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Abstract—The growing integration of distributed energy re-
sources (DERs) in distribution grids raises various reliability
issues due to DER’s uncertain and complex behaviors. With
large-scale DER penetration in distribution grids, traditional
outage detection methods, which rely on customers report and
smart meters’ “last gasp” signals, will have poor performance,
because renewable generators and storage and the mesh structure
in urban distribution grids can continue supplying power after
line outages. To address these challenges, we propose a data-
driven outage monitoring approach based on the stochastic time
series analysis with a theoretical guarantee. Specifically, we prove
via power flow analysis that dependency of time-series voltage
measurements exhibits significant statistical changes after line
outages. This makes the theory on optimal change-point detection
suitable to identify line outages. However, existing change point
detection methods require post-outage voltage distribution, which
are unknown in distribution systems. Therefore, we design a
maximum likelihood estimator to directly learn distribution pa-
rameters from voltage data. We prove the estimated parameters-
based detection also achieves optimal performance, making it
extremely useful for fast distribution grid outage identifications.
Furthermore, since smart meters have been widely installed in
distribution grids and advanced infrastructure (e.g., PMU) has
not widely been available, our approach only requires voltage
magnitude for quick outage identification. Simulation results
show highly accurate outage identification in eight distribution
grids with 17 configurations with and without DERs using smart
meter data.

Index Terms—Power distribution network, outage detection,
outage identification, voltage measurement, change point
detection, graphical model.

I. INTRODUCTION

HE ongoing large-scale integration of distributed en-

ergy resources (DERs) makes photovoltaic (PV) power
devices (renewable generation), energy storage devices, and
electric vehicles ubiquitous. Such a change transitions the
urban power grid into a sustainable network and reduces elec-
tricity cost and transmission loss [1]. However, such a change
also raises fundamental challenges in system operations. For
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example, the reverse power flow from residential houses
renders the existing protective architecture inadequate. Also,
frequent plug-and-charge electric vehicles will degrade power
quality, causing transformer overload and voltage flickers [2].
Because of these changes on a distribution grid, even a small-
scale DER integration could destabilize a local grid and cause
reliability issues for customers [3]. Reference [4] shows that
distribution power outages or blackouts caused by newly added
uncertainties can cause a loss of thousands to millions of
dollars within one-hour, calling for a newly designed fault
diagnosis approach for distribution grid operation.

Traditional power outage analysis in distribution grids re-
lies on passive feedback from customer reporting. Collected
into Customer Information System (CIS), such information
is processed in the Outage Management System (OMS) to
send field crews to identify and repair the outage. Due to the
human-in-the-loop system design, delay and imprecise outage
information causes inefficient detection and slow restoration.
Therefore, smart meters with advanced metering infrastructure
(AMI) capability were installed recently to send a “last gasp”
message when there is a loss of power [5]. Reference [6] shows
additional fault location, isolation, and service restoration
(FLISR) technologies to reduce some negative impact and
interruption duration.

However, the performance of traditional methods and recent
approaches above will be degraded with the growth of DER
penetration in distribution grids. For example, as shown in
Fig. 1, when there is no power flow in the distribution circuit
connecting to customers, the customer can still receive power
from rooftop solar panels, battery storage, and EVs. So, the
smart meter at the customer premises cannot report a power
outage. Also, secondary distribution grids are mesh networks
in metropolitan areas [7], making a line outage, which may
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be caused by faults (e.g, short-circuit or open-circuit) and
human activities, unnecessarily cause a power outage. Fur-
thermore, some advanced secondary distribution grids have a
“self-healing” capability, where the switches are automatically
open or closed to isolate outages, restore power supply, and
minimize customer impacts. However, it is still important
to detect, localize, and identify out-of-service branches for
situational awareness of distribution system operators.

Power line outage identification in transmission grids has
received a surge of interest in the past decade, where DC power
flow approximation and phasor measurement units (PMUs) are
the most common approaches. For example, phase changes
across all buses are compared with potential fault events
in [8]. In [9], a transmission grid is formulated as a graphical
model and phase angles are used to track grid topology
change. A regularized linear regression is employed to detect
power outages in [10]. The approach in [11] compares branch
admittance before and after outages. These methods, however,
cannot be directly used in the distribution grid because 1) the
DC approximation has poor performance in distribution grids
as many systems have non-negligible line loss; 2) installing
PMUs at all buses in a distribution grid is expensive and
impractical; and 3) the topology information is unavailable or
inaccurate in distribution grids, because many DERs do not
belong to the utilities and their connectivity are unknown to
system operators [12].

To resolve the issues above, we model voltage measurement
at each bus as a random variable, so the distribution grid
is modeled as a multi-variate probability distribution. We
show that a line outage will lead to a change of statistical
dependence between buses’ voltage data, and consequently,
a change of the joint distribution. Hence, the outage can be
discovered by detecting a change of the multivariate probabil-
ity distribution. A well-known method to sequentially detect
a probability distribution change is a change point detection
method, whose objective is detecting an outage as quickly as
possible with a constraint of false detection rate [13]-[15].

The change point detection methods have been applied to
detect outage in transmission grids [11], [16], [17]. How-
ever, they cannot be directly applied because of the practical
properties of distribution grids. First, the outage patterns in
distribution grids are usually unpredictable. With the growth
of grid size, the possible post-outage distributions increase
exponentially. To overcome this drawback, we propose a
maximum likelihood method to directly learn the unknown
post-outage probability distribution parameters from voltage
data. Secondly, PMUs are not widely installed in distribu-
tion grids. Therefore, unlike the approaches in transmission
grids, we cannot use the voltage phase to identify outages.
We prove that voltage magnitude data, which are collected
from smart meters periodically, are sufficient to detect line
outages. Thirdly, distribution grids usually have outdated or
inaccurate topology [18]. Thus, precisely finding the out-of-
service branch is challenging. We prove the voltages of two
disconnected buses are conditionally independent, which is
subsequently used to find the line outage without knowing
the post-outage probability distribution.
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The performance of our data-driven outage detection and
localization algorithm is verified by simulations on the stan-
dard IEEE 8- and 123-bus distribution test cases [19] and 6
European distribution grids [20] with 14 network configura-
tions. Three different real smart meter data sets are utilized for
generating voltage data via data interpolation, different outage
scenarios, and sensitivity analysis: Pacific Gas and Electric
Company (PG&E) data set that contains 110,000 residential
households in North California, ADRES project data set [21],
[22] that contains 30 houses load profiles in Upper-Austria,
and Pecan Street data set, which has net load data of 345
houses with root-top PV panels in Austin, Texas.

The main contributions of this paper are summarized below:

« A novel data-driven distribution grid line outage detection
method is proposed. For a given probability of false
alarm, the proposed outage detector is proved to have
optimal detection delay.

o Unlike many existing works that need to know outage
patterns in advance, we prove that our detection algorithm
can learn the post-outage statistics directly from data.
Hence, implementation of our outage detector does not
require the prior knowledge of outage pattern. Our nu-
merical simulation demonstrates that utilizing estimated
statistics based on post-outage data does not degrade
detection performance.

o PMUs have not been widely installed in distribution grids.
By utilizing the small angle property of distribution grids,
we prove the proposed method only needs to use voltage
magnitudes, which are usually available via smart meters,
to detect line outages.

o« We also propose an outage localization algorithm that
finds the out-of-service branch after an outage event
is detected. A highlight is that the proposed outage
localization algorithm does not need the distribution grid
topology, which is usually required in many existing
works.

o We validate the outage identification algorithm using
three real world data sets and eight distribution grids
with 17 network configurations. The numerical results
illustrate the optimality of the proposed algorithm. Ad-
ditionally, multiple sensitivity analyses are conducted to
show the applicability of this new line outage detection
method in a real world distribution grid operation.

The rest of the paper is organized as follows: Section II
introduces the modeling and the problem of the data-driven
power outage detection and localization based on voltage data.
Section III uses a proof to justify the outage can be detected
by a change point detection method. Also, we propose the
outage detection method for only using voltage magnitudes.
Section IV presents the outage localization method. A detailed
algorithm for outage detection and localization is illustrated as
well. Section V evaluates the performance of the new method
and Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In order to formulate the power outage detection problem,
we need to describe the distribution grid and its voltage data.
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A distribution grid is defined as a physical network with buses
and branches that connect buses. For a distribution grid with
M buses, we use S = {1,2,..., M} to represent the set
of all bus indices. To utilize the time series voltage data,
the voltage measurement at bus ¢ is modeled as a random
variable V;. We use Vs = [V, Va,...,Va|T to denote all
voltage random variables in the network, where 1" denotes the
transpose operator. At the discrete time n, the noiseless voltage
measurement at bus i is v;[n] = |vi[n]|exp(j6;[n]) € C,
where |v;[n]| € R denotes the voltage magnitude in per unit
and 6;[n] € R denotes the voltage phase angle in degrees.
All voltages are sinusoidal signals at the same frequency.
We use v[n] = [v1[n],va[n],...,vp[n]]T to denote a col-
lection of all voltage measurements in a network at time n.
Thus, v[n] is the realization of Vg at time n. Also, we use
vV = (v[1],v[2],...,v[N]) to denote a collection of all
voltage measurements in the network up to time N.

The problem to detect and localize line outages in a distri-
bution grid is defined as follows:

o Problem: data-driven power outage detection and local-
ization based on voltage measurements

« Given: a sequence of the historical voltage measurements
v"N up to the current time N

o Find: (1) the outage time and (2) the branches that are
out-of-service

III. OPTIMAL DISTRIBUTION GRID LINE OUTAGE
DETECTION

Voltage measurements usually have an irregular distribution
and are hard to be used for the goal of this paper. Therefore,
instead of using voltage measurements directly, we use the
incremental change of the voltage measurements to detect
outages, which is defined as Av[n] = wv[n] — v[n — 1].
Accordingly, AvtY = (Av[1], Av[2],--- , Av[N]). We use
AV to represent the voltage change random variable at bus ¢
and AVs to represent the voltage change random variables
of the entire system. In the following, we will prove, the
probability distribution of AVgs will be different after an
outage. In the following context, the operator \ denotes the
complement operator, i.e. A\B = {i € A,i ¢ B}.

Assumption 1. In distribution grids,

o the incremental change of the current injection AT at
each non-slack bus is independent, i.e., AI; 1 Al for
all i # k,

« the incremental changes of the current injection Al and
bus voltage AV follow Gaussian distribution with zero
means and non-zero variances.

The Assumption 1 has been adopted in many works, such
as [18], [23], [24]. In [18], the authors use real data to validate
both assumptions. According to Assumption 1, AV follows
a multivariate Gaussian distribution. With Assumption 1, we
prove the pairwise bus voltages are conditionally independent
if there is no branch between them.

Theorem 1. If the change of current injection at each bus is
approximately independent and no branch connects bus ¢ and
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bus k, the voltage changes at bus ¢ and bus k are conditionally
independent, given the voltage changes of all other buses, i.e.
AV; L AVi[{AV,, e € G\{i, k}}.

Proof: For bus ¢, the current and voltage relationship
can be expressed as Al; = AV;Y;; — ZeeN(i) AV,Y;. with
Yii = Zeé/\/(i) Y., where Y;. denotes the ie th element of the
admittance matrix Y and the neighbor set NV'(¢) contains the in-
dices of the neighbors of bus i, i.e., N (i) = {e € S|Y;c # 0}.
If bus 7 and bus k are not connected, k¥ ¢ N (i) and Y, = 0.
Given AV, = Av, for all e € G\{i, k}, the equation above

becomes to:
AL = AViYyi — > AucY,
eeN (i)
1
AV, = - (ALi+ Z AvcYie). (1)
e€N(4)

Similarly, AV, = (Alk + ZeGN(k) AUeYke>/Ykk- With
the assumption of the current change independence, i.e.,
Al; 1 Alg, AV; and AV}, are conditionally independent
given AV g 1) - [ |

A branch admittance becomes zero when it is out-of-service.
The voltages at the two ends of this branch become condition-
ally independent. Hence, the probability distribution of AVg
is different before and after an outage because some elements
of the mean vector and covariance matrix will change. Let A
denote the time an outage occurs. We assume that AV follow
a Gaussian distribution g with the mean (o and the covariance
matrix X in the pre-outage status (i.e., N < \) and a different
Gaussian distribution f with the mean p; and the covariance
3 after any outage (i.e., N > A). An example is illustrated
in Fig. 2. One way to find the outage time X is performing a
sequential hypothesis test at each time N as follows [13]:

Ho(pre-outage) : A > N,
‘Hi(post-outage) : A < N.

Av [n] 4
g~N (tg,Zp) SN (u,Z)

WA W ey

Pre-outage Post-outage

S
>
n

A

Fig. 2. An example of nodal voltages before and after a line outage. A
denotes the outage occurrence time.

Finding the outage time is known as the change point
detection problem. Usually, the line outage occurrence time is
unpredictable. Therefore, we assume the power outage time A
as a discrete random variable with a probability mass function
m(A). Now, we can use a Bayesian approach to find A. In
this paper, we assume A follows a geometric distribution with
a parameter p. The joint distribution of A and AV can be
written as

P(\, AVs) = m(\)P(AVs]|A).
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When \ = k, all voltage data obtained before time & follow
the distribution g and all the data obtained at and after time &
follow the distribution f. Therefore, the likelihood probability
P(AVg|\) above is expressed as follows:

Hgm HfAv

for k = 1,2,--- N + 1. When A\ = N + 1, it refers
to the outage not having occurred and all data follow the
distribution g.

Finding the outage time A is equivalent to finding the
post-outage posterior probability P(H1|AVs) = P(A <
N|AVs = Av*N) at each time N. If the posterior probability
is large enough, we can declare an outage in the grid. At each
time N,

P(AVs = Av'N |\ = k)

P(A < \Avl Ny
N P(A = k, Av'N
Z A’Ul ];l/')) )7
5 °
- P(TN)Z“ = )P(B0 VA= k),
N k—1 N
H n)) [ (avln)), )
k=1 1 it

where C' is a normalization factor such that ZNH Px =
k|AvlN) = 1. In the normal operation, f(Awv|[n]) is small
and P(A < N|Av'") is small. Once an outage occurs at
time A = k < N, all data collected at n > X follow f(Awv[n])
and P(A < N|Av'N) becomes large. Hence, we can set a
threshold and declare an outage when the posterior probability
surpasses this threshold. This process is visualized in Fig. 3.

P (H,|AvY)
1.0
L]
® outage
[ ]
S o detected threshold
L J .\ !
L)
00 L J L] [ ) L J L J [ ) >
AT n
Fig. 3. An example of outage detection based on the posterior probability.

A is the outage occurrence time. 7 is the outage detection time. The brown
dashed line is the detection threshold.

A. Optimal Outage Detection

In the outage detection problem, we consider two per-
formance metrics: probability of false alarm and average
detection delay. The former metric evaluates how frequently a
detector falsely declares an outage in the pre-outage status. If
7 denotes the time of an outage being detected, the probability
of false alarm is defined as P(r < \). The latter metric
describes the average latency where a detector finds the outage
after it has occurred. The average detection delay is defined
as E(r—A|r > \). For distribution grid line outage detection,
we want to find the outage time A as quickly as possible with
a constraint of the maximum probability of false alarm ¢, i.e.,
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E(r=MA1>2X)
P(r<X) <a. 3)

minimize

subject to

By the Shiryaev-Roberts-Pollaks procedure [25], we have
the following lemma to solve the optimization problem in (3).

Lemma 1. Given a maximum probability of false alarm «,
the following detection rule

r=inf{N >1: PN < N|Av'N)>1—-a}, @)
is asymptotically optimal [13].

With Lemma 1, the threshold (brown dashed line) in Fig. 3
is 1 —a. Lemma 2 shows the asymptotically optimal expected
detection delay.

Lemma 2. For a given probability of false alarm «, the detec-
tion rule in (4) achieves the asymptotically optimal detection
delay

| log(a)]
—log(1 —p) + Dxr(fllg)’

as o — 0, where Dk (f|lg) is the Kullback-Leibler distance
and log denotes the natural logarithm [26].

D(r)=E(r=ANt>X) = (5)

The detection process is summarized in Algorithm 1. As
a highlight, the proposed approach does not require the grid
topology.

B. Line Outage Detection with Unknown Outage Pattern

Computing the posterior probability in (2) requires knowing
the parameters of distributions g and f. The parameters of
pre-outage distribution g can be estimated using historical
data. For obtaining the parameters of f, we need to know
the outage pattern as a prior. One way is trying every possible
outage pattern and identifying the most similar one. However,
this approach is infeasible because the outage patterns can
grow exponentially with the grid size. Also, many DERs in
distribution grids are not operated by the utilities. Therefore,
their topology information is usually unknown [27].

In this section, instead of searching the most likely post-
outage distribution, we propose a method to learn f from
data using the maximum likelihood method in Lemma 3. The
computational complexity of our approach is insensitive to the
number of out-of-service branches.

Lemma 3. Using observed data Av'*", The maximum likeli-
hood estimators of the post-outage distribution f ~ N (1, 21)
are:

_ S m(k) o, Avln]
Yo TN —k+1)
_ Sl k) S (Avln] — i) (Av[n]
Sisim(k)(N —k+ 1)
The proof of Lemma 3 is given in Appendix A. With

the estimates of p; and X7, we can compute the posterior
probability in (2) and apply the optimal detection rule in (4).

(6)

=

— )t

Eﬂ)

)
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C. Line Outage Detection with Voltage Magnitudes Only

Since PMUs have not been widely installed in distribution
grids, the voltage phase angles are hard to obtain in real-
world grids. To resolve this issue, in this section, we prove
the optimal line outage detection approach in Lemma 1 only
requires voltage magnitude data. We define the incremental
change of voltage magnitude as A|v[n]| = |v[n]| — |v[n — 1]
and use the random variable A|V| to represent the voltage
magnitude change.

Theorem 2. If the change of current injection at each bus
is approximately independent and no branch connects bus
and bus k, the voltage magnitude changes at bus ¢ and bus
k are conditionally independent, given the voltage magnitude
changes of all other buses, i.e. A|V;| L A|Vi| | {A|Ve],e €

G\{i, k}}.

Proof: For bus 7, we can rewrite (1) as:

Vi= 3 | L+ PA
e€N(3)
. 1 . .
Vie %= o [ e 4 ) ) Vee Y
v e€N(3)
1 . ,
Vil = 5 | Te™% 4 D Vele!®=yie ) ®)

eeN (i)

In the secondary distribution grids, the phase angle differ-
ence between two neighbors’ buses is relatively small [28],
ie., 0; — 0, ~ 0 for e € N(i). Hence, (8) is approximated as

1 .
Vil =~ o | Tie ™%+ D |VelYie ©)

w eeN (i)

For incremental change of voltage magnitude A|V;|, given
AlV.| = Alv,| for all e € S\{i, k}, the equation above
becomes to:

1 .
AV = & ALe %+ 3" Afve|Yie
v eeN (i)

Similarly, A[V| = (Mke—jek T S A\Ueme) Yk
Since I; and I;, are multiplied with constants, AI;e~7% and
Ale 7% are still independent. Hence, A|V;| and A|V}| are
conditionally independent given A|Vg\ ¢; iy ]- ]
With the proof of Theorem 2, the optimal detection rule in
(4) still holds for voltage magnitude data, i.e.,
r=inf{N >1: PO N|APp*N)>1-a}. (10)
For the voltage magnitude data, we can still use the maxi-

mum likelihood estimators in (6) and (7) for unknown outage
patterns.
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IV. OUT-OF-SERVICE BRANCH IDENTIFICATION

Identifying the out-of-service branch is important in ur-
ban distribution grid operation. In metropolitan areas, many
branches are underground and not well documented. There-
fore, an efficient and accurate outage localization approach can
reduce power interruption time significantly. In the following
part, we will propose a real-time outage localization method
based on voltage measurements.

Lemma 4. Assuming random vectors X, Y, and Z follow
Gaussian distributions, given Z = z, if X and Y are condi-
tionally independent, their conditional covariance is zero [29].

Because of Theorem 1 and Theorem 2, voltage changes at
the two ends of the out-of-service branches are conditionally
independent after an outage. Due to Lemma 4, we can compute
the conditional covariance matrix of every possible pair of
buses in the grid and check if the off-diagonal term changes
from a non-zero element to zero. When the off-diagonal term
changes to zero, we can identify the out-of-service branches.

Usually, the conditional covariance can be estimated based
on the voltage measurements. However, a large set of post-
outage data is required to have an accurate estimation, and
the delay of localization is long. To enable real-time outage
localization, alternatively, we use the covariance matrix 3 to
compute the conditional covariance. This approach allows us
to localize the outage even if we do not know the distribution
grid topology. In case the post-outage probability distribution
f is unknown, we can use ¥ in (7) to compute the conditional
covariance. For bus ¢ and bus j, suppose Z = {4,j} and J =
S\{4, 7}, the covariance of the joint Gaussian distribution can
be decomposed as:

Y1z Y17
17 g7

The conditional covariance matrix can be computed by the
Schur complement [30], i.e.,

M=

(11

If the voltages at bus ¢ and bus j are conditionally
independent, the off-diagonal term of EI| 7 1s zero, ie.,
¥717(1,2) = ¥717(2,1) = 0. Therefore, we can compare
the conditional covariance of every bus pair before and after
an outage. If the conditional covariance changes to zero after
an outage, we localize one line outage event. This computation
can be repeated when 3; is updated based on the latest
available measurements. In Section V, we illustrate the similar
performances using the true post-outage covariance matrix 3
and the estimated covariance matrix >j.

Figure 5 visualizes the conditional correlation of a 8-bus
system with loops (see Fig. 4) before and after branch 2-6 is
out-of-service. The conditional correlation between bus ¢ and
bus j is defined as:

Y17 =31z - 22557,57 7.

EI|‘7(1> 2)
VE2117(1,1) x X77(2,2)
We can observe the conditional correlation between bus 2

and bus 6 has the most significant change. Therefore, we can
locate the out-of-service branch is branch 2-6.

(12)

Pij =
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Fig. 4. An 8-bus system. A node represents a bus and a line represents a
branch. The dashed lines are additional branches with the same admittance
as the branch connected bus 7 and bus 8.

2 3 6
Bus

(a) Pre-outage

(b) Post-outage

Fig. 5.
2-6).

Absolute conditional correlation before and after an outage (branch

We summarize the proposed line outage detection and local-
ization algorithm in Algorithm 1. If only voltage magnitudes
are available, we can apply the same procedure using A|v€1;:N |

At time NV, the computational complexity of outage detec-
tion only depends on the grid size, as shown in (2) and (4). As
presented in (11) and (12), the computational complexity of
outage localization also only depends on the grid size. In our
numerical simulations, for distribution grids with up to 200
buses, the process outlined in Algorithm 1 can be completed
within 10 seconds using a modern desktop computer at each
time N. Compared with smart meter sampling rates, which
usually ranges from 1 minute to 1 hour, the computational
delay of the outage identification is negligible. Hence, the
proposed line outage identification algorithm can be used for
real-time applications.
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Algorithm 1: Distribution Grid Line Outage Identifi-

cation

1 At each time N:

2 if parameters of post-outage distribution f are
unknown then

3 estimate 7i; and f)l using (6) and (7) with the

observed data Avg ™

4 end

s Compute P(H1|Avg™N) by (2).

6 if P(H1|Avg™N) >1— o then

7

8

Report an outage event and 7 = N
Compute X7 7 by (11) using 3 or fll for every
pair of buses
9 if X717 =0 for T ={i,j} then
10 Report the branch between bus ¢ and bus j is

out-of-service
11 end

12 end

V. SIMULATION AND RESULTS

The simulations are implemented on the IEEE PES distri-
bution networks for IEEE 8-bus and 123-bus networks [19]
and six European distribution grids [20]. To validate the
performance of the proposed approach on loopy networks, we
add several branches to create loops in all systems. The loopy
8-bus system is shown in Fig. 4. For 123-bus system, we add
a branch between bus 77 and bus 120 and the other branch
between bus 50 and bus 56. The admittances are the same
as the branch between bus 122 and bus 123. For European
systems, the loopy modifications are detailed in [18]. In each
network, bus 1 is selected as the slack bus. The historical
data have been preprocessed by the MATLAB Power System
Simulation Package (MATPOWER) [31].

We use the real power profile of distribution grids from
Pacific Gas and Electric Company (PG&E) in the subsequent
simulation. This profile contains anonymized and secure smart
meter readings over 110,000 PG&E residential customers for
one year spanning from 2011 to 2012. The reactive power
gi[n] at bus ¢ and time n is computed according to a randomly
generated power factor pf;[n], which follows a uniform dis-
tribution, e.g. pf;[n] ~ Unif(0.8,1). To obtain measurements
from voltage phasors at time n, i.e. v;[n], we run a power
flow to generate the states of the power system. To obtain
time-series data, we run the power flow to generate voltage
data over a year.

In this simulation, we considered three common outage
scenarios:

1) Mesh networks. In this system, after an outage, most
buses will not have zero voltages because they can re-
ceive power from multiple branches. This outage scenario
usually happens in urban areas.

2) Radial networks with high DER penetrations. In this case,
some buses will be disconnected from the main grid.
However, they are still powered by DERs and thus, their
voltages will not be zero. This outage case is a typical
scenario in residential areas.
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3) Radial networks without DERSs. In this case, when a line
outage occurs, some buses will be disconnected from
the main grid and have zero voltage magnitudes. These
smart meters stop to transmit measurements, but they
send last gasp messages before disconnecting from the
grids. Therefore, we can set measurements from all smart
meters that send last gasp message zero. Because the bus
voltages have no variation after outages, our method can
quickly detect and localize this type of outage.

When multiple induction motors are presented in distribu-
tion grids, residual voltages may exist after the terminal buses
disconnect from the main grid [32]. If the residual voltage
is above smart meter measurement threshold and lasts for
a certain period of time (e.g., a few minutes to an hour,
depending on the smart meter sampling frequency), the outage
case is similar to outage scenario 2 above. If the residual
voltage is below the measurement threshold, smart meters may
not report measurements. In this case, smart meters send last

gasp signals and the outage detection case is similar to the
outage scenario 3 above.

A. Outage Detection in Mesh Distribution Grids

Figure 6 illustrates the complementary posterior probability
1— P(H;1|Av'Y) for detecting two line outages in a loopy 8-
bus system (Fig. 4) based on voltage magnitude data A|Vs|. In
this test, branches 3—4 and 2-6 have outages. The false alarm
rate is 106, For the complementary posterior probability,
the threshold is o = 1075. To have a better understanding
of how our proposed outage detection algorithm works, we
assign a uninformative parameter for the prior distribution, i.e.,
p = 10~*. The outage time is A = 21. When the parameters
of post-outage distribution are known, the complementary
posterior probability immediately drops below the threshold
at N = 21. When the parameters are unknown, one more
time step is required to achieve detectable probability. Since
the voltage magnitudes are collected every hour, the additional
delay is one hour when the outage pattern is unknown.
We want to highlight that although the delay is one hour,
customers do not experience power outage because of the mesh
structure. Later, we show that we can reduce the latency by
increasing the sampling frequency of smart meters.

In Fig. 7, the expected delay divided by |log(«)]| is plotted
as a function of | log(«)| for two cases: f is known and f is
unknown. The choices of abscissa and ordinate are motivated
by Lemma 2. Specifically, the asymptotically optimal detection
delay in Lemma 2 can be rewritten as:

D(7) 1
a)|  —log(1—p)+ Dxe(fllg)”

For a particular outage pattern, the KL distance between
the pre-outage distribution ¢ and the post-outage distribution
f is fixed. Additionally, if the prior distribution is known,
—log(1 — p) + DxL(f|lg) is a constant. Hence, the detection
delay D(7) becomes a function of probability of false alarm c.
Plotting the relationship between |log(«)| and “fg((z)‘ helps
to explore the asymptotic property of the proposed algorithm.
We also show the limiting value of the normalized asymptotic

optimal detection delay 1/(—log(1—p)+DxiL(f|lg)) in Fig. 7.

| log(
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Fig. 7. Plots of the slope m against | log(a)| for outage detection

for loopy 123-bus system. False alarm rate « ranges in [0.5, 10~29]. Branch
73-74 has an outage.

All plots are generated by Monte Carlo simulation over 1,000
replications. In this simulation, the prior distribution of outage
time A has a geometric probability distribution with parameter
p = 0.04. The start time of test is randomly selected within
one year. In Fig. 7, our approach, which learns the parameters
of the post-outage distribution from voltage measurements, has
identical performances as the optimal method that knows f.
Also, our approach can achieve the optimal expected detection
delay asymptotically. As shown in Fig. 7, when the false alarm
rate o is small, our approach can report the outage immediately
(i.e., detection delay is less than one hour), which can signifi-
cantly reduce the impacts of power outages. In [33], an optimal
change-point detection approach is proposed to identify line
outages in transmission grids using PMU data. Although the
grid type is different, our method has similar performance
as [33] and both converge to the asymptotical detection delay

bound 1/(—log(1—p)+Dkr(f|lg)). Specifically, for the loopy

123-bus system, with v = 1072, our algorithm needs 4.89 time

steps to detect outages by using A|Vs|. The algorithm in [33]
uses AV for outage detection and requires 4.91 time steps to
detect outages. Hence, both methods need the same amount of

data for detecting outages but our method only requires smart
meter data.
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B. Outage Detection in Radial Distribution Grids with DERs

In a radial distribution grid, a line outage will lead to several
isolated islands. However, with integration of DERs, such as
solar panels and batteries, some buses can still receive power.
In mesh systems, the continuous power supply from DERs also
make outage detection difficult. In this section, we simulate
the line outage in IEEE 8-bus and 123-bus systems and
six European medium- and low-voltage distribution systems
based on voltage magnitude data [18], [20]. Similar to the
previous section, we randomly select the start time within one
year. Also, we select a few buses in the distribution grid to
have solar power generation with a battery as storage. Thus,
there is power supply during the entire day. If the battery
is unavailable, the outage can be directly detected when the
nodal voltages are zero. For the solar panel, we use the
power generation profile computed by PVWatts Calculator,
an online application developed by the National Renewable
Energy Laboratory (NREL) [34]. The solar power generation
profile is computed based on the weather history in North
California and the physical parameters of ten 5 kW solar
panels. The power factor is fixed as 0.90 lagging, which
satisfies the regulation of many U.S. utilities [35] and the IEEE
standard [36].

Table I summarizes the average detection delay in eight
distribution grids with 14 configurations. In each network, we
compare the detection performance between voltage magni-
tude and phase (AVy) and voltage magnitude only (A|Vg)).
We choose AV with 1 minute sampling rate to demonstrate
the relatively faster metering speed and compare to AVj
with 1 hour for normal smart meters data. We use a linear
interpolation method to generate the 1 minute data from the
hourly power profile. Although the sampling frequencies are
different, the additional amount of voltage magnitude data for

TABLE I
AVERAGE DETECTION DELAY (TIME STEP) OF LINE OUTAGE DETECTION
IN DISTRIBUTION GRIDS WITH DERS. o = 10~ 2. THE POST-OUTAGE
DISTRIBUTION f IS UNKNOWN.

System Total Total AVg AlVg]
Branches DER (1 min) (60 min)
8-bus 7 8 0.12 0.12
8-bus, 2 loops 9 8 0.13 0.15
123-bus 122 12 3.62 4.77
123-bus, 2 loops 124 12 3.53 4.89
LV_suburban 114 10 2.81 5.00
LV_suburban 114 20 2.99 5.00
LV_suburban 114 33 3.23 5.00
LV_suburban_mesh 129 33 4.95 5.83
15 loops
MV _urban 34 7 2.02
MV _urban 35 7 1.29
switch 34-35, 1 loop
MV _urban 37 7 1.12 1.29
3 switches, 3 loops
MV _two_stations 46 10 0.92 1.33
MV _two_stations 48 10 0.87 1.35
2 switches, 2 loops
MV_rural 116 20 1.13 2.44
MV _rural 119 20 1.98 3.01
3 switches, 3 loops
Urban 3237 300 11.89 29.23
LV_large, 465 loops 4030 300 33.29 88.40

outage detection is relatively small (1-3 time steps) for most
networks. This highlights that using voltage magnitude can
achieve a similar detection performance as using both voltage
magnitude and phase angles. Compared with the distribution
grid line outage identification method proposed in [37], our
approach needs fewer samples with the same probability of
false alarm. For the IEEE 123-bus system, which is a radial
network, our algorithm has a detection delay of 4.77 time
steps using A|Vs| with @ = 107° and the method in [37]
has a delay of 10.45 time steps with the same . A note is
that we do not optimize sensor placement for the approach
in [37], which may reduce detection delay. Also, the method
in [37] can only be applied to radial networks but ours can be
deployed to both radial and mesh grids.

For large-scale distribution grids, we need more data to
detect outages when only voltage magnitudes are available.
The reason is the dimension of the covariance matrix is high
and more data are needed for accurate estimation. When
some grid topology information is known, this issue can be
addressed by decomposing the covariance matrix since the
distribution grid is usually sparse. For example, in the MV
distribution grid presented in Fig. 8, there are multiple LV
distribution grids and each of them is connected via a common
MYV grid. Therefore, we only need to identify outage within
each LV grid and apply another outage detector for the MV
grid. Such ways can help reduce computational complexity.
Another case is that we can split the grid into different clusters
when a detailed topology is available. In Fig. 9, we can apply
outage identification to each cluster for buses and, hence,
reduce the dimension of covariance matrix.

0 5 km

Fig. 8. A rural median voltage distribution grid (MV_rural) [20]. Each color
represents one medium voltage branch. The dots represent the substations and
the low voltage grids are connected via these substations.

Roof-top solar power generation can highly correlate within
one LV distribution grid and may jeopardize Assumption 1.
To validate our algorithm in this scenario, we use data from
Pecan Street [38], which contains hourly load measurements
for 345 houses with roof-top PV integrations in Austin, Texas.
Measurements include both power consumption and renewable
generation. Table II summarizes the average detection delay
using Pecan Street data for both radial and mesh distribution
grids. Compared with results of the same grid in Table I, we
do not observe any major performance degradation. Hence, the
results in Table IT demonstrate that our proposed algorithm can
be applied to high-penetration grids.
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Fig. 9. A suburban low voltage network (LV_suburban) [20].
TABLE II 0.00 0.00 0.00 |0.45
AVERAGE DETECTION DELAY (TIME STEP) OF LINE OUTAGE DETECTION o U
USING PECAN STREET DATA. o = 10™°. THE POST-OUTAGE 1.00 0.71 0.02 | 0.01 0.02
DISTRIBUTION f IS UNKNOWN. ol 100 0.00 I 025 003
System Total Total AVg AlVg| 2 0.05 0.0
Branches DER (1 min) (60 min) A 0.02 0.20 0.04
123-bus 122 12 291 5.05 077 0.01
123-bus, 2 loops 124 12 3.37 4.59
LV_suburban_mesh 129 33 5.08 5.70 0.01 0.22 NUyEh 0.44
15 loops 0.02 0.03 0.01 0.04
MV _urban 34 7 1.28 3.11
2 4 6 8
Bus
C. Line Outage Localization () Pre-outage
When a branch has an outage, the conditional correlation 0.00 0.00
defined in (12) becomes zero. Fig. 10 shows the absolute 0.01 0'03
conditional correlation |p; ;| of the loopy 8-bus system in —
Fig. 4 after branch 3—4 and branch 2-6 have outages. The red 004 002
boxes indicate the branches that have outages. When the post- 2 0.02 ] 072
outage distribution f is known, the true X; is used to compute 0.03 042
the conditional correlation. Comparing Fig. 10(a) and 10(b), 0.04 029 0.03
clearly, the absolute conditional corrections of outage branches 0.02 k28 0.42
change to zero after outages. The diagonal terms are the 0.01 004 0.07
self-correlation and equal to one. This observation indicates
that this proposed outage localization method is sensitive to Bus
outages and validates our proof in Theorem 1. When f is (b) Post-outage
unknown, by comparing Fig. 10(a) and 10(c), we can still
identify outage lines. Therefore, the proposed method can still 1
localize out-of-service branches as accurately as the optimal 2
approach. 3
o . 4
D. Sensitivity to Data Resolutions 2 S
The “ADRES-Concept” project load profile [21], [22] is 6
used to understand the proposed approach’s sensitivity to data ;
resolution. This data set contains real and reactive power g
. . 0.09 0.30
profiles of 30 houses in Upper-Austria. The data were sampled
every second over 14 days. The voltage data are generated 2 4Bus 6 8
using a subset of LV_suburban_mesh grid with 33 DERs
. . (c) Post-outage with unknown distribution
integrated. To simulate the damage patterns, we randomly set
two branches to be out-of-service. Fig. 11 shows the average Fig. 10. Absolute conditional correlation of 8-bus system before (a) and

detection delay with different data resolutions. The results are
produced using Monte Carlo simulation over 1,000 replica-
tions. We can see that with the increase of data resolution,
the average detection delay is decreased. The reason is the
distribution change is more significant when data resolution

after (b & c) an outage (Branches 3—4 and 2-6).

is large. However, for the absolute detection time delay, high
resolution data sources require less time. For example, only
5 seconds are needed to detect outages when the sampling rate
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1075,

The average detection delay with different data resolutions. a =

is 1 second. As the sampling frequency is reduced, less data
samples are required for detection. When the sampling rate is
1 minute, the proposed algorithm needs less than 3 minutes
to detect outages. When the sampling rate is 30 minutes and
one hour, the average detection delay is zero. Therefore, the
major bottleneck of detection delay is the sampling period.
As discussed in Section IV, the computational complexity of
both outage detection and localization only depend on the grid
size. The computational time of a grid with less than 200
buses is within 10 seconds. Most smart meter systems have a
sampling rate between 1 minute and 1 hour today. Hence, our
algorithm can immediately detect the outage when the post-
outage measurement is available.

E. Sensitivity to Data Accuracy

Smart meter measurements are usually noisy. Thus, the
analysis of our algorithm under different levels of measure-
ment noise is critical for understanding performance in a real-
world scenario. In the U.S., ANSI C12.20 standard (Class
0.5) permits utility smart meters to have an error within +
0.5% [39], [40]. The standards in other countries have similar
requirements, e.g., [41]. Table IIT shows the average detection
delay with different noise levels over 1,000 iterations. The
simulation setup is identical to the one in Section V-A and V-B.
Hence, data resolution is one hour. When the noise level is
less than 0.1%, detection delay is similar to detection delay
of noiseless measurements. Since most measurement noises
are zero-mean additive noise and we use the measurements’
sufficient statistics for outage detection, the noise only impacts
the estimation of a covariance matrix. When noise level is
0.2%, one more data point is needed for detection.

TABLE III
AVERAGE DETECTION DELAY (TIME STEP) OF LINE OUTAGE DETECTION
wITH DERS UNDER DIFFERENT NOISE LEVELS. o = 10~ 5. THE
POST-OUTAGE DISTRIBUTION f IS UNKNOWN. ONLY VOLTAGE
MAGNITUDES A|Vg| ARE USED.

Noise level  LV_suburban_mesh ~ MV_rural
0% 5.83 1.29
0.05% 5.42 1.32
0.1% 6.22 1.83
0.2% 7.90 2.53

Other types of device malfunctions may also impact algo-
rithm performances. For example, if the smart meter is not
well calibrated, it may consistently produce measurements that
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lack precision and accuracy. For the proposed method, rather
than directly use the raw measurements, we use sufficient
statistics of data, e.g., mean and variance, for outage detection.
Thus, if a systematic error persists across all measurements,
our algorithm can still report outages. The anomaly data can
degrade the performance of our proposed algorithm because
the underlying data statistics may change due to non-outage
events. There are multiple ways to minimize impacts. For
example, data cleansing can be applied before processing data
for outage identification. Also, we can reduce the probability
of false alarm « to increase the confidence of outage report.

F. Short-circuit Faults Identification

Besides line outages, another category of fault in distri-
bution grids is short-circuit faults. In this subsection, we
simulate the short-circuit fault in the radial IEEE 123-bus
system via CYME power system analysis software. Fault
scenarios are summarized in Table IV. In short-circuit fault
analysis, the data collected before n = 20 are pre-fault and
the measurements collected after n = 20 are post-fault. As

TABLE IV
SHORT-CIRCUIT FAULT TYPES IN THE RADIAL IEEE 123-BUS SYSTEM

Branch ~ Fault Type Detection Delay
(Time Step) D(1)
67-160  Single line-to-ground fault (LG) 0.9
on phase A
67-160  Line-to-line fault (LL) 0.5
on phase AB
67-160  Double Line-to-ground fault (LLG) 0
on phase AB
67-160  Three-phase short-circuit fault (LLL) 0
67-160  Three-phase-to-ground fault (LLLG) 0
1.0
0.8
=06 Fault Type
=4l —1G
0.4
—LL
— LLG
021+ LLL
00 — LLLG

0 5 10 15 20 25 30 35 40
n

(a) Bus 67
1.0
0.8
= 0.6
= Fault Type
=041 — LG
—LL
02] —LLG
—LLL
0.0/ — LLLG

0 5 10 15 20 25 30 35 40
n

(b) Bus 160

Fig. 12. Nodal nominal voltage measurements in per unit for different fault
types in the radial IEEE 123-bus system.



1084

plotted in Fig. 12, the means of voltage magnitudes |V [n]|
change significantly after faults. For fault type LG, LL, and
LLG, the nodal nominal voltages drop to a non-zero value.
These fault types are similar to the outage scenario 1, which
we discussed earlier in this section. As shown in Table IV,
less than one time step is needed to detect these faults. As
the reference, to detect line outage between bus 67 and bus
160, the proposed algorithm has zero detection delay. For LLL
and LLLG, the nodal nominal voltages drop to zero. Thus,
the detection case is similar to the outage scenario 3. Our
algorithm can immediately detect faults after they occur.

VI. CONCLUSION

In this paper, we propose a new approach to automati-
cally detect and identify outages in urban distribution grids
with high renewable penetration. Specifically, we develop a
stochastic modeling of nodal voltage data stream and propose
a change point detection approach based on the probability
distribution changes due to outage events. As a highlight, un-
like existing approaches, our method is applicable to existing
distribution grids because we require neither the grid topology
nor the outage pattern as a prior. Also, we only need smart data
measurements to achieve optimal detection performance. In
addition to outage detection, we provide theoretical proof that
optimal out-of-service branch identification can be achieved
due to the conditional independence of voltages based on
power flow analysis. We verify the proposed algorithm on
eight mesh and radial distribution grid systems with and
without DERs. From extensive simulations, our algorithm can
perfectly detect and identify outages in a short time, with and
without the integration of DERs.

There are multiple future works that can further enhance the
proposed algorithm. For example, as discussed in Section V-B,
the computationally complexity of line outage detection scales
up with the growth of grid size. A distributed or decentralized
approach may reduce the computational efforts. Additionally,
we discuss the impact of measurement noise, systemic errors,
and anomaly data in this paper. However, other types of
data quality issues may also degrade performance, such as
missing data and fixed-point measurements. How to handle
these practical scenarios requires further investigation. In this
paper, we focus on detecting and localizing a line outage
event. Identifying fault types that cause line outages is also an
interesting research direction. At last, dynamic topology esti-
mation and switch status identification share some similarities
with the proposed out-of-branch localization method, but also
have more rigorous requirements. How to apply the proposed
out-of-branch localization method to estimate topology is a
direction of future studies.
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APPENDIX

A. Proof of Lemma 3

Proof: To apply the maximum likelihood method, we
need to compute the partial derivative of the posterior prob-

CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 4, JULY 2022

ability P(Hi|Av'Y). Unfortunately, P(H|Av*N) is not
a convex function and we may have multiple estimates. To
address this challenge, we will provide an approximation of
the posterior probability P(H|Av'Y). Specifically, the log-
probability log P(H1|Avt) is

log P(H;|Av'Y)

N k—1 N
=log €'+ log {Zﬂ(k) [T gaoln)) [T £(avfn; 9)} :
k=1 n=1 n=~k
(13)
where ® = {u;,X;} represents the unknown parameters

of f. In (13), the term within the braces is an expectation
of Hn 1g( v[n]) HS:k f(Av[n]; ©®) over the prior distri-
bution m, E, (Hﬁ;} g(Avn]) Hg:k f(Awv[n]; ©)). Also, the
logarithmic function is convex. Therefore, we can apply the
Jensen’s inequality [42] to approximate log P(H1|Av!Y):

log P(H1]|Av*Y) > log C+

N
Z (ZloggAv Jerog;fA'v] ))
k=1 n=1

= P(Hy|Av"). (14)
Since g and f are Gaussian distributions, (14) can be written
as
—m(k)
2

N
P(H1|Av"N) = log C + Z
k=1

k—1

. (Z log [2 50| + (Av[n] — 10) S5 (Av[n] — o)
n=1

N
43 tog 25 + (Aola] — )75 (Aof] - ) ).
n=~k

Since P(H1|Av ) is convex, we can estimate ji; by setting
OP/0uy = 0. Specifically, we have

= 1: N N
OPOLIATT) 5~ ) S~ (ofn] - )y =0

O k=1 n—=k
Since
N
> (Awvn] (Z Av[n] — (N —k+1)u )
n=k n=k

the estimate of pq is
N N
iy = 2 k=1 7(K) >y, Av[n]

~ .
21 T(R)(N =k +1)
For the covariance matrix ¥q, the partial derivative is

OP(Fh|Av!™) i (ZS (N —k+1)% )

0% P

where S[k] :~Zg=k-(A'U[n] — p1)(Av[n] — p1)T. Letting
w1 = fip and OP(H,|AvtN) /08, = 0, the covariance matrix
estimate is

g _ iy m(k)STH
1 N .
Yooy w(R)(N —k +1)
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