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Simple Summary: Spiders often use their webs as sensory mechanisms, obtaining from them such
information as the location of prey, the presence of rival spiders, and the characteristics of potential
mates. Examining how this information is transmitted through the web and received by spiders is a
promising biological area of research that could provide insight into a spider’s world and lead to
new technologies that leverage these discoveries. In this paper, we develop a novel noncontact tech-
nique using two video cameras that is capable of analyzing vibrational signals transmitted through
spiderwebs and validate this technique against the current standard of laser Doppler vibrometry.
By combining the principles of stereo vision and video vibrometry, we can automatically extract
three-dimensional vibrational information at any point in the spiderweb across time, and study how
these signals propagate through the web. We show that this technique produces results comparable
to those of standard laser vibrometry.

Abstract: From courtship rituals, to prey identification, to displays of rivalry, a spider’s web vibrates
with a symphony of information. Examining the modality of information being transmitted and how
spiders interact with this information could lead to new understanding how spiders perceive the
world around them through their webs, and new biological and engineering techniques that leverage
this understanding. Spiders interact with their webs through a variety of body motions, including
abdominal tremors, bounces, and limb jerks along threads of the web. These signals often create
a large enough visual signature that the web vibrations can be analyzed using video vibrometry
on high-speed video of the communication exchange. Using video vibrometry to examine these
signals has numerous benefits over the conventional method of laser vibrometry, such as the ability
to analyze three-dimensional vibrations and the ability to take measurements from anywhere in the
web, including directly from the body of the spider itself. In this study, we developed a method of
three-dimensional vibration analysis that combines video vibrometry with stereo vision, and verified
this method against laser vibrometry on a black widow spiderweb that was experiencing rivalry
signals from two female spiders.

Keywords: spiderweb vibrometry; video vibrometry; black widow

1. Introduction

A spider’s web communicates a vast amount of information to its owner, in the form
of vibrations that thrum through the structure. Although we are familiar with the ability
of spiders to use web vibrations to identify and sense the positions of prey, intruders, and
potential mates, the exact mechanisms behind how this information is transmitted remain
a mystery, even for the simplest case of the planar orb web [1-5]. For more complex three-
dimensional webs, such as those built by the western black widow (Latrodectus hesperus,
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Chamberlin and Ivie 1935), understanding how a spider might perceive these signals is an
even more daunting task. To advance this quest of understanding spiderweb vibrations,
we must first develop a reliable and flexible method for experimentally determining the
vibrations present in a web that might be sensed by the spider. Recent advances in the
field of image processing and computer vision allow for the recovery of motion signals
through the analysis of high-speed video, which is the technique we used in this paper to
examine and validate visual signatures of rivalry signals in the webs of our model species,
L. hesperus [6-8].

The current state-of-the-art method for the vibration analysis of spider-related signals
is laser Doppler vibrometry, which has commonly been used to examine the webs of
L. hesperus [9-13] and both three-dimensional webs and planar orb webs built by other
species [2-5,14,15]. A typical experiment utilizing a laser vibrometer involves recording
vibrational data using one or more laser vibrometers aligned against the web structure
or against the body of a stationary spider while the web is undergoing excitation from
some signal, typically a shaker that can oscillate the web at a chosen range of frequencies.
The insights gained by this spiderweb vibrometry are diverse. Previous studies have
examined such things as the signal attenuation in webs for the different vibrational modes
to hypothesize which propagation modalities in the web might carry the most consistently
valuable information for a spider [2—4,10], the speed of sound and tension in webs to
hypothesize how a spider might perform prey localization [4,14] or tune its web to create
the most beneficial acoustic characteristics [15,16], and the vibratory characteristics of prey
and mate signals that correlate to whether the owner of the web illicits a predatory or a
courtship response [9,10].

Using laser vibrometry to analyze spiderwebs has a number of significant challenges:
Although it is possible to align a laser vibrometer’s beam against a single strand or junction
of the web, vibrations often cause the strand to leave the narrow focus of the laser, making
this method of data collection unstable [4]. Additionally, L. hesperus are often fairly mobile
during communication events, eliminating the possibility of aligning the laser against the
spider itself, as has been done in former studies where the spider remained stationary in
the center [2-4]. Previous studies using laser vibrometers have attempted to counteract this
problem by aligning the laser against foreign objects such as squares of reflective tape or fly
wings suspended in the web, although this has the potential to change the structure of the
collected signals and can be a painstaking process [4,10,12,13]. Another limitation of laser
vibrometry is the single-point nature and one-dimensionality of its data. Web vibrations
can occur in transverse, longitudinal, and lateral modalities, and the type and quantity
of information transmitted by each modality are still unclear [2,4,5,10]. Previous studies
have responded to the one-dimensionality of laser vibrometry data by either limiting
their investigation to only one of these modalities [12,13], or by performing multiple laser
vibrometer recordings at different angles and relying on the planar structure of the web
to inform the modality of vibrational data being recorded [2,4,5,10]. Although multiple
laser vibrometers can be deployed to increase the information gained per experiment,
the capability to compare vibrations across the entirety of the web and for each of the
vibrational modes for the same experiment requires a new method of vibrometry.
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Figure 1. (a) Western black widow—TLatrodectus hesperus. (b) Phase shifts from complex transforms:
by the Fourier shift theorem, a spatial time-shift of a signal corresponds to a phase-shift in the complex
domain. (c) Similarly, texture shifts in images correspond to phase-shifts in the complex domain in
video vibrometry. Even if a feature moves less than a pixel, this motion registers as changes in pixel
brightness values that can be used to automatically estimate motion velocity. (d) Pinhole camera
model with augmented object position from video vibrometry in red [17]. An image is projected onto
a focal plane in the camera’s coordinate frame using internal parameters, such as pixel resolution and
focal distance, and then the focal plane can be placed in the world frame using external parameters,
such as the camera’s position and orientation. A line is drawn from the camera focal point to the
object in the focal plane. This line passes through the object in 3D space. If pixel movement values
are known, this line can be shifted to get an augmented 3D position.

A high-speed video taken of the web as a whole can be used to analyze vibrations
visually present in the web or spider without the need for careful alignment of the mea-
surement instrument. Using phase-based video vibrometry on cropped subsections of this
video allows for vibrometry to be performed in specific locations without the need for pixel-
tracking of specific features, so long as there is sufficient degree of pixel value variation, or
"texture" in the chosen analysis region. As this technique extracts information from changes
in pixel brightness as texture gradually shifts from one pixel to the next, video vibrometry
can give displacement resolutions as small as tiny fractions of a single pixel. The method is
sensitive enough that it has been shown capable of reproducing intelligible human speech
through analysis of high-framerate video of objects near a person speaking [7]. Although
this noncontact technology has been previously used to examine biological phenomena
such as microsaccades in the human eye [18,19] and human pulse rates through minute
changes in skin color [20], it has yet to reach widespread use in the field of biology. In
addition to the convenience of being able to analyze information across the entirety of a
spiderweb without regard to specific sample location, video vibrometry provides vibration
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measurements in both the vertical and horizontal axes of the video, compared to the single
depth axis of information collected using a laser [6]. This property makes it possible to
apply the principles of stereo vision to video vibrometry, and combine information from
two simultaneous videos of the spiderweb to analyze vibrations happening in all three
spatial dimensions and at multiple points across time. This is of particular importance to
black widow webs, which are highly three-dimensional mesh structures and have multiple
vibrational modes in each dimension.

In this study, we developed a novel technique of three-dimensional vibration analysis
by combining stereo vision and phase-based video vibrometry, and then applied this tech-
nique to extract three-dimensional vibration information from a black widow spiderweb
during female—female displays of rivalry. We first describe the technique in detail, and
then verify this method by comparing results from stereo vibrometry with information
extracted with a laser vibrometer from a paper cube suspended in the web. We then discuss
information that we can gain from stereo vibrometry that would be difficult to collect with
a laser.

2. Background

This work combines two areas of research: video vibrometry and stereo vision.

2.1. Video Vibrometry

Video vibrometry extracts approximations of pixel velocity values from shifts in
pixel brightness values between two adjacent video frames in regions of large pixel value
variation without the need for the selection and tracking of specific features. Repeating
this process for sets of adjacent frames in the video gives estimates of local motion in the
horizontal and vertical coordinates of the video over the length of the examined time. The
principles of phase-based video vibrometry lie in the application of the complex-valued
pyramid transform, which is constructed by repeatedly applying a complex filter across
multiple orientations and spatial scales [6]. This transform moves information from the
real-real time domain to the real-imaginary complex domain, which has been shown to be a
more reliable format for signal analysis [6,21,22]. Just as a spatially translated signal results
in a change in phase in the complex domain through the Fourier shift theorem, spatial
translation of pixel intensity values in subsequent frames of a video result in changes
in phase through the complex-valued pyramid transform. This concept is illustrated in
Figure 1b,c. Complex filters have been used for many computer vision tasks, including
image orientation analysis and edge detection [22]. These pyramids are constructed for
consecutive frames, and phase differences in these pyramids correspond to spatial shifts
in texture.

2.2. Stereo Vision

Two images from different cameras can be combined by leveraging the pinhole camera
model, shown in Figure 1d [23]. First, the image is projected from the image plane onto
a focal plane in the camera coordinate frame at a fixed distance in front of the origin.
This transformation of the image is performed using the camera’s intrinsic properties: the
resolution of the image, the location of the center pixel, and the focal length of the camera,
which determines the millimeters per pixel in the focal plane. The focal plane projection is
then moved to the world frame using the camera’s extrinsic properties: how the camera is
positioned in the world frame and the pan/tilt rotation of the camera. The line connecting
the camera’s focal point to the representation of an object in the transformed image in the
camera’s focal plane will pass through that object in 3D space. This process is repeated for
the second camera, and the intersection of these two lines is the approximate position of
that object in 3D space.
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3. Materials and Methods

To conduct our experiment, we first positioned a transparent box containing a female
L. hesperus specimen and web on a vibration isolation table, along with two cameras and
a laser vibrometer. A second female was placed inside the box on the web, and data
from the ensuing confrontation were captured from the three instruments. Calibration of
the cameras was conducted using approximate measurements taken of their respective
positions relative to the spiderweb, and then refined using known measurements from
the videos. The data from the communication exchange of web-jerk events from the web
owner captured with the cameras were then processed using video vibrometry.

3.1. Experimental Setup

For the experiment, two Chronos 1.4 high-speed monochrome cameras (Kron Tech-
nologies Inc., Burnaby, BC, Canada) were rigidly attached to a vibration isolation table
such that the only possible allowed movement of the cameras relative to the table were pan
and tilt rotations. These cameras were both connected to the same trigger, which signalled
capture of the synchronized videos. The cameras were set to record 16 s of video filmed at
a framerate of 1000 fps and a resolution of 600 by 800 pixels.

In the center of the vibration isolation table was placed a 30 cm transparent cube in
which a female L. hesperus had constructed a web. On the front of the cage we placed a
2.54 cm square grid for use in camera calibration. The web was lit from above to provide
good contrast of spiderweb features against the dark cage background. Measurements
were taken with a tape measure to determine the horizontal position of each camera with
respect to the front face of the cage. The maximum angle of the cameras with respect to
each other was constrained by visibility into the cage, which was opaque on the sides.

A PDV-100 laser vibrometer (Polytec Inc., Irvine, CA, USA) was positioned between
the cameras, and measurements were taken to determine its position relative to them. Days
before the experiment, small paper cubes were sprinkled into the spider’s web, and the
spider was given time to cut down some of the cubes. The laser vibrometer was aligned
against one of the remaining cubes.

An “intruder” L. hesperus was placed on the web while the spider who built the
web was in the retreat. The laser vibrometer was set to record the entire interaction,
and the cameras captured 16-second bursts of actions whenever the experiment operator
determined a communication exchange was occurring. Video pairs with large amounts of
activity were saved and later used for calibration and analysis.

3.2. Camera Calibration

Camera calibration can be performed using any software that minimizes error in pre-
dictions for camera pose, camera focal length, and camera pixel size using given calibration
points in each video. The specific methodology employed for camera calibration in this
work is described in this section.

The world coordinate frame axis directions were defined relative to the front face of
the spider cage. Positive X pointed to the right on the front face, positive Y pointed up, and
positive Z pointed towards the cameras away from the cage. The positions of the cameras
in the XZ plane were assumed known from the measurements taken during experimental
setup, and the resolution of the video and location of the center pixels used for the intrinsic
transformation were known from the camera settings. The remaining unknown parameters
were the pan and tilt angles of each camera, the Y translation of the cameras relative to the
spider cage, and the focal distances of the cameras.

To eliminate the need for knowledge of camera Y displacement relative to the vibration
isolation table, the origin was chosen as the point halfway between the walls of the cage
lying on the horizontal epipolar line of the video. The horizontal epipolar line was found
by locating the intersection of the eight lines in each video that are parallel to the XZ plane
(the top and bottom of each cork triplet, and top and bottom of each horizontal slit in the
walls of the cage, seen in Figure 2). As the only allowed rotations of each camera are pan
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and tilt, the horizontal epipolar line represents the XZ plane that contains the focal points
for both cameras, and Y translation can be considered zero.

To calculate the remaining unknowns of pan angle, tilt angle, and focal distance,
calibration points were selected that were known to lie on the XY plane. As the dimensions
of the cage were known, the points on the horizontal epipolar line that intersect with the
cage walls have known positions. For each 2.54 cm square grid taped to the front of the
cage, the four corners have known distances relative to each other.

An initial guess for the pan angle, tilt angle, and the focal distance were taken, and
the discretized parameter-space around this point was exhaustively searched for the con-
figuration that minimized the summed squared error of the origin, the cage wall points,
and the distances between the points on the calibration squares for each transformation.
Resulting errors between the known locations of the calibration points and the estimated
positions of calibration points projected onto the front of the cage using the minimum-error
configuration were all less than half of a millimeter. This minimum-error prediction of
the pan/tilt angles and the focal distance along with the known camera translation and
resolution comprised the final transforms used to analyze stereo data of the spiderwebs.

Figure 2. A frame from the right camera video used in the calibration process: The green point
represents the chosen origin along with coordinate axes, and blue points represent coordinates with
known distances to the origin or between each other. Regions highlighted in red were cropped in
order to obtain local motion signals for that area of the web. A strength of the video vibrometry
technique is that although the spiders are barely visible in this frame, local variations in pixel intensity
over the course of the video are sufficient to predict vibrational motion for the spiders without the
need for pixel tracking of specific spider features.

3.3. Stereo Analysis

In order to extract the stereo vibration information from the videos, each video was
first cropped down to the region to be analyzed. This was done for both the resident and
intruder spider and for the paper cube that the laser was aligned against.
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Complex-steerable pyramids were constructed for each cropped video using the
complex filter taps outlined in [22], which have been used previously for similar work [6,21].
For each frame of the video, the layers of the pyramid are constructed by downsampling the
base image of the previous layer by a factor of two, then applying a complex filter pair to the
downsampled base image for both the horizontal and vertical direction in the video. “Phase
changes”, which correspond to shifts in pixel intensity between two frames as objects move
relative to the camera, were extracted from the pyramids for each pixel across both videos
and the phase signals were denoised: first spatially using an amplitude-weighted blur to
squash noise in textureless regions of the video, and then temporally using butterworth
mid-pass filters built to pass signals from 5 to 100 Hz. The denoised phase velocity signals
were integrated to get displacement estimates for each pixel, and the displacement signals
were averaged over the entirety of the cropped region to give local motion estimates in
camera frame X and Y in units of pixels for each region of interest. These video vibrometry
operations were performed with the aid of a Matlab GUI written for this purpose, available
on github https://github.com/NathanJustus/VideoVibrometry_MatlabApp (accessed on
15 March 2022).

Stereo data composition was achieved by first finding initial pixel coordinates repre-
senting the spider or cube being analyzed in the first frame of each video. This task was
performed by hand for each camera. These points were then projected onto that camera’s
focal plane in the world coordinate frame using the intrinsic and extrinsic transformation
parameters found during camera calibration, and constructing the line connecting that cam-
era’s focal point to the point to be examined in the focal plane. The point that minimized
the distance to the corresponding line from each camera served as our guess for the object’s
initial position in space.

The initial pixel position of the object in each video was then augmented using the
pixel displacement estimates calculated using video vibrometry, and the transformation
process was repeated to obtain the new predicted position. Carried out for both videos,
this produced a 3D local motion estimate across time for the region being examined.

Finally, for comparison with the laser vibrometer, the 3D displacement data were
projected onto the line connecting the predicted coordinates of the paper cube the laser was
aligned against to the measured position of the laser vibrometer relative to the cameras.
Stereo data were aligned to the laser data manually by examining the time signatures of
major signalling events.

4. Results

To examine the results of this experiment, we first validate measurements of the signals
created by the L. hesperus and captured with stereo vibrometry against the measurements
of the signals captured with laser vibrometry. Once our confidence in the method is
confirmed, we examine data collected with stereo vibrometry for insights that cannot be
attained through similar measurements taken with laser vibrometry.

4.1. Signal Pattern Analysis of Paper Box

From the laser vibrometry web displacement estimates illustrated in the top portion of
Figure 3a, it is clear that the signals were composed of two sets of three individual events.
The first three events (from 0 to 5 s) are visible only in the laser vibrometry signal and are
much smaller. These events lie within the noise of the stereo data from the paper box. For
the laser, the noise in regions with no recognizable signal is around 1 mm, and the noise of
the stereo method in the same region is approximately 2 mm. Most of the noise present
in the stereo vibrometry data is likely due to stereo calibration error and to the fact that
the vibrations were projected onto the axis of laser vibrometer measurements, which is
one of the hardest axes to measure. As motion in this axis tends to move objects towards
and away from each camera rather than side to side or up and down, this motion is fairly
difficult to detect using stereo vision. The raw video vibrometry displacement data have
an ambient noise of approximately one hundredth of a pixel, making it much less noisy


https://github.com/NathanJustus/VideoVibrometry_MatlabApp

Insects 2022, 13, 310

8of 13

O
—

Windowed Power Estimate (mz*s/s)

Displacement (mm)

Displacement (mm)

o

to measure signals in other axes. This noise could likely be improved by mounting the
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the general problem of camera calibration for stereo vision.

The latter three signals (from 6 to 16 s) were more intense and were picked up fairly
equally by both stereo and laser vibrometry. Both methods estimate peak displacement
amplitudes of 20 to 30 mm, but the stereo vibrometry signal prediction decays slightly
faster than the laser vibrometry prediction. These are rather large-amplitude vibrations.
In general, stereo vibrometry will be most useful when analyzing motions that are large
enough to cause significant changes in pixel brightness (likely on the order of a mm or so in
the case of spiderwebs depending on camera choice and experimental setup) but are also
small enough that they do not cause relevant objects to leave the frame of the video.

It is also worthy of note that the laser vibrometer was oriented approximately with the
Z axis. The cameras each have a rotation angle of approximately 15 degrees with respect to
the Z axis, giving them individually very little information about vibrations in this axis.
However, by combining their information using this stereo technique, vibrations in this
most difficult axis to measure can produce results comparable to those of a laser vibrometer.
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Figure 3. (a) Stereo vibrometry comparison with laser vibrometry: The stereo vibrometry data of
a paper cube suspended in the web projected to the laser vibrometry axis correctly identify three
large web jerk events but miss small signals detected by the laser vibrometer. (b) Windowed power
estimates of spiderweb signals: Time-domain power can be used to detect large signals for both
laser vibrometry and stereo vibrometry. (c) Intruder spider displacement from stereo vibrometry:
Using stereo vibrometry on a spider itself rather than a paper cube generates much cleaner signals.
(d) Calculation of the wave speed of the web signal: Video subregions are analyzed using stereo
vibrometry, and the time delay between signal peaks is used to calculate the wave travel time. Wave
speed is calculated using wave travel time and 3D position estimates from stereo vision.
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4.2. Signal Power Analysis of Paper Box

Both the laser vibrometry data and stereo vibrometry data were further analyzed
by applying a filter that estimates time-domain signal power. For stereo vibrometry, this
analysis was performed on the total 3D displacement magnitude predicted of the paper
cube. The results are illustrated in Figure 3b.

The time-domain power estimate comparison with laser vibrometry shows that the 3D
displacement magnitude from stereo vision correctly estimates times of peak power. This
verifies our confidence that stereo vibrometry supplies accurate measurements of signals in
the web. This time domain analysis of stereo vibrometry data is also a technique that could
be useful for future work analyzing the L. hesperus rivalry displays, as it would be feasible
to use this result to automate the extraction of large black widow rivalry signal patterns.

4.3. Stereo Vibrometry Analysis of Intruder Spider

Having verified the stereo vibrometry technique against laser vibrometry, we can use
this process to take measurements not possible with the laser vibrometer. When analyzing
spider rivalry signals, it will likely be most important to measure the signal felt by the
spiders themselves. This measurement cannot be taken with the laser, as the spider shifts
around in the web during the rivalry displays, and the laser must be aligned against a
stationary point. Video vibrometry, however, allows these signals to be measured during
times in the video where the spider remains stationary, even if it has shifted after camera
setup. The y-axis stereo vibration signal for the intruder spider is shown in Figure 3c.

In the displacement signal from the intruder spider, the smaller signals that were
hidden in the paper cube stereo data are now clearly visible. It is also possible to see a
fourth small vibration event between two larger signals at 13 s. This event was hidden
by noise in both the laser vibrometry and stereo vibrometry data from the paper cube in
Figure 3a. This hidden signal found with stereo vibrometry shows that using vibration
signals taken directly from the black widow spiders with stereo vibrometry as opposed
to vibration signals from paper cubes sprinkled in the web can reveal important rivalry
signalling patterns that would otherwise be missed using conventional techniques. This
measurement is only possible using video vibrometry.

As the high mass of the intruder spider relative to the paper cube causes it to vibrate
at a lower frequency with a cleaner signal, the vibration of the spider is much easier to read
with stereo vibrometry than the signal from the paper cube. Additionally, the texture in the
cropped region is dominated by the intruder spider itself rather than individual strands of
the web, so the resulting signal has much less noise.

As noted earlier, because the cameras are positioned at an orientation of approximately
15 degrees with respect to the Z axis, reconstructing vibrations aligned with the axis of
the laser vibrometer produces fairly noisy results. However, by choosing to analyze the
intruder spider vibrations in the Y direction, to which both cameras can capture the full
range of motion, the two camera vibration signals act as multiple sensors reading the
same motion, producing lower levels of noise in the combined result. This aligns with
our understanding of binocular vision in general: it is more difficult to perceive motion
coming towards or away from the viewer than it is to perceive motion going side-to-side or
up-and-down.

4.4. Web Signal Wave Speed Estimation

Rather than analyzing individual points in space, we can also use stereo vibrometry to
characterize the behavior of the web as a whole. For instance, we can use this technique
to estimate the wave speed of the signal as it travels through the web. By examining
the time difference between the first peak displacements of the three large signal events
at the origin of the signal and at the laser-aligned paper cube, we can approximate the
time it takes for the signal to travel across the web. By combining this information with
our knowledge of the three-dimensional positions of these points in space from stereo
vision, we can calculate the wave speed of the signal as it travels through the web. An
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illustration of this process can be seen in Figure 3d. For the three large signals in the video,
the calculated wave speeds were 24.2 m/s, 17.7 m/s, and 16.6 m/s, for an average predicted
wave speed of 19.5 m/s. This estimate is fairly low compared to previous attempts to
measure low-frequency transverse wave speeds using multiple sensors on the web, which
have given results of 67.6 m/s [4] and 109 m/s [14]. Both of these measurements were
performed on planar orb webs, so it is unclear how the speed of sound would be affected
by a web with a three-dimensional mesh structure. Such measurements have been used in
the past to make predictions about how a spider might perform prey localization [4,14],
gather information using signal lines while away from the center of the web [15,16], and
alter the structure of the web to create better acoustic properties [5,16].

5. Discussion and Future Applications

There are a few considerations that must be kept in mind when deciding to use stereo
vibrometry to examine vibrations in spiderwebs or other three-dimensional structures.
The first is that the frequency bandwidth of this method depends on the framerate of the
camera being used to record the vibrations. The Nyquist frequency (one half of the camera
framerate) determines the absolute maximum possible vibration frequency that can be
recorded. However, this upper bound can prove quite noisy, and it is more typical to
limit analysis to a quarter of the sampling frequency: a 1000 frames-per second recording
would typically only be used for frequency analysis up to around 250 Hz, whereas laser
vibrometry has a very high sample rate and is typically rated to measure signals up to
2 MHz [24].

Another consideration that must be thought through before employing this technique
is that of vibrational signal noise, which will depend on experimental design and the vibra-
tional axis chosen to examine. Although the resolution of phase-based video vibrometry has
been shown to be accurate down to a few thousandths of a pixel [6], it is still of much lower
resolution than a laser vibrometer, which is rated on the order of nanometers [24]. Perform-
ing stereo vision also increases the measurement noise over that of two-dimensional video
vibrometry because of camera calibration error and binocular vision effects. A camera can
only effectively measure motion that moves features horizontally or vertically in the image
plane, and so vibrational information from stereo vibrometry will have noise dependent
on the desired measurement axis. In Figure 3a, the stereo vibrations were projected onto
the axis of the laser vibrometer, one of the noisiest possible axes, giving a noise of around
2 mm. However, in Figure 3c a better axis is chosen, giving a noise of around 1/3 of a mm.

In general, laser vibrometry will be more specialized at reading vibrations in a single
dimension at an individual focus point, giving better frequency ranges and sensitivity,
whereas stereo vibrometry allows for more general sample collection throughout the
entirety of the web and in all dimensions at the cost of being limited by the frame-rate of
the camera and the minimum resolution of a pixel allowed by camera focus and placement
of the camera relative to the subject material. When considering experimental design, a
camera with maximum feasible resolution should be placed as close as possible to the
spiderweb in order to maximize pixel density throughout the web, while simultaneously
ensuring that the camera is far enough away that proper focus can be achieved and that the
image is sharp. When considering noise in each vibrational axis, the orientation of the two
cameras with respect to each other plays an important role. Ideally, the two cameras should
be orthogonal. However, this is often not possible because of spider cage design, so it
should be acknowledged that when the cameras are closely aligned, it will be more difficult
to detect motion data in the direction going towards or away from the camera lenses.

Despite the considerations that must be employed for this technique, the benefits are
immense. This technique does not rely on pixel tracking of features but rather autonomous
detection of pixel intensity variations between camera frames, allowing for resolutions
much lower than a single pixel [7]. As stereo vibrometry gives 3D displacement data, the
technique allows for the simultaneous analysis of all of the longitudinal, transverse, and
lateral vibration modes along the spiderweb, presuming that these axes of vibration can
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be intelligently chosen. Another convenience is that video vibrometry can be performed
on any subsection of the video that has adequate focus [6-8]. This means that stereo vi-
brometry allows for simultaneous sampling across the entirety of the spiderweb, allowing
for simple investigations into spiderweb characteristics such as signal propagation speed
and attenuation rates for each of the different vibrational modalities. Although this study
focused specifically on validating stereo vibrometry against laser vibrometry and perform-
ing vibrometry on the spider bodies themselves, potential future work could perform
vibrometry on nodes in the web mesh itself, giving insights into how spider signals change
as they propagate through the web.

For our particular model species of L. hesperus, we hope that this technique can provide
insights into female—female rivalry signals, which we hypothesize could lead to novel
chemical-free signal mimicry techniques in arachnid dispersion that minimize the chances
of black widows being collected with table grape clusters during harvest. Similar research
into vibrational mating signals of another grapevine pest, the glassy-winged sharpshooter
Homalodisca vitripennis [25], has shown that these signals can be exploited and mimicked to
cause disruptions in mating behavior without the application of chemical pesticides [26].
Due to export concerns, pesticides are currently deployed to minimize accidental widow
collection during grape harvest, and non-chemical forms of arachnid dispersion could
alleviate undesirable environmental impacts of pesticides that are deployed to kill otherwise
beneficial inhabitants of the grapevine ecosystem [27]. Other uses of this technique for
spiderwebs include examinations of courtship signals and discovering how spiders might
locate their prey.

Although this paper specifically investigates spiderweb signals, we suspect that this
technique is also applicable to other fields of biology that are typically inaccessible to study
through laser vibrometry, such as the communication of bees and wasps, wing beat patterns
of hummingbirds, and even vibrations in thin plant membranes. Any source of vibration
that can be captured with a high-speed camera may become subject to biological analysis.

6. Conclusions

In this paper, we described an efficient method for measuring 3D motion for vibration
analysis by combining the concepts of stereo vision and video vibrometry. We extracted
the local phases from two videos using video vibrometry, used this phase to estimate
local motion over time in the camera frame, and then used these motion estimates in a
stereo vision model to augment estimates of the 3D position of objects of interest. We
then implemented this method to analyze vibrations in female—female Latrodectus hesperus
displays of rivalry and demonstrated that stereo vibrometry produces results comparable
to those of a laser vibrometer. We also discussed measurements that can be taken from
the spiderweb using stereo vibrometry that are difficult to achieve using laser vibrometry,
such as analyzing vibrations felt by the L. hesperus themselves and estimating the wave
speed of rivalry signals through the web. We think that this technique can make spiderweb
vibrometry more convenient by reducing the experimental burden of laser vibrometry, and
that it opens the door to new studies into how signals propagate through the structure of
a spiderweb.
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