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A quasi steady-state model of the dissolution of a single prolate or oblate spheroidal
particle has been developed based on the exact solution of the steady-state diffusion
equation for mass transfer in an unconfined media. With appropriate treatment of
bulk concentration, the model can predict the detailed dissolution process of a
single particle in a container of finite size. The dimensionless governing equations
suggest that the dissolution process is determined by three dimensionless control
parameters, initial solid particle concentration, particle aspect ratio, and the product
of specific volume of solid particles and saturation concentration of the dissolved
substance. Using this model, the dissolution process of felodipine particles are
analyzed in a broad range of space of the three control parameters and some
characteristics are identified. The effects of material properties indicated by the
product of specific volume and saturation concentration are also analyzed. The
model and the analysis are applicable to the system of monodisperse spheroidal

particles of the same shape.

1. Introduction

Solid particle dissolution is ubiquitous in nature, and occurs in a wide spectrum of scientific
and industrial applications, from traditional drug delivery [1] and metal ore heap leaching [2] to
emerging renewable biomass energy [3] and dissolvable microrobots [4]. Among these

applications, dissolution kinetics has been most intensively studied in the area of pharmaceuticals.
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The dissolution characteristics of drug particles are key to determining and manipulating drug
release and the bioavailability of active pharmaceutical ingredients, and it is therefore vital to

understand the physical and chemical processes involved.

The transport of dissolved molecules from particle surface to the surrounding fluid relies on
both molecular diffusion and hydrodynamics around the particle. In some applications, such as
drug dissolution in the gastrointestinal tract, the particle size is in the range from a few microns to
hundreds of microns [5,6]. For such small particles, hydrodynamic effect is very weak and
molecular diffusion plays a dominant role in mass transfer. So far, a large number of diffusion-
dominated dissolution models have been developed and broadly used in different areas [7].
However, most of the models are empirical or semi-empirical models that lack rigorous
mathematical proof, and thus have a very narrow scope of application. A lot of effort was put into
adjusting the parameters of the models according to the specific working conditions [8,9]. Among
these models, the most widely used models are the Fick’s-first-law-based Noyes-Whitney Model
and its modification [7]. The basic idea is to establish a linear relationship between the particle
dissolution rate and the concentration difference between particle surface and bulk fluid. The
models usually involve a parameter called diffusion layer thickness, which is based on the
recognition that a layer of high concentration fluid exists adjacent to the particle surface [7,10,11].
For spherical particles, the diffusion layer thickness is considered equal to the particle radius.
These models have been shown to accurately predict the entire dissolution process of spherical
particles. For non-spherical particles, the use of these models is greatly limited due to the inherent
flaws in the models and the complexity of the diffusion layer thickness. It is believed that more
than 70% of the solid particles in nature and practical applications are not regularly spherical, and
the particle aspect ratio varies over a wide range from O(0.1) to O(10) [12-14]. The morphology
has been found to play a key role in the dissolution process [12-14]. The assumption of spherical
particles might be one of the dominant sources of error in quantifying the dissolution process. As
a further extension of the current model development strategy, a simple and reliable model with a
better prediction of the dissolution of spheroidal particles, including oblate and prolate ellipsoids,
is highly required.

In a previous study, we critically examined the accuracy of several mathematical models built
on the solutions of the diffusion equation to predict the details of diffusion-dominated dissolution

of a single spherical particle [15]. The purpose was to identify a dissolution model that better
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balances accuracy with practicality of use. We found that a relatively simple “quasi steady-state”
model (QSM) predicts both the increase in bulk concentration and the surface flux with high-level
of accuracy beyond a short initial transient period. The advantages of QSM are that it is based on

the exact solution to the steady-state diffusion equation and has a simple form.

In this paper, we build on our previous work and extend the QSM for spherical particles to that
for prolate and oblate spheroidal particles. The model is based on the analytical solutions of the
steady-state diffusion equation in spheroidal coordinate systems. According to the spatial
distribution of molar concentration in the surrounding fluid, the detailed dissolution process, such
as molar flux of dissolved substance and regression rate of particle surface will be acquired. The
current study aims to develop a physics-based, easy and accurate dissolution model for spheroidal
particles, and to substantially advance the understanding of the dissolution kinetics of non-
spherical particles. This model establishes a solid foundation for the future development of more

complex dissolution models considering hydrodynamics around the particles.

2. Mathematical model formulations

(a) General framework of quasi steady-state model

The quasi steady-state model (QSM) assumes that the time rate of change of the concentration
of dissolved substance is negligible at every point and the spatial distribution of concentration
satisfies the steady-state diffusion equation. The justification of this assumption is based on the
relatively slow regression rate of particle surface. The characteristic time it takes for a dissolved
substance to diffuse a distance L is L?/D,,, where D,, is the diffusion coefficient. The
characteristic time it takes for a particle surface to dissolve a distance L is L? /v,,,C;D,,, Where v,
is the specific volume of solid particles with units in volume/mol and C; is the concentration at
particle surface with units in mol/volume. For most solid chemicals, the ratio of diffusion to
dissolution time scale is much smaller. For example, the ratio of time scales of felodipine, a drug
which is used to treat high blood pressure, is 2.2 X 107> [15]. The basic idea of QSM is shown in
Fig. 1. The solution of the steady-state diffusion equation (V2C = 0) for the diffusion of dissolved

substance around a particle in an infinitely large domain is,

C(r) = f(r) + Co, (1



where C(r) is the concentration, f(r) is a function of spatial coordinate r and f(r) = 0 at |r| =
o, and C,, is the concentration at |r| = oo. At particle surface, the release flux (Ng) can be

obtained from the spatial distribution of concentration (Eqn. (1)) as,

N§ = ~Dp 5 @)

™M on r=rg

When the particle is put in a container with finite size, it is assumed that the concentration (C)
described by Eqn. (1) is still applicable. The spatial integration of concentration in the container is

the amount of substance released from the particle,
Jy, €AV = CpV, (3)

where Cj, is the average concentration in the bulk fluid, and V. is the container volume. The amount

of dissolved substance can also be obtained from the integration of surface flux over time (t),
t "
o J, NsdAdt = Gy, )

At every time step, the increase in bulk concentration (Cp) is evaluated from the integration of
surface flux at previous time step and C,, is calculated according to C,,. Then surface flux (Ng) and
particle surface profile are updated according to the new C,,. Time is advanced to the next step. In
this model, the virtual concentration at infinity (C,) exists only as a link between Ng and Cj,. It’s
apparent that the QSM is applicable only when the particle size is much smaller than the container
volume. The current research on dissolution mainly focuses on the dissolution of substances that
do not dissolve easily, that is, the solubility is small. In these applications, the particle size is much

smaller than the container volume.

The QSM for single particles also models the dissolution of monodisperse particles when
assuming that the particles are uniformly distributed in the container. The QSM has found to be
nearly as accurate as the exact solution for the diffusion-dominated dissolution of a spherical
particle [15]. It also has a very concise form. These advantages make it the basis for the

development of the complex models of non-spherical particle dissolution in this study.

(b) Steady-state diffusion equation for prolate and oblate spheroidal particles
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The surface of an ellipsoidal particle is described by

x2+y?  z

2 +b_2=1 (5)

where x, y and z are Cartesian coordinates, a,, is the equatorial radius, and by, is the polar radius.

The aspect ratio is defined as,
A= a,/b, (©6)

When A > 1, the particle shape is oblate spheroidal, when A < 1, the shape is prolate spheroidal,
and when A = 1, the shape is spherical.

Under the quasi steady-state assumption, the concentration around a particle in a quiescent

liquid is described by the steady-state diffusion equation,
V2C(x,y,z) =0 (7

where C(x,y, z) (mol/volume) is the molar concentration of dissolved substance. At the particle

surface, the concentration (Cy) is the saturated concentration (C,) Which is constant.
Cs = Csar (8)

The molar flux of dissolved substance from the particle surface to the surrounding liquid, Ng

(mol/area-time), is defined as

"

Ng = —D,, 71 - VC|, ©)

where D,, is the diffusion coefficient for the dissolve substance in the fluid, and 7 is a unit
normal vector pointing outwards to the ambient fluid. The particle surface regresses with time as

the particle loses mass from its surface,

dR :
@ = ~Nsm 1o

where R,, is the surface coordinate in the direction normal to particle surface, and v,,, (volume/mol)
is the specific volume of the solid particle. For a given particle, the dissolution process also
depends on the container volume, which confines the dissolved substance within the container.
From the initial particle volume (V,o) and container volume (V;), the initial solid particle

concentration, Cy, (mol/volume), is calculated as
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Vpo

CpO vmVc (1 1)

In the calculation, either V. or Gy, can be used to specify the container volume. Equations (5-11)

constitute the formulations describing the dissolution process of a single particle.

Each spheroidal particle has a corresponding spherical particle whose volume is the same as

the initial volume of the spheroidal particle. The radius of the spherical particle is given as,

Ry = (aZobpo)™"” (12)

where ap,o and ¢, are the equatorial and polar radii of the spheroids at ¢ = 0. Using Ry and Cyq;

as the characteristic quantities, Eqns. (5-9) can be nondimensionalized as,

f2+§12 2'2 _

2 th= 1 (13)
A=a,/b, (14)
V2C(%,9,2) = (15)
Cs=1 (16)
NS = _9¢
NS - atilg (17)

where X = X/Ro, _')7 = y/Ro, Z= Z/Ro, dp = ap/Ro, Ep = bp/ROJ W= Rov, é = C/Csat, and

—_—
"

Ng = Ng/(Dp,Csat/Ro). The time for a spherical particle to fully dissolve in an infinite fluid

medium is [15]

2vmCsatDm

Taiss =
Using 7,45 to nondimensionalize the time (f = t/745), Eqn. (10) is nondimensionalized as,
L= 2N (19)
The initial solid particle concentration (Eqn. (11)) is normalized as

C~p0 = (Vpo/vc)/(csatvm) (20)



where C~p0 = CpO/Csata I7p0 = VpO/Rga and I7'c = VC/RS

Equations (13-20) constitute the complete system of equations describing the dissolution
process of a single prolate or oblate spheroidal particle in the dimensionless space. Any specific
dissolution process can be determined by three controlling parameters, A, épo, and (Coqt V).
Compared with the dimensional space, the number of controlling parameters is significantly
reduced in the dimensionless space. In order to connect with the real physical mechanism, the

following derivation and analysis are carried out in the physical space.

At present, we do not have a rigorous mathematical proof that the shape of the prolate and
oblate spheroidal particles does not change during dissolution. The derivation below (Eqns. (32)
and (57)) shows that the ratio of the dissolution rate at the equator to that at the pole is equal to the
ratio of the equatorial radius to the polar radius. Thus, the shape invariance is a reasonable

assumption.

(c) Dissolution of prolate spheroidal particles

For the prolate spheroidal particle, the prolate spheroidal coordinates (£, n, ¢) is utilized
instead of the Cartesian coordinates (x, y, z) (Fig. 2). The conversion between the two coordinate

systems are,

x = (2 sinh & sinn cos ¢ (21)
y = 2sinh & sinn sin ¢ (22)
z = coshécosn (23)

where £ is a nonnegative real number and the angles n € [0, 7], ¢ € [0,27]. Curves of constant &

and 1 on the (y, z) plane are half-ellipse and half-hyperbolae with focus at (y,z) = (0, £02), and
2 =,/bj—aj (24)

The prolate spheroidal particle surface is described by constant & (= &5). & can be acquired

from the surface point at the pole (x,y,z) = (0,0, bp) according to Eqn. (23),



¢s = arccosh (I;—p) = arccosh(bp/,/bg - a%,) (25)

In the prolate spheroidal system, the Laplace equation (Eqn. (7)) becomes,

VZC(&n, ¢)

1 a%c
02(sinh2 £+sin2n) d¢?

1
" 02(sinh2 &+sinZ n)

a%c ac | 9?c ac
[ﬁ+ cothfa—$+ﬁ+ cotnﬁ] +
-0 (26)

It is reasonable to assume that the distribution of concentration (C) is axisymmetric about z axis,
then C becomes independent of ¢ and 02C/d¢? = 0. Using separation of variables, the
concentration is written as C(¢,n,¢) = E(§)N(n). At particle surface, § = &g and C = Cgyy, SO

N (n) becomes a constant. By solving the differential equation, the concentration is acquired as
_ 3
C(&,n.¢) = Aln(tanh%) + B 7)
where A and B are the constants that will be determined from the boundary conditions. At the
particle surface, C(¢ =¢&) =Aln (tanh%) +B =Csq . In the far field, C(§ » o) =

Aln (tanh §)| + B = C4. A and B then can be acquired as,

&—-0

Csat_coo
— 2
A ln(tanh—is) ( 8)
B =C, (29)

The molar flux at the particle surface can be calculated from the gradience of the concentration at

the surface, i.e.,

! ac 1.dC 1 A
Ns ==Dmz| =~ mhgog| T DM s, (30)
where hg is the scale factor for coordinate ¢, and
he = 0y/sinh2 € + sin?7n (31)

Atn = 0 and T (poles), hy = a,, and at n = /2 (equator), hy = b,,. Therefore,



N;,T]=ﬂ.'/2 _ a_p (32)

NS,T]=0 bP

This suggests that the ratio of particle regression rate on the equator to that at the poles is equal to
the ratio of equatorial radius to polar radius. This partly supports the conclusion that the particle

shape maintains spheroidal and the aspect ratio remains constant.

The release rate through particle surface N (mol/time) equals the integration of N at the

particle surface,
Ny =, Ngd4, = [T [*" Ng hyhydndd = —4mAD,,0Q (33)

where A, is the area of particle surface, h,, and hy, are the scale factors for coordinates 7 and ¢,

and

h, = 02/sinh2 & + sin2 7 (34)
hg = sinh ¢ sinn (35)

We assume that the particle is placed at the center of a spheroidal container and & coordinate
is constant at the container surface. The focuses of the spheroidal container are the same as that of

the spheroidal particle, so we have

0 =/bt—a (36)

where a. and b, are the primary and minor axes of the container, and are unknown. The container

volume is given as,
V, = 3magh. (37)

a. and b, can be obtained by solving Eqns. (36) and (37),

b—3 q a>  p®, 7| 4 q* | p? 38
S e el e (38)

a. =+/bz — 2? (39)
where p = —2? and ¢ = — %. Then the ¢ coordinate at container surface is,
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¢, = arccosh (%) (40)

The amount of dissolved substance in the liquid (N) can be obtained by integrating the

concentration in the container,

N=[ CE&nd)av=[f[ CE&n Pp)hshyhgdédnde =J,A+],A+ 3B +],B (41)

where

Ji = 4m® [n (S5) cosh £ I + SinGsinh ) [ — Zsinh?  IE = In (S5055) cosh ¢ ]
Ja = $70° [In (555 cosh € I — In(sinh ) [

J3 = 4m03 % cosh® & |3¢ — cosh§ |g§]

Ji = gn.(ﬁ cosh& |g§ 42)

Let C, be the bulk concentration in the liquid. The amount of substance dissolved in the liquid can

also be calculated as
4
N = C,V, =;nC, (a2b. — a2b,) (43)
Equating Eqns. (41) and (43) gives,
A+ J,A+ 3B + J,B =21C, (ab, — a2b 44
1A+ ,A+]3B+], ;T b(ac c— ap p) (44)

Substituting Eqns. (28) and (29) into (44) gives,

= M _4 2L A2 (J1+J2) _
Coo - ln(tanhi—s) Csat 37TCb (acbc apbp)l/[—]n(tanh%) (]3 +]4,) (45)

(d) Dissolution of oblate spheroidal particles

For the oblate spheroidal particle, the oblate spheroidal coordinates system (¢, 17, ¢) is shown

in Fig. 3. The conversion between the Cartesian and oblate spheroidal systems are,
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x = {2 cosh & cosn cos ¢ (46)
y = (2 cosh & cosn sin ¢ (47)
z = ) sinh ¢ sinny (48)

where ¢ is a nonnegative real number and the anglesn € [—-m/2,7m/2], ¢ € [0,2m]. Curves of
constant ¢ and 17 on the (y, z) plane are half-cllipse and half-hyperbolae with focus at (y,z) =
(££,0), and

0 =.[aZ—b] (49)
The oblate spheroidal particle surface is described by constant & (= &g). & can be acquired from

the surface point on the minor axis (x,y,z) = (0,0, bp) according to Eqn. (48),

&s = arcsinh (l;—p) = arcsinh(b,/\/a% — b2) (50)

In the oblate spheroidal system, the Laplace equation (Eqn. (7)) becomes,

VZC(E,n, $)

1 1 0 ac a ac 1 a%c
"~ 02(sinh2 &+sin2 1) [coshf a_f (COSh E a_f) + cosn % (COS n %)] + 02(cosh? &+cos?n) asz
=0 (51)

With the axisymmetric assumption, C is independent of ¢ and 32C/d¢? = 0. Using separation of
variables, the concentration is written as C(&,7n,¢) = E(§)N(n). At particle surface § = {sand C =
Csat> S0 N(n) becomes a constant. By solving the differential equation, the concentration is acquired

as
C(&,n,¢) = Aarctan(sinhé) + B (52)

where A and B are the constants that will be determined by the boundary conditions. At particle
surface, C(& = &) = Aarctan(sinhés) + B=Cs; . In the far field, C(é - ) =
A arctan(sinh§)|; e + B = Cs. A and B can be acquired as,

— Csat—Ceo — Csat—Ceo (53)
arctan(sinhég)-n/2  arctan(bp/Q)-m/2
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_ T _r Csat—Ceo
B =Ce 2 A= Ce 2 arctan(bp/2)-m/2 (54)

The scalar flux on the particle surface is given as

N, =-D,%| =-p, +—2_ (55)

N mﬁs N mh_fcoshfg

where hg is the scale factor for coordinate §, and

he = 02y/sinh2 & + sin2 7 (56)
Atn = £1/2 (poles), hy = a,, and atn = 0 (equator), hy = b,,. Therefore,

N;,T]=T[/2 _ a_p (57)

Ngp=o  bp

For oblate particles, it is also true that the ratio of particle regression rate on the equator to that at
the poles is equal to the ratio of equatorial radius to polar radius, thus the particle aspect ratio keeps

constant during dissolution.

The release rate through particle surface N (mol/time) equals the integration of N at the

particle surface,

" /2
N =prNSdAp ="

2 "
i J, " Ns hyhgydndd = —4mAD,0) (58)

where h,, and hy are the scale factors for coordinates n and ¢, and

h, = 0/sinh2 & + sin2 7 (59)
hg = 2 cosh¢ cosn (60)

It is assumed that the particle is placed at the center of a spheroidal container and & coordinate
is constant at the container surface. The focuses of the spheroidal container are the same as that of

the spheroidal particle, so we have

0 =.JaZ - Db? (61)

where a. and c, are the primary and minor axes of the container, and are unknown. The container

volume is given as,
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V. = razb, (62)

a. and b, can be obtained by solving Eqns. (61) and (62),

°l q a2 3, % q q? | pd
bcz _E+ T+;+ _E_ T+; (63)
a. = /2% + b? (64)

3V, . . . .
wherep = % and q = — 4—;. Then the ¢ coordinate at container surface is given as,

¢, = arcsinh (%) (65)

The amount of dissolved substance in the liquid can be obtained by integrating the

concentration in the container,
N=[ CE&n)dV=[ff CE&n d)hehyhydédnde =]1A+],A+]3B + 4B (66)
where

Jr = 3103 {arctan(e)e® s =2 [(1+€2) — In(1 + €2)]|mpec )

sinh&g sinhég

= %n.(ﬁ {arctan(e)elsmhfe — %ln(l + 62)|Sinhfc}

sinhég sinhég
4 sinhé,
— 03 3
Js 3 e sinh&g
4 0 sinhé, &7
]4 ET[ ¢ sinhég ( )
The amount of substance dissolved in the liquid can also be calculated as
4
N = C,V, =;nC, (a2b. — a2b,) (68)
Equating Eqns. (66) and (68) gives,
A+ J,A+]3B + 4B = =1C, (aZb, — aZb,) (69)
]1 ]2 ]3 ]4 37T p \AcDO¢ ap 14

Substituting Eqns. (53) and (54) into (69) gives,
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C, = {[(]1;]2) _ 2(13;]4)] Csat _ %T[Cb (a?bc _ a%bp)}/[(h;h) _ 2(13;]4) _ (/3 +]4)] (70)

where D = arctan(bp/.(z) —1/2.

3. Analysis of dissolution process

(a) Research design

To test the model and explore the dissolution kinetics, we use drug-specific parameters of a
commonly used drug for hypertension, felodipine. The molar volume of felodipine is v,, = 265
cm’/mol. The crystalline water solubility in density-matched water containing 38.6% w/w CsCl at
37 °C was measured to be Cs,; = 0.89 uM. It is also the saturation concentration (Cs,;) Using the
stokes-Einstein equation, the reported value for the felodipine diffusion coefficient at 25 °C in pure

water was calculated to be D,,, = 6.7 X 107¢ cm?/s.

In the following section, we will use the model to analyze the dissolution characteristics of a
single felodipine particle with spheroidal shape in a finite size container. It has been shown above
that in the nondimensional space, the dissolution process is determined by three parameters,
particle aspect ratio A = a,/b,, initial particle concentration Cpo = Cpo/Csqt» and the product of
saturation concentration and specific volume of solid particle (Cs4: vy, ). The effect of these three

parameters on the dissolution characteristics will be the focus of the analysis.

(b) Model validation

To validate the model, we compare the prediction of QSM for single or monodisperse particles
with experimental measurements of dissolution from polydisperse collections of felodipine drug
particles in a Couette flow viscometer. In the experiment, the particle shapes are random and
irregular, and the size distribution is represented as a Gaussian function of the logarithm of the
particle radii (R,). The single particle radius (3.34 pum) is equal to the volume-averaged radius of
the polydisperse collection. The details of the experiments are described by Lindfors et al. [16]. A
simple laminar shear flow with closely linear velocity profile was created by rotating the inner

cylinder of the Couette viscometer at 5 rpm, producing a low Reynolds number laminar flow that,
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together with the small size of particles, produced highly diffusion-dominated dissolution from
particles with random geometries. In Fig. 4, we compare the prediction of the time variation of
bulk concentration (C,) of QSM with the experimental measurements. Two initial particle
concentrations are considered, C,o = 0.5 and 1.5 uM. In QSM, five aspect ratios are considered,
A =1, 1/5,1/10, 5, and 10, corresponding to spherical, prolate, and oblate spheroidal particles.
Overall, the predictions of the QSM are in good agreement with the experimental measurements.
For the QSM prediction, C}, of spherical particle (A = 1) is smaller than that of prolate (A < 1)
and oblate (A > 1) spheroidal particles at every time point. The particles in the experiments consist
of a variety of shapes and a wide range of sizes, which resulted in a faster increase in bulk
concentration than that of monodisperse spherical particles. That is why the QSM prediction for
spherical particles are lower than that of experimental measurements. Yet the QSM prediction for
spheroidal particles corrects the deviation to some extent. The conclusion is that the current single
particle model is well validated with the experimental measurements, but more complex models

considering various particle shapes and sizes are needed to deal with the particles in the real world.

(c) Prediction of bulk properties

The spatial distribution of molar concentration of the dissolved substance given by Eqns. (27)
and (52) are functions of spheroidal coordinates (&,7, ¢). The coefficients (4 and B) are functions
of concentration at infinity (Cy ), which increases with time (t). When normalizing the
concentration as € = (C — Co,)/(Cs — Co,), € becomes independent of t. Figure 5 shows the
distribution of € around a prolate and an oblate spheroidal particle with A = 0.5 and 2, respectively.
C decreases from 1 at particle surfaces to 0 at infinity. Because of the larger curvature, C changes

more sharply near the poles of the prolate particle and near the equator of the oblate particle.

On particle surfaces, the molar flux (Ng) of dissolved substance changes with the spheroidal
coordinate 7. It also depends on the particle aspect ratio (A). Figure 6 shows the variation of Ng
with 7 for different A. Ny is normalized as Ng = N /(D,,(Cs — Cs)/R), where R is the radius of
the spherical particle with the same volume as the spheroidal particle. For a spherical particle, N
is constant which is equal to 1. In Fig. 6(a), A increases from 0.9 to 1.1 with an increment of 0.02.

For prolate spheroidal particles, Ng is larger than 1 near the poles (7 = 0 and ) and smaller than
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1 near the equator (n = m/2), With the increase in A toward 1, Ny decreases toward 1 near the
poles and increases toward 1 near the equator. For oblate spheroidal particles, Ny is larger than 1
near the equator (7 = 0), and smaller than 1 near the poles (n = +m/2). When A increases from
1, Ns increases from 1 near the equator, and decreases from 1 near the poles. For both prolate and
oblate particles, Ns approaches the value of a spherical particle as A approaches 1. This trend also
provides validation for the QSM proposed in this paper. This figure depicts the surface flux (Ng)
as a function of spheroidal coordinate (1) and particle aspect ratio (A). Fig. 6(b) shows the variation
of Ny in a wider range of A. For prolate particles, Ny increases faster near the poles with the
decrease in A and its variation with 1 becomes sharper. For oblate particles, the similar increase

occurs near the equator.

When the initial concentration of solid particles is less than the saturation concentration (Cp o <
Csat), the solid particles will dissolve completely after a period of time. When Cp, ¢ is greater than
Csqt» the dissolution will stop after the bulk concentration reaches the saturation concentration
(Cp = Csq¢), and the solid particles will remain in the solution with a smaller size. When G, is
equal to Cgy¢, the particles will fully dissolve and the solution will be saturated (C}, = Cq4¢) in the
end. Figure 7 shows the variation of C;, with time t. C}, is normalized with the concentration at
particle surface (Cs) which is equal to the saturation concentration (Cyq; ). t 1s normalized with the
dissolution time 74;5; wWhich is defined by Eqn. (18). Five values of C,, o/C; are considered, which
are Cpo/Cs = 0.01, 0.1, 1, 10, and 100. The particle shapes include spherical, prolate spheroidal,
and oblate spheroidal. The aspect ratios are A = 1, 1/5, 5, 1/10, and 10. As shown in the figure, it
takes much longer for the particles to fully dissolve in the cases with C,, o/Cs = 1 than those with
Cp0/Cs # 1, because the surface flux (Ng) decreases as Cj, approaches Cyq;, and the decreased N
in turn reduces the increase in Cp,. The cases with Cy, o/Cs > 1 also have the same situation, yet
the relatively larger particle surface area shortens the period of C, increase. For each Cp,/Cs,
C,/C, of spherical particle (A = 1) increases slower than that of prolate (A < 1) and oblate (A >
1) spheroidal particles, because the surface release rates (Ng) of spheroidal particles, which are
described by Eqns. (33) and (58) are larger than that of spherical particles. For prolate spheroidal
particles, C;,/C; increases faster for smaller A. Yet for oblate spheroidal particles, Cj,/C, increases

faster for larger A. This is consistent with the effect of aspect ratio on surface flux shown in Fig.
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6. It is interesting that the curves of A = 1/5 are close to those of A = 5, and the curves of A4 =
1/10 are close to those of A = 10. Yet the difference between the curves of A = 1/10 and 10 is
larger than that between the curves of A = 1/5 and 5. There is no strict mathematical proof to
suggest a direct relationship between the dissolution of prolate spheroidal particles with A = 1/n
and that of oblate particles with A = n. In addition, for each C,, ,/Cs and n, C}, /C; increases faster
for prolate spheroid (A = 1/n) than for oblate spheroid (A = n), although the surface area of the
prolate spheroid is smaller than that of the corresponding oblate spheroid. This is because that the
surface flux (Ng) (Eqns. (30) and (55)) depends on the curvature of spheroidal surface through a
complex relationship. On average, the prolate spheroid has greater surface curvature. This can be
seen in the variation of surface flux shown in Fig. 6. In the initial period, the increase in C},/C; is
less sensitive to the value of Cp,/Cs, and Cp,/C; increases roughly linearly with time (t) in the
linear-linear scales (Fig. 7(a)). With the increase in C},/Cj, the nonlinear effect becomes more and
more apparent and the curves are not straight any more. In the log-log scales (Fig. 7(b)), the curves
are expanded in the regions of small t/74;ss and small C,/C, and all the curves are parallel to
each other over the majority range of the logarithm of time. This is because that in the initial period,
Cp ~ 0, and the curve slope described by k = d(log(C,,/Cs))/d(log(t/Taiss)) is equal to 1. The
nonlinear effects of C,,/Cs and A only becomes obvious when Cp,/Cs is close to 1. This
characteristic greatly facilitates the development of the simpler and more applicable empirical

models.

According to Eqns. (32) and (57), the aspect ratio (A) of the spheroidal particles does not

. . . . . . 1/3 . .
change during dissolution. Here we use the isovolumetric radius, R, = (azz,bp) / , which is the

radius of a spherical particle with the same volume as that of the spheroidal particle, to represent
the time-varying particle size. This facilitates the comparison of particle size among the particles

of different aspect ratios. Figure 8 shows the reduction of R, with time for different C,,/C and
A. Ry, is normalized with the initial radius of the spherical particle Ry. As shown in the figure,
R,/Ry decreases more sharply for smaller C,,/Cs. When C,,/Cs <1, the curve slope
approaches infinity as R, /R, decreases towards 0. When C,,/Cs > 1, the curves have a long

horizontal tail before the solution is saturated, because of the reduced surface flux (Ng) as Cp,/Cs

approaches 1. When C,,/Cs = 1, the dissolution time is infinity. For each C,,/Cs, R,/Ry
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decreases faster for smaller aspect ratio (A) for prolate spheroidal particles (4 < 1), yet R, /R,
decreases faster for larger A for oblate particles (A > 1). This is consistent with the variation of

bulk concentration C,/Cs shown in Fig. 7.

(d) Prediction of Dissolution Rate and Sherwood Number

The surface flux of dissolved substance (Ng) for prolate and oblate spheroidal particles are
given by Eqns. (30) and (55). The coefficient 4 is proportional to the difference of concentration
at particle surface and infinity, C; — C,. Yet Co, changes with time during dissolution. In practical
applications, bulk concentration C, is more tangible than C,,. Therefore, it is more convenient to
use the nondimensional flux, the so-called Sherwood number (S%) to characterize the surface flux.
For spherical particles, S/ has the form of

___ N
Sh = D (Cs—Cp)/R

(71)

where R is particle radius which changes with time. For prolate and oblate particles, Ny is not
uniform at particle surface. Compared with the spherical particle having the same volume, the
prolate and oblate spheroidal particles have larger surface areas, which increases the overall release
rate. In order to evaluate the overall enhancement of dissolution rate, it’s more convenient to define

the Sherwood number for prolate and oblate spheroidal particles as,

Sy NgdAp /AR o, NgdAp

Dm(Cs—Cp)/Rp - 47 Rp Dy (Cs—Cp)

Sh =

(72)

where R, is the isovolumetric radius of the prolate and oblate spheroidal particles, and 47TR,2, is

the surface area of the spherical particle.

During dissolution, Sh changes with time (#). For different initial concentrations of solid
particles (Cp0/Cs), the time it takes for the particles to fully dissolve or saturate the solution is
different. Since bulk concentration (C;) also changes with time, the variation of Sh with C;, will
provide more insights. Figure 9 shows the plot of Sh versus C,/C; for three typical initial particle
concentrations, C, o /Cs =1, 0.1 and 10. Five aspect ratios are involved, 4 = 1, 1/5, 5, 1/10 and

10. For all €,y and A, Sh remains roughly constant during the dissolution process, although slight
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decrease can be observed for C, o/Cs = 0.1. As shown in the figure, /A plays a dominant role in
determining Sh than C, ,/Cs. For spherical particles (4 = 1), Sh = 1. This has been thoroughly
analyzed in Wang et al. [15]. Both the decrease and increase in A from 1 can cause the increase in
Sh. For prolate spheroidal particles with A = 1/5 and oblate particles with A = 5, the values of
Sh are close to each other, which are between 1.2 and 1.3. For 4 = 1/10 and 4 = 10, the
difference between two aspect ratios becomes apparent. The values of Sh are around 1.6 for A =
1/10 and 1.5 for A = 10, respectively, which are larger than those of A = 1/5 and 5. Sh is also
influenced by C,o/C,. For each aspect ratio, Shcp,o/cs=1o > Shcp‘o/csﬂ > Shcp,o/cs=0.1: that is,

larger initial particle concentration has larger Sh.

As shown Fig. 9, Sh remains roughly constant during dissolution within wide ranges of C;, /Cs
and A. This characteristic suggests that Sh, the Sh at t = 0 can be used to compare the dissolution
rates among the cases with different C, /Cs and A. Figure 10(a) shows the dependence of Shy on
Cp,0/ Cs for typical values of A from 0.1 to 10. On the whole, Sh, increases with the increase in
Cp0/Cs for all A. Yet when Cp,o/Cs < 10, the increase in Shy is not obvious. Apparent increase
is only observed when C,, 5/Cs > 10. The magnitude of increase is still smaller than that caused
by A. In applications that has lower requirement for accuracy, Sh, can be considered independent
of Cy, o/ Cs. Figure 10(b) shows the variation of Shy with A for C,, o/ Cs from 0.01 to 100. Since
Shy is less dependent on C, o/ Cs, all the curves are highly similar in shape and close to each other.

The curves exhibit an asymmetric parabola-like shape with a minimum at A = 1, suggesting that
Shy is larger for smaller A when A < 1, and Shy is larger for larger A when A > 1. The simple
and highly similar curve shapes facilitate the development of simple empirical models for practical

applications.

For spherical particles, the surface flux Ng is also calculated with diffusion layer thickness (8)

as,

" (CS_C )
Ns = D —5° (73)

where §(t) is the thickness of a virtual layer surround the particle with higher concentration, and

changes with time [7,10,11]. Rearranging Eqn. (73), § (t) is written as,
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5(t) = D,, % (74)

For spherical particles, §(t) is roughly equal to particle radius. For prolate and oblate particles, N
is not uniform on particle surface. To emphasize the enhancement of dissolution rate due to the

change of particle shape, §(t) can be defined as,

(Cs_cb) RP
o(t) =D, ———————— = — 75
(©) mpr NgdAp/4mRZ ~ Sh (73)

8(t) is then normalized with R, as

s _ 1
R, sh (76)

As particle shape changes from spherical to prolate spheroidal or oblate spheroidal, the increase in
Sh leads to the decreases in §(t)/R,. Thus, the dissolution rate is enhanced. The analysis of Sk

can be easily extended to §(t)/R,,.

(e) Prediction of dissolution time

Figure 7 and 8 suggest that the end of a dissolution process is either complete dissolution
(Cp0/Cs < 1) or saturation (Cpo/Cs > 1). When Cp,o/Cs > 1, the dissolution is significantly
slowed down when €}, /C; is close to 1. A considerable amount of time is consumed yet Cp,/C;
changes very little. Here the dissolution time (7)) is defined as the time it takes for the particle to

completely dissolve when C,,o/Cs < 1, or the time it takes for the bulk concentration (Cp/Cy) to
reach 0.99 when C,,,/Cs = 1. Figure 11 shows the normalized dissolution time (T /7g;5s) Versus
Cp,0/ Cs for various aspect ratio (A) from 1/10 to 10. As shown in the figure, all the curves exhibit
similar shapes over the entire range of Cy,/Cs from 102 to 107 in the log-log scales. For each
Cp0/Cs, T/Taiss of the spherical particle is the largest. According to the curve variation, four
regimes of C,o/Cs can be identified. In regime I (Cp,0/Cs < 1071), the initial particle
concentration (Cp o/ Cs) is small, which makes the bulk concentration (C}, /C;) also low throughout

the dissolution process. The dissolution is close to that of a particle in an infinitely-large media.

For spherical particle (A = 1), it is T /T4;5s = 1. In this regime log(T /74iss) is roughly constant

20



for each A. In regime II (1071 < Cp0/Cs < 1), the effect of C;, appears, which reduces the
dissolution rate and increases the dissolution time. As a result, log(T /74;ss) increases with the
increase in log(Cp,O/Cs), and reaches the maximum at C,,/Cs = 1. When C,,/Cs > 1, the
solution is saturated in the end. For larger C,, 5/ Cj, the larger particle surface area saturates the
solution faster, so log(T /T4ss) decreases with the increase in Cp,o/Cs. In regime III (1 <
Cpo/Cs < 2), Cy0/Cs is close to 1 and some nonlinear features are exhibited, so the curves are not
straight. In regime IV (Cpo/Cs > 2), 10g(T /74iss) changes linearly with log(Cp,O/Cs) and all

curves are straight lines. The curve slope is determined by the material properties, that is, v, Cs.

Figure 12 shows the variation of dissolution time (T /Tg4;ss) With particle aspect ratio (A) for
typical values of Cp o/C;s. All the curves exhibit similar shapes in log-log scales. For each C,, 5/ Cs,
the maximum of T/t is reached at A = 1. For prolate particles T /7455 decreases as A
decreases, and for oblate particles T /T4 decreases as A increases. This is consistent with the
Sherwood number shown in Fig. 10. When we plot log(T /7 4iss) — 10g(T /Tgiss) a=1 V. A in Fig.
(12b), all the curves fit together perfectly. This suggests that the effects of €y, o/Cs and A on the

dissolution time can be decoupled,

T/Tdiss = f(Cp,O/Cs)g(A) (77)

where f and g are two functions to be determined.

(f) Effects of material properties

The nondimensional set of equations (Eqns. (13-20)) show that the dissolution process is also
determined by the material properties, C,:Vy,. The above analysis was carried out with felodipine,
the value of CoqrVp, is 2.36 X 1077. To explore the effect of C,4: 17, on the dissolution, some
virtual particle materials with I1 = Cq¢Vp/(CsqtVm) fe1o = 0.01, 0.1, 10, and 100 are compared

with felodipine, where the subscript ‘felo’ indicates the quantities of felodipine.

Figure 13 shows the variation of initial Sherwood number (Sh,) with initial particle
concentration (Cp, o/ Cs) and particle aspect ratio (A) for different Csq¢ vy, /(CsqtVm) fero- As shown

in Fig. 13(a), for each C,,/Cs and A, (Sho)n=100 > (Sho)n=10 > (Sho)n=1 > (Sho)n=o01 >
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(Sho)n=0.01. The deviation of Sh, from that of felodipine increases with the increase in Cp, o/Cs.
When C,, /Cs < 1, the deviation is not apparent. Figure 13(b) shows the dependence of Shy, on A.
The deviation of Shy only appears for larger Cp, o/ Cs and larger I1. This is consistent with Fig.
13(a).

We also study the effect of IT on dissolution time (T'/74;55). Figure 14 shows the comparison
of T /7455 versus Cp, o/ C for different I1. Over the most range of C,, 5/ Cs, the curves are almost
on top of each other for 4 =1, 1/10, and 10. The deviation appears apparently only when
Cp,0/Cs > 10. This is confirmed by the variation of (T /74s5) With A shown in Fig. 15. It should

be noted that the magnitude of deviation is small because the plots are prepared in log-log scales.

4. Conclusion

In this paper, we have extended the quasi steady-state model of the dissolution of a single
spherical particle to that of a prolate and an oblate spheroidal particle, based on the exact solution
of the steady-state diffusion equation for mass transfer in an unconfined media. With an
appropriate treatment of bulk concentration, this model can predict the detailed dissolution process

of a single spheroidal particle in a container of finite size.

The dimensionless governing equations suggest that the dissolution process is determined by
three dimensionless control parameters, initial solid particle concentration, particle aspect ratio,
and the product of specific volume of solid particles and saturation concentration of the dissolved
substance. Using this model, we have analyzed the dissolution process of felodipine particles in a
broad range of space of the three control parameters and identified some characteristics. It has
been found that both prolate and oblate spheroidal particles have a larger dissolution rate than
spherical particles. The Sherwood number, characterized as the nondimensional dissolution rate,
has been found to have a strong dependence on particle aspect ratio. For prolate spheroidal particles
with smaller aspect ratio, the Sherwood number is larger, yet for oblate spheroidal particle with
larger aspect ratio, the Sherwood number is larger. The Sherwood number is little influenced by
the initial particle concentration. We have also examined the dissolution time. A similarity of the

variation of dissolution time with particle aspect ratios for different initial particle concentrations
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has been found in the logarithm scales. In the end, the effects of material properties, that is, the
product of specific volume of solid particles and saturation concentration are analyzed. It has been
found that the effects of material properties only appear when the initial particle concentration is
much larger than the saturation concentration and the product of the particle is much larger than
that of felodipine. All these characteristics facilitate the development of easy and reliable empirical

models for practical applications.

The model and the analysis are also applicable to the system of monodisperse spheroidal

particles of the same shape.
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Figure 1. Illustration of quasi steady-state model for a single particle in a container of finite size.

25



n
o | wuf
Il "
wp s-Ul y
n=n/2
n=rx

Figure 2. The prolate spheroidal coordinates.
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Figure 3. The oblate spheroidal coordinates.
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Figure 4. Comparison between QSM predictions and in vitro experiments.

28



Figure 5. Normalized concentration ((C — C,,)/(Cs — C,)) around a spheroidal particle. (a) prolate
(A =0.5), and (b) oblate (A = 2).
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Figure 6. Variation of release flux at particle surfaces for various aspect ratios (A), (a) from 0.9 to 1.1, and
(b) from 0.1 to 10.
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Figure 7. Increase in bulk concentration with time during dissolution of felodipine. (a) In linear-linear scales,
and (b) in log-log scales
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Figure 8. Decrease in equivalent particle radius with time during dissolution of felodipine.
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Figure 9. Variation of Sherwood number with bulk concentration during dissolution of felodipine.
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Figure 10. Initial Sherwood number versus (a) initial concentration of solid particles and (b) particle aspect ratio.
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Figure 11. Variation of dissolution time with initial concentration of solid particles.
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Figure 13. Effects of v, Cs on initial Sherwood number against (a) initial concentration of solid particles and
(b) particle aspect ratio.
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Figure 14. Effects of v,,,Cs on dissolution time against initial concentration of solid particles.
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Figure 15. Effects of v,,,C on dissolution time against particle aspect ratio.
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