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A quasi steady-state model of the dissolution of a single prolate or oblate spheroidal 

particle has been developed based on the exact solution of the steady-state diffusion 

equation for mass transfer in an unconfined media. With appropriate treatment of 

bulk concentration, the model can predict the detailed dissolution process of a 

single particle in a container of finite size. The dimensionless governing equations 

suggest that the dissolution process is determined by three dimensionless control 

parameters, initial solid particle concentration, particle aspect ratio, and the product 

of specific volume of solid particles and saturation concentration of the dissolved 

substance. Using this model, the dissolution process of felodipine particles are 

analyzed in a broad range of space of the three control parameters and some 

characteristics are identified. The effects of material properties indicated by the 

product of specific volume and saturation concentration are also analyzed. The 

model and the analysis are applicable to the system of monodisperse spheroidal 

particles of the same shape.  

 

1. Introduction 

Solid particle dissolution is ubiquitous in nature, and occurs in a wide spectrum of scientific 

and industrial applications, from traditional drug delivery [1] and metal ore heap leaching [2] to 

emerging renewable biomass energy [3] and dissolvable microrobots [4]. Among these 

applications, dissolution kinetics has been most intensively studied in the area of pharmaceuticals. 
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The dissolution characteristics of drug particles are key to determining and manipulating drug 

release and the bioavailability of active pharmaceutical ingredients, and it is therefore vital to 

understand the physical and chemical processes involved.  

The transport of dissolved molecules from particle surface to the surrounding fluid relies on 

both molecular diffusion and hydrodynamics around the particle. In some applications, such as 

drug dissolution in the gastrointestinal tract, the particle size is in the range from a few microns to 

hundreds of microns [5,6]. For such small particles, hydrodynamic effect is very weak and 

molecular diffusion plays a dominant role in mass transfer. So far, a large number of diffusion-

dominated dissolution models have been developed and broadly used in different areas [7]. 

However, most of the models are empirical or semi-empirical models that lack rigorous 

mathematical proof, and thus have a very narrow scope of application. A lot of effort was put into 

adjusting the parameters of the models according to the specific working conditions [8,9]. Among 

these models, the most widely used models are the Fick’s-first-law-based Noyes-Whitney Model 

and its modification [7]. The basic idea is to establish a linear relationship between the particle 

dissolution rate and the concentration difference between particle surface and bulk fluid. The 

models usually involve a parameter called diffusion layer thickness, which is based on the 

recognition that a layer of high concentration fluid exists adjacent to the particle surface [7,10,11]. 

For spherical particles, the diffusion layer thickness is considered equal to the particle radius. 

These models have been shown to accurately predict the entire dissolution process of spherical 

particles. For non-spherical particles, the use of these models is greatly limited due to the inherent 

flaws in the models and the complexity of the diffusion layer thickness. It is believed that more 

than 70% of the solid particles in nature and practical applications are not regularly spherical, and 

the particle aspect ratio varies over a wide range from O(0.1) to O(10) [12-14]. The morphology 

has been found to play a key role in the dissolution process [12-14]. The assumption of spherical 

particles might be one of the dominant sources of error in quantifying the dissolution process. As 

a further extension of the current model development strategy, a simple and reliable model with a 

better prediction of the dissolution of spheroidal particles, including oblate and prolate ellipsoids, 

is highly required.  

In a previous study, we critically examined the accuracy of several mathematical models built 

on the solutions of the diffusion equation to predict the details of diffusion-dominated dissolution 

of a single spherical particle [15]. The purpose was to identify a dissolution model that better 
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balances accuracy with practicality of use. We found that a relatively simple “quasi steady-state” 

model (QSM) predicts both the increase in bulk concentration and the surface flux with high-level 

of accuracy beyond a short initial transient period. The advantages of QSM are that it is based on 

the exact solution to the steady-state diffusion equation and has a simple form. 

In this paper, we build on our previous work and extend the QSM for spherical particles to that 

for prolate and oblate spheroidal particles. The model is based on the analytical solutions of the 

steady-state diffusion equation in spheroidal coordinate systems. According to the spatial 

distribution of molar concentration in the surrounding fluid, the detailed dissolution process, such 

as molar flux of dissolved substance and regression rate of particle surface will be acquired. The 

current study aims to develop a physics-based, easy and accurate dissolution model for spheroidal 

particles, and to substantially advance the understanding of the dissolution kinetics of non-

spherical particles. This model establishes a solid foundation for the future development of more 

complex dissolution models considering hydrodynamics around the particles. 

  

2. Mathematical model formulations 

(a) General framework of quasi steady-state model 

The quasi steady-state model (QSM) assumes that the time rate of change of the concentration 

of dissolved substance is negligible at every point and the spatial distribution of concentration 

satisfies the steady-state diffusion equation. The justification of this assumption is based on the 

relatively slow regression rate of particle surface. The characteristic time it takes for a dissolved 

substance to diffuse a distance 𝐿  is 𝐿2 𝐷𝑚⁄ , where 𝐷𝑚  is the diffusion coefficient. The 

characteristic time it takes for a particle surface to dissolve a distance 𝐿 is 𝐿2 𝑣𝑚𝐶𝑠𝐷𝑚⁄ , where 𝑣𝑚 

is the specific volume of solid particles with units in volume/mol and 𝐶𝑠 is the concentration at 

particle surface with units in mol/volume. For most solid chemicals, the ratio of diffusion to 

dissolution time scale is much smaller. For example, the ratio of time scales of felodipine, a drug 

which is used to treat high blood pressure, is 2.2 × 10−5 [15]. The basic idea of QSM is shown in 

Fig. 1. The solution of the steady-state diffusion equation (∇2𝐶 = 0) for the diffusion of dissolved 

substance around a particle in an infinitely large domain is, 

𝐶(𝐫) = 𝑓(𝐫) + 𝐶∞        (1) 
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where 𝐶(𝐫) is the concentration,  𝑓(𝐫) is a function of spatial coordinate 𝐫 and 𝑓(𝐫) = 0 at |𝐫| =

∞, and 𝐶∞  is the concentration at |𝐫| = ∞. At particle surface, the release flux (𝑁𝑆
" ) can be 

obtained from the spatial distribution of concentration (Eqn. (1)) as, 

𝑁𝑆
" = −𝐷𝑚

𝜕𝐶

𝜕𝑛
|
𝐫=𝐫𝑠

        (2) 

When the particle is put in a container with finite size, it is assumed that the concentration (𝐶) 

described by Eqn. (1) is still applicable. The spatial integration of concentration in the container is 

the amount of substance released from the particle,  

∫ 𝐶(𝐫)𝑑𝑉
𝑉𝑐

= 𝐶𝑏𝑉𝑐        (3) 

where 𝐶𝑏 is the average concentration in the bulk fluid, and 𝑉𝑐 is the container volume. The amount 

of dissolved substance can also be obtained from the integration of surface flux over time (𝑡), 

∫ ∫ 𝑁𝑆
"𝑑𝐴

𝐴𝑝
𝑑𝑡

𝑡

0
= 𝐶𝑏𝑉𝑐       (4) 

At every time step, the increase in bulk concentration (𝐶𝑏) is evaluated from the integration of 

surface flux at previous time step and 𝐶∞ is calculated according to 𝐶𝑏. Then surface flux (𝑁𝑆
") and 

particle surface profile are updated according to the new 𝐶∞. Time is advanced to the next step. In 

this model, the virtual concentration at infinity (𝐶∞) exists only as a link between 𝑁𝑆
" and 𝐶𝑏. It’s 

apparent that the QSM is applicable only when the particle size is much smaller than the container 

volume. The current research on dissolution mainly focuses on the dissolution of substances that 

do not dissolve easily, that is, the solubility is small. In these applications, the particle size is much 

smaller than the container volume. 

The QSM for single particles also models the dissolution of monodisperse particles when 

assuming that the particles are uniformly distributed in the container. The QSM has found to be 

nearly as accurate as the exact solution for the diffusion-dominated dissolution of a spherical 

particle [15]. It also has a very concise form. These advantages make it the basis for the 

development of the complex models of non-spherical particle dissolution in this study. 

 

(b) Steady-state diffusion equation for prolate and oblate spheroidal particles 
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The surface of an ellipsoidal particle is described by 

𝑥2+𝑦2

𝑎𝑝
2 +

𝑧2

𝑏𝑝
2 = 1        (5) 

where 𝑥, 𝑦 and 𝑧 are Cartesian coordinates, 𝑎𝑝 is the equatorial radius, and 𝑏𝑝 is the polar radius. 

The aspect ratio is defined as, 

𝛬 = 𝑎𝑝 𝑏𝑝⁄          (6) 

When 𝛬 > 1 , the particle shape is oblate spheroidal, when 𝛬 < 1, the shape is prolate spheroidal, 

and when 𝛬 = 1, the shape is spherical.  

Under the quasi steady-state assumption, the concentration around a particle in a quiescent 

liquid is described by the steady-state diffusion equation, 

∇2𝐶(𝑥, 𝑦, 𝑧) = 0        (7) 

where 𝐶(𝑥, 𝑦, 𝑧) (mol/volume) is the molar concentration of dissolved substance. At the particle 

surface, the concentration (𝐶𝑆) is the saturated concentration (𝐶𝑠𝑎𝑡) which is constant. 

𝐶𝑆 = 𝐶𝑠𝑎𝑡         (8) 

The molar flux of dissolved substance from the particle surface to the surrounding liquid, 𝑁𝑆
" 

(mol/area-time), is defined as 

𝑁𝑆
" = −𝐷𝑚𝑛⃗ ∙ ∇𝐶|𝑠        (9) 

where 𝐷𝑚 is the diffusion coefficient for the dissolve substance in the fluid, and 𝑛⃗  is a unit 

normal vector pointing outwards to the ambient fluid. The particle surface regresses with time as 

the particle loses mass from its surface, 

𝑑𝑅𝑛

𝑑𝑡
= −𝑁𝑆

"𝑣𝑚         (10) 

where 𝑅𝑛 is the surface coordinate in the direction normal to particle surface, and 𝑣𝑚 (volume/mol) 

is the specific volume of the solid particle. For a given particle, the dissolution process also 

depends on the container volume, which confines the dissolved substance within the container. 

From the initial particle volume (𝑉𝑝0 ) and container volume (𝑉𝑐 ), the initial solid particle 

concentration, 𝐶𝑝0 (mol/volume), is calculated as 
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𝐶𝑝0 ≡
𝑉𝑝0

𝑣𝑚𝑉𝑐
         (11) 

In the calculation, either 𝑉𝑐 or 𝐶𝑝0 can be used to specify the container volume. Equations (5-11) 

constitute the formulations describing the dissolution process of a single particle. 

Each spheroidal particle has a corresponding spherical particle whose volume is the same as 

the initial volume of the spheroidal particle. The radius of the spherical particle is given as, 

𝑅0 = (𝑎𝑝0
2 𝑏𝑝0)

1/3
        (12) 

where 𝑎𝑝0 and 𝑐𝑝0 are the equatorial and polar radii of the spheroids at 𝑡 = 0. Using 𝑅0 and 𝐶𝑠𝑎𝑡 

as the characteristic quantities, Eqns. (5-9) can be nondimensionalized as,  

𝑥̃2+𝑦̃2

𝑎̃𝑝
2 +

𝑧2

𝑏̃𝑝
2 = 1        (13) 

𝛬 = 𝑎̃𝑝 𝑏̃𝑝⁄          (14) 

∇̃2𝐶̃(𝑥̃, 𝑦̃, 𝑧̃) = 0        (15) 

𝐶̃𝑆 = 1          (16) 

𝑁𝑆
"̃ = −

𝜕𝐶̃

𝜕𝑛̃
|
𝑠
         (17) 

where 𝑥̃ = 𝑥 𝑅0⁄ , 𝑦̃ = 𝑦 𝑅0⁄ , 𝑧̃ = 𝑧 𝑅0⁄ , 𝑎̃𝑝 = 𝑎𝑝 𝑅0⁄ , 𝑏̃𝑝 = 𝑏𝑝 𝑅0⁄ , ∇̃= 𝑅0∇, 𝐶̃ = 𝐶 𝐶𝑠𝑎𝑡⁄ , and 

𝑁𝑆
"̃ = 𝑁𝑆

" (𝐷𝑚𝐶𝑠𝑎𝑡 𝑅0⁄ )⁄ .  The time for a spherical particle to fully dissolve in an infinite fluid 

medium is [15] 

𝜏𝑑𝑖𝑠𝑠 =
𝑅0

2

2𝑣𝑚𝐶𝑠𝑎𝑡𝐷𝑚
        (18) 

Using 𝜏𝑑𝑖𝑠𝑠 to nondimensionalize the time (𝑡̃ = 𝑡 𝜏𝑑𝑖𝑠𝑠⁄ ), Eqn. (10) is nondimensionalized as, 

𝑑𝑅̃𝑛

𝑑𝑡̃
= −

1

2
𝑁𝑆

"̃         (19) 

The initial solid particle concentration (Eqn. (11)) is normalized as 

𝐶̃𝑝0 = (𝑉̃𝑝0 𝑉̃𝑐⁄ ) (𝐶𝑠𝑎𝑡𝑣𝑚)⁄        (20) 
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where 𝐶̃𝑝0 = 𝐶𝑝0 𝐶𝑠𝑎𝑡⁄ , 𝑉̃𝑝0 = 𝑉𝑝0 𝑅0
3⁄ , and 𝑉̃𝑐 = 𝑉𝑐 𝑅0

3⁄ . 

Equations (13-20) constitute the complete system of equations describing the dissolution 

process of a single prolate or oblate spheroidal particle in the dimensionless space. Any specific 

dissolution process can be determined by three controlling parameters, 𝛬, 𝐶̃𝑝0 , and (𝐶𝑠𝑎𝑡𝑣𝑚). 

Compared with the dimensional space, the number of controlling parameters is significantly 

reduced in the dimensionless space. In order to connect with the real physical mechanism, the 

following derivation and analysis are carried out in the physical space. 

At present, we do not have a rigorous mathematical proof that the shape of the prolate and 

oblate spheroidal particles does not change during dissolution. The derivation below (Eqns. (32) 

and (57)) shows that the ratio of the dissolution rate at the equator to that at the pole is equal to the 

ratio of the equatorial radius to the polar radius. Thus, the shape invariance is a reasonable 

assumption. 

 

 (c) Dissolution of prolate spheroidal particles 

For the prolate spheroidal particle, the prolate spheroidal coordinates (𝜉 , 𝜂 , 𝜙) is utilized 

instead of the Cartesian coordinates (𝑥, 𝑦, 𝑧) (Fig. 2). The conversion between the two coordinate 

systems are,  

𝑥 = 𝛺 sinh 𝜉 sin 𝜂 cos𝜙  (21) 

𝑦 = 𝛺 sinh 𝜉 sin 𝜂 sin𝜙  (22) 

𝑧 = 𝛺 cosh 𝜉 cos 𝜂   (23) 

where 𝜉 is a nonnegative real number and the angles 𝜂 ∈ [0, 𝜋], 𝜙 ∈ [0,2𝜋]. Curves of constant 𝜉 

and 𝜂 on the (𝑦, 𝑧) plane are half-ellipse and half-hyperbolae with focus at (𝑦, 𝑧) = (0,±𝛺), and 

𝛺 = √𝑏𝑝
2 − 𝑎𝑝

2        (24) 

The prolate spheroidal particle surface is described by constant 𝜉 (= 𝜉𝑆). 𝜉𝑆 can be acquired 

from the surface point at the pole (𝑥, 𝑦, 𝑧) = (0,0, 𝑏𝑝) according to Eqn. (23), 



 

8 
 

𝜉𝑆 = arccosh (
𝑏𝑝

𝛺
) = arccosh(𝑏𝑝 √𝑏𝑝

2 − 𝑎𝑝
2⁄ )    (25) 

In the prolate spheroidal system, the Laplace equation (Eqn. (7)) becomes, 

∇2𝐶(𝜉, 𝜂, 𝜙) 

=
1

𝛺2(sinh2 𝜉+sin2 𝜂)
[
𝜕2𝐶

𝜕𝜉2 + coth 𝜉
𝜕𝐶

𝜕𝜉
+

𝜕2𝐶

𝜕𝜂2 + cot 𝜂
𝜕𝐶

𝜕𝜂
] +

1

𝛺2(sinh2 𝜉+sin2 𝜂)

𝜕2𝐶

𝜕𝜙2  

= 0          (26) 

It is reasonable to assume that the distribution of concentration (𝐶) is axisymmetric about 𝑧 axis, 

then 𝐶  becomes independent of 𝜙  and 𝜕2𝐶 𝜕𝜙2⁄ = 0 . Using separation of variables, the 

concentration is written as 𝐶(𝜉, 𝜂, 𝜙) = 𝐸(𝜉)𝑁(𝜂). At particle surface, 𝜉 = 𝜉𝑆  and 𝐶 = 𝐶𝑠𝑎𝑡 , so 

𝑁(𝜂) becomes a constant. By solving the differential equation, the concentration is acquired as  

𝐶(𝜉, 𝜂, 𝜙) = 𝐴 ln (tanh
𝜉

2
) + 𝐵      (27) 

where 𝐴 and 𝐵 are the constants that will be determined from the boundary conditions. At the 

particle surface, 𝐶(𝜉 = 𝜉𝑠) = 𝐴 ln (tanh
𝜉𝑠

2
) + 𝐵 = 𝐶𝑠𝑎𝑡 . In the far field, 𝐶(𝜉 → ∞) =

𝐴 ln (tanh
𝜉

2
)|

𝜉→∞
+ 𝐵 = 𝐶∞. 𝐴 and 𝐵 then can be acquired as,  

𝐴 =
𝐶𝑠𝑎𝑡−𝐶∞

ln(tanh
𝜉𝑠
2
)
         (28) 

𝐵 = 𝐶∞         (29) 

The molar flux at the particle surface can be calculated from the gradience of the concentration at 

the surface, i.e.,  

𝑁𝑆
" = −𝐷𝑚

𝜕𝐶

𝜕𝑛
|
𝑠
= −𝐷𝑚

1

ℎ𝜉

𝜕𝐶

𝜕𝜉
|
𝑠

= −𝐷𝑚
1

ℎ𝜉

𝐴

sinh𝜉𝑠
    (30) 

where ℎ𝜉  is the scale factor for coordinate 𝜉, and 

ℎ𝜉 = 𝛺√sinh2 𝜉 + sin2 𝜂       (31) 

At η = 0 and π (poles), ℎ𝜉 = 𝑎𝑝, and at η = π/2 (equator), ℎ𝜉 = 𝑏𝑝. Therefore,  
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𝑁𝑆,𝜂=𝜋/2
"

𝑁𝑆,𝜂=0
" =

𝑎𝑝

𝑏𝑝
         (32) 

This suggests that the ratio of particle regression rate on the equator to that at the poles is equal to 

the ratio of equatorial radius to polar radius. This partly supports the conclusion that the particle 

shape maintains spheroidal and the aspect ratio remains constant. 

The release rate through particle surface 𝑁𝑠
′  (mol/time) equals the integration of 𝑁𝑆

"  at the 

particle surface, 

𝑁𝑆
′ = ∫ 𝑁𝑆

"
𝐴𝑝

𝑑𝐴𝑝 = ∫ ∫ 𝑁𝑆
"2𝜋

0

𝜋

0
ℎ𝜂ℎ𝜙𝑑𝜂𝑑𝜙 = −4𝜋𝐴𝐷𝑚𝛺   (33) 

where 𝐴𝑝 is the area of particle surface, ℎ𝜂 and ℎ𝜙 are the scale factors for coordinates 𝜂 and 𝜙, 

and 

ℎ𝜂 = 𝛺√sinh2 𝜉 + sin2 𝜂       (34) 

ℎ𝜙 = 𝛺 sinh 𝜉 sin 𝜂        (35) 

We assume that the particle is placed at the center of a spheroidal container and 𝜉 coordinate 

is constant at the container surface. The focuses of the spheroidal container are the same as that of 

the spheroidal particle, so we have 

𝛺 = √𝑏𝑐
2 − 𝑎𝑐

2        (36) 

where 𝑎𝑐 and 𝑏𝑐 are the primary and minor axes of the container, and are unknown. The container 

volume is given as, 

𝑉𝑐 =
4

3
𝜋𝑎𝑐

2𝑏𝑐         (37) 

𝑎𝑐 and 𝑏𝑐 can be obtained by solving Eqns. (36) and (37), 

𝑏𝑐 = √−
𝑞

2
+ √

𝑞2

4
+

𝑝3

27

3

+ √−
𝑞

2
− √

𝑞2

4
+

𝑝3

27

3

     (38) 

𝑎𝑐 = √𝑏𝑐
2 − 𝛺2        (39) 

where 𝑝 = −𝛺2 and 𝑞 = −
3𝑉𝑐

4𝜋
. Then the 𝜉 coordinate at container surface is, 
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𝜉𝑐 = arccosh (
𝑏𝑐

𝛺
)        (40) 

The amount of dissolved substance in the liquid (𝑁 ) can be obtained by integrating the 

concentration in the container, 

𝑁 = ∫ 𝐶(𝜉, 𝜂, 𝜙)𝑑𝑉
𝑐

= ∭ 𝐶(𝜉, 𝜂, 𝜙)ℎ𝜉𝑐
ℎ𝜂ℎ𝜙𝑑𝜉𝑑𝜂𝑑𝜙 = 𝐽1𝐴 + 𝐽2𝐴 + 𝐽3𝐵 + 𝐽4𝐵  (41) 

where 

𝐽1 = 4𝜋𝛺3 [
1

3
ln (

cosh𝜉−1

sinh𝜉
) cosh3 𝜉 |𝜉𝑆

𝜉𝑐 +
2

3
ln(sinh 𝜉) |𝜉𝑆

𝜉𝑐 −
1

6
sinh2 𝜉 |𝜉𝑆

𝜉𝑐 − ln (
cosh𝜉−1

sinh𝜉
) cosh 𝜉 |𝜉𝑆

𝜉𝑐 ]  

𝐽2 =
8

3
𝜋𝛺3 [ln (

cosh𝜉−1

sinh𝜉
) cosh 𝜉 |𝜉𝑆

𝜉𝑐 − ln(sinh 𝜉) |𝜉𝑆

𝜉𝑐 ]      

𝐽3 = 4𝜋𝛺3 [
1

3
cosh3 𝜉 |𝜉𝑆

𝜉𝑐 − cosh 𝜉 |𝜉𝑆

𝜉𝑐 ]        

𝐽4 =
8

3
𝜋𝛺3 cosh 𝜉 |𝜉𝑆

𝜉𝑐          (42) 

Let 𝐶𝑏 be the bulk concentration in the liquid. The amount of substance dissolved in the liquid can 

also be calculated as 

𝑁 = 𝐶𝑏 𝑉𝑐 =
4

3
𝜋𝐶𝑏 (𝑎𝑐

2𝑏𝑐 − 𝑎𝑝
2𝑏𝑝)      (43) 

Equating Eqns. (41) and (43) gives, 

𝐽1𝐴 + 𝐽2𝐴 + 𝐽3𝐵 + 𝐽4𝐵 =
4

3
𝜋𝐶𝑏 (𝑎𝑐

2𝑏𝑐 − 𝑎𝑝
2𝑏𝑝)    (44) 

Substituting Eqns. (28) and (29) into (44) gives, 

𝐶∞ = [
(𝐽1+𝐽2)

ln(tanh
𝜉𝑆
2

)
𝐶𝑠𝑎𝑡 −

4

3
𝜋𝐶𝑏 (𝑎𝑐

2𝑏𝑐 − 𝑎𝑝
2𝑏𝑝)] [

(𝐽1+𝐽2)

ln(tanh
𝜉𝑆
2

)
− (𝐽3 + 𝐽4)]⁄  (45) 

 

(d) Dissolution of oblate spheroidal particles 

For the oblate spheroidal particle, the oblate spheroidal coordinates system (𝜉, 𝜂, 𝜙) is shown 

in Fig. 3. The conversion between the Cartesian and oblate spheroidal systems are, 
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𝑥 = 𝛺 cosh 𝜉 cos 𝜂 cos𝜙  (46)  

𝑦 = 𝛺 cosh 𝜉 cos 𝜂 sin𝜙  (47) 

𝑧 = 𝛺 sinh 𝜉 sin 𝜂   (48) 

where 𝜉 is a nonnegative real number and the angles 𝜂 ∈ [−𝜋 2⁄ , 𝜋 2⁄ ], 𝜙 ∈ [0,2𝜋]. Curves of 

constant 𝜉 and 𝜂 on the (𝑦, 𝑧) plane are half-ellipse and half-hyperbolae with focus at (𝑦, 𝑧) =

(±𝛺, 0), and 

𝛺 = √𝑎𝑝
2 − 𝑏𝑝

2        (49) 

The oblate spheroidal particle surface is described by constant 𝜉 (= 𝜉𝑆). 𝜉𝑆 can be acquired from 

the surface point on the minor axis (𝑥, 𝑦, 𝑧) = (0,0, 𝑏𝑝) according to Eqn. (48), 

𝜉𝑆 = arcsinh (
𝑏𝑝

𝛺
) = arcsinh(𝑏𝑝 √𝑎𝑝

2 − 𝑏𝑝
2⁄ )    (50) 

In the oblate spheroidal system, the Laplace equation (Eqn. (7)) becomes, 

∇2𝐶(𝜉, 𝜂, 𝜙) 

=
1

𝛺2(sinh2 𝜉+sin2 𝜂)
[

1

cosh𝜉

𝜕

𝜕𝜉
(cosh 𝜉

𝜕𝐶

𝜕𝜉
) +

1

cos𝜂

𝜕

𝜕𝜂
(cos 𝜂

𝜕𝐶

𝜕𝜂
)] +

1

𝛺2(cosh2 𝜉+cos2 𝜂)

𝜕2𝐶

𝜕𝜙2
  

= 0          (51) 

With the axisymmetric assumption, 𝐶 is independent of 𝜙 and 𝜕2𝐶 𝜕𝜙2⁄ = 0. Using separation of 

variables, the concentration is written as 𝐶(𝜉, 𝜂, 𝜙) = 𝐸(𝜉)𝑁(𝜂). At particle surface 𝜉 = 𝜉𝑆 and 𝐶 =

𝐶𝑠𝑎𝑡, so 𝑁(𝜂) becomes a constant. By solving the differential equation, the concentration is acquired 

as  

𝐶(𝜉, 𝜂, 𝜙) = 𝐴 arctan(sinh 𝜉) + 𝐵      (52) 

where 𝐴 and 𝐵 are the constants that will be determined by the boundary conditions. At particle 

surface, 𝐶(𝜉 = 𝜉𝑆) = 𝐴 arctan(sinh 𝜉𝑆) + 𝐵 = 𝐶𝑠𝑎𝑡 . In the far field, 𝐶(𝜉 → ∞) =

𝐴 arctan(sinh 𝜉)|𝜉→∞ + 𝐵 = 𝐶∞. 𝐴 and 𝐵 can be acquired as,  

𝐴 =
𝐶𝑠𝑎𝑡−𝐶∞

arctan(sinh𝜉𝑆)−𝜋 2⁄
=

𝐶𝑠𝑎𝑡−𝐶∞

arctan(𝑏𝑝 𝛺⁄ )−𝜋 2⁄
     (53) 
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𝐵 = 𝐶∞ −
𝜋

2
𝐴 = 𝐶∞ −

𝜋

2

𝐶𝑠𝑎𝑡−𝐶∞

arctan(𝑏𝑝 𝛺⁄ )−𝜋 2⁄
     (54) 

The scalar flux on the particle surface is given as 

𝑁𝑆
" = −𝐷𝑚

𝜕𝐶

𝜕𝑛
|
𝑆

= −𝐷𝑚
1

ℎ𝜉

𝐴

cosh𝜉𝑆
       (55) 

where ℎ𝜉  is the scale factor for coordinate 𝜉, and 

ℎ𝜉 = 𝛺√sinh2 𝜉 + sin2 𝜂       (56) 

At η = ±π/2 (poles), ℎ𝜉 = 𝑎𝑝, and at η = 0 (equator), ℎ𝜉 = 𝑏𝑝. Therefore,  

𝑁𝑆,𝜂=𝜋/2
"

𝑁𝑆,𝜂=0
" =

𝑎𝑝

𝑏𝑝
         (57) 

For oblate particles, it is also true that the ratio of particle regression rate on the equator to that at 

the poles is equal to the ratio of equatorial radius to polar radius, thus the particle aspect ratio keeps 

constant during dissolution.  

The release rate through particle surface 𝑁𝑠
′  (mol/time) equals the integration of 𝑁𝑆

"  at the 

particle surface, 

𝑁𝑆
′ = ∫ 𝑁𝑆

"
𝐴𝑝

𝑑𝐴𝑝 = ∫ ∫ 𝑁𝑆
"2𝜋

0

𝜋 2⁄

−𝜋 2⁄
ℎ𝜂ℎ𝜙𝑑𝜂𝑑𝜙 = −4𝜋𝐴𝐷𝑚𝛺   (58) 

where ℎ𝜂 and ℎ𝜙 are the scale factors for coordinates 𝜂 and 𝜙, and 

ℎ𝜂 = 𝛺√sinh2 𝜉 + sin2 𝜂       (59) 

ℎ𝜙 = 𝛺 cosh 𝜉 cos 𝜂        (60) 

It is assumed that the particle is placed at the center of a spheroidal container and 𝜉 coordinate 

is constant at the container surface. The focuses of the spheroidal container are the same as that of 

the spheroidal particle, so we have 

𝛺 = √𝑎𝑐
2 − 𝑏𝑐

2        (61) 

where 𝑎𝑐 and 𝑐𝑐 are the primary and minor axes of the container, and are unknown. The container 

volume is given as, 
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𝑉𝑐 =
4

3
𝜋𝑎𝑐

2𝑏𝑐         (62) 

𝑎𝑐 and 𝑏𝑐 can be obtained by solving Eqns. (61) and (62), 

𝑏𝑐 = √−
𝑞

2
+ √

𝑞2

4
+

𝑝3

27

3

+ √−
𝑞

2
− √

𝑞2

4
+

𝑝3

27

3

     (63) 

𝑎𝑐 = √𝛺2 + 𝑏𝑐
2        (64) 

where 𝑝 = 𝛺2 and 𝑞 = −
3𝑉𝑐

4𝜋
. Then the 𝜉 coordinate at container surface is given as, 

𝜉𝑐 = arcsinh (
𝑏𝑐

𝛺
)        (65) 

The amount of dissolved substance in the liquid can be obtained by integrating the 

concentration in the container, 

𝑁 = ∫ 𝐶(𝜉, 𝜂, 𝜙)𝑑𝑉
𝑐

= ∭ 𝐶(𝜉, 𝜂, 𝜙)ℎ𝜉𝑐
ℎ𝜂ℎ𝜙𝑑𝜉𝑑𝜂𝑑𝜙 = 𝐽1𝐴 + 𝐽2𝐴 + 𝐽3𝐵 + 𝐽4𝐵  (66) 

where 

𝐽1 =
4

3
𝜋𝛺3 {arctan(𝜖)𝜖3|

sinh𝜉𝑆

sinh𝜉𝑐 −
1

2
[(1 + 𝜖2) − ln(1 + 𝜖2)]|sinh𝜉𝑆

sinh𝜉𝑐 }  

𝐽2 =
4

3
𝜋𝛺3 {arctan(𝜖)𝜖|sinh𝜉𝑆

sinh𝜉𝑐 −
1

2
ln(1 + 𝜖2)|

sinh𝜉𝑆

sinh𝜉𝑐 }    

𝐽3 =
4

3
𝜋𝛺3𝜖3|

sinh𝜉𝑆

sinh𝜉𝑐

        

𝐽4 =
4

3
𝜋𝛺3𝜖|

sinh𝜉𝑆

sinh𝜉𝑐

        (67) 

The amount of substance dissolved in the liquid can also be calculated as 

𝑁 = 𝐶𝑏 𝑉𝑐 =
4

3
𝜋𝐶𝑏 (𝑎𝑐

2𝑏𝑐 − 𝑎𝑝
2𝑏𝑝)      (68) 

Equating Eqns. (66) and (68) gives, 

𝐽1𝐴 + 𝐽2𝐴 + 𝐽3𝐵 + 𝐽4𝐵 =
4

3
𝜋𝐶𝑏 (𝑎𝑐

2𝑏𝑐 − 𝑎𝑝
2𝑏𝑝)    (69) 

Substituting Eqns. (53) and (54) into (69) gives, 
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𝐶∞ = {[
(𝐽1+𝐽2)

𝐷
−

𝜋

2

(𝐽3+𝐽4)

𝐷
] 𝐶𝑠𝑎𝑡 −

4

3
𝜋𝐶𝑏 (𝑎𝑐

2𝑏𝑐 − 𝑎𝑝
2𝑏𝑝)} [

(𝐽1+𝐽2)

𝐷
−

𝜋

2

(𝐽3+𝐽4)

𝐷
− (𝐽3 + 𝐽4)]⁄  (70) 

where 𝐷 ≡ arctan(𝑏𝑝 𝛺⁄ ) − 𝜋 2⁄ .  

 

3.  Analysis of dissolution process 

(a) Research design 

To test the model and explore the dissolution kinetics, we use drug-specific parameters of a 

commonly used drug for hypertension, felodipine. The molar volume of felodipine is 𝑣𝑚 = 265 

cm3/mol. The crystalline water solubility in density-matched water containing 38.6% w/w CsCl at 

37 oC was measured to be 𝐶𝑠𝑜𝑙 = 0.89 μM. It is also the saturation concentration (𝐶𝑠𝑎𝑡) Using the 

stokes-Einstein equation, the reported value for the felodipine diffusion coefficient at 25 oC in pure 

water was calculated to be 𝐷𝑚 = 6.7 × 10−6 cm2/s. 

In the following section, we will use the model to analyze the dissolution characteristics of a 

single felodipine particle with spheroidal shape in a finite size container. It has been shown above 

that in the nondimensional space, the dissolution process is determined by three parameters, 

particle aspect ratio 𝛬 = 𝑎𝑝 𝑏𝑝⁄ , initial particle concentration 𝐶̃𝑝0 = 𝐶𝑝0 𝐶𝑠𝑎𝑡⁄ , and the product of 

saturation concentration and specific volume of solid particle (𝐶𝑠𝑎𝑡𝑣𝑚). The effect of these three 

parameters on the dissolution characteristics will be the focus of the analysis. 

 

(b) Model validation 

To validate the model, we compare the prediction of QSM for single or monodisperse particles 

with experimental measurements of dissolution from polydisperse collections of felodipine drug 

particles in a Couette flow viscometer. In the experiment, the particle shapes are random and 

irregular, and the size distribution is represented as a Gaussian function of the logarithm of the 

particle radii (𝑅𝑝). The single particle radius (3.34 μm) is equal to the volume-averaged radius of 

the polydisperse collection. The details of the experiments are described by Lindfors et al. [16]. A 

simple laminar shear flow with closely linear velocity profile was created by rotating the inner 

cylinder of the Couette viscometer at 5 rpm, producing a low Reynolds number laminar flow that, 
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together with the small size of particles, produced highly diffusion-dominated dissolution from 

particles with random geometries. In Fig. 4, we compare the prediction of the time variation of 

bulk concentration (𝐶𝑏 ) of QSM with the experimental measurements. Two initial particle 

concentrations are considered, 𝐶𝑝0 = 0.5 and 1.5 μM. In QSM, five aspect ratios are considered, 

𝛬 = 1, 1/5, 1/10, 5, and 10, corresponding to spherical, prolate, and oblate spheroidal particles. 

Overall, the predictions of the QSM are in good agreement with the experimental measurements. 

For the QSM prediction, 𝐶𝑏 of spherical particle (𝛬 = 1) is smaller than that of prolate (𝛬 < 1) 

and oblate (𝛬 > 1) spheroidal particles at every time point. The particles in the experiments consist 

of a variety of shapes and a wide range of sizes, which resulted in a faster increase in bulk 

concentration than that of monodisperse spherical particles. That is why the QSM prediction for 

spherical particles are lower than that of experimental measurements. Yet the QSM prediction for 

spheroidal particles corrects the deviation to some extent. The conclusion is that the current single 

particle model is well validated with the experimental measurements, but more complex models 

considering various particle shapes and sizes are needed to deal with the particles in the real world. 

 

(c) Prediction of bulk properties 

The spatial distribution of molar concentration of the dissolved substance given by Eqns. (27) 

and (52) are functions of spheroidal coordinates (𝜉, 𝜂, 𝜙). The coefficients (A and B) are functions 

of concentration at infinity ( 𝐶∞ ), which increases with time ( 𝑡 ). When normalizing the 

concentration as 𝐶̂ ≡ (𝐶 − 𝐶∞) (𝐶𝑠 − 𝐶∞)⁄ , 𝐶̂  becomes independent of 𝑡 . Figure 5 shows the 

distribution of 𝐶̂ around a prolate and an oblate spheroidal particle with Λ = 0.5 and 2, respectively. 

𝐶̂ decreases from 1 at particle surfaces to 0 at infinity. Because of the larger curvature, 𝐶̂ changes 

more sharply near the poles of the prolate particle and near the equator of the oblate particle. 

On particle surfaces, the molar flux (𝑁𝑆
") of dissolved substance changes with the spheroidal 

coordinate 𝜂. It also depends on the particle aspect ratio (Λ). Figure 6 shows the variation of 𝑁𝑆
" 

with 𝜂 for different Λ. 𝑁𝑆
" is normalized as 𝑁̂𝑆

" ≡ 𝑁𝑆
" (𝐷𝑚(𝐶𝑠 − 𝐶∞) 𝑅⁄ )⁄ , where 𝑅 is the radius of 

the spherical particle with the same volume as the spheroidal particle. For a spherical particle, 𝑁̂𝑆
" 

is constant which is equal to 1. In Fig. 6(a), Λ increases from 0.9 to 1.1 with an increment of 0.02. 

For prolate spheroidal particles, 𝑁̂𝑆
" is larger than 1 near the poles (𝜂 = 0 and 𝜋) and smaller than 
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1 near the equator (𝜂 = 𝜋/2), With the increase in Λ toward 1, 𝑁̂𝑆
" decreases toward 1 near the 

poles and increases toward 1 near the equator. For oblate spheroidal particles, 𝑁̂𝑆
" is larger than 1 

near the equator (𝜂 = 0), and smaller than 1 near the poles (𝜂 = ±𝜋/2). When Λ increases from 

1, 𝑁̂𝑆
" increases from 1 near the equator, and decreases from 1 near the poles. For both prolate and 

oblate particles, 𝑁̂𝑆
" approaches the value of a spherical particle as Λ approaches 1. This trend also 

provides validation for the QSM proposed in this paper. This figure depicts the surface flux (𝑁̂𝑆
") 

as a function of spheroidal coordinate (𝜂) and particle aspect ratio (Λ). Fig. 6(b) shows the variation 

of 𝑁̂𝑆
" in a wider range of Λ. For prolate particles, 𝑁̂𝑆

" increases faster near the poles with the 

decrease in Λ and its variation with 𝜂 becomes sharper. For oblate particles, the similar increase 

occurs near the equator. 

When the initial concentration of solid particles is less than the saturation concentration (𝐶𝑝,0 <

𝐶𝑠𝑎𝑡), the solid particles will dissolve completely after a period of time. When 𝐶𝑝,0 is greater than 

𝐶𝑠𝑎𝑡, the dissolution will stop after the bulk concentration reaches the saturation concentration 

(𝐶𝑏 = 𝐶𝑠𝑎𝑡), and the solid particles will remain in the solution with a smaller size. When 𝐶𝑝,0 is 

equal to 𝐶𝑠𝑎𝑡, the particles will fully dissolve and the solution will be saturated (𝐶𝑏 = 𝐶𝑠𝑎𝑡) in the 

end. Figure 7 shows the variation of 𝐶𝑏 with time 𝑡. 𝐶𝑏 is normalized with the concentration at 

particle surface (𝐶𝑠) which is equal to the saturation concentration (𝐶𝑠𝑎𝑡). 𝑡 is normalized with the 

dissolution time 𝜏𝑑𝑖𝑠𝑠 which is defined by Eqn. (18). Five values of 𝐶𝑝,0 𝐶𝑠⁄  are considered, which 

are 𝐶𝑝,0 𝐶𝑠⁄ = 0.01, 0.1, 1, 10, and 100. The particle shapes include spherical, prolate spheroidal, 

and oblate spheroidal. The aspect ratios are 𝛬 = 1, 1/5, 5, 1/10, and 10. As shown in the figure, it 

takes much longer for the particles to fully dissolve in the cases with 𝐶𝑝,0 𝐶𝑠⁄ = 1 than those with 

𝐶𝑝,0 𝐶𝑠⁄ ≠ 1, because the surface flux (𝑁𝑆
") decreases as 𝐶𝑏 approaches 𝐶𝑠𝑎𝑡, and the decreased 𝑁𝑆

" 

in turn reduces the increase in 𝐶𝑏. The cases with 𝐶𝑝,0 𝐶𝑠⁄ > 1 also have the same situation, yet 

the relatively larger particle surface area shortens the period of 𝐶𝑏 increase. For each 𝐶𝑝,0 𝐶𝑠⁄ , 

𝐶𝑏 𝐶𝑠⁄  of spherical particle (𝛬 = 1) increases slower than that of prolate (𝛬 < 1) and oblate (𝛬 >

1) spheroidal particles, because the surface release rates (𝑁𝑆
′) of spheroidal particles, which are 

described by Eqns. (33) and (58) are larger than that of spherical particles. For prolate spheroidal 

particles, 𝐶𝑏 𝐶𝑠⁄  increases faster for smaller 𝛬. Yet for oblate spheroidal particles, 𝐶𝑏 𝐶𝑠⁄  increases 

faster for larger 𝛬. This is consistent with the effect of aspect ratio on surface flux shown in Fig. 
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6. It is interesting that the curves of 𝛬 = 1/5 are close to those of 𝛬 = 5, and the curves of 𝛬 =

1/10 are close to those of 𝛬 = 10. Yet the difference between the curves of 𝛬 = 1/10 and 10 is 

larger than that between the curves of 𝛬 = 1/5 and 5. There is no strict mathematical proof to 

suggest a direct relationship between the dissolution of prolate spheroidal particles with 𝛬 = 1/𝑛 

and that of oblate particles with 𝛬 = 𝑛. In addition, for each 𝐶𝑝,0 𝐶𝑠⁄  and 𝑛, 𝐶𝑏 𝐶𝑠⁄  increases faster 

for prolate spheroid (𝛬 = 1/𝑛) than for oblate spheroid (𝛬 = 𝑛), although the surface area of the 

prolate spheroid is smaller than that of the corresponding oblate spheroid. This is because that the 

surface flux (𝑁̂𝑆
") (Eqns. (30) and (55)) depends on the curvature of spheroidal surface through a 

complex relationship. On average, the prolate spheroid has greater surface curvature. This can be 

seen in the variation of surface flux shown in Fig. 6. In the initial period, the increase in 𝐶𝑏 𝐶𝑠⁄  is 

less sensitive to the value of 𝐶𝑏 𝐶𝑠⁄ , and 𝐶𝑏 𝐶𝑠⁄  increases roughly linearly with time (𝑡) in the 

linear-linear scales (Fig. 7(a)). With the increase in 𝐶𝑏 𝐶𝑠⁄ , the nonlinear effect becomes more and 

more apparent and the curves are not straight any more. In the log-log scales (Fig. 7(b)), the curves 

are expanded in the regions of small 𝑡 𝜏𝑑𝑖𝑠𝑠⁄  and small 𝐶𝑏 𝐶𝑠⁄ , and all the curves are parallel to 

each other over the majority range of the logarithm of time. This is because that in the initial period, 

𝐶𝑏 ≈ 0, and the curve slope described by 𝑘 = 𝑑(log (𝐶𝑏 𝐶𝑠⁄ )) 𝑑(log(𝑡 𝜏𝑑𝑖𝑠𝑠⁄ ))⁄  is equal to 1. The 

nonlinear effects of 𝐶𝑝,0 𝐶𝑠⁄  and 𝛬  only becomes obvious when 𝐶𝑏 𝐶𝑠⁄  is close to 1. This 

characteristic greatly facilitates the development of the simpler and more applicable empirical 

models. 

According to Eqns. (32) and (57), the aspect ratio (𝛬) of the spheroidal particles does not 

change during dissolution. Here we use the isovolumetric radius, 𝑅𝑝 ≡ (𝑎𝑝
2𝑏𝑝)

1/3
, which is the 

radius of a spherical particle with the same volume as that of the spheroidal particle, to represent 

the time-varying particle size. This facilitates the comparison of particle size among the particles 

of different aspect ratios. Figure 8 shows the reduction of 𝑅𝑝 with time for different 𝐶𝑝,0 𝐶𝑠⁄  and 

𝛬. 𝑅𝑝 is normalized with the initial radius of the spherical particle 𝑅0. As shown in the figure, 

𝑅𝑝 𝑅0⁄  decreases more sharply for smaller 𝐶𝑝,0 𝐶𝑠⁄ . When 𝐶𝑝,0 𝐶𝑠⁄ < 1 , the curve slope 

approaches infinity as 𝑅𝑝 𝑅0⁄  decreases towards 0. When 𝐶𝑝,0 𝐶𝑠⁄ > 1, the curves have a long 

horizontal tail before the solution is saturated, because of the reduced surface flux (𝑁𝑆
") as 𝐶𝑏 𝐶𝑠⁄  

approaches 1. When 𝐶𝑝,0 𝐶𝑠⁄ = 1 , the dissolution time is infinity. For each 𝐶𝑝,0 𝐶𝑠⁄ , 𝑅𝑝 𝑅0⁄  
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decreases faster for smaller aspect ratio (𝛬) for prolate spheroidal particles (𝛬 < 1), yet 𝑅𝑝 𝑅0⁄  

decreases faster for larger 𝛬 for oblate particles (𝛬 > 1). This is consistent with the variation of 

bulk concentration 𝐶𝑏 𝐶𝑠⁄  shown in Fig. 7. 

 

(d) Prediction of Dissolution Rate and Sherwood Number 

The surface flux of dissolved substance (𝑁𝑆
") for prolate and oblate spheroidal particles are 

given by Eqns. (30) and (55). The coefficient A is proportional to the difference of concentration 

at particle surface and infinity, 𝐶𝑠 − 𝐶∞. Yet 𝐶∞ changes with time during dissolution. In practical 

applications, bulk concentration 𝐶𝑏 is more tangible than 𝐶∞. Therefore, it is more convenient to 

use the nondimensional flux, the so-called Sherwood number (Sh) to characterize the surface flux. 

For spherical particles, Sh has the form of 

𝑆ℎ ≡
𝑁𝑆

"

𝐷𝑚(𝐶𝑠−𝐶𝑏) 𝑅⁄
         (71) 

where R is particle radius which changes with time. For prolate and oblate particles, 𝑁𝑆
" is not 

uniform at particle surface. Compared with the spherical particle having the same volume, the 

prolate and oblate spheroidal particles have larger surface areas, which increases the overall release 

rate. In order to evaluate the overall enhancement of dissolution rate, it’s more convenient to define 

the Sherwood number for prolate and oblate spheroidal particles as, 

𝑆ℎ ≡
∫ 𝑁𝑆

"
𝐴𝑝

𝑑𝐴𝑝 4𝜋𝑅𝑝
2⁄

𝐷𝑚(𝐶𝑠−𝐶𝑏) 𝑅𝑝⁄
=

∫ 𝑁𝑆
"

𝐴𝑝
𝑑𝐴𝑝

4𝜋𝑅𝑝𝐷𝑚(𝐶𝑠−𝐶𝑏)
      (72) 

where 𝑅𝑝 is the isovolumetric radius of the prolate and oblate spheroidal particles, and 4𝜋𝑅𝑝
2 is 

the surface area of the spherical particle.  

During dissolution, Sh changes with time (t). For different initial concentrations of solid 

particles (𝐶𝑝,0 𝐶𝑠⁄ ), the time it takes for the particles to fully dissolve or saturate the solution is 

different. Since bulk concentration (𝐶𝑏) also changes with time, the variation of Sh with 𝐶𝑏 will 

provide more insights. Figure 9 shows the plot of Sh versus 𝐶𝑏 𝐶𝑠⁄  for three typical initial particle 

concentrations, 𝐶𝑝,0 𝐶𝑠⁄ = 1, 0.1 and 10. Five aspect ratios are involved, 𝛬 = 1, 1/5, 5, 1/10 and 

10. For all 𝐶𝑝,0 and 𝛬, Sh remains roughly constant during the dissolution process, although slight 
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decrease can be observed for 𝐶𝑝,0 𝐶𝑠⁄ = 0.1. As shown in the figure, 𝛬 plays a dominant role in 

determining Sh than 𝐶𝑝,0 𝐶𝑠⁄ . For spherical particles (𝛬 = 1), Sh ≈ 1. This has been thoroughly 

analyzed in Wang et al. [15]. Both the decrease and increase in 𝛬 from 1 can cause the increase in 

Sh. For prolate spheroidal particles with 𝛬 = 1/5 and oblate particles with 𝛬 = 5, the values of 

Sh are close to each other, which are between 1.2 and 1.3. For 𝛬 = 1/10  and 𝛬 = 10 , the 

difference between two aspect ratios becomes apparent. The values of Sh are around 1.6 for 𝛬 =

1/10  and 1.5 for 𝛬 = 10, respectively, which are larger than those of 𝛬 = 1/5 and 5. Sh is also 

influenced by 𝐶𝑝,0 𝐶𝑠⁄ . For each aspect ratio, 𝑆ℎ𝐶𝑝,0 𝐶𝑠⁄ =10 > 𝑆ℎ𝐶𝑝,0 𝐶𝑠⁄ =1 > 𝑆ℎ𝐶𝑝,0 𝐶𝑠⁄ =0.1, that is, 

larger initial particle concentration has larger Sh.   

As shown Fig. 9, Sh remains roughly constant during dissolution within wide ranges of 𝐶𝑝,0 𝐶𝑠⁄  

and 𝛬. This characteristic suggests that 𝑆ℎ0, the Sh at 𝑡 = 0 can be used to compare the dissolution 

rates among the cases with different 𝐶𝑝,0 𝐶𝑠⁄  and 𝛬. Figure 10(a) shows the dependence of 𝑆ℎ0 on 

𝐶𝑝,0 𝐶𝑠⁄  for typical values of 𝛬 from 0.1 to 10. On the whole, 𝑆ℎ0 increases with the increase in 

𝐶𝑝,0 𝐶𝑠⁄  for all 𝛬. Yet when 𝐶𝑝,0 𝐶𝑠⁄ < 10, the increase in 𝑆ℎ0 is not obvious. Apparent increase 

is only observed when 𝐶𝑝,0 𝐶𝑠⁄ > 10. The magnitude of increase is still smaller than that caused 

by 𝛬. In applications that has lower requirement for accuracy, 𝑆ℎ0 can be considered independent 

of 𝐶𝑝,0 𝐶𝑠⁄ . Figure 10(b) shows the variation of 𝑆ℎ0 with 𝛬 for 𝐶𝑝,0 𝐶𝑠⁄  from 0.01 to 100. Since 

𝑆ℎ0 is less dependent on 𝐶𝑝,0 𝐶𝑠⁄ , all the curves are highly similar in shape and close to each other. 

The curves exhibit an asymmetric parabola-like shape with a minimum at 𝛬 = 1, suggesting that 

𝑆ℎ0 is larger for smaller 𝛬 when 𝛬 < 1, and 𝑆ℎ0 is larger for larger 𝛬 when 𝛬 > 1. The simple 

and highly similar curve shapes facilitate the development of simple empirical models for practical 

applications.  

For spherical particles, the surface flux 𝑁𝑆
" is also calculated with diffusion layer thickness (δ) 

as, 

𝑁𝑆
" = 𝐷𝑚

(𝐶𝑠−𝐶𝑏)

𝛿(𝑡)
         (73) 

where 𝛿(𝑡) is the thickness of a virtual layer surround the particle with higher concentration, and 

changes with time [7,10,11]. Rearranging Eqn. (73), 𝛿(𝑡) is written as, 
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𝛿(𝑡) ≡ 𝐷𝑚
(𝐶𝑠−𝐶𝑏)

𝑁𝑆
"          (74) 

For spherical particles, 𝛿(𝑡) is roughly equal to particle radius. For prolate and oblate particles, 𝑁𝑆
" 

is not uniform on particle surface. To emphasize the enhancement of dissolution rate due to the 

change of particle shape, 𝛿(𝑡) can be defined as, 

 𝛿(𝑡) = 𝐷𝑚
(𝐶𝑠−𝐶𝑏)

∫ 𝑁𝑆
"

𝐴𝑝
𝑑𝐴𝑝 4𝜋𝑅𝑝

2⁄
=

𝑅𝑝

𝑆ℎ
      (75) 

𝛿(𝑡) is then normalized with 𝑅𝑝 as 

𝛿(𝑡)

𝑅𝑝
=

1

𝑆ℎ
         (76) 

As particle shape changes from spherical to prolate spheroidal or oblate spheroidal, the increase in 

Sh leads to the decreases in 𝛿(𝑡) 𝑅𝑝⁄ . Thus, the dissolution rate is enhanced. The analysis of Sh 

can be easily extended to 𝛿(𝑡) 𝑅𝑝⁄ . 

 

(e) Prediction of dissolution time 

Figure 7 and 8 suggest that the end of a dissolution process is either complete dissolution 

(𝐶𝑝,0 𝐶𝑠⁄ < 1) or saturation (𝐶𝑝,0 𝐶𝑠⁄ > 1). When 𝐶𝑝,0 𝐶𝑠⁄ > 1, the dissolution is significantly 

slowed down when 𝐶𝑏 𝐶𝑠⁄  is close to 1. A considerable amount of time is consumed yet 𝐶𝑏 𝐶𝑠⁄  

changes very little. Here the dissolution time (T) is defined as the time it takes for the particle to 

completely dissolve when 𝐶𝑝,0 𝐶𝑠⁄ < 1, or the time  it takes for the bulk concentration (𝐶𝑏 𝐶𝑠⁄ ) to 

reach 0.99 when 𝐶𝑝,0 𝐶𝑠⁄ ≥ 1. Figure 11 shows the normalized dissolution time (𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) versus 

𝐶𝑝,0 𝐶𝑠⁄  for various aspect ratio (𝛬) from 1/10 to 10. As shown in the figure, all the curves exhibit 

similar shapes over the entire range of 𝐶𝑝,0 𝐶𝑠⁄  from 10-2 to 102 in the log-log scales. For each 

𝐶𝑝,0 𝐶𝑠⁄ , 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  of the spherical particle is the largest. According to the curve variation, four 

regimes of 𝐶𝑝,0 𝐶𝑠⁄  can be identified. In regime I ( 𝐶𝑝,0 𝐶𝑠⁄ < 10−1 ), the initial particle 

concentration (𝐶𝑝,0 𝐶𝑠⁄ ) is small, which makes the bulk concentration (𝐶𝑏 𝐶𝑠⁄ ) also low throughout 

the dissolution process. The dissolution is close to that of a particle in an infinitely-large media. 

For spherical particle (𝛬 = 1), it is 𝑇 𝜏𝑑𝑖𝑠𝑠⁄ = 1. In this regime log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) is roughly constant 
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for each 𝛬 . In regime II (10−1 < 𝐶𝑝,0 𝐶𝑠⁄ ≤ 1), the effect of 𝐶𝑏  appears, which reduces the 

dissolution rate and increases the dissolution time. As a result, log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) increases with the 

increase in log(𝐶𝑝,0 𝐶𝑠⁄ ) , and reaches the maximum at 𝐶𝑝,0 𝐶𝑠⁄ = 1 . When 𝐶𝑝,0 𝐶𝑠⁄ > 1 , the 

solution is saturated in the end. For larger 𝐶𝑝,0 𝐶𝑠⁄ , the larger particle surface area saturates the 

solution faster, so log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ )  decreases with the increase in 𝐶𝑝,0 𝐶𝑠⁄ . In regime III ( 1 ≤

𝐶𝑝,0 𝐶𝑠⁄ ≤ 2), 𝐶𝑝,0 𝐶𝑠⁄  is close to 1 and some nonlinear features are exhibited, so the curves are not 

straight. In regime IV (𝐶𝑝,0 𝐶𝑠⁄ > 2), log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) changes linearly with log(𝐶𝑝,0 𝐶𝑠⁄ ) and all 

curves are straight lines. The curve slope is determined by the material properties, that is, 𝑣𝑚𝐶𝑠.  

Figure 12 shows the variation of dissolution time (𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) with particle aspect ratio (𝛬) for 

typical values of 𝐶𝑝,0 𝐶𝑠⁄ . All the curves exhibit similar shapes in log-log scales. For each 𝐶𝑝,0 𝐶𝑠⁄ , 

the maximum of 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  is reached at 𝛬 = 1 . For prolate particles 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  decreases as 𝛬 

decreases, and for oblate particles 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  decreases as 𝛬 increases. This is consistent with the 

Sherwood number shown in Fig. 10. When we plot log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) − log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ )𝛬=1 vs. 𝛬 in Fig. 

(12b), all the curves fit together perfectly. This suggests that the effects of 𝐶𝑝,0 𝐶𝑠⁄  and 𝛬 on the 

dissolution time can be decoupled,  

𝑇 𝜏𝑑𝑖𝑠𝑠⁄ = 𝑓(𝐶𝑝,0 𝐶𝑠⁄ )𝑔(𝛬)       (77) 

where 𝑓 and 𝑔 are two functions to be determined. 

 

(f) Effects of material properties 

The nondimensional set of equations (Eqns. (13-20)) show that the dissolution process is also 

determined by the material properties, 𝐶𝑠𝑎𝑡𝑣𝑚. The above analysis was carried out with felodipine, 

the value of 𝐶𝑠𝑎𝑡𝑣𝑚  is 2.36 × 10−7. To explore the effect of 𝐶𝑠𝑎𝑡𝑣𝑚  on the dissolution, some 

virtual particle materials with  Π ≡ 𝐶𝑠𝑎𝑡𝑣𝑚 (𝐶𝑠𝑎𝑡𝑣𝑚)𝑓𝑒𝑙𝑜⁄ = 0.01, 0.1, 10, and 100 are compared 

with felodipine, where the subscript ‘felo’ indicates the quantities of felodipine. 

Figure 13 shows the variation of initial Sherwood number ( 𝑆ℎ0 ) with initial particle 

concentration (𝐶𝑝,0 𝐶𝑠⁄ ) and particle aspect ratio (𝛬) for different 𝐶𝑠𝑎𝑡𝑣𝑚 (𝐶𝑠𝑎𝑡𝑣𝑚)𝑓𝑒𝑙𝑜⁄ . As shown 

in Fig. 13(a), for each 𝐶𝑝,0 𝐶𝑠⁄  and 𝛬 , (𝑆ℎ0)Π=100 > (𝑆ℎ0)Π=10 > (𝑆ℎ0)Π=1 > (𝑆ℎ0)Π=0.1 >
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(𝑆ℎ0)Π=0.01. The deviation of Sh0 from that of felodipine increases with the increase in 𝐶𝑝,0 𝐶𝑠⁄ . 

When 𝐶𝑝,0 𝐶𝑠⁄ < 1, the deviation is not apparent. Figure 13(b) shows the dependence of Sh0 on 𝛬. 

The deviation of 𝑆ℎ0 only appears for larger 𝐶𝑝,0 𝐶𝑠⁄  and larger Π. This is consistent with Fig. 

13(a). 

We also study the effect of Π on dissolution time (𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ). Figure 14 shows the comparison 

of 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  versus 𝐶𝑝,0 𝐶𝑠⁄  for different Π. Over the most range of 𝐶𝑝,0 𝐶𝑠⁄ , the curves are almost 

on top of each other for 𝛬 = 1 , 1/10, and 10. The deviation appears apparently only when 

𝐶𝑝,0 𝐶𝑠⁄ > 10. This is confirmed by the variation of (𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) with 𝛬 shown in Fig. 15. It should 

be noted that the magnitude of deviation is small because the plots are prepared in log-log scales. 

 

4. Conclusion 

In this paper, we have extended the quasi steady-state model of the dissolution of a single 

spherical particle to that of a prolate and an oblate spheroidal particle, based on the exact solution 

of the steady-state diffusion equation for mass transfer in an unconfined media. With an 

appropriate treatment of bulk concentration, this model can predict the detailed dissolution process 

of a single spheroidal particle in a container of finite size.  

The dimensionless governing equations suggest that the dissolution process is determined by 

three dimensionless control parameters, initial solid particle concentration, particle aspect ratio, 

and the product of specific volume of solid particles and saturation concentration of the dissolved 

substance. Using this model, we have analyzed the dissolution process of felodipine particles in a 

broad range of space of the three control parameters and identified some characteristics. It has 

been found that both prolate and oblate spheroidal particles have a larger dissolution rate than 

spherical particles. The Sherwood number, characterized as the nondimensional dissolution rate, 

has been found to have a strong dependence on particle aspect ratio. For prolate spheroidal particles 

with smaller aspect ratio, the Sherwood number is larger, yet for oblate spheroidal particle with 

larger aspect ratio, the Sherwood number is larger. The Sherwood number is little influenced by 

the initial particle concentration. We have also examined the dissolution time. A similarity of the 

variation of dissolution time with particle aspect ratios for different initial particle concentrations 
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has been found in the logarithm scales. In the end, the effects of material properties, that is, the 

product of specific volume of solid particles and saturation concentration are analyzed. It has been 

found that the effects of material properties only appear when the initial particle concentration is 

much larger than the saturation concentration and the product of the particle is much larger than 

that of felodipine. All these characteristics facilitate the development of easy and reliable empirical 

models for practical applications. 

The model and the analysis are also applicable to the system of monodisperse spheroidal 

particles of the same shape.  
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Figure 1. Illustration of quasi steady-state model for a single particle in a container of finite size. 
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Figure 2. The prolate spheroidal coordinates. 
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Figure 3. The oblate spheroidal coordinates. 
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Figure 4. Comparison between QSM predictions and in vitro experiments. 
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Figure 5. Normalized concentration ((𝐶 − 𝐶∞) (𝐶𝑠 − 𝐶∞)⁄ ) around a spheroidal particle. (a) prolate 

(Λ = 0.5), and (b) oblate (Λ = 2). 

(a) (b) 
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Figure 6. Variation of release flux at particle surfaces for various aspect ratios (Λ), (a) from 0.9 to 1.1, and 

(b) from 0.1 to 10. 

 (a)   (b)  
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Figure 7. Increase in bulk concentration with time during dissolution of felodipine. (a) In linear-linear scales, 

and (b) in log-log scales 

 (a)   (b)  
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Figure 8. Decrease in equivalent particle radius with time during dissolution of felodipine. 



 

33 
 

 

 

 

 

  

Figure 9. Variation of Sherwood number with bulk concentration during dissolution of felodipine. 
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Figure 10. Initial Sherwood number versus (a) initial concentration of solid particles and (b) particle aspect ratio. 

 (a)   (b)  
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Figure 11. Variation of dissolution time with initial concentration of solid particles. 
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Figure 12. Variation of dissolution time with particle aspect ratio. (a) 𝑇 𝜏𝑑𝑖𝑠𝑠⁄  vs. 𝛬, 

and (b) log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ ) − log(𝑇 𝜏𝑑𝑖𝑠𝑠⁄ )𝛬=1 vs. 𝛬 

 (a)   (b)  
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Figure 13. Effects of 𝑣𝑚𝐶𝑠 on initial Sherwood number against (a) initial concentration of solid particles and 

(b) particle aspect ratio. 

 (a)   (b)  



 

38 
 

 

 

 

 

 

  

Figure 14. Effects of 𝑣𝑚𝐶𝑠 on dissolution time against initial concentration of solid particles. 

 (a)   (b)  
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Figure 15. Effects of 𝑣𝑚𝐶𝑠 on dissolution time against particle aspect ratio. 


