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The Geometry of Optimal Gaits for
Inertia-Dominated Kinematic Systems

Ross L. Hatton , Zachary Brock, Shuoqi Chen, Howie Choset , Hossein Faraji , Ruijie Fu , Nathan Justus ,
and Suresh Ramasamy

Abstract—Isolated mechanical systems—e.g., those floating in
space, in free-fall, or on a frictionless surface—are able to achieve
net rotation by cyclically changing their shape, even if they have no
net angular momentum. Similarly, swimmers immersed in “perfect
fluids” are able to use cyclic shape changes to both translate and
rotate even if the swimmer-fluid system has no net linear or angular
momentum. Finally, systems fully constrained by direct nonholo-
nomic constraints (e.g., passive wheels) can push against these
constraints to move through the world. Previous work has demon-
strated that the displacement induced by these shape changes
corresponds to the amount of constraint curvature that the gaits
enclose. Properly assessing or optimizing the utility of a gait also
requires considering the time or resources required to execute it:
A gait that produces a small displacement per cycle, but that can
be executed in a short time, may produce a faster average velocity
than a gait that produces more displacement, but takes longer to
complete a cycle at the same instantaneous effort. In this paper, we
consider gaits under two instantaneous measures of effort. For each
of these costs, we demonstrate that fixing the average instantaneous
cost to a unit value allows us to transform the effort costs into
time-to-execute costs for any given gait cycle. We then illustrate
how the interaction between the constraint curvature and these
costs leads to characteristic geometries for optimal cycles, in which
the gait trajectories resemble elastic hoops distended from within
by internal pressures.

Index Terms—Geometric mechanics, lie brackets, locomotion,
swimming.

I. INTRODUCTION

I SOLATED mechanical systems—those floating in space, in
free-fall, or on a frictionless surface—are able to achieve net

rotation by cyclically changing their shape, even if they have no
net angular momentum [1], [2]. Similarly, swimmers immersed
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Fig. 1. Net position displacement of an inertial-kinematic system over a gait
cycle corresponds to the amount of constraint curvature that the gait’s trajectory
encloses on the system’s shape space. The cost of executing a gait can be
measured in terms of the kinetic energy or acceleration required to follow
the trajectory, which correspond to the length and roundness of the trajectory
over a surface shaped by the system’s inertial distribution. Gaits that maximize
speed for a given energy or acceleration budget balance these two influences,
with the constraint curvature acting as an “inflationary pressure” favoring
large-amplitude cycles, and the pathlength and roundness terms providing a
“surface tension” and “bending stiffness” that constrain the sizes and aspect
ratios of the optimal gait cycles. As a general rule, the acceleration-optimal gait
for a system will be both larger and rounder than the energy-optimal gait.

in “perfect fluids” are able to use cyclic shape changes to both
translate and rotate even if the swimmer-fluid system has no
net linear or angular momentum [3]. The operating principle
in both cases is that the systems’ moments of inertia (and in
the case of perfect-fluid swimming, the systems’ fluid-added
masses) depend on the system shape. By moving portions of
the body forward in low-inertia-configurations and backward
in high-inertia configurations, systems can generate net dis-
placements even while their total momentum remains zero, i.e.,
variable inertia means that conservation of momentum does not
lead to conservation of position.

Given this principle, it is natural to ask “What shape trajec-
tories best exploit the changes in inertia to generate system
motion?” Answering this question involves investigating the
following two subquestions:

1) How much displacement is achieved over a given cycle?
2) How much time or energy does it cost to execute a given

cycle?
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and then dividing the displacement by the cost to get an overall
efficiency (in terms of opportunity or resources) for the motion.

In previous work, e.g., [2], [4]–[6], we and others have ad-
dressed the first question, demonstrating that the displacement
of an isolated or perfect-fluid system induced by a gait cycle
corresponds to the amount of constraint curvature in the system
dynamics that the gait trajectory encloses: gaits that produce
large displacements enclose strongly sign-definite regions of
this curvature, and gaits that produce zero displacement enclose
sign-balanced regions. As yet, however, we believe that geo-
metric characterizations of the cost of executing different gaits
under inertial dynamics (and, therefore, the optimality of such
motions) have yet to be explored.

In this article, we consider two fundamental cost functions
for systems with inertially dominated dynamics, corresponding,
respectively, to the kinetic energy the system must have to
move at a given speed and to the power losses incurred by
the actuators in generating the system’s internal forces (which
do not always do net work on the system). We then show that
when we normalize gaits by fixing the energy or power supplied
to the system to a given value, each of these cost functions
can be transformed into a geometric relationship between the
kinematics of the gait cycle in the shape space and the time
taken to execute the gait:

1) When the cost is taken as the kinetic energy required
for the motion, the cycle period T is proportional to the
pathlength of the cycle (measured according to a metric
derived from the system’s inertia), and so scales linearly
with the amplitude of the gait cycle; and

2) When the cost is taken as the nonregenerable power con-
sumption of the actuators, a good model for this power
consumption is the square of the actuator forces, which
geometrically corresponds to a squared norm of the sys-
tem’s covariant acceleration (the acceleration relative to
its unforced trajectories), weighted by the locations where
the actuators are attached to the system and integrated over
the gait. Under this measure of cost, the time period of a
gait is proportional to the square root of the amplitude of
the gait (because an increase in scale reduces path curva-
ture, allowing the system to change shape more quickly
at a given acceleration, and thus partially offsetting the
effect that increasing inertial pathlength has on the time
needed to execute the gait). Additionally, this measure of
cost encourages the system to change shape more slowly
in tightly curved sections of its trajectory than in straighter
sections (rather than maintaining constant kinetic energy
as in gaits that minimize work).

We then use these two cost functions to extend our geometric gait
optimization framework (previously developed for swimmers in
viscosity-dominated flows [7]–[9]) so that it provides optimal
gaits for inertia-dominated systems.

Gaits optimizing speed with respect to the kinetic-energy
cost function take the same “soap bubble” form as was seen
for the viscous-optimized gaits (maximizing the ratio of signed
constraint curvature enclosed by the gait to the pathlength
of the cycle used to make this enclosure). As illustrated in
Fig. 1, gaits optimizing speed with respect to the covariant
acceleration cost function tend to be both larger-amplitude than

the energy-optimal motions (because the loss terms scale with
the square root of amplitude rather than linearly) and rounder
than the energy-optimal motions (because the need to slow
down for sharp turns adds a “bending stiffness” to the gait ge-
ometry). Together, the energy-optimal and acceleration-optimal
gaits bracket the optimal gaits under any cost metric that is the
weighted sum of the work and loss in the actuators.

As a demonstration of the insights provided by our approach,
we apply it to a range of systems, including the isolated three-link
system introduced as a representative three-link model in [2],
the perfect-fluid swimmer from [3], [4], two-mode continuous-
curvature swimmers (which we considered in viscous flows
in [9]), and generalizations of these systems to three and four
shape variables (which we also considered for viscous flows
in [9]).

Finally, as an extension of our core analysis, we consider
optimal-gait geometry for systems—such as a three-link system
with skates or passive wheels—whose locomotion is dictated
by direct nonholonomic constraints, but whose dynamics within
these constraints are inertially dominated.

II. BACKGROUND

The geometric framework we use in this article has its roots in
works including [2], [10]–[13], with further development in [4],
[14]. Our treatment below is condensed from a series of papers
we have written for the robotics community [5], [9], [15], [16],
and at a deeper mathematical level, in [17].

For the purposes of this article, our focus is on the geometric
structure of the system dynamics. Accordingly, we work with
the components of these dynamics at a relatively high level of
abstraction in the equations, and present their instantiation for
specific systems graphically rather than as algebraic expressions
(which would run to several pages of trigonometric terms if
expanded, even for the three-link swimmer). For worked exam-
ples of the kinematics of the n-link and continuous systems, see
[9, Appendix].

A. Geometric Locomotion Model

When analyzing a locomoting system, it is convenient to
separate its configuration space Q (i.e., the space of its gen-
eralized coordinates q) into a position space G and a shape
space R, such that the position g ∈ G locates the system in the
world, and the shape r ∈ R gives the relative arrangement of the
particles that compose it.1 For example, the positions of both the
articulated and continuous-curvature swimmers in Fig. 2 are the
locations and orientations of their centroids and mean orienta-
tion lines, g = (x, y, θ) ∈ SE(2). The shapes of the articulated
swimmers are parameterized by their joint angles, r = (α1,α2)
for the three link swimmer and r = (α1,α2,α3) for the four-link
swimmer. The shapes of the continuous curvature swimmers
can be described by a set of modal amplitudes multiplied
by their curvature modes. In the serpenoid and piecewise-
continuous systems, the shape parameters α are weighting

1In the parlance of geometric mechanics, this assigns Q the structure of a
(trivial, principal) fiber bundle, with G the fiber space and R the base space.
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Fig. 2. Geometry and configuration variables of some of the example systems. The systems in the top row are articulated swimmers, while the bottom row
consists of continuous curvature swimmers. The shape of the systems in the first column are described by two shape variables, whereas the shape of the systems
in the second column are described by three shape variables. Articulated and continuous shape spaces can both be described as having “even” and “odd” axes, in
which the joint angles or body curvature have even (reflection) or odd (rotational) symmetry about the system’s midpoint. These axes are illustrated in the rightmost
column for systems with two shape variables; adding midpoint bending as a third shape variable creates a second “even” axis, and adding a fourth mode provides
a second “odd” mode.

functions on curvature modes κ defined along the body,2 as
discussed in [16].3

The dynamics of an isolated-inertial or perfect-fluid locomot-
ing system are dictated by its body-frame inertia matrix M ,
which relates the system’s kinetic energy KE and momentum p
to its velocity as

KE =
1

2

[
◦
gT ṙT

]
M(r)

[◦
g

ṙ

]
(1)

and
[
pg
pr

]
= M(r)

[◦
g

ṙ

]
(2)

in which
◦
g = g−1ġ is the body velocity of the system (i.e., ġ

expressed in the system’s instantaneous body frame); r is its
current shape; ṙ is the rate at which it is changing shape; pg is
its momentum through the world in the body-frame directions;
and pr is its momentum in the shape directions.

For an isolated n-link system, this inertia matrix can be
constructed by pulling back the links’ individual inertia matrices
µi through the Jacobians of the links,

M(r) =
∑

i

Ji(r)
TµiJi(r) (3)

2Body curvature is the first of four kinds of curvature that appear in this article.
3In keeping with previous convention, we use r when discussing the shape in

abstract, and α for the specific parameterization of the shape space that is joint
angles or modal amplitudes.

where Ji is the Jacobian that maps the body and shape velocities
of the system to the body velocity of the ith link,

◦
gi = Ji

[◦
g

ṙ

]
. (4)

(Detailed calculations for this Jacobian are provided in [9].)
For a system immersed in a perfect fluid, the inertia matrix

can be constructed on a similar principle, augmenting the link
inertias with their fluid-added-mass matrices before pulling
them back through the link Jacobians [3]. For continuously-
deformable systems, the summation over links is replaced with
an integral along the body,

M(r) =

ˆ
body

JT (r, $) µ($) J(r, $) d$ (5)

where µ($) now refers to the infinitesimal mass and moment of
inertia of the portion of the body at $ (and can be augmented
with fluid added mass as in the discrete-link case).

As described in [3] and [5], the inertia matrix M can be
decomposed into blocks that, respectively, encode the system’s
inertia with respect to pure position motion with fixed shape,
pure shape motion at a fixed position, and the coupling terms that
appear when the system is moving in both shape and position,

M =

[
Mgg Mgr

Mrg Mrr

]
. (6)

If the system starts at rest and forces are applied only through the
joints (i.e., we do not “externally push” the base link), conser-
vation of momentum means that its position-space momentum
pg remains zero for all time. Under these conditions, the upper
blocks of M encode a constraint on the combinations of

◦
g and
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ṙ that the system can achieve,

pg =
[
Mgg Mgr

] [◦
g

ṙ

]
= 0. (7)

If we take the shape velocity ṙ as the “known” values in this
constraint equation, we can reformulate the constraint in (7) as
a linear map from the shape velocity to the body velocity that
puts the system at zero body-frame momentum,

◦
g = −

A(r)
︷ ︸︸ ︷
M -1

ggMgr ṙ (8)

in which the matrix A is referred to as the local connection
A for the system, and can be thought of as the mobile-system
equivalent to the Jacobian of a robotic manipulator. Each row of
−A encodes the derivatives of one component of position (in
a body frame direction) with respect to the shape components,
and can be visualized as an arrow field over the shape space, as
illustrated in Fig. 3 for the isolated and perfect-fluid three-link
systems.

B. Gaits

Because the shape space of locomoting systems is typically
bounded (e.g., by joint limits or other restrictions on bending
the body), such systems often move via gaits: cyclic changes in
shape that remain within the bounded region of the shape space,
while producing characteristic net displacements. Gaits can be
described in terms of the path the gait traces through the shape
space, the period required to execute one cycle, and the pacing
(relative timing) within the cycle.

Several efforts in the geometric mechanics community [2],
[4], [11], [14], [18]–[20] (including our own [5], [9], [16]),
have used the curvature of the system constraints (a measure
of how “noncanceling” the system dynamics are over periodic
shape changes) to understand which gaits produce useful dis-
placements.

The core principle in these works is that because the net
displacement gφ over a gait cycle φ is the line integral of (8)
along φ, the displacement induced by a gait depends only on the
gait’s path in the shape space (and not on its period or pacing).
Further, the induced displacement can be approximated4 by a
surface integral of the constraint curvature5 D(−A) of the local
connection (its total Lie bracket6) over a surface φa bounded by

4This approximation (a generalized form of Stokes’ theorem) is a truncation
of the Baker–Campbell–Hausdorf series for path-ordered exponentiation on a
noncommutative group, and closely related to the Magnus expansion [21], [22].
The accuracy of this approximation depends on the body frame chosen for the
system, and is most accurate for body frames at an “average” of the positions and
orientations of the body segments; we discuss details of this body frame selection
in [5] and [17]. In presenting this approximation, we also elide some details of
exponential coordinates on Lie groups, which are also discussed in [17].

5Constraint curvature is the second kind of curvature to appear in this article.
6As discussed in [17], the system motion can be considered as a constrained

motion over the full configuration spaceQ. The distribution of locally achievable
motions can be identified with the vector fields (ṙi,−gAṙi), and the sum
of pairwise Lie brackets of these fields over Q evaluates to (0,d(−A) +∑

[−Ai,−Aj ]), in which the latter term is a local Lie bracket on G rather
than on all of Q.

Fig. 3. Local connection A for the isolated and perfect-fluid three-link
systems. The x and y fields for the isolated system are zero, because the
center of mass (where the body frame for this system is located) cannot move
under conservation of linear momentum. Because the added mass on the links
is configuration-dependent, conservation of linear momentum does not force
the perfect-fluid swimmer to remain stationary, and its x and y fields are
nonzero. Both systems have nonzero θ fields, because their rotational inertias
are configuration dependent, so conservation of angular momentum does not
prevent the system from changing orientation.

the cycle:

gφ =

‰
φ
−gA(r) (9)

≈
¨

φa

−dA+
∑[

Ai,Aj>i

]
︸ ︷︷ ︸

D(-A) (total Lie bracket)

(10)

where dA, the exterior derivative of the local connection (its
generalized rowwise curl), measures how changes in A across
the shape space prevent the net-induced motions from canceling
out over a cycle, and the local Lie bracket

∑[
Ai,Aj>i

]
mea-

sures how sequences of translations and rotations in the induced
motions couple into “parallel parking” effects that contribute to
the net displacement.
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Fig. 4. Constraint curvature D(−A) for the isolated and perfect-fluid three-
link systems. The θ components of the constraint curvature are the exterior
derivatives (“curls”) of the−Aθ fields in Fig. 3, which captures the ability of the
system to make a cycle in its shape space that induces more counterclockwise
body rotation than clockwise body rotation. The x and y components of the
constraint curvature are the exterior derivatives of their respective −Ax and
−Ay fields (capturing their ability to execute shape cycles that have more
“forward” motion than “backward” motion in these body directions), augmented
by the local Lie bracket term from (12), (which captures the “parallel parking”
effects of mixed translation and rotation).

For systems with two shape variables, the exterior derivative
term evaluates as

dA =

(
∂A2

∂r1
− ∂A1

∂r2

)
dr1 ∧ dr2 (11)

where Ai is the ith column of the local connection (correspond-
ing to the ith shape variable), and the local Lie bracket term for
planar translation and rotation evaluates as

[
A1,A2

]
=




Ay

1A
θ
2 −Ay

2A
θ
1

Ax
2A

θ
1 −Ax

1A
θ
2

0



 dr1 ∧ dr2. (12)

In both cases, the wedge productdr1 ∧ dr2 indicates the oriented
differential area basis in the shape space.

Plotting these curvature terms as scalar functions over the
shape space (as in Fig. 4) reveals the effect of gaits’ geometry
on the motions they induce: gaits that produce large net dis-
placements in a given (x, y, θ) direction are located in strongly

sign-definite regions of the corresponding D(−A) constraint
curvature functions (CCFs). For example, θ rotations of both
the isolated and perfect-fluid three-link systems are produced by
cycles in the corners of the shape space, whereas cycles centered
in the shape space produce net x translations of the perfect-fluid
swimmers.

III. INERTIAL DYNAMICS

The linear map from shape velocity to body velocity in (8)
means that the system’s kinetic energy, expressed as a function
of the body and shape velocity in (1), can be expressed entirely
as a function of the shape velocity,

KE =
1

2
ṙT

Mr(r)︷ ︸︸ ︷
[
−A(r)T Id

] [Mgg Mgr

Mrg Mrr

]

︸ ︷︷ ︸
M(r)

[
−A(r)

Id

]
ṙ (13)

=
1

2
ṙTMr(r)ṙ. (14)

Note that Mr, the reduced inertia matrix for the system, is dis-
tinct from the Mrr block of M (which encodes the shape-space
inertia for the case where the body frame is fixed, whereas Mr

takes the body frame as moving according to the relationship
encoded in −A).

Because Mr encodes the system’s full inertial information
as a structure on the shape space, it allows us to evaluate the
dynamics of the system entirely on the shape space, in what is
called a sub-Riemannian approach [9], [23]. We briefly review
here some key ideas in evaluating the motion of systems with
second-order dynamics, with a focus on the geometry underlying
the dynamics of these systems.

A. Shape-Space Dynamics

If we take the kinetic energy expression in (14) as defining a
Lagrangian for the system, the Euler–Lagrange equations dictate
a relationship between shape-space forces τ and motion through
the shape space

τ = Mr(r)r̈ + Cr(r, ṙ) (15)

in which the vector Cr (which encodes the centrifugal and
Coriolis forces acting on the system) is calculated from the
derivatives of the mass matrix with respect to the shape
variables as

Cr(r, ṙ) =

(
d∑

i=1

∂Mr(r)

∂ri
ṙi
)
ṙ − 1

2





ṙT ∂Mr(r)
∂r1

ṙ
...

ṙT ∂Mr(r)
∂rd

ṙ



 . (16)

In some cases (including later sections of this article), it is
useful to factor the right-hand side of (15) as

τ = Mr(r)

acov︷ ︸︸ ︷(
r̈ +M -1

r (r)Cr(r, ṙ)
)

(17)

in which acov, the system’s covariant acceleration, describes the
rate at which it is accelerating relative to its natural (unforced)
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Fig. 5. Inertia matrices for our systems act as Riemannian metrics on their shape spaces. (a) In coordinates, these metrics can be visualized via their Tissot
indicatrices (the sets of velocity vectors at each point that produce unit kinetic energy under the metric). (b) To (approximately) recover the geometry of the
corresponding inertial manifold, we can use algorithms such as cartographic projection [16] to stretch the shape space so that the indicatrices become as close to
uniform circles as is possible, while maintaining the continuity of the embedding. The inertial metric illustrated here is specifically that of the three-link isolated
system, but it is qualitatively the same as those of the other systems we consider here: the true inertial geometry is stretched relative to the system coordinates along
the even axis of the shape space. (c) The structure of the metric means that the inertial manifold has positive Gaussian curvature (i.e., it is domed/cupped rather
than saddle-shaped) at the center, and becomes flat (zero curvature) to slightly saddle-shaped (negative curvature) toward the edges. (d) This domed structure can
be partially visualized by using an algorithm such as Isomap [24] to approximate an isometric embedding of the manifold in 3-D space.

trajectories.7 The magnitude of the covariant acceleration, taken
with respect to the inertia matrix Mr as

‖acov‖ =
√

aTcov Mr acov (18)

is equal to the total (mass-weighted) acceleration of the particles
making up the system that is not due to the constraint forces,
and, thus, directly proportional to the total force that must be
actively applied to the particles to follow the trajectory.

Taking the magnitude of acov with respect to the square of the
inertia matrix (i.e., taking the “M2-norm of the acceleration”),
returns a value equal to the Euclidean norm of the shape forces,

‖acov‖τ =
√

aTcov M
2
r acov =

√
τT τ . (19)

If the shape space parameterization is chosen such that the
shape parameters correspond to the directly actuated degrees
of freedom (e.g., using a joint-angle parameterization for an
articulated chain whose joints are individually driven by motors),
then τT τ is the sum of squared actuator forces, and ‖acov‖2τ
then corresponds to the effort the system actually has to exert to
achieve the motion.8, 9

7The M -1
r Cr term evaluates to the Christoffel symbols associated with Mr .

We prefer this expression over the formula that directly encodes the Christoffel
symbols because it more directly illustrates how the system inertia contributes
to the final expression of the dynamics.

8The magnitude of forces applied to the particles is different from the magni-
tude of the actuator forces because the latter value accounts for the leverage that
the actuators have on the masses. Taking the τ -norm of acov is not equivalent
to replacing the metric Mr with a new metric: the covariant acceleration is still
calculated with respect to Mr as in (17), and the M2

r term in (19) specifically
corresponds to the presence of a cometric that is not dual to the metric, and
which calls out the actuator forces as being a better measure of effort than the
net forces acting on the particles.

9Note that although the standard measure of covariant acceleration in (18)
is invariant under changes of coordinates, the τ -norm in (19) depends on the
choice of shape coordinates (and is physically meaningful because the choice of
coordinates is tied here to the physical placement of the actuators on the system,
and, thus, the leverage that they have on the system masses).

As we discuss in Section IV, these shape-space dynamics can
be combined with the constraint-curvature analysis in Section II-
B, which predicts the net displacement induced by a gait from
a structure that is also defined on the shape space, to perform
a full cost-and-displacement analysis using only shape space
structures.

B. Inertial Geometry

The reduced inertia matrix acts as a Riemannian metric on the
shape space, defining a weighted two-norm for velocity vectors
on the shape space such that the inertially weighted speed of the
system is the square root of twice the system’s kinetic energy,

‖ṙ‖Mr =
√

ṙTMr(r)ṙ =
√
2KE. (20)

This norm allows us to visualize the structure of the reduced
inertia matrix by constructing a set of Tissot indicatrices [16],
[25], as illustrated in Fig. 5. The indicatrix at each point in the
shape space is the set of ṙ vectors with unit norm (‖ṙ‖Mr = 1)
at that point, which form an ellipse in the corresponding tangent
space. The short axes of the indicatrices correspond to configura-
tions and directions in which the system is “heavy” with respect
to the joints, such that less joint motion is required to achieve a
given kinetic energy. Conversely, the long axes of the indicatrices
correspond to configurations and directions in which the system
is “light” with respect to the joints, such that more joint motion
is required to produce a given kinetic energy.

For example, the shape-position velocity coupling means that
at a given α̇ joint velocity, it takes less kinetic energy for a
three-link system to move along the “odd” (S-shaped) axis of the
shape space than it takes to move along the “even” (C-shaped)
axis. As illustrated in Fig. 5(a), the Tissot indicatrices (sets of
unit-norm velocities) are longer α̇ vectors in directions along
the odd axis than they are along the even axis.

Some of the true (inertial) geometry of the system can be
captured by “stretching” the shape space [16] so that the Tissot
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indicatrices become closer to being circles (much in the same
way that a good map projection can reduce distortion of map
features). For the three-link system, this means stretching along
the even axis of the shape space, as illustrated in Fig. 5(b),
revealing that pairs of C-shapes with a given magnitude of α
are inertially further apart from each other than are pairs of
S-shapes with corresponding joint angles.

In general, the true inertial geometry is curved, and cannot
be completely recovered simply by stretching the space (much
as the curvature of the Earth means that no flat map can ever
be completely distortion-free). The Gaussian curvature10 of the
inertial geometry can be calculated from Mr and its derivatives
across the shape space via the Brioschi formula [26]. The Gaus-
sian curvature of the three-link system, illustrated in Fig. 5(b)
is mostly positive (meaning that the system’s inertial geometry
is cupped or domed), except for some negative regions at the
edges of the space under consideration (meaning that the true
geometry is saddle-shaped or wrinkled in these regions). Some
of this curvature can be directly visualized by using an algorithm,
such as Isomap [24] to approximate an isometric embedding of
the inertial manifold into 3-D space, as in Fig. 5(c); in most
cases, however, more than one extra dimension is required to
exactly represent the geometry.

In the subsequent sections of this article, all of our calculations
will be in the natural shape coordinates for each system, using
Mr as a set of weights on shape velocities and accelerations. The
manifold visualizations, however, play a key role in understand-
ing the results of these calculations and the features we expect
to see in the results:

The dynamics of the inertia-weighted system on the
shape space are equivalent to those of a unit point
mass constrained to move over the inertia-defined
surface.

Recognizing this equivalence provides a context and vocabulary
for discussing the geometry of the systems’ optimal trajectories.

C. Geometry of the Shape-Space Dynamics

An intuitive understanding of the geometry of the shape-space
dynamics can be achieved by transforming the system’s velocity
and covariant acceleration into a local basis constructed such that
it is orthonormal with respect to the reduced mass matrix Mr

and that the first vector in the basis is in the same direction as ṙ.
In this “primed” frame, the system velocity takes the form

ṙ′ =

[
v

0

]
(21)

where v = ‖ṙ‖Mr =
√
2KE is both the inertial speed of the

system and the velocity of the corresponding unit point mass
traveling over the inertia-defined surface with the same ṙ pa-
rameter velocity.

10Gaussian curvature of the inertial geometry is the third kind of curvature to
appear in this article.

The inertia-weighted pathlength of a trajectory through the
shape space (calculated with respect to the system coordi-
nates) can then be thought of as being equivalent to both the
pathlength of the corresponding trajectory embedded into the
inertia-defined surface (the integral of v),

S =

ˆ
φ

√
ṙTMr(r)ṙ dt =

ˆ
φ
v(t) dt =

ˆ
φ

√
2KE(t) dt (22)

where the inertia-weighted expression lets us avoid explicitly
constructing the basis for the primed frame. This inertial path-
length integral can be written without reference to time as

S =

ˆ
φ

√
drT Mr(r) dr (23)

meaning that the integrated square root of kinetic energy is a
property of the trajectory’s path, and is specifically independent
of both the period and pacing with which it is followed.

The shortest inertial paths between points in the shape space
are geodesic paths for the system. The geodesic paths are also
the generalizations of “straight paths” within the inertial surface,
and the system’s natural (unforced trajectories), or geodesics,
follow the geodesic paths at constant inertial speed.

If the the metric-orthonormal, path-aligned basis is addition-
ally constructed such that the covariant acceleration lies in the
plane formed by the first and second basis vectors, the covariant
acceleration takes the form

a′cov =




v̇

κv2

0



 (24)

where v̇ is the rate at which the inertial speed is changing and κ
is the curvature of the trajectory within the surface.11 Together,
these components describe the extent to which the system is
deviating from an unforced trajectory.

The squared norm of the covariant acceleration, taken in
bases orthonormal with respect to the metric tensor, is equal the
squared sum of the speed- and direction-change components of
the acceleration in the orthonormal bases,

‖acov‖2Mr
= aTcovMracov = a′cov · a′cov (25)

= v̇2 + (κv2)2. (26)

This norm of the acceleration corresponds to the amount of force
that must be applied tangent to the surface to push the unit point
mass along its trajectory, or equivalently to the magnitude of the
vector-sum of nonconstraint forces that must be applied to the
particles in the system.

In metric-orthonormal coordinates, the squared norm of
forces appears as a weighted inner product

‖acov‖2τ = τT τ = a′Tcov

Mτ︷ ︸︸ ︷[
bv̇ bvv̇
bvv̇ bv

]
a′cov (27)

11Trajectory curvature is the fourth and final kind of curvature to appear in
this article.
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= bv̇ v̇
2 + 2bvv̇(v̇κv

2) + bv(κv
2)2 (28)

in which Mτ can be constructed as J⊥J
T
⊥ , where J⊥ is the

Jacobian mapping from coordinate bases to the path-aligned
metric-orthonormal bases. These weighting terms capture the
property that the actuator forces are not expressed in bases
orthonormal with respect to M (equivalently, are not applied
directly at the particles), but instead are exerted at specific points
on the mechanism, with varying amounts of “leverage” on the
system particles.

IV. INERTIAL COST

The constraint curvature analysis in Section II-B provides
a clear view of the displacement produced by executing gait
cycles, but does not contain any information about the resource
or opportunity costs of executing the gaits. This cost information
is critical for choosing optimal gaits. A gait that produces a large
displacement per cycle but takes a large amount of energy or a
very long time to execute is less useful than a gait that produces
only a moderate displacement per cycle, but can be executed
with a smaller energy expenditure or with higher frequency at
the same instantaneous energetic cost, leading to a larger net
displacement per energy or time.

Our systems’ inertial dynamics, described in Section III,
suggest two basic means of measuring the effort required for
system motion: the kinetic energy required to move with a given
shape velocity, and the actuator force required to achieve a given
acceleration. Integrating these quantities over one cycle of a
gait produces an energetic cost that depends on the gait’s path
through the shape space, its period, and its pacing.

For either effort cost, we can then assign an opportunity cost
to each (path, pacing) pair, defined as the period T which, when
combined with the path and pacing, produces a gait in which
the time-averaged effort cost has unit value. As we discuss
in Section V, this opportunity cost enables a well-posed gait
optimization process, answering the question

“At a given level of effort, which path and pacing
produces the fastest motion through the world?”

For the systems considered in this article, answering this ques-
tion also answers the question

“For a given speed through the world, which combi-
nation of path, pacing, and period requires the least
effort?”

but the former question allows for better decoupling between
the “cost” and “benefit” of a gait (as discussed in Section V),
and consequently simplifies reasoning about and finding optimal
gaits.

Before directly considering the gait optimization problem,
we find it useful to examine how the kinetic-energy and
actuator-force measures of effort, under the constraint of unit-
instantaneous effort, give rise to distinct “geometries of cost” in
the resulting gait period. When combined with the constraint-
curvature analysis from Section II-B, these geometries of cost
provide a complete geometry of optimality for the systems’
gaits (discussed in Section V), in which the balance between

displacement-per-cycle and time-taken-per-cycle is encoded as
a geometric balance between the constraint curvature enclosed
by a gait and the length and curvature of the gait itself.

A. Kinetic-Energy Cost: Inertial Pathlength

If we take the system’s effort (instantaneous cost of motion)
as its kinetic energy

EKE
instant = KE (29)

then we can make the following statements about the opportunity
costs of gaits:

1) For any path and mean kinetic energy, the pacing that
produces the shortest period T is the one in which the
energy is held constant at this mean value. Because kinetic
energy defines the metric-normalized speed, this means
that the system moves at “constant speed” with respect to
its inertial distribution.

2) Under the constant-inertial speed condition, the period T
of a gait is proportional to its metric-weighted inertial
pathlength and inversely proportional to the square root
of the kinetic energy with which it is executed.

These properties are derived from the following geometric
properties of the system dynamics:

1) Optimal pacing: Because of the quadratic relationship
between ṙ and KE, trading off energy between portions
of the gait (moving slower in one portion to move faster
in another) at a given mean kinetic energy value always
leads to a longer period T than is achieved by maintaining
the kinetic energy constant at this mean value: the time
gained in the faster sections is necessarily smaller than
the time lost in the slower sections. A formal derivation of
this principle is presented in Appendix A.

2) Proportionality of period and pathlength: If the energy in
the system is held fixed at a given value, then the inertial
pathlength S is equal to the product of the square root of
kinetic energy and the gait period,

S =

ˆ T

0

√
2KE dt =

√
KET (30)

and the period is correspondingly equal to the inertial
pathlength divided by the square root of the kinetic energy
at which the gait is executed,

T = S/
√
2KE. (31)

Fig. 6(a) illustrates the optimal pacing under the kinetic-
energy measure of effort for a unit point mass moving around
a “racetrack” path, which is to maintain constant speed through
both straight and curved sections of a trajectory. Fig. 6(b) illus-
trates the linear proportionality between the radius of a circular
path and the time a point mass requires to follow it at unit kinetic
energy.

Fig. 7(a)–(d) illustrate how a nonisotropic inertia matrix
affects the pacing in parameters of a constant-kinetic-energy
trajectory. The rate at which gait period scales with respect to
geometric scaling of the gait’s path (in shape-parameter space)
depends both on the coordinate-stretch and on the underlying
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Fig. 6. Under a kinetic-energy measure of effort, (a) the optimal pacing for a point mass moving along an elongated path is to maintain constant kinetic energy,
and (b) the time required for the point mass to move along a circular path at unit kinetic energy is proportional to the radius of the path. If we instead measure the
effort required to follow the path as its squared acceleration, (c) the optimal pacing is slower in the curved sections than in the straight sections, and (d) the time
required to follow the path at unit acceleration scales with the square root of the path radius.

(coordinate-invariant) curvature of the inertial manifold; as illus-
trated in Fig. 8(a)–(c), gaits for systems with positive Gaussian
curvature (“domed” or “cupped” manifolds) experience slower
growth of T as the amplitude of a cycle is scaled than do systems
with flat inertial manifolds, whereas systems with negative Gaus-
sian curvature (“saddle-shaped” manifolds) exhibit increased
growth of T with respect to amplitude scaling.

Comparing the the system inertia matrix illustrated in Fig. 5
with the minimal-working-example in Fig. 7, our systems’ in-
ertial geometries are stretched/compressed along the even axis,
meaning that during a constant-energy trajectory, the joints move
slowly as the system moves from

U

shapes to U shapes, and
quickly as it moves from S shapes to Z shapes. The generally
positive Gaussian curvature of the inertial geometry means that
the pathlength, and, thus, period, of gaits can be expected to grow
sublinearly with amplitude (which physically corresponds to
the system being “curled more tightly” during higher amplitude
gaits, and thus having a smaller overall moment of inertia).

B. Actuator-Force Cost: Covariant Acceleration

The kinetic-energy measure of effort measures the net work
that the actuators must do on the system to move at a given speed,
but does not account for the individual work that the actuators

perform as they shuffle kinetic energy between different moving
pieces of the system. In most cases, this individual work cannot
be regenerated or passed between actuators without significant
losses, and in some cases actuators may be actively working
against each other, with one actuator supplying energy to the
system, while another dissipates energy.

To more accurately model the effort that the actuators put
into the system, we can turn our attention to the actuator forces,
which are related to the gait trajectories as in (15). A complete
accounting of the actuator effort to produce those forces requires
a detailed model of the actuators, but a good general-purpose
model is to take the effort as the squared norm of the actuator
forces,

Eτ
instant = τT τ (32)

capturing the idea that power consumption in an actuator (e.g.,
the resistive heat losses in an electric motor) grow superlinearly
with respect to the force being supplied, and that the costs of
producing forces in the individual actuators are decoupled.12

12If the cost of producing actuator force is not decoupled, or differs between
actuators, this product could be further weighted to reflect such coupling or
differing cost.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 02:13:18 UTC from IEEE Xplore.  Restrictions apply. 



3288 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 5, OCTOBER 2022

Fig. 7. If the inertia matrix is not isotropic (e.g., because the system has a shape-dependent distributed mass), then a trajectory that is circular in parameter
space, as in (a), may not be truly circular as illustrated in (b). Consequently, the constant-kinetic-energy path in (c) appears to be variable-speed when viewed in
coordinates (d) and the squared-covariant-acceleration-optimal pacing for the system (e) may be appear to be constant speed when viewed in coordinates (f), even
though the system actually experiences significant tangential acceleration.

As noted in (17), the actuator forces are the product of the
system’s inertia matrix and its covariant acceleration, such that
the squared norm of actuator forces can be expressed in terms
of the gait geometry (path and pacing) via the M2 norm of the
covariant acceleration in (19). This proportionality of effort and
acceleration results in a relationship between gait path, period,
and pacing with the following properties:

1) For any path and mean squared covariant acceleration, the
pacing that produces the smallest period is one in which the
system moves slowly in highly curved sections and faster
in straight sections (whereas under the kinetic-energy
measure of effort, the optimal pacing has constant inertial
speed).

2) For any path and mean squared torque, the pacing that pro-
duces the smallest period is biased from the acceleration-
optimal pacing by a term that depends on the placement
of the actuators on the system.

3) The period required to execute a gait with unit average ef-
fort is proportional to the fourth root of the effort required
to execute the gait in unit time.

4) For geometrically similar gaits executed at optimal pacing,
the period at unit-effort scales with the square root of the
size of the gait (whereas period under the kinetic-energy
measure of effort scales linearly with the size of the gait).

5) For gaits with the same inertial pathlength and mean
squared torque, a “round” gait requires a shorter period
than an “oblong” gait or one with “sharp corners” (whereas
period under the kinetic-energy measure of effort is inde-
pendent of the aspect ratio or distribution of curvature).

The properties are derived from the following geometric
properties of the system dynamics:

1) Acceleration-optimal pacing: Using the metric-
orthornormal representation of the acceleration norm
from (26), the integral of squared covariant acceleration

can be written as

Ea
total =

ˆ T

0

(
v̇2 + (κv2)2

)
dt. (33)

The quadratic nature of this cost function means that as
compared to moving with constant v, there necessarily
exists a pacing that reduces the average acceleration by
slowing down the system in sections where κ is large,
even though this means accepting a nonzero contribution
to acceleration from the v̇ term. A formal derivation of this
principle is presented in Appendix B.

2) Torque-optimal pacing: In metric-orthonormal coordi-
nates, the squared-torque cost is the integral of the torque-
norm of acceleration from (28),

Ea
total =

ˆ T

0

(
bv̇ v̇

2 + 2bvv̇(v̇κv
2) + bv(κv

2)2
)
dt. (34)

This cost is weighted and biased relative to that in (33),
but has qualitatively similar behavior: its quadratic nature
means that relative to a constant-speed profile, shifting
acceleration out of the (κv2)2 and into a term with a v̇
term reduces the overall torque cost.

3) Unit-effort/unit-time proportionality: Changing the
timescale on which the system motions occur by a factor c
induces a change in the accelerations by a factor c2. This
factor means that the normed actuator force τT during a
gait with a given path and pacing and a period T is related
to the actuator force during a gait with the same path and
pacing but unit period, τ1, by a factor

‖τT (t)‖ =
1

T 2
‖τ1(t/T )‖. (35)
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Combining this relationship with a constraint that restricts
our attention to gaits with unit average effort´ T

0 ‖τT ‖2dt
T

= 1 (36)

tells us that the opportunity cost (period) of a gait with a
given path and pacing, executed with unit average effort
satisfies the relationship´ T

0

(
1
T 2 ‖τ1(t/T )‖

)2
dt

T
= 1. (37)

Separating out the explicit factors of T in this expression
provides an equation

T 5 =

ˆ T

0
‖τ1(t/T )‖2dt (38)

whose right-hand side can be rewritten to factor out T asˆ T

0
‖τ1(t/T )‖2dt = T

ˆ 1

0
‖τ1(t)‖2dt (39)

such that the period at unit average effort is revealed as
being equal to the fourth root of the effort cost of the gait
when it is executed with unit period

T =

(ˆ 1

0
‖τ1‖2dt

)1/4

. (40)

4) Square root proportionality of T and gait amplitude:
Increasing the pathlength of a gait by a factor $, while
maintaining its period, pacing, and curvature distribution
scales v(t) by a factor of $, scales v̇(t) by a factor of $2,
and scales κ(t) by 1/$ such that the unit-time torque cost
scales by $2. Inserting this scaling factor into (40) then
tells us that the unit-effort period for the gait increases by
a factor of ($2)1/4 = $1/2.

Physically, this scaling factor corresponds to the prop-
erty that as the size of the path increases, it takes propor-
tionally more time to complete a cycle at a given v, but the
path’s curvature decreases as the gait grows. The system
can thus move with a greater velocity while maintaining
the same instantaneous κv2 effort in the curves, so that the
total time to complete the gait rises sublinearly.

5) Optimality of roundness: The quadratic nature of the cost
function means that a gait with concentrated curvature
(e.g., corners or an oblong shape) incurs greater (κv2)2

costs at unit period, and, therefore, requires a greater
period at unit effort, than does a system with the same
inertial pathlength but more constant (rounder) curvature.

Fig. 6(c) illustrates how the factors described above influence
the optimal pacing of a point mass moving around a “racetrack”
path with unit mean squared acceleration, and Fig. 6(d) illus-
trates the square root proportionality between the radius of a
circular path and the time the point mass requires to follow it at
unit mean squared acceleration.

As illustrated in Fig. 7(e), the “stretch” from an anisotropic in-
ertia matrix can lead to a “circular” gait in coordinates not being
truly circular, such that its optimal pacing under the kinetic-
energy metric proceeds around the circle at a nonconstant pace.
Conversely, the stretch acts to mask the tangential acceleration

Fig. 8. Gaussian curvature of the inertial manifold affects the rate at which
gait periods at unit effort grow with respect to the size of the gait. Positive
curvature—the hemispherical geometry in (a)—slows the growth of the period
with respect to gait size, and negative curvature—the saddle geometry in (c)—
increases the rate of growth. These rates of growth are illustrated in (b) and (d),
with the rate of growth in a “flat” space provided as reference.
Note that it is possible for a closed path to be a geodesic on the manifold-
following the equatorial great circle on the hemisphere in (a)—in which case the
period under the kinetic-energy measure of effort reaches a maximum (because
it is proportional to inertial pathlength, and geodesics are curves at extrema of
inertial pathlength). On such a path, the unit-time effort goes to zero (because
geodesics are the trajectories of no acceleration, and the manifold’s intrinsic
curvature provides all of the “change of direction” required to close the loop) and
the unit-effort period becomes undefined (because there is no periodic motion
along a closed geodesic with nonzero constant effort).

(and, thus, effort) required to follow a circular path at mean
squared acceleration, as is illustrated in Fig. 7(f): the stretch
means that the acceleration-optimal pace requires slowing down
in the “narrow ends” of the true elliptical gait geometry, but
mapping the motion back into the parameter coordinates slows
down the motion in the “straight sections” of the true geometry,
such that the acceleration-optimal motion is constant-speed in
the parameter space.

As illustrated in Fig. 8(d), the time required to follow a shape
trajectory grows more slowly with loop size on inertial manifolds
with positive (domed/cupped) curvature as compared to on a flat
manifold, and grows more quickly on a manifold with negative
(saddled) curvature. The reduction or increase in period for an
acceleration-normalized trajectory is stronger than that for an
energy-normalized trajectory; in the case of a manifold with
sufficient positive curvature, the required period can actually
shrink with increased loop size as the loops approach geodesics
on the inertial manifold—the great circle on the hemisphere in
Fig. 8(a), which requires zero force when followed at constant
speed (and, therefore, does not have a well-defined “period at
unit effort”.13

13This property is described by the Gauss–Bonnet theorem: The total curva-
ture in a closed loop on a surface is equal to 2π minus the surface curvature
enclosed by the loop.
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Fig. 9. Optimizing pacing with respect to squared actuator force is similar to optimizing with respect to covariant acceleration, but introduces a bias term based
on the location of the actuators. (a) A point mass being moved around a race-track path by a rotary-prismatic mechanism. (b) The speed of the mass under
actuator-force-optimal pacing as a function of both position along the racetrack, (left) and time within the trajectory (right). Note that the mass accelerates more
aggressively in the straight section that is closer to the rotary joint than in the section that is further away, because linear acceleration along the track costs less
torque when the moment arm is small. Similarly, the force-optimal pacing has a “speed wobble” during the curves, which correspond to accelerations along the
racetrack becoming equivalent to accelerations directly along one of the mechanism joints.

The difference between optimal pacing under a raw covariant-
acceleration cost and optimal pacing under an actuator-force cost
can be understood by considering the case of a rotary-prismatic
arm whose mass is concentrated at its distal end, as illustrated
in Fig. 9. The point mass at the end of the arm has a flat inertial
manifold, so its covariant acceleration is its simple acceleration
on the path it follows, and this acceleration is equal (up to units)
with the force that must be applied to the mass to produce the
acceleration. When these forces are projected onto the joint
angles, however, horizontal force requires increased α1 torque
when α2 is large. This biasing term means that the optimal
pacing involves a more aggressive acceleration during the “near”
straight section, and also introduces a “speed wobble” to the
curved sections based on how the mass’s acceleration becomes
intermittently aligned with one or other of the mechanism joints.

Fig. 10 illustrates the effect of roundness on optimal gait
speed. For paths of equal perimeter on a continuum between
circles and squares, the optimal trajectory pacings slow down
at the corners (high curvature regions) to avoid incurring large
centripetal acceleration costs. These decelerations mean that the
system moves at a lower average speed than it moves through the
circular path, thus requiring increased time to traverse nonround
paths.

For the locomoting systems we are considering, the can-
celation between true-geometry acceleration and coordinate-
perceived speed from Fig. 7(e) and (f), means that the optimal
pacing of a gait can be inferred directly from the “roundness” of
its path in shape coordinates. The generally positive Gaussian
curvature of the inertial surfaces means that the time taken to
execute a gait at a given mean acceleration grows more slowly
than the square root of the radius of the gait.

The torque bias appears as a metric-squared acceleration cost
in the actuation coordinates, which for our systems means that
accelerations along the even axis of the shape space become
more costly, biasing the system toward constant-speed motion
when moving along the even directions of the shape space and
toward straighter motions along the odd axis of the shape space
(so as not to have curvature in an even direction).

V. OPTIMAL GAITS

Combining the geometric relationship between a gait’s path
and the displacement it produces (from Section II-B) with the
geometric relationship between its path and pacing and its period
at unit average effort (from Section IV) provides a geometric
relationship between its path and pacing and its efficiency η,
measured as its speed at unit effort,

η(path, pacing) =
gφ(path)

T (path, pacing)
(41)

where, for conciseness of notation, we now use gφ to indicate
a signed norm of the displacement resulting from the gait (e.g.,
net rotation, or translation in a specific body direction).

The gradient of this efficiency with respect to a set of gait
parameters p that define the path and pacing of the cycle is

∇pη =
1

T
∇pgφ − gφ

T 2
∇pT (42)

which can be intuitively described as being the gradient of the net
displacement with respect to the parameters, minus the gradient
of the cost with respect to the parameters, with a normalizing
factor to account for the different units of displacement and cost.

This gradient serves two purposes in our analysis. First, the
gradients of gφ and T can both be calculated (in closed or
semiclosed form) in terms of the constraint curvature D(−A)
and the inertia matrix M .14 Gradient-ascent optimization in the
direction identified in (41) then allows for fast optimization of a
high-density parameterization of the gait. Second, the gradient
identified in (41) represents a fundamental truth about the system
dynamics, capturing the fundamental underlying structure of
any other optimization approach applied to these systems.

Under both the kinetic-energy and actuator-force measures
of cost, the optimal gaits represent stable equilibria between the
∇pgφ and ∇pT terms. As we discussed in [9], these equilibria

14See [9] for calculation of the gradient of gφ and the gradient of the inertial-
pathlength instantiation of T , and Appendix C of this article for the gradient of
the actuator-force instantiation of T .
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Fig. 10. For a set of paths with the same perimeter but different distributions of curvature (a), the optimal pacing has more variation in speed the sharper the
corners in the trajectory are (b)–(d). These speed changes absorb some of the system’s acceleration budget, meaning that it must move slower (and, thus, take
longer) as the curvature distribution along the path becomes more uneven.

(and, thus, the optimization process) resemble those defining
the shape of soap bubbles—the ∇pgφ term acts as an “inflat-
ing pressure” on the size of the gait, pushing it toward the
maximum-displacement cycles (which follow zero-contours of
the constraint curvature, fully enclosing sign-definite regions).
The pathlength cost then acts as a “surface tension” (and for,
the force metric, a “bending strain”) term that pushes the gait
to give up low-yield regions of the CCFs in favor of shorter (in
the sense of both inertial pathlength and period) gaits that can
be repeated more often around “richer” regions of the CCFs.

A. Optimal Gaits Under the Kinetic-Energy Metric

Under the kinetic-energy metric, the “surface tension” effect
of the boundary cost acts as a true surface tension, penalizing
gaits with a long inertial pathlength, but putting no direct penalty
on curvature of the path. The way in which the kinetic-energy
cost favors moving at constant inertial speed acts like the “con-
centration gradient” term in a soap bubble, which enforces an
even distribution of material over the surface of the bubble.
Optimal gaits under the kinetic-energy metric for the isolated
three-link system and a set of perfect-fluid swimmers are illus-
trated in the first column of Fig. 11.

Note that for the piecewise and serpenoid swimmers, the
optimal gaits cross slightly into positive regions of the constraint
curvature at points along the odd shape axes. These excursions
correspond to paths that are actually shorter on the manifold than
the paths that exactly follow the zero contour in these regions;
because the CCFs are small at these points, there is almost no
displacement-per-cycle penalty for shortening the paths in this
manner.

B. Optimal Gaits Under the Actuator-Force Metric

The optimization dynamics under the actuator-force measure
of effort are similar to those under the kinetic-energy cost
function, but with the following changes:

1) The “surface tension” is now based on the square root of
the perimeter (rather than being directly to proportional
to it), so that the optimal gaits under the actuator-force
metric are larger than those under the energy metric.

2) There is now a “bending stiffness” on the boundary in
addition to the surface tension, such that optimal gaits
under the actuator-force metric are rounder than those
under the kinetic energy metric.

3) The pacing is now encouraged to slow down in more
curved areas, rather than moving around the path at a
constant inertial speed. Physically, this pacing change cor-
responds to constructing the gait curve from a material that
contracts axially under applied bending load, producing a
higher material density in curved regions.

Optimal gaits for the example systems under both the
covariant-acceleration cost metric (which does not account for
actuator placement) and the actuator-force metric (which does
account for actuator placement) are illustrated in the second and
third columns of Fig. 11.

Several of the acceleration- and force-optimal gaits cross out
of sign-definite regions of the constraint curvature. Some of
this behavior can be attributed to “cutting across” the sign-
opposite region to reduce the pathlength of the gait (as in
the kinetic-energy-optimal gaits); additionally, the “bending”
component of the acceleration-based costs means that it may
actually take more effort to avoid crossing into the sign-opposite
region, such that the system is again encouraged to accept a
penalty on displacement-per-cycle in order to achieve a better
displacement-per-time for the gait.

C. Higher-Dimensional Shape Spaces

As we discuss in more detail in [9], the “soap bubble” de-
scriptions of optimal gaits under the kinds of cost functions we
discuss here extend directly to systems with more than two shape
variables, with the key difference in higher dimensions being
how we handle the curvature of the constraints.

In the case of system with three shape variables, the CCFs
can be considered as 3-D vector fields, and the displacement of
the system over a gait corresponds to the net flux of that field
through the loop formed by the gait. The cost of executing a gait
remains either its inertial pathlength or the squared norm of the
actuator forces, and the optimal gaits are those that “catch the
most flux” relative to the boundary cost.
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Fig. 11. Optimal gaits under the kinetic energy, covariant acceleration, and actuator-force metrics for a range of example systems. The optimal pacing is indicated
via line thickness, with thick lines indicating “slow” changes in the shape variables and thin lines indicating “fast” changes (as if a set of points evenly distributed
in time were “bunched up” or “stretched out”). The key trends to note are that the gaits optimized for kinetic-energy are universally smaller and less rounded than
the gaits optimized for covariant acceleration or actuator-force, and that the actuator-force gaits are shaped and paced so that they have large fast-moving segments
in the “odd” dimension of the shape space (most visible on the isolated three-link and perfect-fluid piecewise gaits). This latter trend corresponds to the squaring
of the inertia matrix in the actuator-force calculation, which reinforces the already existing property that motion along the odd axis is “easier” than motion along
the even axis.

The structure of a 3-D flux field is difficult to visualize in
a 2-D format, so, as discussed in [9], we find it convenient to
represent the D(−A) fields via projection slices as in Fig. 12.
For each system, we construct a surface that passes through the
point, where the magnitude of the relevant (x, y, θ) component
of D(−A) is largest, and aligned the surface so that it is normal

to that component of D(−A) at that point. Optimal gaits can
be expected to lie close to this plane and encircle sign-definite
regions, but bend out of the plane to fully capture the 3-D flux

Optimal gaits for four-link (three joint) isolated and perfect-
fluid systems are illustrated in Fig. 12(a) and (b). For the isolated
system, the flux increases toward the corner of the shape space,
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Fig. 12. Optimal gaits for systems with more than two shape variables. In the first two subfigures, the smaller gait is optimal with respect to kinetic energy and
the larger gait is optimal with respect to actuator force; in the third subfigure, the two gaits follow similar enough paths to be visually indistinguishable. The colored
planes are positioned such that they pass through the points where D(−A) is largest, and aligned so as to capture the most flux at those points. The colormaps are
the CCFs indicating the flux of the relevant component of D(−A) through the planes. The optimal gaits for the systems are closely aligned with these planes and
enclose rich, sign-definite areas within the planes (as if we had performed a 2-D optimization in the set of shape modes defined by the plane). The excursions of
the optimal gaits from the planes are due to two causes: The cost metrics on the system favor motions in certain planes, and D(−A), as a 3-D or 4-D differential
form, changes direction and value across the space and is not completely characterized by the illustrated plane. For the four-mode serpenoid system, the motion of
the fourth shape variable is indicated via line thickness.

and the resulting gaits thus force themselves into the corner
as much as possible (similarly to the isolated-system gaits in
Fig. 11). On the perfect-fluid system, the optimal gaits lie
very close to the projection plane, but curl slightly outward.
This divergence from the center-point-maximum-flux plane both
reduces the cost of the motion (because the plane contains
high-cost even-mode motions), and allows the gaits to better
capture flux away from the center of the shape space (because
the CCF can change direction across the space).

Beyond three dimensions, the CCFs cannot be treated as vec-
tors, but instead must be treated in a fully differential-geometric
fashion as “differential two-forms.” At a practical level, this
just means that the flux of D(−A) through the gait loop is
directly associated with a surface bounded by the loop, rather
than a vector field passing through such a surface,15 and the
geometry of optimal gaits remains the same: they capture the
most D(−A) flux for the least boundary cost. Optimal gaits for
a perfect-fluid system with four serpenoid modes are illustrated
in Fig. 12(c).

D. System Comparison

As illustrated in Fig. 13(a), efficiency under the kinetic-energy
cost function increases as the swimmer becomes more con-
tinuous (gains extra deformation modes or adopts smoother
deformation modes), following the same pattern we observed
for the viscous swimmers in [9]. The swimmer with discrete
joints gains the most efficiency (because the gain in continuity
from adding a degree of freedom is relatively large), whereas
the serpenoid swimmer barely gains any efficiency (because it
is already continuous, and the extra shape modes do not add
significantly to its swimming capability). The piecewise-
continuous system falls between the other two (as should be

15See [9] for further discussion of this point.

expected), and at high degrees of freedom converges on the same
efficiency as achieved by the serpenoid systems.

As illustrated in Fig. 13(b) efficiency under the covariant-
acceleration cost function exhibits a different pattern: for sys-
tems that are relatively discontinuous (discrete-joint and low-
degree-of-freedom piecewise systems), adding a degree of free-
dom improves efficiency, but for systems that are relatively
continuous (serpenoid and high-degree-of-freedom piecewise
systems), adding a DoF actually reduces the efficiency.

Referring to the optimal gaits plotted in Fig. 12(c), we can
explain this behavior by noting that the optimal gaits lie al-
most in the plane of the original modes, such that there are
no strong kinematic benefits from moving with the additional
modes. For the kinetic-energy metric, the presence of the ex-
tra modes does not incur any additional costs (because the
optimal gait simply does not move along these directions).
For the covariant-acceleration metric, however, the additional
modes do incur additional cost: The system must use part of
its force budget to actively brace against the natural accelera-
tions in those directions, reducing the acceleration allocated to
each DoF.

This reduced force allocation directly means that the system
must move more slowly through its shape space to satisfy the
unit-average-acceleration condition (meaning that adding a DoF
in these situations moves the system to the right in the displace-
ment/time plot). The reduced force allocation also indirectly
encourages the system to adopt gaits that avoid generating forces
that project into the new DoFs, trading off performance in favor
of lower costs (and moving down on the displacement/time plot).

We have not plotted relative efficiency under the torque-based
cost, because a fair comparison would require construction-
specific details about the system (as opposed to the two costs
that we do plot, which depend only on the physical geometry of
the system and are independent of the actuator placement and
internal workings).
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Fig. 13. Comparison of the most efficient x-translation gaits for discrete-joint, piecewise-continuous, and serpenoid swimmers, measured as the displacement
they produce (in body lengths) divided by the time required to execute them under the constraints of unit kinetic energy and unit average covariant acceleration.
The steeper the line from the origin to the system, the more efficient its optimal gait is. Under the kinetic-energy cost function, efficiency increases with both mode
count and continuity of the modes. Under the covariant-acceleration cost function, efficiency increases with respect to continuity of the modes, but decreases with
respect to mode count for systems that are already highly continuous (because the new modes do not significantly increase the capability of the system, but it takes
effort to avoid moving along them). Note that the vertical scales on the two plots are comparable, but the horizontal scales are not (because there is no inherent
relationship between “unit kinetic energy” and “unit average covariant acceleration”). The dotted lines in the plots serve as grid-lines or references; all points on
any of these lines are equivalent in terms of displacement-per-time at unit-average-cost, and gaits above/left of a given line are more efficient than gaits that are
below/right of that line.

VI. DIRECT NONHOLONOMIC CONSTRAINTS

In the text above, we extracted both the locomotion model
(encoded in A) and the cost model (encoded in Mr) from the
kinetic energy metric M over the full (shape and position)
configuration space. There also exist systems for which the
inertial costs of motion we present in this article make good
cost models, but whose locomotion models are not generated by
applying conservation of momentum to the system. A canonical
example of such systems is the three-link kinematic snake [13],
[15], [17], [20], [27], which, as illustrated in Fig. 14(a), is
a three-link chain with a passive wheelset attached to each
link. These wheels act as direct nonholonomic constraints on
the system motion (prohibiting system velocities in which any
wheelset slides laterally) and together these constraints define a
local connection A for the system of the same form as in (8),
whose structure is illustrated in Fig. 14(b).

Although this local connection is not itself derived from the
system’s inertial dynamics, we can use it to pull back the full
inertia matrix into a reduced inertia matrix via the same process
as in (13). This reduced inertia matrix then provides a metric for
evaluating the kinetic energy that it takes to move with a given
shape velocity in the presence of the wheel constraints, and how
much covariant acceleration and actuator force is required to
follow a given shape trajectory.

The constraint curvature for the kinematic snake can be
analyzed just as it was for the other two-joint systems, except on
the α1 = α2 line, where the local connection becomes singular,
as illustrated in Fig. 14(c).16 Physically, these singularities

16Singularities also appear atα1 = ±π andα2 = ±π, but these self-colliding
configurations are outside the scope of our discussion here.

correspond to the system forming a shape in which the lines
normal to the wheel constraints meet at a single point, as
illustrated in Fig. 14(d). This alignment means that the system
can rotate around the convergence point (move in position space
without changing shape) and can only cross the α1 = α2 line
at right angles to it.

Mathematically, the singularity appears in the system dynam-
ics as the local connection A becoming asymptotically parallel
to the singularity, with magnitude increasing toward infinity
at the singularity, and with opposite sign on either side of
the singularity. In the constraint curvature D(−A), which is
calculated as a derivative of −A, the singularity appears in the
x component as an asymptotic rise in magnitude with the same
sign on both sides of the singularity, but with an opposite-sign
“delta function” at the singularity.

This delta-function structure corresponds to the “well” at the
center of the perfect-fluid system’s D(−A)x CCF in Fig. 4.
As the ratio of lateral added mass to longitudinal and rotational
added mass increases, this well becomes increasingly narrow;
the kinematic snake represents a limit-case in which the lateral
added mass becomes infinitely large, providing infinite resis-
tance to the lateral motion of the links.

The integral of the constraint curvature inside a gait for
the kinematic snake includes both the surface integral used in
the earlier examples in this article and a line integral of delta
functions over the segment of the singularity that lies within the
gait. Including this segment (which encodes the discrete change
inA across the singularity) in the integral is analogous to treating
corners in a line or creases in a surface as discrete equivalents of
their geometric curvature when integrating to find net change in
angle along a line or the net solid angle subtended by a surface.
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Fig. 14. (a) Three-link kinematic snake has a set of passive wheels on each link, preventing the link from moving laterally. (b) The resulting local connection
and (c) curvature of the local connection have discontinuities at the α1 = α2 line, corresponding to (d) configurations in which the lines of constraint pass through
a common center. Gaits can only cross this singularity orthogonal to it; as illustrated in (e), positively oriented gaits that cross the singularity go “against the flow”
of the field, whereas gaits that do not cross the singularity go “with the flow.” For singularity-crossing gaits, the optimization pressure from the CCF is to stretch
along the discontinuity (enclosing the singular “valley” in the CCF), while pinching inward everywhere else (excluding the opposite-sign regions on either side
of the valley), as illustrated in (f). The specific shapes of the optimal gaits under kinetic-energy (g) and actuator-force (h) measures of effort are driven by their
“membrane-like” and “beam-like” dynamics; in particular the gait in (h) pulls away from the singularity to avoid the high cost of accelerating in its vicinity. As
illustrated in (i) and (j), the optimal gaits trace out sinuous paths through the world.

Note that as illustrated in Fig. 14(e), the net line integral
on −A for a gait that crosses the singularity is negative for
counterclockwise loops (and corresponds to the change in di-
rection of the field across the singularity), whereas the integral
for noncrossing gaits is positive for counterclockwise loops
(and corresponds to the fields’ change in magnitude within each
region). This difference highlights the fundamental importance
of including the singularity’s effect on D(−A) in any constraint
curvature analysis involving gaits that cross the α1 = α2 line. In
particular, it is important to recognize that although the limit of
D(−A)x is positive as the singularity is approached from both
sides, the singularity itself is sufficiently negative so as to make
any integral containing it also negative; simply “bridging over”
the singularity by taking the value of D(−A) as the mean of its
limit value on either side would result in an incorrect prediction
of the direction of net displacement.

As illustrated in Fig. 14(f), the line integral applies pressure
on gait curves to expand along the α1 = α2 line, whereas the
opposite-sign constraint curvature elsewhere in the shape space
pushes the gait inwards. The optimal gaits for this system
under the kinetic-energy and actuator-force metrics illustrate
the effects of these pressures. The gait curves stay very close
to the singularity, minimizing the amount of positive constraint
curvature they enclose, which would otherwise cancel out some
of the benefit of enclosing the singularity (On the plot of −Ax,

we see that staying close to the singularity means the gait is
staying in a region where the magnitude of −Ax is large).

The optimal gait under the kinetic-energy measure of effort,
illustrated in Fig. 14(g), has an oblong shape, and is prevented
from straying too close to the singularity by the large amount
of kinetic energy that changing shape in near-singular config-
urations entails. The optimal gait under the force-based mea-
sure of energy, illustrated in Fig. 14(g), bulges out at the ends
to reduce the system’s covariant acceleration, while changing
direction. The growth along the singularity of both of these
gaits is ultimately constrained by the need to prevent their world
trajectories, illustrated in Fig. 14(i) and (j) from becoming too
sinuous, wasting motion in the lateral directions.

VII. CONCLUSION

In this article, we have presented a set of geometric principles
defining the shape of optimal trajectories for isolated and perfect-
fluid locomoting systems under “least-action,” “least-squared-
acceleration,” and “least actuator effort” objective functions.

A key feature of this geometric framework is that it provides
a fair comparison between “small” gaits that can be repeated at
high frequency and “large” gaits that produce more displace-
ment, but also require more time to execute each cycle. Fixing
the average instantaneous cost of motion assigns each gait path a
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best-case-time-to-execute “opportunity cost” related to its size;
dividing the gait’s induced displacement by this time provides a
measure of gait effectiveness that is independent of any artifacts
of a “displacement per cycle” analysis.

In comparing the covariant acceleration cost function with the
actuator force cost function, this framework also highlights the
difference between optimizing for properties that are fundamen-
tal properties of the mechanism and those that also depend on
how the actuators are attached to the mechanism.

Our extension of the inertial cost functions to nonholonom-
ically constrained systems, such as the kinematic snake high-
lights the independence of the inertial cost formulation from the
inertial dynamics formulation. In addition, it demonstrates that
the cost formulations continue to provide geometric insight in
the presence of singularities in the dynamics.

Together with our previous development of such rules for
systems with viscosity-dominated physics, we feel that this work
provides a “complete picture” of the planar locomotion of these
kinematic locomoting systems, relating the path and pacing of
their optimal gaits to the fundamental geometric structure of
their physics.

Although we see this work as “completing” one line of
research, we do not see it as “closing off” work in this area.
Rather, we see it as establishing a “well-furnished basecamp”
from which to stage further investigations.

Potential avenues for further work (some of which we and
others are currently investigating) include using the frameworks
discussed in this article to understand and analyze observed
motions of physical systems, analysis of hybrid systems that
can make discrete changes in their contact state with the envi-
ronment, and the development of steering and other task-focused
locomotion algorithms that apply feedback and planning rules
on top of the motion primitives identified in our gait analysis.

APPENDIX A
ENERGY-OPTIMAL PACING

In Section IV-A, we use the quadratic nature of the kinetic-
energy cost function to justify “constant inertial speed” as a
property of trajectories that minimize time to traverse a path at a
given average kinetic energy. Taking the period of motion as T
and its inertial pathlength as S, the corresponding optimization
can be stated formally as

minimize T = S/v̄ (43)

subject to constraint
1

T

ˆ T

0
v2(t) dt = K (44)

where v is the system’s inertial speed, v̄ is its time-averaged
value, and K is a constant. Expanding this constraint in terms
of a fluctuating velocity

v(t) = v̄ + ṽ(t) (45)

with the speed fluctuation constrained as
ˆ T

0
ṽ(t) dt = 0 (46)

gives

1

T
v̄2T + 0 +

ˆ T

0
ṽ2(t) dt = K (47)

and thus,

v̄2 = K −
ˆ T

0
ṽ2(t). (48)

Because all terms in (47) are nonnegative, K is necessarily
greater than or equal to either of the other terms. The squared
mean speed is thus maximized [and hence the time-to-execute
cost in (43) is minimized] when ṽ(t) = 0 such that the system
moves with constant inertial speed.

APPENDIX B
ACCELERATION-OPTIMAL PACING

In Section IV-B, we use the quadratic nature of the kinetic-
energy cost function to justify “slowing down in curved sections”
as a property of trajectories that minimize time to traverse a path
at a given average covariant acceleration.

To formally demonstrate this property, we can first use the
unit-time/unit effort quartic proportionality from (40) to convert
the constraint on the gaits we consider from fixed-effort to fixed-
time. We can then convert the cost function from an integral over
time to an integral over the path as

Ea =

ˆ T

0

(
v̇2(t) + κ2(t)v4(t)

)
dt (49)

=

ˆ S

0

∂t
∂s

(
v̇2(s) + κ2(s)v4(s)

)
ds (50)

=

ˆ S

0

(
(v′)2v(s) + κ2(s)v3(s)

)
ds (51)

where the final step is based on the identities ∂t
∂s = 1/v(s) and

v̇(s) = ∂v(s)
∂s v(s) = v′(s)v(s).

The derivative of this cost with respect to a variation δ in the
velocity v(s) is

∂Ea

∂δ
=

ˆ S

0
2v′( ∂

∂δ v
′) + (v′)2( ∂

∂δv) + κ2(3v2)( ∂
∂δ v) ds

(52)

=

ˆ S

0
2v′( ∂

∂δ v
′) +

(
(v′)2 + (3κ2v2)

)
( ∂
∂δv). (53)

We demonstrate that moving with constant inertial speed is
not an equilibrium trajectory for acceleration-cost with respect
to velocity variations that move the system slower in curved
portions of the path by noting that for a constant-speed trajectory
v(s) = v0, the accompanying v′(s) = 0 condition means that
the derivative in (53) does not depend on ( ∂

∂δv
′)

∂Ea

∂δ

∣∣∣∣
v(s)=v0

= 3v20

ˆ S

0
κ2(s)( ∂

∂δv(s)) ds (54)

meaning that there is locally no cost for variations introducing
v′ speed-spatial acceleration, but that there is a benefit to de-
creasing speed in more-curved sections of the path. To see this
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benefit directly, we can introduce a velocity variation

v(s, δ) =
(
1− δκ2(s)

)( 1

T

ˆ S

0

1

1− δκ2(s)
ds

)
(55)

in which the left-hand term reduces the speed in proportion to the
squared curvature of the path, and the right-hand term rescales
the resulting velocities to keep the mean velocity constant, and
which has v′(s) = 0 when δ = 0. The derivative of the velocity
with respect to the variations at δ = 0 resolves to

∂v(s, δ)

∂δ

∣∣∣∣
δ=0

= v0
(
κ2

av − κ2(s)
)

(56)

(where v0 = S/T ), i.e., the system slows down in regions that
have a greater-than-average squared curvature, while speeding
up in regions with smaller-than-average squared curvature. In-
serting this velocity derivative into the cost derivative from (54)
gives the cost derivative with respect to this variation as

∂Ea

∂δ

∣∣∣∣
δ=0

= 3v20

ˆ S

0
κ2(s)

(
κ2

av − κ2(s)
)
ds. (57)

Because theκ2(s) term scales negative regions of
(
κ2

av − κ2(s)
)

by a greater magnitude than it scales positive regions, the integral
is guaranteed to be nonpositive, and is strictly negative outside
of the constant-squared-curvature case, where κ2(s) = κ2

av.

APPENDIX C
GRADIENT OF THE TIME PERIOD FOR ACTUATOR-FORCE COST

The second term of (42) takes ∇pT as a measure of how
moving points in the gait path gait influences the accelera-
tion cost of executing the gait. Taking the gradient of the
actuator-force-constrained period T from (40) with respect to
the parametrization p gives the gradient of the gait’s period
in terms of the unit-period cost of the gait at with the current
parameters and the gradient of the unit period cost with respect
to the parameters

∇pT = ∇p

(ˆ 1

0
τ21 dt

)1/4

(58)

=
1

4

(ˆ 1

0
τ21 dt

)−3/4(
∇p

(ˆ 1

0
τ21 dt

))
(59)

which, by replacing the first integral expression with T via (40),
simplifies as

∇pT =
1

4T 3

ˆ 1

0
(2τ1∇pτ1) dt. (60)

Because the quantities T and τ1 are known at each step in the
optimization, computing the gradient ∇pT requires only further
calculation of ∇pτ1. Applying the gradient ∇p to each of the
terms in (15) and (16) via the chain rule gives

∇pτ1 = (∇pMr(r)) r̈ (61a)

+Mr(r) (∇pr̈) (61b)

+
∑

i

((
∇p

∂Mr(r)

∂ri

)
ṙi +

∂Mr(r)

∂ri
(∇pṙi)

)
ṙ

(61c)

+
∑

i

(
∂Mr(r)

∂ri
ṙi

)
(∇pṙ) (61d)

− 1

2

(
(∇pṙ)

T ∂Mr(r)

∂r
ṙ + ṙT

(
∇p

∂Mr(r)

∂r

)
ṙ

)

(61e)

− 1

2
ṙT

∂Mr(r)

∂r
(∇pṙ) (61f)

from which ∇pτ1 can be obtained by constraining the gait
defined by r to be completed in unit time.

This expression may be further rearranged such that the
gradient operation with respect to the parameters is applied only
to the path variables by expanding ∇pMr(r) and ∇p

∂Mr(r)
∂r

using the chain rule as

∇pMr(r) =

(
∂Mr(r)

∂r

)
(∇pr) (62)

=
∑

i

(
∂Mr(r)

∂ri
∇pri

)
(63)

and

∇p
∂Mr(r)

∂r
=

(
∂2Mr(r)

∂r2

)
(∇pr) (64)

=





∑
j

(
∂2Mr(r)
∂r1∂rj

∇prj
)

...
∑

j

(
∂2Mr(r)
∂rn∂rj

∇prj
)




. (65)

APPENDIX D
ACTUATOR-FORCE METRIC FOR VISCOUS SYSTEMS

In [9] and [16], we measured the cost of a gait for a viscous
system as the energy dissipated through viscous friction between
the swimmer and its environment. This cost translated into
geometric form as the pathlength of the gait under a Riemannian
metric Mr constructed by reducing the total system drag matrix
via the local connection. This drag cost is analogous to the
covariant-acceleration cost for the inertial systems, in that it
considers only the force acting on each particle of the system
at that particle’s location, but does not account for the leverage
the actuators have on the body. The actuator-force cost for the
viscous system is the pathlength under the square of the reduced
drag matrix,

cost =
ˆ
φ

τT

︷ ︸︸ ︷
ṙTM

τ︷︸︸︷
Mṙ . (66)

The optimal gaits under this squared metric are qualitatively
the same as those under the original metric, and are slightly
shorter (when viewed in the parameter space) along the even
axes of the shape space (where the true metric geometry is
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“long” relative to the coordinate geometry). The efficiency under
this cost function follows the same pattern as the covariant
acceleration efficiency in Fig. 13(b). Increasing mode-count for
low-continuity systems increases their actuator-force efficiency,
but adding modes to systems that are already highly continuous
reduces their efficiency because the system must actively use
force to stop unused modes from moving.
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