3926

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Learning Spring Mass Locomotion: Guiding Policies
With a Reduced-Order Model

Kevin Green

, Graduate Student Member, IEEE, Yesh Godse, Jeremy Dao, Ross L. Hatton

, Member, IEEE,

Alan Fern, and Jonathan Hurst, Senior Member, IEEE

Abstract—In this letter, we describe an approach to achieve
dynamic legged locomotion on physical robots which combines ex-
isting methods for control with reinforcement learning. Specifically,
our goal is a control hierarchy in which highest-level behaviors
are planned through reduced-order models, which describe the
fundamental physics of legged locomotion, and lower level con-
trollers utilize a learned policy that can bridge the gap between
the idealized, simple model and the complex, full order robot. The
high-level planner can use a model of the environment and be task
specific, while the low-level learned controller can execute a wide
range of motions so that it applies to many different tasks. In
this letter, we describe this learned dynamic walking controller
and show that a range of walking motions from reduced-order
models can be used as the command and primary training signal
for learned policies. The resulting policies do not attempt to naively
track the motion (as a traditional trajectory tracking controller
would) but instead balance immediate motion tracking with long
term stability. The resulting controller is demonstrated on a human
scale, unconstrained, untethered bipedal robot at speeds up to
1.2 m/s. This letter builds the foundation of a generic, dynamic
learned walking controller that can be applied to many different
tasks.

Index Terms—Humanoid and bipedal locomotion, legged robots,
reinforcement learning.

I. INTRODUCTION

POWERFUL approach to control agile and dynamic

legged robots is to use a control hierarchy that combines
specific domain knowledge of legged locomotion with the power
of deep reinforcement learning. The long term goal is to enable
robots to be able to navigate quickly through previously unseen
environments with agility that approaches or exceeds that of
humans and animals. The control hierarchy should consist of a
low-level walking controller generated through reinforcement
learning that can account for and exploit the passive dynamics
of the physical robot. This low-level controller receives motion

Manuscript received October 14, 2020; accepted February 18, 2021.
Date of publication March 17, 2021; date of current version April 5,
2021. This letter was recommended for publication by Associate Edi-
tor L. Righetti and Editor A. Kheddar upon evaluation of the review-
ers’ comments. This work was supported in part by DARPA Contract
WO1INF-16-1-0002, NSF Grant No. CMMI-1653220, and NSF Grant
DGE-1314109. (Corresponding author: Kevin Green.)

The authors are with the Collaborative Robotics, and Intelligent Systems Insti-
tute, Oregon State University, Corvallis, Oregon 97331 USA (e-mail: greenkev
@oregonstate.edu; godsey @oregonstate.edu; jeremydao913 @ gmail.com;
ross.hatton@oregonstate.edu; alan.fern@oregonstate.edu; jonathan.hurst
@oregonstate.edu).

This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3066833, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3066833

Velocity Command

1.0m/s,

Learned Controller

@
Motion /’\}?{lA\
(Command| .'v"'.‘z‘:'.“‘v'.
E— ."".“"‘6“‘. Action

Reduced Order
Model Library

Observed State

Fig. 1. Our proposed control hierarchy which demonstrates a learned con-
troller for a legged robot that is commanded using reduced-order model motions.
In future work, this library of reduced order model motions can be replaced by
a dynamic motion planner.

commands from a terrain-aware motion planner. The commands
from the planner must be rich enough to sufficiently direct the
walking controller while still being as simple as possible. This
letter focuses on the learned controller and its interface, so we
elect to use a library of precomputed motions (Fig. 1).

Learned controllers have incredible potential to create dy-
namic locomotion, but to be integrated into a control hierarchy
we need an effective control interface. Dynamic legged locomo-
tion is by its nature underactuated, hybrid, unstable, nonlinear,
and must be able to operate with significant ground uncertainty.
These challenges may be addressed by deep neural networks
acting as controllers because of their ability to encode highly
nonlinear control policies. However, if we would like to develop
more complex behaviors such as autonomous navigation through
unknown, obstacle filled environments, we will need to extend
this approach. It may be possible to expand the learning problem
so that the same policy that dynamically controls the robot
also interprets the world around it and chooses how to move
to the goal, but we choose not to take this approach because
of the challenge of generalization to new tasks, sensors and
environments. Instead, we seek to create a learned controller
that can be directed by other intelligent systems in a modular
hierarchy. Recent work explores the use of hierarchical learned
control structures to quadrupedal locomotion. Some methods
use both a high-level learned policy and a low-level learned
policy [1], [2]. Another method combines a low-level model
based controller with a high-level, learned gait planner [3].

Reduced-order models of locomotion capture the core dy-
namics of locomotion which make them a compelling control
interface. The most common models used to plan motion for

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 02:26:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3922-4426
https://orcid.org/0000-0002-0422-0209
mailto:greenkev@oregonstate.edu
mailto:godsey@oregonstate.edu
mailto:jeremydao913@gmail.com
mailto:ross.hatton@oregonstate.edu
mailto:alan.fern@oregonstate.edu
mailto:jonathan.hurst@oregonstate.edu
https://doi.org/10.1109/LRA.2021.3066833

GREEN et al.: LEARNING SPRING MASS LOCOMOTION: GUIDING POLICIES WITH A REDUCED-ORDER MODEL

bipedal robots are inverted pendulum models, which consist of
a point mass and massless legs that can apply forces through
ground contact [4]-[6]. These models describe the underactua-
tion of dynamic walking as well as the discrete choice of foot
step locations while remaining simple enough to plan with in
real time. The spring loaded inverted pendulum (SLIP) model
is particularly applicable for agile locomotion because with
simple, feed-forward policies it demonstrates strong stabilizing
effects [7]-[9]. Many agile robots closely resemble the SLIP
model [10], [11] or are designed with SLIP locomotion as a
goal [12], [13], which motivates our choice to use an actuated
variation of the SLIP model in this letter.

In this letter we present a method of using reduced-order
models of walking to direct high quality, transferable walking
controllers and demonstrate its effectiveness on a Cassie series
robot from Agility Robotics. We use the bipedal actuated SLIP
model as the reduced-order model of walking to create a library
of gaits across different speeds. The gaits are optimized using a
direct collocation method to create energetically optimal walk-
ing cycles. Following these trajectories makes up 70% of the
reinforcement learning reward while 20% is for foot orientation
and 10% is for smooth actions. The resulting controller produces
visually natural motions with clear correspondence to the refer-
ence trajectories. These results show that reduced-order model
trajectories are useful tools in training and controlling learned
walking controllers.

II. BACKGROUND

Reinforcement Learning is a learning framework in which
agents learn what actions to take in order to maximize their
cumulative future reward. Policy gradient methods, such as
Proximal Policy Optimization (PPO) [14], are a popular choice
of reinforcement learning algorithms that have been success-
fully applied to generate control policies for robotic systems,
including legged robots [15], [16]. An important part of using
reinforcement learning to solve complex control problems is
the design of the reward function evaluated after each agent-
environment interaction. Most applications of reinforcement
learning to legged locomotion employ heuristic reward functions
to produce walking behavior [16], [17]. Though this method
has been effective, it is often hard to describe a desired motion
through objective, generic reward functions. The definition must
be sufficiently detailed to prevent maladaptive policies from
learning motions that exploit features of the reward or simulator
and do not accomplish the underlying goal when transferred
to hardware. Researchers often use long and complex reward
functions to prevent these maladaptive policies; [17] uses 8
different reward terms for a single walking task.

A different approach is to use a single expert trajectory as a
reference motion [15]. The reward function encourages motions
that are close to the specified expert trajectory, which can result
in a policy that closely recreates the desired motion. The use of
the reference information discourages exploitative policies since
the desired motion is now densely and properly represented.
When a reference motion reward makes up a significant portion
of the total reward, it severely restricts the space of solutions

3927

to be those near the reference motion. For some tasks this
restriction is unacceptable; however, for bipedal locomotion
restricting the final behavior to resemble a normal walking gait is
actually preferable because it disincentives strange, exploitative
behaviors.

We note that the method from [15] used a single reference
trajectory. To provide effective information for a variety of
speeds, this single trajectory was “stretched” and “compressed”
to higher and lower speeds, sometimes creating trajectories that
were physically infeasible. These infeasible trajectories may
harm the learning problem by making the trajectory matching
reward signal conflict with the dynamics of the system. Our work
mitigates this conflict by using reduced order model trajectories
with inverse kinematics to produce feasible walking trajectories
for every training speed. Furthermore, the use of a reduced-order
model allows for greater flexibility in the control system, by
allowing future work to use the reduced-order model trajectories
as a form of higher level planning.

III. THE CONTROL HIERARCHY

We created a control hierarchy (Fig. 2) to allow us to train
and test a walking controller that utilized reduced-order model
motion. The only external input to the system is a human oper-
ator’s forward velocity command. Internally, a periodic clock
increments forward through the walking cycle. The velocity
command and clock are inputs to a library of reduced-order
model motions (§III-A). The library returns the positions and
velocities of the reduced-order model’s body and feet for use
as input to the learned policy. Additionally, the library contains
a set of robot-specific motor angles that correspond to a robot
pose that match the body and foot positions. The learned policy
is evaluated and the output is summed together with the ref-
erence joint angles to form the motor proportional-derivative
(PD) command. These commanded angles are sent to the high
frequency control loop (§III-B). This control loop evaluates
the PD controller, sends torques to the motors, measures robot
sensors, filters sensor data, and estimates the full state of the
robot. This structure is utilized not just in hardware but also in
the simulation environment we use to train the learned policy

().

A. The Reduced-Order Model Library

Our motion library consists of task space (body and foot)
trajectories for periodic walking over a range of forward speeds.
Body and foot trajectories will be used as an input to the
learned policy as well as the majority of the reward signal.
These trajectories will not be strictly dynamically feasible on
the full order robot, but they should describe a nearly feasible
center of mass motion that can be produced by valid ground
reaction forces at the feet. To create each trajectory we optimize
the reduced-order model and augment it with a minimum-jerk
swing leg profile. We additionally calculate motor angles for
each motion through offline inverse kinematics to use as a feed
forward term into the PD controller.

The motions in the library are energetically optimal periodic
gaits of the 3D, bipedal actuated SLIP model. This model

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 02:26:18 UTC from IEEE Xplore. Restrictions apply.

3928

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

33 Hz et .
eference Join
Angles 2000 Hz "
Forwa.rd
C\éi(;ﬁggd Body and Foot
e Joint
' . Torque
Body and Foot —> Joint PD -
Velocity -~ Joint PD Controller
Reduced Order Command
|_> Model Library
—>
Sensor
Readings
Periodic Observed State State
Clock Estimator

Fig. 2.

The control diagram for both learning in simulation and running on hardware. At a relatively slow 33 Hz, the library is sampled and the learned policy is

evaluated. At a much faster 2000 Hz, the joint PD controller is evaluated, the commanded torques are sent to the motors, and the state estimator is updated. The
inputs to the learned policy are only the reduced-order model motion and the state estimate.

Fig. 3. The 3D, bipedal actuated spring loaded inverted pendulum model
which we optimize to create walking gaits for our motion library. This model
has a point mass body with no rotational inertia and two massless, compliant,
actuated legs.

TABLE I
STATES, PARAMETERS AND CONTROL INPUTS FOR THE ACTUATED SLIP
MODEL USED TO GENERATE THE LIBRARY OF MOTIONS

Symbol Value and Unit Description
States r - [m,m,m] 3D body position
d; - [m] Left leg actuator setpoint
dr - [m] Right leg actuator setpoint
Parameters m 30 [kg] Body mass
k 3000 [N/m] Leg spring stiffness
b 2 [Ns/m] Leg spring damping
Im 10 [kg] Leg actuator linear inertia
g 9.81 [m/s] Gravitational acceleration
Continuous u; - [m/s?] Left actuator acceleration
Inputs U - [m/s?] Right actuator acceleration
Discrete r] - [m,m,m] Left foot stance position
Inputs re - [m,m,m] Right foot stance position

consists of a point mass body and two massless legs (Fig. 3).
Parameters of the model were chosen to closely resemble the
Cassie robot, see Table 1. Each leg has a extensible actuator in
series with a spring and a damper. The trajectory optimization
method we use is a direct collocation method where the state

and inputs are discretized and dynamics are enforced through
equality constraints between sequential states [18]. Our imple-
mentation is not contact-invariant so we needed to specify the
contact sequence. We define a walking contact sequence made
up of alternating single stance and double stance phases. We
vary the average forward velocities from O to 2 m/s in steps of
0.1 m/s as an equality constraint on the final state. The energetic
objective function we use is

T
f= / (uf + u7)dt (1)
0

where u; and u, are the accelerations of the leg actuators. This
cost function represents the resistive losses in an electric motor
when it applies forces to accelerate the inertia of its rotors.
We ensure kinematic feasibility by including a conservative
constraint on the maximum and minimum leg extension. To
generate the swing foot motions we calculated minimum in-
tegrated jerk squared motion profiles. These profiles connect
the footholds from the trajectory optimization with a specified
vertical clearance height at the midpoint. We use a modified
version of COALESCE [19] to generate the problem and its
analytical gradients and IPOPT [20] to solve the problem.

An example optimal motion with a mean velocity of 1.0 m/s
is shown in Fig. 4. The different phases can be seen in the main
body’s path where it reaches its peak height in single stance and
the minimum height in double stance. The feet follow smooth
paths with the 0.2 m specified vertical clearance height.

B. High Frequency Control Loop

The task space motions of the reduced-order model are in-
putted to a learned policy running at 33 Hz which outputs delta
motor positions d,. These deltas are added to the baseline joint
angles from the library, a, to create the final command for
the PD controller, a = a + d,. The use of joint angle baseline
actions was used in prior work on learned walking controllers for
Cassie [21]. The actions are passed to a joint level PD controller

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 02:26:18 UTC from IEEE Xplore. Restrictions apply.

GREEN et al.: LEARNING SPRING MASS LOCOMOTION: GUIDING POLICIES WITH A REDUCED-ORDER MODEL

Double Stance

Left Swing /\ Body Motion
1 4

/ \cht Single Stance

0.8

Vertical 0.6
Displacement
(m)

Left Foot Swing Right Foot Swing

0.2
0 0.6
0.1 Forward Displ t
Horizontal 0 1 0 orward 1Splacemen

Displacement (m)
(m)

Fig.4. The optimized task space motion of the reduced-order model for 1.0 m/s
walking. The hybrid phase is shown through the color of the body trajectory.
This motion together with its velocities make up the motion library.

with fixed feedback gains running at 2 kHz. Note that the learned
policy only outputs position targets while the velocity targets are
always set to zero. This means the proportional-derivative con-
troller should more accurately be called a proportional-damping
controller. We choose this structure as previous work has shown
learning PD targets to be easier and produces higher quality
motions [22].

IV. REINFORCEMENT LEARNING

The optimal learned controller should be able to capture the
most important features of the reduced-order model’s motion
and translate them into a stable walking behavior that functions
on hardware.

A. Problem Formulation

The inputs to the policy are the estimated robot state and the
desired positions and velocities of the robot’s pelvis and feet.
The estimated robot state contains the pelvis height, orientation,
translational velocity, rotational velocity, and translational accel-
eration in addition to the positions and velocities of the actuated
and unactuated joints on Cassie. This state estimate together
with the commanded pose and velocity from the reduced-order
model library form a 64 D input space. The output of the learned
policy is a 10D vector containing motor position targets for each
of Cassie’s actuated joints.

We learn control policies by using a simulated model of
Cassie' in the MuJoCo Physics simulator [23]. Our dynamic
model of Cassie includes the reflected inertia of each motor
(defined as “armature” in MuJoCo). We also attempt to model ac-
tuator delay by limiting when new torque commands are actually
executed. Desired torques only take effect 0.003 seconds (6 time
steps of the high frequency, PD control loop) after being “sent”

I'Simulation and state estimation library available at https://github.com/
osudrl/cassie-mujoco-sim

3929

TABLE II
PPO HYPERPARAMETERS

Parameter Value
Adam learning rate 1x 1077
Adam epsilon 1x107°
discount () 0.99

clipping parameter (e¢) | 0.2
epochs 3
minibatch size 64
sample size 5096

to the simulator. We believe these extra facets of the model help
improve the policy’s robustness against differences in simulation
and reality, enabling cleaner sim-to-real transfer.

An important part of this setup is that even during training we
use an estimate of the state rather than the true state. Though
we have access to the true simulated state we instead pass the
simulated sensor values into a state estimator to get a simulated
“observed state.” This incorporates simulated sensor noise and
state estimator dynamics into the learning process, which is an
essential part of making policies robust enough for sim-to-real
transfer. This allows us to use the exact same controller structure
on hardware, effectively just switching out the simulated robot
for the real robot.

B. Learning Procedure

The reinforcement learning algorithm we use is an implemen-
tation of PPO? with parallelized experience collection and input
normalization [14]. Our policy is a fully connected feed-forward
neural network with 2 hidden layers of 256 nodes each. We
choose to use fixed covariance instead of making it an additional
output of the policy. The hidden layers use the ReLLU activation
function and the output is unbounded. This architecture was cho-
sen because previous work found it was large and deep enough
to generate high quality locomotion across a range of walking
speeds [15]. More information on training hyperparameters can
be found in Table II. At the start of each episode, a reference
trajectory is randomly selected from the reduced-order model
library and the simulated model of Cassie is set to a random
starting position in the trajectory’s walk cycle. A single step of
agent-environment interaction includes the policy computing an
action, sending it to the low-level PD controller which simulates
forward 1/33 of a second, and retrieving the next state in the
33 Hz execution cycle. We define the maximum episode length
for this MDP problem to be 400 steps of agent-environment
interaction, which corresponds to 12 seconds. Episodes are
terminated when the number of steps reaches the maximum
episode length or when the reward for the current step is less than
0.3. This termination condition encapsulates when the robot falls
to the ground or if it deviates excessively from the goal behavior.

We design the following reward function that is evaluated
after each step:

7= 0.37com_vel + 0.3 Tfoot_pos T 0.1 Tstraight_diff

+ O-Qrfootforiem + O-lraclionfdiff 2)

2Reinforcement Learning code, reward functions, and ASLIP reference mo-
tions available at https://github.com/osudrl/ASLIP-RL

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 02:26:18 UTC from IEEE Xplore. Restrictions apply.

https://github.com/osudrl/cassie-mujoco-sim
https://github.com/osudrl/ASLIP-RL

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

3930
251
ol
21s5r
Q
<}
2
= 1r
$—
<
E — == User Desired Velocity
=05 Reduced Order Model Body Velocity
Robot Pelvis Velocity from Simulation
0 \ \ \ \ |
0 5 10 15 20 25
Time (s)
Fig.5. Forward velocity comparison of the user desired velocity, the corresponding reduced-order model center of mass velocity, and the simulated robot’s pelvis

velocity. As can be seen, the policy closely tracks the user’s desired velocity. The difference between the reduced-order model and robot’s velocity show the learned
policy does not emulate the spikes in reduced-order model’s body velocity which occur at touchdown.

ASLIP Policy Xie et. al. Method

z
2 200
&
S
0

i I

—=200

— Left Foot
— Right Foot.

O

0.0 m/s
&~
[=}
[=}

Speed

Speed = 1.0 m/s
GRFs (N)
(3]
(=
(=]

600

2.0 m/s

400

200

GRFs (N)

Speed

—-200
0.0 0.4

Time (s)

0.8 0.0 0.4 0.8
Time (s)

Fig. 6. Ground reaction force profiles of the actuated SLIP policy compared
to a single reference trajectory policy for [15] method. The actuated SLIP policy
shows double hump ground reaction forces as is expected from spring mass
walking, where the single reference policy shows flattened single hump ground
reaction forces similar to linear inverted pendulum walking.

All of the terms in the reward function are computed as the
negative exponential of a distance metric. This lets us limit the
maximum reward per step to 1 and per episode to 400.

The first three terms of the reward function account for 70% of
the total reward. Together they penalize the differences between
the current state of the robot and reference task space position

0.41
E
= 0.3
o
=
M 0.2
2
=< 0.1+

0.0-

Q'Q 0(} Q'% 0‘:0 0?) \'Q ’\:J) \/P; \‘:o '\L'b ‘lz‘g
Commanded Speed (m/s)
Fig. 7. Average foot placement error and standard deviation over 15 ft steps

at various speeds. The average error across speeds under 1.0 m/s is relatively
low and is sufficient for planning precise footstep locations.

and velocity. The center of mass velocity matching reward,
defined as

TcoM_vel = €XP(—||Vcom — Vrercom]]), 3)

incentivizes matching the robot’s center of mass (pelvis) velocity
to the reference velocity. However, rcom ver 1s calculated using
the local pelvis frame which prevents the policy from receiving
a large reward for sidestepping or walking diagonally. To ensure
the robot locomotes in the forward direction, suaighe_ditr rewards
the lateral robot position being close to zero.

To get the controller to track the reference foot positions,
Tfoot_pos T€Wards the robot’s foot positions to be close to the
reference motion’s foot positions, where the foot position is
defined as the position of the foot relative to the body. On the
full order robot, the orientation of the foot joints is important
for stable walking on hardware. However, our reduced order
model has point feet which do not describe or incentivize any
particular foot orientation. We reward forward pointing toes and
feet parallel to the ground through 7ot orient-

A reward term that helps the transfer to hardware is 7action_ditt,
which penalizes the distance between the last action and the

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 02:26:18 UTC from IEEE Xplore. Restrictions apply.

GREEN et al.: LEARNING SPRING MASS LOCOMOTION: GUIDING POLICIES WITH A REDUCED-ORDER MODEL

3931

Reference
Library
Motion

Simulation

Hardware

Fig. 8.

Motion comparison of the reduced-order model, simulation, and hardware at different phases in the gait. The top images represent the desired reference

motion to recreate, the middle images show the learned policy in simulation, and the bottom images show the learned policy executed on hardware.

current action and results in smoother action outputs. Without
this term the policy can converge to behaviors that rapidly
oscillate the commanded motor angles which is not conducive
to success on hardware.

It is important to note that with the inclusion of the 7,cion_difr
term, reaching the maximum reward is impossible and not an
expectation, as the policy would need to output a constant
motor angle while tracking the reference motion. Furthermore,
perfectly matching the positions of the reduced-order model at
each step is likely not possible because of the significantly more
complex dynamics of the full order robot. As seen in [12], [13],
directly applying spring-mass behavior to a robot is challeng-
ing and sensitive. Thus our learned controller should use the
spring mass model as a guide towards highly effective walking
solutions that work for the robot on hardware.

V. RESULTS

We trained ten different policies from randomized initial
weight seeds for our method. The training process takes just
under five hours of wall clock time using 50 cores on a dual Intel
Xeon Platinum 8280 server. The policy learns to step in place
after about 25 million timesteps, and converges to a reward of
almost 300 after about 175 million timesteps, where it is able to
track all of the walk cycles in the reduced-order model library.

A. Simulation

By varying the user-provided forward velocity to the reduced-
order model library, we demonstrate the learned control policy’s
ability to smoothly transition between discrete reference walk
cycles (Fig. 5). The policy produces walking behavior with
oscillations in pelvis velocity that correspond with the oscilla-
tions in center of mass velocity from the reduced-order model.
Furthermore, this velocity tracking succeeds across the broad
set of commanded speeds and the transitions between them.

In order to quantify how well desired foot locations can be
realized through this control hierarchy, we measure the average
error between the foot touchdown locations of the reduced
order model commands and the robot in simulation (Fig. 7).
At all speeds, we observe that the robot places its feet slightly
wider than the reduced-order model. Above 1.0 m/s, we see that
the robot’s footsteps lag more and more which corresponds to
error in tracking the reduced-order model’s forward velocity.
At speeds under 1.0 m/s this placement error doesn’t exceed an
average of 10 cm.

The ground reaction forces show that our policy produces
features indicative of spring mass walking that were not explic-
itly incentivized by the reward function. We compare the ground
reaction forces across different commanded speeds to those from
the single reference trajectory policy (Fig. 6). Particularly at
0 and 1.0 m/s the actuated SLIP policy has a double hump
ground reaction force which is present in spring mass walking.
In comparison, the single reference trajectory has a single hump
ground reaction force with a flattened peak for all speeds. This
type of ground reaction force is expected from a bipedal walking
policy that holds the body at a constant height, similar to the
linear inverted pendulum [4]. These ground reaction forces are
not themselves a useful measure of performance of the gait,
but instead provide us evidence that our learned controller is
emulating the dynamics of our reduced order model.

B. Hardware

We directly transfer the policies trained in simulation to
hardware, demonstrating that this approach can achieve a strong
sim-to-real transfer. We observe that the the learned walking
motion is springy, with slight oscillations in the pelvis velocity
and changes in leg length directly corresponding to the same
variations in the motion of the reduced-order model. This motion
correspondence can be seen in Fig. 8 and our accompanying

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 02:26:18 UTC from IEEE Xplore. Restrictions apply.

3932

video, which shows Cassie walking using our learned policy for
an extended period of time, as well as a comparison between the
motions of the reduced-order model, the learned controller in
simulation, and the learned controller on hardware. The video
also shows that the stepping frequency of all three stages in
the control hierarchy: reduced-order model, simulation, and
hardware, match for the same forward velocity commands.

To test the ability of these policies to rapidly change speeds in
hardware, the human operator sends the robot sudden changes
in velocity commands. The results of this trial are shown toward
the end in the attached video. This controller is able to walk sig-
nificantly faster and with a longer stride than was possible using
previous model-based control methods on the same robot [6].

VI. CONCLUSION

In this letter, we have presented an effective control structure
for producing spring mass-like motion on a human scale bipedal
robot. This method employs reduced-order model reference
trajectories to inform the learning process of the desired task
space motion. We find that this method is successful in producing
similar motion to the actuated SLIP model and generates policies
that can realize this behavior on the bipedal robot Cassie. We
found success using the actuated SLIP model as the reduced
order model to guide Cassie. One should consider carefully the
choice of reduced order model when applying this work to other
robots. Continuations of this work will focus on extending the
variety of motions the low-level policy can track and improving
the foot step location tracking.

This low-level controller will enable many different oppor-
tunities for integration of high-level motion planners. Now that
we have a policy capable of following a desired reduced-order
model motion, we can work to extend this to generate poli-
cies that follow any arbitrary reduced-order model trajectory.
This would allow for incorporating a high-level planner in the
reduced-order model space, such as the planner proposed in [24].
Allowing for reactive planning decisions like navigation and
obstacle avoidance to happen at the reduced-order model level
will also make it significantly easier to achieve fully autonomous
agile legged robots.

ACKNOWLEDGMENT

We would like to thank John Warila and Dylan Albertazzi
for their assistance in rendering videos. Helei Duan, Jonah
Siekmann, Lorzeno Bermillo, and Pedro Morais for productive
discussions, and thanks to Stephen Offer, and Intel Labs for their
computing resources and support.

REFERENCES

[1] D.Jain, A. Iscen, and K. Caluwaerts, “Hierarchical reinforcement learning
for quadruped locomotion,” 2019. [Online]. Available: https://arxiv.org/
abs/1905.08926

[2] V.Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait: Plan-
ning and control of quadrupedal gaits using deep reinforcement learning,”
IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3699-3706, 2020.

[3

—_

[4

=

(5]

(6]

[7

—

(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

X. Da et al., “Learning a contact-adaptive controller for robust, efficient
legged locomotion,” 2020. [Online]. Available: https://arxiv.org/abs/2009.
10019

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d
linear inverted pendulum mode: A simple modeling for a biped walking
pattern generation,” in Proc. IEEE/RSJ Int. Conf. Intelli. Robots Syst.,
2001, pp. 239-246.

N. Motoi, T. Suzuki, and K. Ohnishi, “A bipedal locomotion planning
based on virtual linear inverted pendulum mode,” IEEE Trans. Ind. Elec-
tron., vol. 56, no. 1, pp. 54-61, Jan. 2009.

T. Apgar, P. Clary, K. Green, A. Fern, and J. Hurst, “Fast online tra-
jectory optimization for the bipedal robot cassie,” in Proc. Robotics:
Sci. Syst. X1V, Pittsburgh, PA, USA, 2018. [Online]. Available: http:
//www.roboticsproceedings.org/rss14/

K. Green, R. L. Hatton, and J. Hurst, “Planning for the unexpected:
explicitly optimizing motions for ground uncertainty in running,” in Proc.
IEEE Int. Conf. Robot. Automat., 2020, pp. 1445-1451.

S. Heim and A. Sprowitz, “Beyond basins of attraction: Quantifying
robustness of natural dynamics,” IEEE Trans. Robot., vol. 35, no. 4,
pp. 939-952, Aug. 2019.

J. W. Hurst, B. Morris, J. E. Chestnutt, and A. A. Rizzi, “A policy for
open-loop attenuation of disturbance effects caused by uncertain ground
properties in running,” in Proc. - IEEE Int. Conf. Robot. Automat., 2007,
pp. 1455-1460.

D. E. Koditschek and M. Buhler, “Analysis of a simplified hopping robot,”
The Int. J. Robot. Res., vol. 10, no. 6, pp. 587-605, Dec. 1991.

M. H. Raibert, Legged Robots That Balance. Cambridge, MA, USA: MIT
press, 1986.

S. Rezazadeh et al., “Spring-mass walking with ATRIAS in 3D: Robust
gait control spanning zero to 4.3 KPH on a heavily underactuated bipedal
robot,” in Proc. Dynamic Syst. Control Conf., 2015.

W. C. Martin, A. Wu, and H. Geyer, “Experimental evaluation of deadbeat
running on the atrias biped,” IEEE Robot. Automat. Lett., vol. 2, no. 2,
pp. 1085-1092, Apr. 2017.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017. [Online]. Available: https://arxiv.
org/abs/1707.06347

Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback
control for cassie with deep reinforcement learning,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2018, pp. 1241-1246.

J. Tan et al., “Sim-to-real: Learning agile locomotion for quadruped
robots,” in Proc. Robotics: Sci. Syst. XIV, Pittsburgh, Pennsylva-
nia, Jun. 2018. [Online]. Available: http://www.roboticsproceedings.org/
rss14/

J. Hwangbo et al., “Learning agile and dynamic motor skills for legged
robots,” Sci. Robot., vol. 4, no. 26, 2019.

M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body dy-
namical systems through contact,” in Algorithmic Foundations of Robotics
X., 2013, pp. 527-542.

M. S. Jones, “Optimal control of an underactuated bipedal robot,” Masters
of Science in Mechanical Engineering, Oregon State University, 2014.
A. Wichter and L. T. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,” Math.
Program., vol. 106, no. 1, pp. 25-57, 2006.

Z.Xie, P.Clary,J. Dao, P. Morais, J. Hurst, and M. van de Panne, “Learning
locomotion skills for cassie: Iterative design and sim-to-real,” in Proc. 3rd
Conf. Robotic Learn., 2019, pp. 317-329.

X.B.Pengand M. van de Panne, “Learning locomotion skills using deeprl,”
in Proc. ACM SIGGRAPH / Eurographics Symp. Comput. Animation,
2017, pp. 1-3.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012,
pp. 5026-5033.

P. Clary, P. Morais, A. Fern, and J. Hurst, “Monte-carlo planning for agile
legged locomotion,” in Proc. Int. Conf. Automated Plan. Scheduling, 2018,
pp. 446-450.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 31,2023 at 02:26:18 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1905.08926
https://arxiv.org/abs/2009.10019
http://www.roboticsproceedings.org/rss14/
https://arxiv.org/abs/1707.06347
http://www.roboticsproceedings.org/rss14/

