely many homogeneous
equations of the form (35) labeled by the integer m, of which we keep only the first M . The
homogeneous system of equations involving the derivatives of conformal blocks is linear in
the vector of the OPE coefficients (Nλk,µσ, (N − 1)µt,µD, µ̃n) of dimension L = nbulk + nbry.
The system is over-constrained if we choose M > L, and has a non-trivial solution only if the
smallest singular value of the matrix of derivatives is zero [62].

Practically, we use the known critical exponents to fix the scaling dimension of the lowest
operators in the spectrum (table 1), which further reduces the dimensionality of the search
space for the scaling dimensions of other operators. Notice in particular that the dimension
∆φ of the external operators is always an input in this section. Then we minimize the smallest
singular value of the matrix corresponding to eq. (35) and hope to find approximate zeros.
Once the unknown dimensions are found, we can solve the system of homogeneous equations
along with the inhomogeneous equation to obtain the OPE coefficients. At this stage, we must
also discard solutions that do not satisfy the unitarity constraints

µi ≥ 0 , (36)

for all the boundary OPE coefficients.
The first truncation we consider is (4, 3), with the scaling dimensions of the lowest two

bulk operators fixed from the literature, i.e. ∆ε and ∆ε′ in table 1. Each bulk/boundary
operator in the truncation contributes two pieces of CFT data: the scaling dimension and
the OPE coefficient. Of the 14 parameters obtained for the (4, 3) truncation, the dimensions
of the protected boundary operators (boundary identity, displacement and tilt) and two bulk
operators are known a priori. Thus, this leaves us with 14−3−2= 9 independent parameters
in the non-linear system. As there are M + 1 equations constraining the parameters, a choice
of M = 8 may result in either isolated solutions or no solution at all [66]. It turns out that we
do find good solutions for all finite values of N considered in table 1. The solutions obtained
from the canonical FindMinimum package in Mathematica appear to be true zeros of the
smallest singular value z of the derivative matrix. This is confirmed by changing the precision
“prec” and observing that

Min [log z]∝−prec.

In other words, increasing the precision at which the minimization is run simply makes the
zeros more precise without altering the CFT data. It would be interesting to understand the
origin of this fact, perhaps along the lines of [67]. The OPE coefficients obtained this way for
integer values of N ≥ 2 from table 1 are plotted in figure 4a. Figure 4b shows the correspond-
ing values of α and indicates that the critical value Nc estimated from the truncation (4, 3) is
Nc ∼ 5. The full set of unknown CFT data obtained from the (4,3) truncation is tabulated in
table 3. We used a precision of 200 for the minimization, but we only report here the first few
significant digits of the CFT data.
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Figure 4: OPE coefficients from the truncated bootstrap. µσ and µt estimates (on the
left) compared to selected perturbative results (Appendix C) and Monte Carlo results
in [41]. Corresponding values of α are on the right. The value of Nc is determined
by α(Nc) = 0.

Let us now focus on the integer values of N ≤ 5. For N = 1 our analysis excellently
corroborates the results obtained in Ref. [6].10 Following the approach of [6], we test the
stability of the solutions for N = 2 and N = 3 by adding an extra operator in either channel,
that is, by considering the truncations (5, 3) and (4, 4). If we choose M = 9, there is one
free parameter in the set of CFT data for both extended truncations (16 − 3 − 2 − 10 = 1),
and we should generically expect to find a one-parameter family (OPF) of solutions for each
truncation. Indeed, we find these families as functions of the scaling dimensions of the added
operators, ∆5 and Ò∆4. For example, the (5,3) family for N = 2 is sketched in Fig. 5. The
truncation (4,3) corresponds to ∆5 → ∞ and Ò∆4 → ∞, which is in line with the numerical
solutions because all the CFT data approach the (4, 3) solution monotonically as we increase
the free parameter in either family.

Reference [6] used the OPFs to obtain an estimate of the systematic error due to the trun-
cation: if the low lying CFT data depended weakly on the scaling dimension of the additional
operator in an extended truncation, we might trust their values as obtained from the origi-
nal truncation. For N = 2 we find that the (5,3) OPF exists for ∆5 ≥ 15.96(2). The end
of this family corresponds to µt going to zero and eventually becoming negative. When µt
is arbitrarily close to zero with µσ finite, α can be arbitrarily large, i.e. this method of esti-
mating the error provides no approximate upper bound on α. However, the (4,4) OPF exists
for Ò∆4 ≥ 4.66(2) and provides an approximate lower bound on α at its end: α(2) ≥ 0.144.
Figure 6 illustrates the change in the OPE coefficients along both these families. Note that our
result for µt appears to vary more upon adding an extra operator than µσ does.

For N = 3 we obtain a similar picture, with the lower bound α(3) ≥ −0.047 coming from
the (4,4) OPF. Based on this analysis, it seems that we cannot confidently place N = 3 above or
below Nc . However, it is unclear if the use of the OPFs is a correct way to estimate systematic

10For example, for the (4, 2) truncation, our results for the two unknown dimensions are ∆3 = 7.311 and
∆4 = 13.036 compared to the quoted values of ∆3 = 7.316(14) and ∆4 = 13.05(4) in [6]. In the journal version
of the same paper, data for the normal transition in the O(2) and O(3) models appear as well. However, the
truncation used there was incomplete, since it did not include the tilt operator.
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Table 3: CFT data from the (4, 3) truncation for integer values of N ≥ 2 with input
data from table 1. ∆3, ∆4 refer to dimensions of unknown bulk operators that are
found by minimization. Values are only reported up to first few significant digits.

N ∆3 ∆4 µσ µt α µD × 100

2 7.007 12.489 8.546 0.2383 0.3567 7.298
3 6.883 12.385 9.98 0.2593 0.2236 7.236
4 6.845 12.358 11.758 0.2606 0.1304 7.609
5 6.819 12.351 13.259 0.2669 0.01660 7.038
10 6.845 12.414 22.220 0.2691 -0.4518 5.512
20 6.955 12.550 41.386 0.2649 -1.311 3.000

errors, which might be overestimated. An in-depth analysis of the truncation error is lacking
in the literature and is beyond the scope of this work.

Some more information on the truncation error can be gathered by comparison with other
methods. The CFT data obtained from the (4,3) truncation for all studied values of N sit
squarely in the middle of the positive bootstrap bounds in figures 7, 8. However, a more
detailed analysis of the island of solutions to crossing shows that the truncated data actually
lie slightly outside the allowed region, at least for N = 3—see figure 10. Hence, the truncation
error cannot be too small: as we discuss below, we expect it to be larger on µt than on µσ.

The (4, 3) truncation for N ¦ 10 also agrees reasonably well with estimates from large N
calculations (figures 4a, 4b). Large N expansion indicates that µt is a decreasing function of
N for N →∞, so curiously, combined with our truncated bootstrap findings, this would imply
that µt is a non-monotonic function of N .

We now compare the results of the (4, 3) truncation to Monte Carlo data on the normal
transition for N = 2,3 [41] listed in table 2. We find that our value of µσ is about 1-3% larger
than the Monte Carlo result, while the value of µt is about 7-15% smaller. While both values
are well outside the Monte Carlo error-bars, we consider the agreement to be very good, given
the pessimistic estimates of possible truncation error discussed above. The larger deviation
of our µt from Monte Carlo as compared to µσ might be due to stronger sensitivity of µt to
the addition of extra boundary operators, as shown in Fig. 6, right. Overall, for N = 2,3 the
deviations in µσ and more importantly µt result in our value of α being somewhat larger than
the Monte Carlo result. Note, however, that if we assume in our N = 4 results the same 15%
error on µt and 3% error on µσ, we still obtain α(4)≈ 0.06, i.e. Nc > 4.

5 The positive semi-definite bootstrap

As we have shown, the truncated bootstrap, when applied to O(N) vector models with a bound-
ary, yields solutions that agree with asymptotics from large-N expansion, but also have un-
controlled systematic errors that can be large in magnitude, as far as we have investigated.
Therefore, we also approach the problem using the more mainstream positive bootstrap [68].

Unlike the truncated bootstrap, the positive bootstrap requires that the coefficients λk in
eq. (8) are positive. If this condition is verified, then the positive bootstrap yields rigorous
bounds. However, the positivity of the bulk channel OPE coefficients cannot be guaranteed on
general grounds. The authors of [5] conjectured that any CFT allows for at least one bound-
ary condition for which the bulk OPE coefficients are positive. They further assumed that this
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Figure 5: One-parameter family of solutions in the (5, 3) truncation for N = 2. We
label the bulk channel operators as (∆ε,∆ε′ ,∆3,∆4,∆5)where the first two are fixed
from the literature (table 1).The solution from the (4,3) truncation is marked with
a crosshair of dashed lines. The red point in the bottom left corner is a solution that
has negative µt, which is not allowed.

is true for both the special and the normal universality classes in the Ising model. This was
qualified in [6] where more evidence was provided for the positivity to be associated with
the normal transition. In this section, we must assume the stronger version of the conjecture;
specifically, we assume that the normal transition is a boundary condition that manifests posi-
tivity in the bulk channel for any value of N . This is consistent with the results of 2+ε, large-N
and 4− ε expansions presented in Appendix C. The assumption is also consistent with our re-
sults from truncated bootstrap, where none of the truncated solutions came with negative
λk.

In this work, we use the latest semi-definite programming (SDP) package SDPB 2.0 [69]
that is specifically tailored for the SDP problems one encounters in conformal bootstrap. Start-
ing from the crossing equation (25) for GS , positive bootstrap can be employed to place rig-
orous bounds on the OPE coefficients of interest to us. The formulation of the optimization
problem is as follows.

Consider a linear functional Λu defined on the space of functions of ξ, that is normalized
to 1 on a particular conformal block, say the tilt operator ti ,

Λu((N − 1)ξ∆φ fbry(2,ξ)) = 1 , (37)

and simultaneously acts positively on all other blocks in the equation,

Λu(−N fbulk(∆k,ξ))≥ 0 ,

Λu(ξ
∆φ )≥ 0 ,

Λu(ξ
∆φ fbry(Ò∆n,ξ))≥ 0 , (38)

for all allowed values of ∆k ∈ [∆min,∞) and Ò∆l ∈ [3,∞). If such a functional exists, the
crossing equation can only be satisfied if the OPE coefficient µt also obeys the upper bound

µt ≤ Λu(N) . (39)
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Figure 6: µσ and µt for N = 2 from the one parameter families (5,3) (left) and
(4, 4) (right) as functions of the dimension of the added operator in the respective
channels. All values are normalized to the results from the (4,3) truncation so that
the graphs tend to 1 as ∆5,Ò∆4 →∞.

The optimal bound in this case is found by minimizing Λu(N). Notice that we can use the same
logic to find lower bounds on OPE coefficients as well. Indeed, we already had the bounds
µi ≥ 0, but we can place more stringent constraints on the OPE coefficients of the protected
operators which are guaranteed to appear in the boundary OPE. To this end, we need to find
another functional Λl that is normalized to 1 on the same tilt operator block but acts negatively
on all other blocks (considering −N fbulk(∆k,ξ) to be the bulk blocks’ contribution). Again,
applying Λl to the crossing equation gives the lower bound

µt ≥ Λl(N) , (40)

and the optimal lower bound is found by maximizing Λl(N). Finding both the upper and the
lower bound on the OPE coefficients µt , µσ is crucial to determine the allowed range for their
ratio, α(N).

As is customary in the numerical bootstrap literature, we choose the linear functionals Λu
and Λl among the linear combinations of derivatives evaluated at ξ= 1:

Λ( f ) =
M
∑

m=0

am ∂
m
ξ f (ξ)

�

�

�

ξ=1
. (41)

This is the same basis used earlier in our truncated bootstrap setup. In other words, we trade
each conformal block for a (M + 1)-dimensional vector:

−N fbulk →
�

f (0)bulk, f (1)bulk, . . . , f (M)bulk

�

, γξ∆φ fbry →
�

f (0)bry , f (1)bry , . . . , f (M)bry

�

, (42)

where f (m)bulk ≡ −N∂ m
ξ

fbulk

�

�

ξ=1 and f (m)bry ≡ γ∂ m
ξ
(ξ∆φ fbry)

�

�

ξ=1. The constant γ is 1 for the dis-
placement term and is N −1 for the tilt term in the crossing equation. For boundary operators
in the unknown continuum Ò∆n > 3, γwas already absorbed in the definition of the OPE coeffi-
cients (µ̃n ≡ γµn) in eq. (25), but for the protected boundary operators it needs to be factored
out explicitly.
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Hereon, we use the usual semi-definite bootstrap setup to rewrite the optimization prob-
lem as a polynomial program which is the appropriate input to the SDPB package. A polyno-
mial program is a rephrasing of the kind of optimization problems we have considered so far
in which the vectors (42) are expressed as polynomials in ∆, times a positive prefactor. As
discovered in [70], powerful semi-definite programming methods can then be used to solve
infinitely many constraints (for example, of the form of the first and last inequalities in (38)
for a continuous interval of allowed ∆k) without discretization in ∆.

The conformal blocks (9) and (10) are essentially hypergeometric functions.11 The co-
efficients of their power-law expansions are rational functions of ∆, which are easily turned
into polynomials up to a positive prefactor. However, these expansions have unit radius of
convergence, and therefore we cannot truncate them when we evaluate the blocks at ξ = 1.
This problem was solved in [9] by expressing the bulk and boundary blocks in terms of new
cross ratios, respectively r and r̂, defined as follows:12

r =

√

√

√2+ ξ− 2
p

1+ ξ
ξ

, r̂ = 1+ 2ξ− 2
Æ

ξ+ ξ2 . (43)

The (r, r̂) coordinates have a nice geometric interpretation, which we do not dwell on here.
Importantly, the point ξ= 1 corresponds to r2 = r̂ = 3−2

p
2< 1, while the series expansions

of the blocks converge up to r2, r̂ = 1 and hence can be truncated. In fact, the blocks in the
new coordinates turn out to still be hypergeometric functions in r2 (see Appendix B). Finally,
each term in (42) can be approximated as a polynomial in the corresponding scaling dimension
by computing the series expansion up to a desired degree in r2,

f (m)l ≈ χl(∆) P(m)l (∆) , (44)

where χl is a strictly positive factor for all ∆ and the subscript l ∈ {bulk, bry} stands for one
of the channels.

The problem of finding an upper bound for the OPE coefficient µt, described above, is
now restated as a polynomial program as follows. In the space of co-vectors am ∈ RM+1, we
minimize a0 such that

M
∑

m=0

amP(m)bry (2) = 1 , (45)

and

M
∑

m=0

amP(m)bulk(∆k)≥ 0 , for ∆k ∈ [∆min,∞) , (46)

M
∑

m=0

amP(m)bry (Ò∆l)≥ 0 , for Ò∆l ∈ {0} ∪ [3,∞) . (47)

In this incarnation, the problem is readily reinterpreted as an SDP and can be solved nu-
merically to high precision. For a more detailed exposition on the mathematics behind SDPB
2.0, refer to [47,69,70]. Some technical details of the calculations specific to our implemen-
tation of the SDP for boundary bootstrap may be found in Appendix B.
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Figure 7: Bounds on the OPE coefficients µσ and µt from positive bootstrap, com-
pared with truncated bootstrap, Monte Carlo (table 2) and perturbative results.
The lightly shaded regions bounded between the blue lines represent the runs with
∆min = ∆ε, whereas the dark shaded regions between the red lines represent the
stricter bounds from eq. (50). The solitary data points in grey are the improved
lower bounds for µσ and upper bounds for µt for different ∆min.

6 Results

Having set up the boundary bootstrap problem in the language of positive bootstrap, we pro-
ceed to discuss the bounds obtained from the computation and compare them with previous
estimates for α(N). Specifically, the positive bootstrap bounds in conjunction with the trun-
cation method results provide very strong evidence of the existence of the extraordinary-log
universality class for N = 3.

In our experience with the positive bootstrap for this problem, the key parameter is, un-
surprisingly, the assumed gap in the bulk spectrum ∆min. The more we assume about the
theory, the less ways there are for sets of CFT data to satisfy crossing symmetry, which allows
for tighter bounds on the respective data. The most agnostic bounds were obtained by setting
∆min =∆ε. We label this set of assumptions as Σ1, for clarity in the discussion to follow:

Σ1 ≡

¨

∆ ∈ [∆ε,∞) ,
Ò∆ ∈ {0, 2} ∪ [3,∞) .

(48)

The bounds on the OPE coefficients µσ, µt, and α obtained from Σ1 are represented by the
lightly shaded regions in figures 7 and 8. With Σ1, the bounds are so broad that they allow
for 2 < Nc < 10. The truncated bootstrap solution and the large N solution are comfortably
allowed within the bounds from Σ1. In all our graphs/results, the bounds on α are calculated
using the extremal values of µσ and µt allowed by bootstrap:

1
32π

µσ,min

µt,max
−

N − 2
2π

≤ α ≤
1

32π

µσ,max

µt,min
−

N − 2
2π

. (49)

11In fact, the boundary blocks fbry reduce to elementary functions in d = 3, see appendix B.
12We retain the Taylor series in ξ, so that the derivatives are still evaluated with respect to ξ rather than r and

r̂.
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Figure 8: Various α(N) estimates compared. The convention for the shaded regions
is the same as in figure 7. On the right, 8b is a zoomed version with more details
around low values of N . It also highlights our extra runs with different ∆min values
for N = {2,3, 4} as discussed in the text (shown in grey).

Now, we include the known operator ε as an a priori assumption in the bulk OPE along
with its dimension. For N ∈ {2, 3,4}, the scaling dimension of this operator, ∆ε, is known
to great precision with rigorous errors from previous bootstrap literature, reproduced earlier
in table 1. We also assume that ε is the only relevant O(N) singlet in the bulk OPE, or in
other words for the next O(N) singlet, ∆ ≥ ∆min = 3. To summarize, we have the new set of
assumptions Σ2 where

Σ2[∆min = 3]≡

¨

∆ ∈ {∆ε} ∪ [3,∞) ,
Ò∆ ∈ {0,2} ∪ [3,∞) .

(50)

The new bounds show a concerted improvement in the lower bound for µσ and the upper
bound for µt, and when combined they improve the lower bound on α just enough so that
α(N = 3) ≥ 0 (dark shaded regions in figures 7 and 8). One can vary the input parameters
∆φ and ∆ε in the region allowed by the rigorous bootstrap bounds from literature to find the
uncertainty in the lower bound for α. The lower bound remains positive across the region,
with

α(3)≥ 0.00936(16) . (51)

We conclude that, under the assumptions that λk > 0 and that the boundary spectrum at the
normal fixed point is gapped as in eq. (50),

The O(3) universality class has an extraordinary-log boundary phase.

The estimates for the scaling dimension of the next operator (which we have been calling
ε′), ∆ε′ , for the O(3) model in the literature vary depending on the methods used, and no
rigorous bootstrap results are available. However, it is possible to push ∆min safely to 3.75
(see figure 9b) in the interest of improving the lower bound on α(3). Doing so gives us

α(3)≥ 0.08483(51) , (52)
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Figure 9: Comparison of the ∆ε′ estimates for the O(2) (left) and the O(3) (right)
model from conformal bootstrap (CB), derivative expansion (DE) [58] and Monte
Carlo (MC) methods. The CB estimates are from [52] and [71] for N = 2 and N = 3
respectively. The MC results are taken from refs. [72] and [54]. The dashed red lines
mark the values we chose for the gap in the bulk spectrum above ∆ε.

which is closer to the value obtained from the truncated bootstrap, table 3, and Monte Carlo,
table 2. Figure 8b shows this new estimate in relation to the previous ones. In addition, we
also used ∆min = 3.77513 with the O(2) model to get the lower bound

α(2)≥ 0.16294(15) . (53)

We note in passing that for N = 2, 3 Monte Carlo results for µσ, µt in table 2 are safely within
our tightest bounds obtained here.

One may wonder if the bounds on α presented in Fig. 8 can be improved without strength-
ening our assumptions. Consider for instance the lower bound: the values µσ,min and µt,max
correspond in principle to different solutions to crossing, so they may not be reached at the
same time. More generally, the positive solutions to crossing form a compact convex region
in the (µσ,µt) plane. All the results obtained so far only rely on the size of a rectangle which
bounds this region. While this was sufficient to achieve the main goal of this work, it is inter-
esting to carve out the shape of this island. This can be done by scanning over one coefficient
while optimizing the other. At the technical level, we remove the positivity condition on ξ∆φ

in (38) and impose, for instance, the upper bound

µt ≤ Λu(N −µσ,trial ξ
∆φ ) , (54)

thus only optimizing among solutions to crossing where µσ = µσ,trial. The results for N = 2
and N = 3 are shown in figure 10. We notice sharp corners (µσ,min,µt,max) and (µσ,max,µt,min).
This implies that, to a good approximation, the extremal values for α(N) are actually realized.
Indeed, the optimal value for an OPE coefficient corresponds to a unique solution to cross-
ing [66]. Let’s consider, for instance, the solution corresponding to the maximum value of µt,
close to the upper corner of the island. If the corner is sharp, there is a unique value of µσ
allowed at the tip, hence the solution to crossing contains both µσ,min and µt,max. We conclude
that we cannot improve our bounds further without changing our assumptions. The same
conclusion might be reached without mapping the shape of the island, but rather looking at

13See figure 9a for a visual comparison of estimates of ∆ε′ in the literature.
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Figure 10: Allowed regions in the (µσ,µt) coefficient space for N = 3 (left) and
N = 2 (right). The bigger islands correspond to ∆min = 3 and the smaller ones to
a higher value of ∆min, as discussed in the text. They are mapped by scanning over
µσ and finding the bounds on µt. Monte Carlo (purple rectangles) and truncated
bootstrap (green crosses) results are included for comparison.

the extremal functionals [73], i.e. the functionals with maximal/minimal value on the identity
block. Such functionals satisfy all the positivity conditions (38), and saturate some of them.
They are useful because the scaling dimensions of the operators appearing in the solution to
crossing are signaled by the zeros of the corresponding functional. We performed this check
for the functionals that produce the N = 2 and N = 3 bounds. As expected, the two extremal
functionals associated to µσ,min and µt,max respectively, have, with good precision, the same
zeros. The same observation can be made for the functionals corresponding to µσ,max and
µt,min. This confirms again that the extremal values for α are realized, although the related
solutions don’t resemble the spectrum of the O(N) model.

Figure 10 allows us to make a few other observations. As expected, increasing∆min shrinks
the islands leaving one corner invariant. The truncated bootstrap solutions lie barely outside of
both of the smaller islands. Since the (4,3) truncated solution obeys the same assumptions on
the spectrum which are used to generate the islands, the discrepancy is due to the systematic
error of the Gliozzi method. Finally, notice that the Monte Carlo values lie quite close to
the boundaries of the smaller islands. Let us mention that when we increase the number of
derivatives M , the lower bounds of the islands shrink very slowly, and it is unlikely that the
Monte Carlo values could turn out to be incompatible with positivity. Nevertheless, it would
be interesting to push the numerics further in the future.

We now ask the following question: what is the minimal set of assumptions needed to
prove that α(N = 4) > 0 using bootstrap? Notice that the uncertainties in ∆φ and ∆ε are
much larger for O(4) than for the O(2) and O(3) models. We approach this problem with two
independent perspectives. For the first, we extend our analysis with the set Σ2[∆min] to allow
for a variable ∆min. Numerically, this approach boils down to finding the minimum ∆min in
the assumption set Σ2[∆min] for which the lower bound on α is positive. Searching in steps of
0.1, the lowest value of ∆min that we found for which α(N = 4) is positive across the region
of possible input parameters is ∆min = 3.80.
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Figure 11: Lower bound on α(4) as a function of the imposed value of µσ (in eq.
(54)), in an interval chosen so that it contains the zero of αmin. The red point and
the errorbar correspond to µσ,trunc., which gives α(4) ≥ 0.084(14). The reported
error comes from the uncertainties in ∆φ and ∆ε.

In fact, the value ∆min = 3.80 is curiously close to various estimates for the dimension of
the first irrelevant O(N) singlet, ∆ε′ .

14 We note that there is no reason why α should saturate
the lower bound of our bootstrap results (for instance, saturation occurs neither when N →∞
nor for the N = 2, 3 Monte Carlo results). As we have previously discussed, the truncated
bootstrap approach gives Nc closer to 5.

In a complementary perspective, we scan over µσ in the interval allowed by our previous
bounds with Σ2[∆min = 3] (50) to find better bounds on µt. In other words, we do not require
a large gap after ∆ε in the bulk spectrum. The lower bound on α turns out to be a monotonic
function of µσ (figure 11), and we search for the minimal value of µσ for which α(4)> 0. We
obtain α(4)> 0 if

µσ ¦ 10.6 . (55)

Compare this to our estimate from the truncated bootstrap, µσ,trunc = 11.758, which safely
satisfies the bound. The lowest lying OPE data (for instance, µσ in the boundary channel)
are expected to be less sensitive to the truncation errors of Gliozzi’s method. As discussed in
section 4, this is confirmed by the Monte Carlo results for N = 2, 3 [41], which agree better
with our µσ than with our µt. It is reasonable to expect that µσ lies close to µσ,trunc. for N = 4
as well. Our current analysis shows that it can be smaller by as much as 9% and still result in
α(4)> 0, given positivity. Thus, we have found two independent minimal sets of assumptions
which conclude that Nc > 4 and hence that the extraordinary-log phase is realized in the O(4)
model.

We finally highlight a corollary of our analysis. The existence of a lower bound on µσ
strictly larger than zero implies that the O(N) symmetry is broken at the boundary. It is natural
to ask what is the minimal set of assumptions on the boundary spectrum which implies this

14Table VII in Ref. [58] compiles this data. As far as we know, no conformal bootstrap results with rigorous
errors exist. Ref. [71] estimates 3.817(30) using the bootstrap. Older Monte Carlo gives 3.765 [57] and very
recent Monte Carlo gives 3.755(5) [49]. Derivative expansion gives 3.761(12) [58].
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result. For all the values of N in table 1, we checked that the mild assumption that there are
no relevant operators in the boundary channel is sufficient.

Hence, we obtain the following rigorous result, which likely extends beyond the values of
N explicitly checked:

All conformal boundary conditions for the O(N) models with positive bulk OPE coefficients λk
and no relevant boundary operators break the global symmetry.

Clearly, the positivity assumption lessens the scope of this result, but one may wonder if the
stronger version of the same fact is true, namely that only symmetry breaking boundary con-
ditions can be stable. We cannot provide evidence in either direction with the methods of this
work.

7 Conclusions

The main purpose of this work was to identify the boundary critical behavior of O(N) vector
models in d = 3 by studying the normal fixed point using conformal bootstrap. In doing so, we
rely on two important lines of inquiry, i.e. the boundary bootstrap program, and the scheme
developed in [31] to study the stability of an extraordinary boundary phase starting from the
normal fixed point. Our target was the ratio of boundary OPE coefficients α(N) in eq. (32)
and specifically the quantity Nc at which α(Nc) = 0.

We used two techniques at the forefront of the boundary bootstrap program, the truncated
bootstrap in the spirit of Gliozzi, and the positive bootstrap using semi-definite programming.
With the former method, we found exact zeros of the truncated crossing equation for the (4, 3)
truncation and estimated that Nc ≈ 5. The truncated solution also provides estimates for the
CFT data for various values of N , which are reported in table 3. It is encouraging that our
results are reasonably close to the recent Monte Carlo study [41] of the normal universality
class in models with N = 2 and N = 3, summarized in table 2. Yet, the difficulty in quantifying
the truncation error motivated us to look in the direction of the positive bootstrap.

Semi-definite programming allowed us to prove that crossing is only satisfied if Nc > 3,
under the following three assumptions:

1. all bulk OPE coefficients λk are positive,

2. there is only one relevant O(N) singlet in the bulk channel (namely, ε),

3. at the normal fixed point, the only boundary operator with dimension less than 3 is the
tilt, which has Ò∆= 2.

The second assumption is of course true. We have compiled in appendix C results of the 2+ε,
large-N and 4− ε expansions that are consistent with both assumption 1 and 3. Moreover, all
the truncated solutions used to estimate the CFT data in this work are consistent with positivity
of the bulk OPE coefficients.

Thus, the extraordinary-log phase and the special transition survive for Heisenberg mag-
nets in d = 3. We also provide two scenarios under which one can claim Nc > 4 from positive
bootstrap. The first scenario requires that the lightest irrelevant O(N) singlet has ∆ ≥ 3.80.
An alternative sufficient condition is a stricter lower bound on the value of the OPE coefficient
of the boundary identity, µσ ¦ 10.6. Comparing to our previous estimate for this quantity
from the truncated bootstrap, we deem high the likelihood that Nc > 4. The question of the
evolution of the phase diagram for N > Nc is not addressed in our paper and is the natural
branching point from this work.
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In the process of computing α(N), we obtained a number of other results. We presented
the renormalization group argument of [31] under a slightly different perspective, which em-
phasizes the role of the Ward identities in determining the action for the extraordinary phase.
The main character in this story is the tilt operator: its coupling Ct with the O(N) current, as
expressed by the OPE (18), determines Nc through eq. (32). This is conceptually important,
because Ct appears in multiple OPEs and could in principle be measured independently of µσ
and µt. Some of the perturbative results reported in appendix C are also new. The 2+ ε ex-
pansion has not appeared before, and we extracted new OPE data both at large N and in 4−ε
dimensions. In the latter case, we observed that the positivity conjecture can be turned into a
surprisingly powerful algorithm to compute CFT data of the bulk CFT. For instance, the leading
contribution to the three-point function 〈φφφ2n〉, which is of order εn−1, can be computed
from the knowledge of a correlator at O(ε) at the normal fixed point. On the numerical boot-
strap side, we showed that, under the assumptions listed above, the O(N) order parameter in
the bulk necessarily has a non-zero expectation value, if no relevant (Ò∆ < 2) operators appear
in the boundary OPE.

Furthermore, we explored the stability of the solutions obtained from the truncated boot-
strap. While we have not settled the issue of bounding the systematic errors from truncation,
this work showcases the gap in the literature on this question. Solving it will have implications
beyond boundary bootstrap and will open up the conformal bootstrap to important problems
in statistical mechanics that are well-“known" non-unitary CFTs, such as Anderson transitions
and turbulence. In this context, it is worth pointing out that reference [66] offers a way to
use semi-definite programming for a class of non-positive solutions to crossing, so-called ex-
tremal solutions. It would be interesting to explore applications of this method, for instance
to boundary bootstrap.

Our work also provides an impetus for improving the data on higher singlet operators
{∆ε,∆ε′} which appear in the φ ×φ OPE for the O(N) vector models, especially for N ≥ 4.
In the future, it would also be interesting to include in the analysis the bulk operators trans-
forming in traceless symmetric representations of O(N). This requires using both the crossing
constraints on Gσ and Gφ in eqs. (23) and (24). In particular, it would be nice to check per-
turbatively if all λl ’s in each equation have the same sign, which would motivate the use of
SDPB. In the 4−ε expansion, this can be done using the results in [13]. It is worth remarking
that the upper bound on α improved very little, if at all, changing the assumptions on the
bulk singlet spectrum, see figures 7 and 8. One may wonder if the inclusion of the traceless
symmetric sector can make a difference.

In this paper, we have focused on O(N) models with integer N ≥ 2. It will be interesting
to extend the discussion to non-integer N (including the range N < 2), where the O(N) model
can be defined on the lattice as a loop model. CFT with O(N) symmetry has been extensively
studied in d = 2 (see, for example, a recent paper [74] and references therein), including the
surface critical behavior and the extraordinary transition [75]. It seems natural and worth-
while to revisit boundary criticality in models with N < 2 in d = 3 and other dimensions.

Let us comment on the prospects of observing the N = 3 extraordinary-log universality
class in experiments. This requires two conditions to be met. First, the material should have
sufficiently strong magnetic exchange on the boundary compared to the bulk. (In the classical
O(3) model (1) the critical K1/K ≈ 1.8 [36].) Such an enhancement might occur naturally
or one may attempt to engineer it by depositing a material with a higher Tc on the surface.
Second, the spin-orbit coupling should be very weak, as any anisotropy of the O(3) order
parameter is a very relevant perturbation in the extraordinary-log phase. (This is in contrast
to the cubic anisotropy in the bulk, which is very weakly relevant [53].) Under these ideal
conditions, we expect the surface magnetization to onset very sharply below the bulk Tc as

ms ∼ [log(Tc − T )]−q/2 . (56)
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This should be compared to the more gradual onset of the bulk magnetization mb ∼ (Tc −T )β ,
β ≈ 0.37 [53], or of the surface magnetization for the ordinary boundary universality class
ms ∼ (Tc−T )β

o
s , βo

s ≈ 0.85 [36]. In practice, the logarithm in (56) might be difficult to observe
and the surface magnetization will appear to jump to a finite value below Tc . A small magnetic
exchange anisotropy is expected to split the surface transition temperature from the bulk Tc ,
giving rise to a thin sliver of surface-ordered (or quasi-long-range ordered in the case of XY
anisotropy)/bulk-disordered phase as in figure 1.
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A Ward identities and the tilt operator

This appendix is dedicated to a review of some consequences of the Ward identity (19) that
defines the tilt operator. We mostly keep the dimension of space generic, and we specify
d = 3 when making contact with the setup of subsection 2.2. In general, every continuous
symmetry15 broken by a conformal defect corresponds a protected boundary operator t. If we
denote by D the submanifold where the defect is located (e.g. x3 = 0 in this work) and by δD
the delta function with support on the said submanifold, then the tilt operator is defined by
the following contact term:

∂µ jµ(x) = δD(x)
p

Ct t(x) , (57)

where jµ is the current associated to the broken symmetry. This equation fixes the scaling
dimension of the tilt, Ò∆t, to be the dimension of the defect. As usual, a topological operator
can be constructed from the flux of the current:

Q(Σ) =

∫

Σ

? j . (58)

The integral is over a co-dimension one surface Σ. Now consider the correlation function of
Q(Σ) with a bulk primary O, and choose Σ such that it separates the local operator from the
defect, as in figure 12. We can compute this correlator in two ways: either we deform Σ

15The extension to higher spin symmetries is straightforward
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D Σ

xd

O

Figure 12: Configuration of the defect D, the topological operator Q(Σ) and the local
operator O which yields the Ward identities (62).

towards the left, picking up the contact term in eq. (57), or towards the right, where we can
use the usual Ward identity:

∂µ jµ(x)O(y) = δd(x − y)δO(y) , (59)

where δO denotes the variation of O under the action of the generator of the symmetry. We
then readily obtain the equality

p

Ct 〈
�∫

D
t

�

O(y)〉+ 〈δO(y)〉= 0 . (60)

Since both one-point functions and correlators of one bulk and one defect operator are fixed
by conformal symmetry up to OPE coefficients, eq. (60) provides one relation for the OPE
data. We are interested in the special case of a codimension one defect, with O = φ being a
scalar, in which case the correlation functions involved read

〈t(0)φ(y)〉=
bt

(2yd)∆φ−d+1(y2)(d−1)
, 〈δφ(y)〉=

δa

(2yd)∆φ
. (61)

Here we used the fact that the dimension of t is fixed to Ò∆t = d −1 by eq. (57). Furthermore,
a (or in this case, δa) and b are the same OPE coefficients appearing in (7). Plugging this into
eq. (60), we get

δa
bt
= −

2πd/2

Γ (d/2)

p

Ct . (62)

Let us now specify this formula to the case of interest, where eq. (57) becomes

∂µ jµ[Ni] = δ(x
d)
p

Ct ti . (63)

The multiplet of tilt operators lives in the coset O(N)/O(N − 1), and therefore transforms as
a vector under the preserved O(N − 1) subgroup. Hence, the only non trivial information is
obtained by taking φ→ φ j in eq. (61). The variation then is16

δ[Ni]φ j = δN jφi −δi jφN = −δi j σ . (64)

16Unfortunately, the symbols for a variation and for the Kronecher delta are conventionally the same: we hope
this equation is clear nevertheless.

28

https://scipost.org
https://scipost.org/SciPostPhys.12.6.190


SciPost Phys. 12, 190 (2022)

Going back to eq. (62), we find
aσ
bt
=

2πd/2

Γ (d/2)

p

Ct , (65)

which, specified to d = 3 and squared, is eq. (17).

B Technical details and numerical bounds from SDPB

This appendix includes miscellaneous details and results from our implementation of semi-
definite programming for the positive bootstrap.

B.1 Conformal blocks

For the positive bootstrap, we use the conformal blocks in r and r̂ coordinates, referenced
in (43) and reproduced here for convenience:

r =

√

√

√2+ ξ− 2
p

1+ ξ
ξ

, r̂ = 1+ 2ξ− 2
Æ

ξ+ ξ2 . (66)

To get the bulk conformal block, one solves the Casimir equation for the SO(d + 1, 1)
conformal group in r coordinates, which gives (in d = 3),

fbulk(r,∆) =
(2r)∆

1+ r2 2F1

�

1
2

,∆− 1,∆−
1
2

, r2
�

. (67)

Manifestly, the conformal block is a hypergeometric function times a positive prefactor,
and the hypergeometric function admits a power series expansion which is truncable at
r2(ξ = 1) ≈ 0.17. For the boundary blocks, we use the other cross-ratio, r̂ which produces a
simple positive definite function in 3 dimensions:

fbry(r̂,Ò∆) =
(4r̂)Ò∆

1− r̂2
. (68)

Let us describe briefly the procedure used to compute the polynomial approximations for
the bulk blocks. Firstly, one can write the derivatives dn/dξn in terms of dn/drn by means
of the chain rule and its higher order generalizations. The problem now reduces to finding
approximations of (67) and its derivatives which are polynomials in ∆. The series expansion
of fbulk is taken up to a desired degree O(rnr ). The coefficients of this series are ratios of
polynomials in ∆, but the denominators are safely extracted out as a prefactor. For a given
order nr , the prefactor is

χbulk(∆) = (2r)∆
nr/2−1
∏

∆∗=−1/2

1
(∆−∆∗)

, (69)

where ∆∗ goes over half-integer values in the given range. Factoring out these poles, and
substituting r → r(ξ= 1), we obtain the polynomial approximation for each derivative of the
bulk block, up to M derivatives.
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B.2 Parameters

A few more parameters are needed to fully describe the semi-definite programming calcula-
tions we did with SDPB 2.0. The bulk conformal blocks were approximated up to nr = 50
degree in r. We also chose M = 17 as the number of derivatives that defines the space of linear
functionals for the optimization. All calculations were done with a precision of prec = 700.
The polynomial approximations were calculated in Mathematica and exported in XML files
as input to SDPB 2.0.

B.3 Numerical values of the bounds

For reference, we also provide the numerical values of the bounds in figure 7 obtained from
the positive bootstrap. Table 4 lists the bounds for the boundary OPE coefficients µσ and µt
with the assumptions Σ2[∆min = 3]. Let us pause here to dwell on the computation of the
errors on the bounds from positive bootstrap presented in this work. Both here and in the
main text, the quoted errors are from the input parameters. We compute the bound on a 7×7
grid in (∆φ ,∆ε) that covers the region of allowed values as per the literature. We found that
the regions of interest are small, and the CFT data are essentially featureless inside. The coarse
grid is enough to find the range of variation in the bound values. We only calculate the error
on the bounds in cases that are relevant to the main message of this work.

Table 4: Bounds on the boundary OPE coefficients from the positive bootstrap.

N (µσ,min,µσ,max) (µt,min,µt,max)

2 (4.841, 11.313) (4.897× 10−3, 0.534)
3 (6.8273(39), 12.475) (0.138, 0.40298(15))
4 (8.759(80), 14.077) (0.178, 0.3600(29))
5 (10.653, 15.432) (0.204, 0.335)
10 (20.246, 24.41) (0.235, 0.293)
20 (39.837, 44.078) (0.243, 0.272)

Finally, we did some additional calculations to improve the lower bounds on α, as discussed
in Sec 6. The bounds thus produced are reported separately in table 5.

Table 5: Additional bounds from the positive bootstrap

N ∆min µσ,min µt,max

2 3.775 7.0426(45) 0.42995(18)
3 3.75 8.727(13) 0.35579(31)
4 3.80 10.77(26) 0.3236(51)

C Perturbative results

This appendix is dedicated to various perturbative results for the normal fixed point.
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C.1 2+ε expansion

In this subsection we consider the O(N) non-linear σ-model with N > 2, and use the 2+ε ex-
pansion to compute 〈φa(x)φa(y)〉17 at the normal fixed point to order ε2. Boundary criticality
in nonlinear sigma models has been studied in 2+ε dimensions at the ordinary transition [79],
but to our knowledge the present work is the first utilization of such a model to study the nor-
mal fixed point. Although this is a conventional computation, we present it in some detail.
The correlator to order ε has previously appeared in [80].

We begin with the non-linear σ-model for the field ~φ in d = 2+ε with a codimension one
boundary:18

L =
1

2g
(∂µ ~φ)

2 , ~φ2 = 1 . (70)

We write ~φ = ( ~π,
p

1− ~π2) so that

L =
1

2g

�

(∂µ ~π)
2 +

1
1− ~π2

( ~π · ∂µ ~π)2
�

. (71)

We use dimensional regularization. We have g = µ−εgr Zg(gr), ~φ = Z1/2
φ
~φr with [81]

Zg(gr) ≈ 1+
(N − 2) g̃r

ε
, Zφ ≈ 1+

(N − 1) g̃r

ε
, (72)

β( g̃r) ≈ ε g̃r − (N − 2) g̃2
r (1+ g̃r) , ∆φ ≈

ε

2
N − 1
N − 2

�

1−
ε

N − 2

�

, (73)

and

g̃r = gr Nd , Nd =
2

(4π)d/2Γ (d/2)
. (74)

We first fix the bulk normalization of the field ~φ. We let ~φnrm = C ~φr and demand that

〈φa
nrm(x)φ

a
nrm(y)〉=

N

(x − y)2∆φ
. In the absence of a boundary, we have the propagator

〈πi(x)π j(0)〉0 = δ
i j gD0(x) , D0(x) =

cd

xd−2
, cd =

Γ (d/2− 1)
4πd/2

. (75)

Then, the bare field correlation function is

〈φa(x)φa(0)〉 ≈ 1− 〈 ~π2〉+ 〈πi(x)πi(0)〉= 1+ (N − 1)gD0(x) (76)

≈ 1+
(N − 1)gr

2πε

�

1−
ε

2
γE −

ε

2
logπ− ε logµx

�

. (77)

So
〈φa

r (x)φ
a
r (0)〉 ≈ 1+ (N − 1) g̃r(log2− γE − logµx) . (78)

Thus, after inserting the fixed point value g̃∗
r ≈

ε

N − 2
, we obtain

C ≈
p

Nµ∆φ (1−∆φ(log2− γE)) . (79)

We next proceed to the system in the presence of a boundary. To avoid clutter, expectation
values are denoted with the same symbol 〈. . .〉, but from now on the presence of the boundary is

17Summation over repeated indices is understood in this section.
18This should be distinguished from eq. (30) in section 3 where the non-linear sigma model is two dimensional

and lives on the boundary of 3d space.
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understood. We access the normal universality class by imposing Dirichlet boundary conditions
~π(xd = 0) = 0. Now the free π propagator is

〈πi(x)π j(y)〉0 = δ
i j gDd(x , y) , Dd(x , y) = D0(x − y)− D0(x − Ry) , (80)

where R(~x , xd) = (~x ,−xd). We now compute the transverse and longitudinal two point func-
tions to leading non-trivial order in ε. We note that the connected longitudinal correlation
function 〈φN (x)φN (y)〉conn only starts at O(ε2) so we compute the disconnected longitudinal
components first:

〈φN (x)〉= 1−
1
2
〈 ~π2〉= 1−

g(N − 1)
2

Dd(x , x) = 1+
gr(N − 1)

4πε

�

1−
εγE

2
−
ε

2
logπ− ε log(2xd)

�

.

(81)
After multiplying by Z−1/2

φ
and C , and setting gr to its fixed point value, we obtain:

〈φN
nrm(x)〉=

aσ
(2xd)∆φ

, µσ = a2
σ = N +O(ε2) . (82)

To O(ε), the longitudinal two point function is 〈φN
nrm(x)〉〈φ

N
nrm(y)〉. We compute the con-

nected correlation function and µσ to O(ε2) later in this section.
From Eq. (80), the transverse correlation function to O(ε) is

〈πi
nrm(x)π

j
nrm(y)〉= δ

i j Nε
2(N − 2)

µ2∆φ log
�

1+ ξ
ξ

�

≈ δi jµt
1

(x − y)2∆φ
ξ∆φ fbry(1,ξ) , (83)

with µt ≈
Nε

2(N − 2)
. (We will be able to determine µt to O(ε2) below.) Thus, the transverse

correlation function is saturated to leading order by the boundary conformal block of the tilt
operator with ∆t = d − 1 ≈ 1. Combining the transverse and longitudinal contributions,

〈φa
nrm(x)φ

a
nrm(y)〉=

N

(x − y)2∆φ
(1+∆φ log(1+ ξ)) . (84)

Decomposing this into bulk conformal blocks, we find that the correlator is saturated by just
one operator with dimension ∆ ≈ 2 and

λ∆=2 ≈∆φ +O(ε2) . (85)

This operator is the single relevant O(N) singlet of the O(N)model. Note that λ∆=2 is positive
in accord with the conjecture in section 5.

We now proceed to next order in ε. We denote the first correction to the transverse corre-
lator by 〈πi(x)π j(y)〉1 = δi j D1

π(x , y). Then

D1
π(x , y) = −g2

∫

dd w
�

Dd(x , w)Dd(w, y) lim
w′→w

∂ w
µ ∂

w′

µ Dd(w, w′) + ∂ w
µ Dd(x , w)∂ w

µ Dd(w, y)Dd(w, w)

+N
�

∂ w
µ Dd(x , w)Dd(w, y) + Dd(x , w)∂ w

µ Dd(w, y)
�

lim
w′→w

∂ w
µ Dd(w, w′)

�

. (86)

Integrating by parts, we obtain:

D1
π(x , y) = −g2

�∫

dd w
�

Dd(x , w)Dd(w, y)
�

lim
w′→w

∂ w
µ ∂

w′

µ Dd(w, w′)− N∂ w
µ lim

w′→w
∂ w
µ Dd(w, w′)

�

− Dd(x , w)∂ w
µ Dd(w, y)∂ w

µ

�

lim
w′→w

D(w, w′)
�

�

+ Dd(x , y)Dd(y, y)

�

= −g2cd

�

2(d − 2)

∫

dd w
�

Dd(x , w)Dd(w, y)
(N − 1)(d − 1)
(2wd)d

(87)

− Dd(x , w)
∂

∂ wd
Dd(w, y)

1
(2wd)d−1

�

−
1

(2yd)d−2
Dd(x , y)

�

,
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where cd =
Γ (d/2− 1)

4πd/2
. While the integral above can be taken explicitly (in particular, by

going to momentum space in the direction along the boundary), here we use a different ap-
proach. Let’s apply −∂ 2

x to D1
π(x , y):

−∂ 2
x D1
π(x , y) = g2cd

�

1
(2xd)d−2

δd(x − y)− 2
(N − 1)(d − 2)(d − 1)

(2xd)d
Dd(x , y) +

2(d − 2)
(2xd)d−1

∂

∂ xd
Dd(x , y)

�

≈ g2µε

2π

��

1
ε
− log(2µxd)−

γE

2
−

logπ
2

�

δd(x − y)−
N − 1
2(xd)2

Dd(x , y) +
1
xd

∂

∂ xd
Dd(x , y)

�

.

(88)

We write

D1
π(x , y) =

g2µε

2πε

�

1−
ε

2
(log(4µ2 xd yd) + γE + logπ)

�

Dd(x , y) + Dc(x , y) , (89)

where Dc(x , y) satisfies

∂ 2
x Dc(x , y) =

g2µε(N − 2)
4π(xd)2

Dd(x , y)≈
g2

r (N − 2)

(4πxd)2
log

�

ξ+ 1
ξ

�

. (90)

We use an ansatz Dc(x , y) = Dc(ξ), then for d → 2, ∂ 2
x =

1
(xd)2

�

ξ(ξ+1)
∂ 2

∂ ξ2
+(2ξ+1)

∂

∂ ξ

�

,

so

ξ(ξ+ 1)D′′
c (ξ) + (2ξ+ 1)D′

c(ξ) =
g2

r (N − 2)

(4π)2
log
ξ+ 1
ξ

. (91)

Integrating the above equation,

Dc(ξ) = −
g2

r (N − 2)

(4π)2

�

logξ log(ξ+ 1) + 2Li2(−ξ) +
π2

3

�

, (92)

where the two integration constants are fixed so that Dc(ξ) → 0 as ξ → ∞ and so that
Dc(ξ) has no logarithmic divergence as ξ→ 0 (such a logartihmic divergence would lead to a
δd(x − y)-term in ∂ 2

x Dc(x , y), which is not present on the right-hand-side of Eq. (90)).
Combining D1

π(x , y) with the zeroth order contribution to 〈πi(x)π j(y)〉, and expressing g
in terms of gr , multiplying by Z−1

φ
and C2, and using the fixed point value g̃∗

r ≈
ε

N − 2

�

1−
ε

N − 2

�

,
we obtain:

〈πi
nrm(x)π

j
nrm(y)〉

≈
δi jµt

(x − y)2∆φ
ξ∆φ

�

log
�

ξ+ 1
ξ

�

+ ε
�

log
�

ξ+ 1
ξ

�

(1− logξ)−
1
4

log2
�

ξ+ 1
ξ

�

+ Li2(−1/ξ)
��

≈
δi jµt

(x − y)2∆φ
ξ∆φ fbry(1+ ε,ξ) ,

with

µt ≈
εN

2(N − 2)

�

1− ε
N − 1
N − 2

�

. (93)

Thus, to this order in ε the transverse correlator is still fully saturated by the boundary con-
formal block of the tilt operator with dimension Ò∆t = 1+ ε, as can be checked by expanding
the conformal block in ε.

We next proceed to the correction to the longitudinal correlator. We have the connected
two-point function

〈φN (x)φN (y)〉conn ≈
1
4
〈 ~π2(x) ~π2(y)〉conn =

N − 1
2

g2Dd(x , y)2 ≈
(N − 1)g2

r

32π2
log2

�

ξ+ 1
ξ

�

.

(94)
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After multiplying by C2 and inserting the fixed point value of g∗
r we obtain

〈φN
nrm(x)φ

N
nrm(y)〉conn =

N(N − 1)ε2µ2∆φ

8(N − 2)2
log2

�

ξ+ 1
ξ

�

. (95)

Expanding this in boundary conformal blocks we get a spectrum of boundary operators with
Ò∆ = 2,4, 6,8 . . .. The leading operator with Ò∆ = d ≈ 2 is the displacement operator. The first
few OPE coefficients are:

Boundary channel, longitudinal : µn =
N(N − 1)ε2

8(N − 2)2

§

1,
1
60

,
1

1890
,

1
48048

ª

, Ò∆n = {2, 4,6,8} .

(96)
Using the FindSequenceFunction in Mathematica, we guess

µ
Ò∆=2n+2 =

N(N − 1)ε2

8(N − 2)2
((2n)!)2

(n+ 1)(4n+ 1)!
, n ≥ 0 , (97)

which we have checked up to Ò∆ = 100. Note that µ
Ò∆ is positive. Further, the first operator

beyond the displacement has µ suppressed by 1/60 compared to the displacement operator.
This might partly justify the truncation in section 4. The order ε shift in the dimension of these
operators was computed in [80], from the four-point function of the tilt operator.

Now, combining the longitudinal and transverse contributions, we get:

〈φa
nrm(x)φ

a
nrm(y)〉conn =

εN(N − 1)
2(N − 2)

1

(x − y)2∆φ

�

log
�

ξ+ 1
ξ

�

+ ε
�

Li2(−1/ξ)−
1

N − 2
log

�

ξ+ 1
ξ

��

1+
N − 3

2
logξ

�

−
1
4

N − 3
N − 2

log2
�

ξ+ 1
ξ

���

. (98)

Now,

〈φa
nrm(x)φ

a
nrm(y)〉conn = 〈φa

nrm(x)φ
a
nrm(y)〉 −

a2
σ

(4xd yd)∆φ
ξ→0
→

N

(x − y)2∆φ

�

1−
a2
σ

N
ξ∆φ

�

≈
N

(x − y)2∆φ

�

1−
a2
σ

N
(1+∆φ logξ+

1
2
∆2

n log2 ξ)

�

. (99)

Matching this to Eq. (98) for ξ→ 0, we obtain

µσ = a2
σ ≈ N

�

1+
π2

12
N − 1
N − 2

ε2

�

. (100)

Note that we also reproduce ∆φ correctly to order ε2, Eq. (73). Using the expression for a2
σ,

the full two-point function becomes:

〈φa
nrm(x)φ

a
nrm(y)〉 =

N

(x − y)2∆φ

�

1+
ε(N − 1)
2(N − 2)

log(1+ ξ) (101)

+
ε2(N − 1)
2(N − 2)

�

−Li2(−ξ)−
1

N − 2
log(1+ ξ)−

1
4

N − 3
N − 2

log2(1+ ξ)
��

.

Let’s discuss the bulk channel decomposition of the above two-point function. The leading
bulk operator (besides the identity) that contributes has dimension ∆= 2+O(ε2). Now,

fbulk(2,ξ)≈ log(1+ ξ)−
ε

2
(Li2(−ξ) + log(1+ ξ) +

1
2

log2(1+ ξ)) +O(ε2) . (102)
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So

〈φa
nrm(x)φ

a
nrm(y)〉=

N

(x − y)2∆φ

�

1+λ∆=2 fbulk(2,ξ)

+
ε2(N − 1)
4(N − 2)

�

−Li2(−ξ)− log(1+ ξ) +
1

2(N − 2)
log2(1+ ξ)

��

,
(103)

with

λ∆=2 ≈
ε(N − 1)
2(N − 2)

�

1+
N − 3
N − 2

ε

�

. (104)

We see that in addition to the operator with ∆ ≈ 2 an infinite series of bulk operators with
∆= 4,6, 8,10 . . . contribute to the two-point function with the OPE coefficient λ∼ O(ε2). We
may write

λ∆ =
ε2(N − 1)
4(N − 2)

(α∆ +
1

N − 2
β∆) , (105)

with the first few coefficients

α4 =
1
4

, α6 =
1

36
, α8 =

1
240

, α10 =
1

1400
, (106)

β4 =
1
2

, β8 =
1

120
, β12 =

1
3780

, β16 =
1

96096
. (107)

Note that β∆ is non-zero only when∆ is a multiple of four. Using the FindSequenceFunction
in Mathematica, we guess

α2n+4 =
(n!)2

2(n+ 2)(2n+ 1)!
, β4n+4 = 2α4n+4 , n ≥ 0. (108)

We have checked that equation (108) holds up to ∆ = 200. We observe that α∆ and β∆ are
positive, supporting the conjecture in section 5. Note that for ε → 0 there are degeneracies
in the operator spectrum. For instance, at ∆ ≈ 4 there are two O(N) singlet operators (linear
combinations of (∂µφa∂µφ

a)2 and (∂µφa∂νφ
a)(∂µφb∂νφ

b)) [82]. Thus, λ∆ denotes the sum
of λ’s of all operators within each degenerate manifold with a given dimension ∆. For ∆≥ 4,
we will not be able to resolve the OPE coefficients associated with the individual operators;
while we have confirmed that their sum λ∆ is positive, some of the individual coefficients could
be negative. Higher order calculations in ε would be needed to resolve these degeneracies.

We conclude this section by setting ε = 1 in eqs. (93), (100) and comparing the result to
µt, µσ obtained with the truncated bootstrap, table 3, and with Monte-Carlo, table 2. We see
that µt obtained this way is negative for all N—an unphysical result. Keeping just the O(ε)
term in µt would give a positive value, but one that does not agree well with the truncated
bootstrap, the Monte-Carlo or the large-N expansion in d = 3 for N →∞. On the other hand,
µσ for N = 3 is about 20% smaller than the Monte-Carlo value; the comparison of µσ with
the truncated bootstrap for N = 3, 4,5 yields a similar magnitude of deviation, see figure 4a.
We note that even if the 2+ε expansion is not particularly useful for extracting the numerical
values of µσ, µt in d = 3, it still serves as a non-trivial test of the bulk positivity conjecture in
section 5.

C.2 Large N expansion

This section is devoted to large-N results on the normal universality class. Throughout this
section d = 3. In Ref. [31] the correlation function GS = 〈φa(x)φa(y)〉 was computed in the
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large-N expansion to first subleading order following the methods of Ref. [42]:

〈φa(x)φa(y)〉= (N − 1)Gφ(x , y) + Gσ(x , y) =
N

(x − y)2∆φ
(h0(ξ) +

1
N

h1(ξ))

=
N

(x − y)2∆φ
ξ∆φ

�

µσ
N
+

1
4

�

1−
4

3π2N

�

fbry(2,ξ) +
1
N

g1(ξ)
�

,
(109)

with

µσ = 2N
�

1+
1
N

�

1−
4

3π2

�

+O(N−2)
�

,

µt =
1
4

�

1+
1
N

�

1−
4

3π2

�

+O(N−2)
�

, (110)

h0(ξ) =
1+ 2ξ
p

1+ ξ
, (111)

h1(ξ) =
8
p

ξ

π2

�

1
6

1+ 2ξ
p

ξ(1+ ξ)
log(1+ ξ)−

s
3
+ Li2(s)− Li2(−s)− log s log

1+ s
1− s

�

,

s =

√

√ ξ

1+ ξ
,

(112)

fbry(2,ξ) = 8

�

ξ+ 1/2
p

ξ(ξ+ 1)
− 1

�

, (113)

g1(ξ) =
8
π2

�

1

6
p

ξ(ξ+ 1)
(1− 2(2ξ+ 1) log s) + Li2(1− 1/s) + Li2(−1/s)− log s log(1+ s−1) +

π2

12

�

.

(114)
We can also compute the longitudinal and transverse components of the two point function:

〈φN (x)φN (y)〉=
1

(x − y)2∆φ
ξ∆φ

�

µσ + p1(ξ)
�

, (115)

〈φ i(x)φ j(y)〉=
δi j

(x − y)2∆φ
ξ∆φ

�

µt fbry(2,ξ) +
1
N

q1(ξ)
�

, (116)

where

p1(ξ) =
8
π2

�

log s −
ξ+ 1/2

p

ξ(ξ+ 1)

�

Li2(−1/s) + Li2(1− 1/s)− log s log(1+ s−1) +
π2

12

��

,

q1(ξ) =
8
π2

�

1

6
p

ξ(ξ+ 1)
−
�

2ξ+ 1

3
p

ξ(ξ+ 1)
+ 1

�

log s

+

�

1+
ξ+ 1/2

p

ξ(ξ+ 1)

��

Li2(−1/s) + Li2(1− 1/s)− log s log(1+ s−1) +
π2

12

�

�

. (117)

We now make a few comments about the two point-functions above.

Boundary channel. At leading order in 1/N , the longitudinal correlation function
〈φN (x)φN (y)〉 is saturated by the contribution from the identity operator, while the trans-
verse correlation function 〈φ i(x)φ j(y)〉 is saturated by the contribution from the tilt operator
(dimension Ò∆t = 2). At next order in 1/N an infinite sequence of operators contributes to
both the longitudinal and transverse correlation functions.
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In the transverse correlation function’s boundary OPE, operators of odd dimension
Ò∆ = 5,7, 9,11, . . . appear at next order in 1/N . Note that this is consistent with our assumed
form of the boundary operator spectrum (20). The OPE coefficients of the first few are given
by:

Transverse : µ
Ò∆=5 =

1
450π2N

, µ
Ò∆=7 =

1
7840π2N

, µ
Ò∆=9 =

1
145152π2N

. (118)

We have used the FindSequenceFunction in Mathematica to guess the general form of
the sequence above

µ
Ò∆=2n+3 =

n(n+ 1)
3 · 24n−2π2(2n+ 1)(2n+ 3)2N

, n ≥ 1 , (119)

which we have checked up to Ò∆ = 100. We don’t know whether any of these operators are
degenerate to leading order in 1/N (if so, the OPE coefficient reported is the sum of OPE
coefficients of all the operators in the degenerate multiplet.) As expected from unitarity, the
OPE coefficients are positive. Note that µ

Ò∆=5 is numerically suppressed by three orders of
magnitude compared to µt (in addition to the 1/N suppression), potentially justifying the
truncation in section 4.

In the longitudinal correlation function’s boundary OPE, boundary operators of odd di-
mension Ò∆ = 3,5, 7,9, 11 . . . appear at next order in 1/N . This is again consistent with the
assumption (20). The first of these operators with Ò∆ = 3 is the displacement operator. The
OPE coefficients of the first few are given by:

Longitudinal : µD,Ò∆=3 =
4

9π2
, µ

Ò∆=5 =
1

225π2
, µ

Ò∆=7 =
9

78400π2
, µ

Ò∆=9 =
1

254016π2
.

(120)
FindSequenceFunction guesses the following expression, which we have checked up to
Ò∆= 100:

µ
Ò∆=2n+1 =

n2

24n−6π2(4n2 − 1)2N
, n ≥ 1 . (121)

Again, if any degeneracy of operator dimensions is present at N = ∞, we are not able to
resolve it here. The OPE coefficients are positive as expected. Note that µ

Ò∆=5 is down by a
factor of 100 compared to µD again potentially justifying the truncation in section 4.

Bulk channel. We now decompose the correlator Eq. (109) in terms of bulk conformal
blocks. At leading order in N , starting from the h0(ξ) term in Eq. (109), we find contributions
from bulk O(N) singlet operators of even dimensions∆= 2, 4,6, 8 . . .. The first few coefficients
are

Singlet : λ∆=2 =
3
2

, λ∆=4 =
3
8

, λ∆=6 =
37
560

, λ∆=8 =
135

9856
, λ∆=10 =

329
109824

. (122)

Using FindSequenceFunction we obtain

λ∆=2n+2 =
(8n2 + 4n− 3)((2n)!)4

22n+1(n+ 1)(2n− 1)(n!)4(4n)!
, n ≥ 0 , (123)

which we have checked up to∆= 200. The coefficients (123) are positive for all n supporting
the conjecture in section 5. Note that while the OPE coefficients don’t fall off as rapidly with
increasing ∆ as in the boundary channel, λ∆=10 ≈ 0.003 is already quite small, potentially
justifying the truncation in section 4. Importantly, the first two bulk O(N) singlet operators of
dimensions ∆ = 2 and ∆ = 4 are non-degenerate in the N =∞ limit. However, the higher
lying operators are degenerate and the coefficients λ above should be understood as the sum
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of OPE coefficients of all operators in each degenerate multiplet. In general, we will not be
able to resolve the individual OPE coefficients of each operator in the multiplet for ∆≥ 8 (i.e.
it could still be possible that some of these coefficients are positive and some are negative,
while their sum is positive). However, for ∆ = 6, we will be able to resolve the (two-fold)
degeneracy and show that the individual coefficients are positive.

Let’s briefly discuss some of the bulk singlet operators in the O(N) model. If we use the
non-linear σ-model formulation of the O(N) model,

L =
1
2
∂µφ

a∂µφ
a +

iλ
2

�

φaφa −
1
g

�

, (124)

with λ(x) - a Lagrange multiplier,19 then one family of bulk singlet operators is given by λk,
k = 1,2, 3, . . ., which have dimension ∆k = 2k at N =∞. The lowest two primaries λ,λ2 are
non-degenerate and have approximate scaling dimensions:

∆2 = 2−
32

3π2N
, ∆4 = 4−

64
3π2N

. (125)

However for k ≥ 3 one can replace some number of λ’s in λk by two derivatives. For instance,
at ∆ = 6, in addition to λ3, we also have the operator λ∂ 2λ. Thus, we have at least two
primaries with ∆ ≈ 6, and the 1/N corrections to their scaling dimensions are known [83]:

∆
(1)
6 = 6−

32
π2N

, ∆
(2)
6 = 6−

64
3π2N

. (126)

For k ≥ 4 there are more than two Lorentz singlet primaries that can be formed out of λ and
its derivatives and the dimensions of two of these are known to O(1/N), however, we won’t
need them below [83].

In principle, in d = 3 there is yet another operator with ∆ = 6 at N =∞, schematically:
O(3)6 = (∂µφa∂νφ

a)(∂µφb∂νφ
b). At N =∞, in general dimension d we expect this operator

to have dimension∆= 2d, which becomes∆= 6 in d = 3. However, repeating the calculation
of 〈φa(x)φa(y)〉 at N =∞ in arbitrary d, we find no operator of dimension ∆ = 2d in the
bulk channel (instead, we find only operators of even integer dimension). Thus, we conclude
that the OPE coefficient λ(3)

∆=6 associated with O(3)6 is suppressed at N =∞.
With the above remarks in mind, we use the h1(ξ) term in Eq. (109) to compute the 1/N

corrections to λ∆=2,4 and to resolve the individual λ(1)
∆=6 and λ(2)

∆=6 associated with operators
(126) to O(1) in N . Inserting the dimensions (125), (126) into the bulk conformal blocks,
expanding in 1/N and matching to h1(ξ) we obtain:

λ∆=2 =
3
2
+

44
3π2N

, λ∆=4 =
3
8
+

32
3π2N

, λ
(1)
∆=6 =

3
80
+O(1/N) , λ

(2)
∆=6 =

1
35
+O(1/N) .

(127)
Resolving the individual OPE coefficients for ∆ ≥ 8 would require knowing 〈φa(x)φa(y)〉 to
yet higher order in 1/N (as well as knowing all the scaling dimensions of all the operators in
the degenerate multiplet to higher order in 1/N) .

Let us conclude with a comment on the consistency of these results with conformal repre-
sentation theory. The primary operator φa has the free scaling dimension∆φ = 1/2 at leading
order in 1/N . It is well known that both the bulk and the boundary OPEs for free fields are
constrained (see e.g. [7]): the only scalar allowed in the bulk has dimension 2∆φ , while in
the boundary channel only Ò∆=∆φ and∆φ+1 are possible. The resolution of the tension lies
in the nature of the boundary state, which is not normalizable in the N → ∞ limit. Specif-
ically, the one-point functions of the (appropriately normalized) operators λk grow with N ,
and offset the decay of the three-point functions 〈φφλk〉.

19Not to be confused with OPE coefficients λ.
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C.3 4− ε expansion

The most recent computation of the two-point function of φ in 4−ε expansion was performed
in Ref. [13]. The correlator was computed to order ε, and the CFT data appearing in the O(N)
singlet combination GS were explicitly extracted. We report the results which are important
for the present work, and we discuss the mixing problem in the bulk channel, which was not
solved in [13].

In the boundary channel, the spectrum includes the identity, the tilt, the displacement,
and a tower of operators which, at leading order, have integer dimensions Ò∆ = 6, 7 . . . More
precisely, the identity is the only operator with an OPE coefficient of order 1/ε:

µσ(N) =
4(N + 8)
ε

�

1−
N2 + 31N + 154
(N + 8)2

ε

�

. (128)

To order O(ε0), the longitudinal connected correlator is saturated by the displacement, while
a tower of operators with even dimensions Ò∆= 6, 8 . . . appear at order ε. From the transverse
correlator, we learn that the tilt is the only primary appearing at zeroth order in the boundary
OPE of φ i . Its OPE coefficient is

µt(N) =
1
3

�

1− ε
N + 9

6(N + 8)

�

. (129)

At order ε a tower of operators appear, which have odd scaling dimensions Ò∆ = 7, 9 . . . Like
in the other perturbative limits considered in this appendix, the gaps in the boundary channel
are consistent with the assumptions made in eq. (20).

Moving on to the bulk channel, the leading order scaling dimensions of the bulk primaries
appearing in the OPE is given by∆n = 2+2n, n ∈ N. This is easily understood from free theory
in d = 4. Following Ref. [13], we define rescaled OPE coefficients for the operators above the
identity, as follows:20

λ̄∆ = λ∆

Γ

�

∆+ 1−
d
2

�

Γ

�

∆

2

�

Γ

�

∆

2
+ 2−

d
2

� , ∆ 6= 0 . (130)

Let us expand the scaling dimensions and the OPE coefficients in powers of ε as follows:

λ̄n =
1
ε
λ̄n,−1 + λ̄n,0 + . . . , ∆n = 2+ 2n+ γn,1ε+ γn,2ε

2 + . . . . (131)

The leading order OPE coefficients are

〈λ̄0,−1〉=
4(N + 8)

N
, 〈λ̄n,−1〉=

8(N + 8)
N

, n> 0 . (132)

They are positive, in agreement with the conjecture which makes the use of SDPB possible.
However, since in four dimensions ∂ and φ have the same engineering dimension, primaries
in the free theory are increasingly degenerate. The brackets in the previous equation precisely

20The relation between our definition and that of Ref. [13] involves a numerical factor: λ̄∆ = 4a[13]
∆ /(N(2+ε)).

In the conventions chosen here, the external operators are unit-normalized.
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denote the sum over all primaries which are degenerate at the free fixed point, e.g.21

〈λ̄n,−1〉=
∑

i=degenerate

λ̄
(i)
n,−1 . (135)

The first two-fold degeneracy appears for n = 2, and we will be able to solve for the two
individual coefficients. However, let us first discuss the general case. From the two-point
function up to O(ε), Ref. [13] found

〈λ̄n,−1γn,1〉

〈λ̄n,−1〉
= 6

n2 − 1
N + 8

,
〈λ̄n,−1(γn,1)2〉

〈λ̄n,−1〉
=

�

6
n2 − 1
N + 8

�2

, n ≥ 0 . (136)

Now, if the individual OPE coefficients of the degenerate operators are positive, then eq. (136)
admits only two solutions. The first option is that no degeneracy is lifted at this order: for each
n, all scaling dimensions are still identical at order ε. The second option is that, at each value
of n, all λ̄(i)n,−1’s vanish except for one.22 In fact, a direct computation shows that at least the
two primaries of dimension ∆2 = 6+O(ε) are not degenerate at order ε:

γ
(1)
2,1 = −

12
N + 8

, γ
(2)
2,1 =

18
N + 8

. (137)

Furthermore, in the case of a two-fold degeneracy the positivity assumption is not necessary:
the only solution to eqs. (132) and (136) for n= 2, assuming that the degeneracy is lifted, is

λ̄
(1)
2,−1 = 0 , λ̄

(2)
2,−1 =

8(N + 8)
N

, γ
(2)
2,1 =

18
N + 8

, (138)

in agreement with eq. (137). Hence, we confirm that the λ̄’s are positive in the only case
where we can solve the degeneracy completely. The anomalous dimension γ(2)2,1 corresponds
to the operator φ6. It is interesting to notice that this result is easily confirmed by a direct
computation of λ̄(1)2,−1. Let us sketch the argument. The associated operator is of the schematic
form φ2�φ2, and it does not mix with φ6 at order one. At leading order, the one-point
functions are obtained by evaluating the fields on the classical solution, which is 〈φ〉 ∼ ε−1/2—
see eq. (128). Hence, 〈φ2�φ2〉 = O(ε−2). On the other hand, twist23 four operators are
known not to appear in the OPE of the fundamental field up to order ε2, despite the naive loop
counting. This was first noticed in the context of boundary bootstrap in [5], then confirmed by
an O(ε2) computation in [84]. Furthermore, eq. (138) leads to a prediction for the coefficient
of the three-point function 〈φφO3〉, where Ok is the unit normalized version of φ2k. Indeed,
the one-point function of φ6 is easily computed at leading order from eq. (128):

aφ6 =
�

4(N + 8)
ε

�3

. (139)

21Eq. (130) can be used to translate these averages to averages of λ’s. One must be careful, since the factor
that relates the two quantities depends on ∆. For instance, defining

K(∆,ε) =
Γ

�

∆

2

�

Γ

�

∆+ ε
2

�

Γ
�

∆− 1+
ε

2

� , (133)

one has
〈λn,0〉= 〈λ̄n,0〉K(2+ 2n, 0) + 〈λ̄n,−1γn,1〉K (1,0)(2+ 2n, 0) + 〈λ̄n,−1〉K (0,1)(2+ 2n, 0) , (134)

where the upper indices on K denote partial derivatives with respect to the two arguments of K(∆,ε).
22If there are degenerate operators with γn,1 = 6(n2 − 1)/(N + 8), all those are obviously allowed to have

non-vanishing OPE coefficient.
23The twist is defined as the scaling dimension minus the spin.
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The three-point coefficient is then computed by dividing out λ2 by aφ6 and compensating for
the normalization of the operator. In general, one has, in free theory,

φ2k(x)φ2k(y)∼
M(k)

(x − y)4k∆φ
+ . . . , x → y , (140)

where

M(k) = 22kk!
�

N
2

�

k
. (141)

Hence, recalling the relation (130) between λ̄’s and λ’s, the three-point function coefficient is

cφφO3
=
λ
(2)
2,−1

ε aφ6

Æ

M(3) =
1

12(N + 8)2

√

√3(N + 2)(N + 4)
N

ε2 . (142)

It is noteworthy that a two-loop result about the bulk CFT can be obtained from an O(ε)
computation in a BCFT. This result was known in the Ising model case, N = 1 [76].

What about the higher dimensional primaries? The degeneracy grows, as one can check for
instance with the computation of a character. Therefore, we cannot conclude from eq. (136)
that all the operators appear with non-negative OPE coefficient. However, it is tempting to
reverse the logic and see what we can learn from the assumption of positivity. The averaged
anomalous dimension in eq. (136) equals that of the operator On+1 ∝ φ2+2n [13]. Moreover,
it can be shown that this operator does not mix with any other at O(ε0) [85]. Finally, besides
positivity, we need to assume that no other operator is degenerate with Ok at order ε. If this
is the case, Ok is the only operator with a non-vanishing λ, and we can extract its coefficient
in the φ ×φ OPE:

cφφO1
=

√

√ 2
N

, (143a)

cconj
φφOk

=
8

2kk2(2k − 2)!(N + 8)k−1N

√

√

(k!)5
�

N
2

�

k
εk−1 , k > 1 . (143b)

This prediction, which we denoted as conjectural, corresponds to loop computations of arbi-
trarily high order in the bulk CFT. Eq. (143) is a true formula, rather than a conjecture, for
k = 1, 2, 3. Special cases have already appeared in the literature, namely k = 1, 2 [5,77] for
all N , and k = 3 for N = 1 [76]. It would be intersting to check it at higher order, to confirm
the positivity of the OPE coefficients.24

We know that one of the two operators at n= 2 has vanishing bulk OPE coefficient at order
ε−1, and that, if positivity has a chance, infinitely many others do as well. It is then worth
proceeding to the next order to check if the λ̄’s are non-negative, at least up to degeneracies.
Ref. [13] found the following:

〈λ̄0,0〉= −
3N2 + 106N + 536

N(N + 8)
, (144)

〈λ̄n,0〉= −
4
N

�

46+ 2N −
60

N + 8
− 12n+ (N + 8)

�

3
2n
+ 2Hn−1

��

, n> 0 , (145)

24If the one-point functions of the other primaries does not vanish at leading order, we obtain as a by-product
that the three-point function coefficients ck of these operators all have to start at the next order with respect to the
naive loop counting. It would be interesting to perform this computation. Notice that computing the one-point
functions only require diagonalizing the operators in the free theory, which is a simpler exercise than computing
the three-point function.
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where

Hn =
n

∑

k=1

1
k

. (146)

Although 〈λ̄n,0〉 is positive for large enough n, it is negative for the first few values. In partic-
ular, 〈λ̄2,0〉 is negative for any value of N . Therefore, the only chance for positivity is that the
negative contribution comes from the OPE coefficient of On+1 (and of operators degenerate
with it at order ε). For the leading degeneracy, n = 2, this question can be settled. Indeed,
from the correlator computed in [13] one can also extract the following sum:

〈λ̄n,−1γn,2〉+ 〈λ̄n,0γn,1〉 . (147)

The second order anomalous dimension for the operator On+1 is known [86]:

γOn+1,2 = −
n+ 1
(N + 8)3

�

n(34(n− 1)(N + 8) + 11N2 + 92N + 212)−
1
2
(13N + 44)(N + 2)

�

. (148)

Together, with eqs. (137), (138), and (145), we can solve for the two contributions to the OPE
coefficients:

λ̄
(1)
2,0 = 0 , λ̄

(2)
2,0 = −

19N2 + 328N + 1168
N(N + 8)

. (149)

Hence, the positivity assumption is still safe. It would be interesting to construct explicitly
the operator associated to λ̄(1)2 , and compute the one-point function. If it is of the naive order
ε−2, then the three-point coefficient has to be O(ε3), i.e. even more suppressed than currently
known from the four-point function [5,84].

As for the heavier primaries, with n> 2, we do not have enough information at this order
to solve the mixing problem.25
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