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Abstract—The complex dynamics of agile robotic legged
locomotion requires motion planning to intelligently adjust
footstep locations. Often, bipedal footstep and motion plan-
ning use mathematically simple models such as the linear
inverted pendulum, instead of dynamically-rich models that
do not have closed-form solutions. We propose a real-time
optimization method to plan for dynamical models that do
not have closed form solutions and experience irrecoverable
failure. Our method uses a data-driven approximation of the
step-to-step dynamics and of a failure margin function. This
failure margin function is an oriented distance function in
state-action space where it describes the signed distance to
success or failure. The motion planning problem is formed
as a nonlinear program with constraints that enforce the
approximated forward dynamics and the validity of state-action
pairs. For illustration, this method is applied to create a planner
for an actuated spring-loaded inverted pendulum model. In an
ablation study, the failure margin constraints decreased the
number of invalid solutions by between 24 and 47 percentage
points across different objectives and horizon lengths. While we
demonstrate the method on a canonical model of locomotion,
we also discuss how this can be applied to data-driven models
and full-order robot models.

I. INTRODUCTION

The full-order dynamics of legged robots are too complex
for real-time motion planning so motion planners often
use simplified, reduced-order models of locomotion. These
models are able to reduce the state dimension while still
capturing the core underactuated dynamics of locomotion.
Some of these models also have computationally efficient
dynamics, particularly the closed-form dynamics of the linear
inverted pendulum (LIP) model [1].

Unfortunately, there is a trade-off to using some of these
computationally efficient reduced-order models. These mod-
els fail to exhibit features of locomotion which are known
to relate to robust, efficient locomotion that are observed in
humans and animals. Energetically optimal gaits for bipedal
robots include vertical center of mass oscillations and step
frequency that varies with speed [2]. Neither of these features
appear in LIP footstep planning. The more complex spring
loaded inverted pendulum (SLIP) model, not the LIP model,
exhibits the center of mass dynamics and ground reaction
forces of human walking and running [3], as well as the
disturbance response to drop steps in guineafowl [4].
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Fig. 1. The relationship between the Poincare section of a dynamical
system and its failure margin function. Legged locomotion is plagued with
failure conditions (such as falling over) so we classify points on the Poincare
section into a set (V) if they produce valid orbits. This set is then used
to generate an oriented distance function that we call the failure margin
function.

Considerable interest recently has focused on using dy-
namically rich models for bipedal locomotion planning. Un-
fortunately, many more complex models have no closed-form
solution and analytical approximations are often unwieldy
[5], [6]. In [7] the authors planned footsteps with the simple
LIP model, mapped those plans to a more dynamic and com-
plex actuated SLIP model then used those plans to control a
hardware biped. A different approach is to approximate the
step-to-step dynamics directly instead of approximating the
continuous dynamics. This has been shown to be effective in
a single-step optimal controller [8] and in a multistep model
predictive controller [9].

One area that has not been as well investigated is han-
dling failure conditions of these discrete dynamical models.
Models of legged locomotion have failure modes in which
they never return to their cyclic gait, such as when the
stance foot slips. These failure modes result in complex, non-
convex failure boundaries in state-action space [10]. Naively
bounding the state and action ranges as to not include any
failures severely limits the dynamism of potential motions.
Previous work has examined this safety problem by focusing
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on the continuous-time dynamics, applying tools such as
sum-of-squares programming [11], [12] and implicit safety
filtering [13]. Additionally, other work has looked at building
safe regions of state-space for learning based control [14].

In this work, we propose an optimization-based planning
method for analytically intractable models of locomotion that
include complex failure conditions. Our method uses a data-
driven, differentiable approximation of the controlled first
return map and of a state-action failure margin function,
shown in Fig. 1. This work is a novel extension of the
data-driven (Poincare) return maps from [9] by pushing
into failure-rich domains of motion. It extends the safe-set
construction from [14] by considering the safety of a state-
action pair, not just a state. Further, in this work we construct
an oriented distance function in state-action space to inform
the planner about the distance to failure and the direction to
the failure boundary.

II. MODELING OF PERIODIC GAITS

To plan multiple steps ahead for a legged robot, we
need a dynamic model of locomotion. This model can be
a simplified model, a full-order simulation of a robot, or
even data from the real world robot. Full order simulations
and real-world robots present additional challenges, because
of their large state dimensions as discussed in Section VI.

Our dynamic model can be described by its configuration
and velocity [q,q] € TQ and control input u € RV, These
models are hybrid models described by a set of continuous
dynamics, hybrid guards and reset maps. The important
feature of these dynamics is that they can create a net
displacement through orbits in the other components of state.

A. Poincare Map Discrete Dynamics

A powerful perspective to analyze these orbits is the
Poincare section and map. We define a surface of section
I' which is transverse to the flow of our state and which
intersects with all gait trajectories of interest,

rcro. (1

This section is one dimension smaller than the full state and
can be parameterized by a new, reduced state coordinate s €
I.

We seek to define a function, ®(s,a), which represents
the controlled first return map. Our system is an actively
controlled system, so instead of a traditional Poincare Map,
our map is augmented by control actions. This map will
allow us to predict the future state of the system while ad-
justing control actions (e.g. foot placement). The underlying,
continuous dynamical system may have continuously varying
inputs throughout its orbit. To rein in the infinite dimensional
space of inputs we define a finite set of basis functions for
a tractable parameterization. The parameters of the input
are the discrete actions, a € A. However, some state-action
pairs will fail and never return to the Poincar¢ section. For
example, the ground reaction forces could violate the friction
cone, cause the foot to slip and the robot to fall. We can

define the set of valid state-action pairs that will successfully
return to the section as

VcTI xA. 2)
Thus, the controlled first return map is
o:V—T. 3)

which maps a valid state-action pair to the next state on the
surface of the section.

B. Failure Margin Function

We need to easily identify if a candidate state and action
will fail, and if it does, determine how to change the state
and action to be closer to being a success. To achieve both
of these tasks, we construct a failure margin function which
is an oriented distance function [15] (also called signed
distance function), often used in computer graphics [16]. To
construct this function, we first define the distance function
from a point (x € RV) to a non-empty set (A C RY) with an
associated norm (||-|)),

da(x) = inf{|x—y| :y € A}. C)
The failure margin function is defined as
bye(s,a) = dye(s,a) —dy(s,a) (5)

where the complement of the valid set represents the space of
invalid state-action pairs, defined as V¢ = (I x A) \ V. This
function will be positive if the state-action pair is valid and
negative if the pair is invalid. Its magnitude represents the
minimum distance to the boundary of success and failure.

III. APPROXIMATION OF THE STEP-TO-STEP SYSTEM

To facilitate real-time, optimization based planning meth-
ods we develop a fast to evaluate, differentiable approxi-
mation of the controlled first return map and failure margin
function. The failure margin function allows the optimization
to constrain the planned state-action pairs to be in the valid
set.

A. Controlled First Return Map Approximation

For our motion planning optimization we create a data-
driven approximation of the true first return map (®(s,a)),
which we will refer to as P(s,a). Many structures of approx-
imator could be used, such as polynomial or Gaussian pro-
cesses but we use feed-forward neural networks. The neural
network is fit to a training data set using standard supervised
learning techniques. The training data set is generated by
uniformly sampling state-action pairs and performing the
numeric integration of the model dynamics. This will either
fail, in which case we discard the sample, or succeed, in
which case we add the initial state, action and final state to
the training data set.
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B. Failure Margin Function Approximation

The failure margin function approximator is more difficult
to create because it cannot be directly sampled. To generate
data for our failure margin function we need a method of
calculating the oriented distance function from (5).

Our solution is to directly use the definition of the oriented
distance function. We uniformly sample the state-action
space and forward simulate. The result allows us to classify
each point as either valid or invalid and build two sets of
points. From these sets we construct two k-d trees, one
for valid points and one for invalid points. K-d trees are
space-partitioning data structures which allow for fast nearest
neighbor searches in k-dimensional space. We use these trees
to efficiently find the closest valid or invalid point.

Once we have the valid and invalid k-d trees we can
sample the failure margin function. We select a random
point in state-action space and forward simulate to the next
intersection with the surface of section or to failure. If our
point is a valid state-action pair then dy(s,a) = 0. If it is
invalid then dyc(s,a) = 0. Now we only need to calculate
the distance to the other set which is the canonical use-case
for a k-d tree. This allows us to build a training set to fit
an feed-forward neural net approximation (M(s,a)) of the
failure margin function such that, M(s,a) ~ bye(s,a).

IV. FOOTSTEP PLANNING OPTIMIZATION PROBLEM

There are many ways to formulate a footstep planning
problem depending on the desired behavior. Here we use
a basic formulation which tasks the system with reaching
a commanded state N steps in the future. The problem
is provided with sp, the current surface of section state,
and Sgoa1, the commanded goal state. This is an effective
formulation for traversal of nominally flat, obstacle free envi-
ronments with a higher level planner or human commanding
target states. The footstep planning problem is formed as the
nonlinear program

minimize  f(x)
X

subject to  /,(x) =0, ne€[O,N—1] ©)
gn(x) >0, ne€[0,N—1]
hgoal(x) =0.

This optimization problem finds a sequence of N states
and actions that are dynamically consistent and reach the
final goal state while minimizing the objective f(x). The
decision variable x = [s1,52,...,5N,d0,a1, ...,aN—1] represents
the next N states and actions. We test two different objective
functions, one which incentivizes graduate changes in state
and one which is a constant, turning the problem into a
constraint satisfaction problem. First, the objective function
i=N-1

Y (si—siv) H(si —sip1), ()

i=0

fx) =

minimizes the squared distance between sequential apex
states, weighted by H. This incentivizes gradual changes in
state from step to step. Inspired by excellent results of a
similar planner on Cassie [17], we also test the performance

of this motion planning problem without an objective, i.e.
f(x) = 0. Removing the objective resulted in significantly
faster and more reliable convergence to acceptably smooth
motion plans for hardware application.

The approximated forward dynamics are enforced through
equality constraints,

hy (x) = P(Sman) —Sn+1- ®)

The viability of state-action pairs is enforced through in-
equality constraints,

gn(x) =M(sy,a,) — ¢, 9)

which ensures the learned failure margin function is greater
that a given threshold value, €. Finally, the goal constraint
enforces that the final state of the optimization match the
commanded goal state (Sgoat),

hgoal ()C) = SN — Sgoal- (10)

We can implement the Jacobian of the constraints analyti-
cally through backpropagation of the approximations, P(-)
and M(-).

V. ILLUSTRATIVE APPLICATION

To test the utility and feasibility of this type of planner
we choose to test it on one of the simplest systems that
demonstrates the problematic features inherent to legged
locomotion. These difficult features include nonlinear dy-
namics with no closed-form solution, hybrid transitions, fail-
ures states and parameterized, low-level control policies. The
simple, illustrative model we use is the nondimensionalized,
actuated spring-loaded inverted pendulum (aSLIP) model.
This model consists of a point mass body and a massless
leg. The leg consists of a damped spring in series with
an extension actuator which is controlled throughout stance
phase and can be instantly repositioned during flight phase.
The nondimensionalization reduced the parameters of the
system to only the leg stiffness (20 [mgly]), leg damping
ratio (0.1) and maximum friction coefficient (1 = 0.5).
Detailed dynamics of this model and its hybrid transitions
are presented in [18].

The state of the model is described by the position and
velocity of the body, ¢ = [x,y], ¢ = [%,y]. This model has
failure modes where it falls over or when the foot slips from a
friction cone violation. The inputs are the leg angle at touch-
down () and the motion pattern of the leg extension actuator
which is in series with the damped leg spring. We select a
simple actuator pattern inspired by the pneumatic Raibert
hopping robots [19]. The leg actuation is parameterized by a
single value (AL) that represents how far the leg actuator will
extend at the maximum compression of the leg during stance.
This highlights a powerful feature of this method, one could
design virtually any actuation profile or parameterization that
they prefer. The action could be the true amount of energy to
inject or remove, it could be the commanded amount of total
energy in the system post extension, or it could be carefully
designed to achieve increased robustness such as was shown
in [18].
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Fig. 3. Comparison between ground truth and the learned approximation
of the failure margin function.The initial body height is fixed to 1.05[ly] and
the midstance leg extension to 0.05[lp]. The learned approximation captures
the general shape of the failure margin function but does not capture all the
details of the zero contour (bold contour line).

A. Step-to-Step Approximation of the aSLIP Model

For the aSLIP model we selected the apex of flight phase
as our surface of section. This is where the vertical velocity
is zero during flight phase,

I'={[x,y,%,y] : y=0AFlight Phase}. (11)

This allows us to represent the apex state by the reduced
coordinates s = [x,y,x]. We can exploit translational invari-
ance to allow us to eliminate the horizontal displacement (x)
from our apex state for the input. It’s important to know
how far each step will translate the robot forward, but the

starting location does not change anything about the step or
its dynamics. The final state-action space is

[y, %, a,AL] €T x A. (12)
We define the limits on the state-action space as
0.8 [lo] <y < 120 i)
-1.0 [Veh] < % < 1.0 [Vab (13)
—06 [rad] < o < 0.6 [rad]
—0.05 [lo] < AL < 0.5 [l).
The first return map is
[Axis1,Yiv1,%ip1] = P(yi, i, 0, AL;), (14)

where Ax;; is the change in horizontal position from apex i
to apex i+ 1. This is sampled uniformly to create the training
data set, form the k-d trees and sample the margin function.
The distance function for state-action space is a weighted 2-
norm with weighting matrix of diag(6.25,0.250,0.309,2.50).
This weighting was chosen to normalize the range of each
coordinate in the state-action space.

The neural networks are optimized with the goal of
minimizing the weighted 2-norm of the prediction error.
The weighting matrix for prediction error was also cho-
sen to normalize the ranges of the different variables,
diag(0.250,6.25,0.250). The neural networks are imple-
mented using PyTorch and optimized using the ADAM
(adaptive momentum estimation) method with the default
learning rate of 0.001 [20]. They were optimized until sta-
tionary which took approximately 100,000 iterations which
corresponded to 5 to 10 minutes on a computer with an
NVIDIA GTX 1080 and an Intel i7-7700k. We tested several
different neural network architectures, varying the width of
the hidden layers and activation functions. We found that
there was little difference in the performance between tanh
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Fig. 4. Performance of the failure margin function as we vary the valid

point threshold value. Increasing the threshold increases the accuracy of the
valid label. However, increasing the threshold also decreases the percentage
of all successful steps that are included. We can adjust the threshold to
balance the restriction of possible motions with confidence in the accuracy
of labeled points.

and ReL.U activation functions. Performance improved as the
network size increased up to layer widths of 64 neurons. This
led to the final choice to use networks with 2 hidden layers
of 64 neurons with ReLU activation functions.

We can examine our return map approximation’s perfor-
mance compared with the contour plots in Fig. 2. These plots
show a 2D slice of the 4D state-action space. The top row
shows the ground truth from simulation and the bottom row
shows the learned approximator. We can see that the model
performs well for most of the space. The failure margin
function approximator in Fig. 3 performs well overall but
does not precisely replicate the bold zero margin contour.
The bubble-like arcs in the contour lines are an artifact
of individual points in the k-d tree. These problem would
get worse as dimensionality increases, but could both be
counteracted with more sophisticated sampling techniques to
adaptively add points to the k-d trees near the success/failure
boundary.

The most useful feature of the margin function is accurate
classification of state-action points. We expect a perfect mar-
gin function to assign every valid point a positive value and
every failure a negative value. To evaluate the performance,
we can look at the classification accuracy as we vary the
threshold, €. This helps us choose a safe threshold for our
optimization constraint (9). However, as we increase the
constraint threshold we will exclude more valid points which
limits the space of possible behaviors. Fig. 4 shows the
accuracy of the valid label and the percentage of valid points
included as we vary the threshold, €. From this, we made
the engineering decision to use a threshold of 0.05. This will
result in 97% of valid labeled points being valid and 59% of
possible valid points being included.

B. Footstep Optimization and Failure Margin Utility

To test the utility of the approximations we implemented
the multistep locomotion optimization problem from Sec-
tion IV. We assigned our system a random initial state and
final state in the range from (13). This approach did not com-
mand the final position of the robot because it was intended
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Fig. 5. Solutions to an optimization problem given the task to significantly
speed up and slightly lower the apex height. The optimization problem with
failure margin constraints produce a valid trajectory and the problem without
failure margin constraints solves “successfully” but contains a failure step.

to emulate a gait transition rather than a position-keeping
task. This task is quite difficult and often impossible due to
the limited friction coefficient (i = 0.5). We implemented
the nonlinear optimization problem using the cyipopt python
wrapper around Ipopt. [21]. The objective function gradient
and constraint Jacobians were analytically calculated using
PyTorch’s automatic differentiation functionality.

Two solutions to a difficult three step task are illustrated in
Fig. 5, one with failure margin constraints and one without.
For visualization, we simulated each commanded step and
plotted the motion of the body. The optimization without
failure margin constraints thinks it found a valid plan, but we
can see that step three results in foot slip as it falls forward.

To examine if the failure margin function improves the
reliability of the optimization problem, we ran 1000 mo-
tion planning problems with three and four step planning
horizons. The results of these optimizations are summarized
in Table I. In every situation, the failure margin constraints
increased the percentage of problems for which a fully valid
solution was found, up to a 22 percentage point increase. The
optimizations with failure margin function constraints declare
the problem infeasible more often than those without, but
they have a greatly reduced chance of incorrectly returning
a solution that contains failure steps (reduced by between
24 and 47 percentage points). While the time required for
optimizations with the failure margin functions is greater,
it is only to 1.32 to 2.02 times as long where other safety
methods require on average 11 times the time of their unsafe
comparisons [11].

VI. CONCLUSIONS

In this paper we propose a method to plan motions for
computationally intractable, failure prone models of locomo-
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3 Step Horizon
Problem Description State Objective No Objective
Margin | No Margin | Margin | No Margin
Declared Infeasible | 25.4 % 1.1 % | 29.0 % 0.5 %
Invalid Solution | 27.6 % 56.5 % | 13.0 % 60.0 %
Valid Solution | 47.0 % 424 % | 57.6 % 39.5 %
Mean Time (sec) 0.29 0.18 0.14 0.072

4 Step Horizon
Problem Description State Objective No Objective
Margin | No Margin | Margin | No Margin
Declared Infeasible | 29.4 % 105 % | 22.6 % 04 %
Invalid Solution | 27.8 % 519 % | 119 % 56.1 %
Valid Solution | 42.8 % 37.6 % | 65.5 % 43.5 %
Mean Time (sec) 1.29 0.98 0.16 0.079
TABLE I

MOTION PLANNING PERFORMANCE ON 1000 RANDOM TASKS.

tion through a novel failure margin function and demonstrate
its application on a canonical model of locomotion without a
closed form solution. The failure margin function constraints
decreased the frequency of invalid motion plans by between
24 and 47 percentage points. Use of the failure margin
function increased the average optimization time by between
1.32 and 2.02 times, which is significantly less of an impact
compared to other safe motion planning methods [11]. This
optimization time is small compared to the time it would take
to perform a more traditional trajectory optimization, which
took a mean time of 0.90 seconds to optimize a single step
[18]. The best performing problems are near practical motion
planning with computation times that would correspond to 7
Hz replanning frequencies.

While we demonstrated this problem on a canonical model
of locomotion, there are no inherent barriers to extending this
to real, full-dimensional robots. This planning method holds
promise for application to a more physically grounded model
such as the data-driven, reduced-order models proposed in
[22]. The complex dynamics that such models exhibit can be
encapsulated cleanly into the controlled first return map. An
alternative approach is to start with a stabilizing locomotion
controller for a full order robot, such as in [23], [24], and
sampling a Poincare section of the full robot state and
controller commands. The dimensionality of this return map
is too large to plan with, but it could be encoded to a
compressed representation. This could enable planning valid
motions and control policy commands in the compressed
state-action space.
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