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AbstractÐThe growing integration of distributed energy re-
sources (DERs) in distribution grids raises various reliability
issues due to DER’s uncertain and complex behaviors. With
large-scale DER penetration in distribution grids, traditional
outage detection methods, which rely on customers report and
smart meters’ ªlast gaspº signals, will have poor performance,
because renewable generators and storage and the mesh structure
in urban distribution grids can continue supplying power after
line outages. To address these challenges, we propose a data-
driven outage monitoring approach based on the stochastic time
series analysis with a theoretical guarantee. Specifically, we prove
via power flow analysis that dependency of time-series voltage
measurements exhibits significant statistical changes after line
outages. This makes the theory on optimal change-point detection
suitable to identify line outages. However, existing change point
detection methods require post-outage voltage distribution, which
are unknown in distribution systems. Therefore, we design a
maximum likelihood estimator to directly learn distribution pa-
rameters from voltage data. We prove the estimated parameters-
based detection also achieves optimal performance, making it
extremely useful for fast distribution grid outage identifications.
Furthermore, since smart meters have been widely installed in
distribution grids and advanced infrastructure (e.g., PMU) has
not widely been available, our approach only requires voltage
magnitude for quick outage identification. Simulation results
show highly accurate outage identification in eight distribution
grids with 17 configurations with and without DERs using smart
meter data.

Index TermsÐPower distribution network, outage detection,
outage identification, voltage measurement, change point
detection, graphical model.

I. INTRODUCTION

THE ongoing large-scale integration of distributed en-

ergy resources (DERs) makes photovoltaic (PV) power

devices (renewable generation), energy storage devices, and

electric vehicles ubiquitous. Such a change transitions the

urban power grid into a sustainable network and reduces elec-

tricity cost and transmission loss [1]. However, such a change

also raises fundamental challenges in system operations. For
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example, the reverse power flow from residential houses

renders the existing protective architecture inadequate. Also,

frequent plug-and-charge electric vehicles will degrade power

quality, causing transformer overload and voltage flickers [2].

Because of these changes on a distribution grid, even a small-

scale DER integration could destabilize a local grid and cause

reliability issues for customers [3]. Reference [4] shows that

distribution power outages or blackouts caused by newly added

uncertainties can cause a loss of thousands to millions of

dollars within one-hour, calling for a newly designed fault

diagnosis approach for distribution grid operation.

Traditional power outage analysis in distribution grids re-

lies on passive feedback from customer reporting. Collected

into Customer Information System (CIS), such information

is processed in the Outage Management System (OMS) to

send field crews to identify and repair the outage. Due to the

human-in-the-loop system design, delay and imprecise outage

information causes inefficient detection and slow restoration.

Therefore, smart meters with advanced metering infrastructure

(AMI) capability were installed recently to send a ªlast gaspº

message when there is a loss of power [5]. Reference [6] shows

additional fault location, isolation, and service restoration

(FLISR) technologies to reduce some negative impact and

interruption duration.

However, the performance of traditional methods and recent

approaches above will be degraded with the growth of DER

penetration in distribution grids. For example, as shown in

Fig. 1, when there is no power flow in the distribution circuit

connecting to customers, the customer can still receive power

from rooftop solar panels, battery storage, and EVs. So, the

smart meter at the customer premises cannot report a power

outage. Also, secondary distribution grids are mesh networks

in metropolitan areas [7], making a line outage, which may
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Fig. 1. An example of distribution grid outage. The red dashed line is the
out-of-service branch.
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be caused by faults (e.g, short-circuit or open-circuit) and

human activities, unnecessarily cause a power outage. Fur-

thermore, some advanced secondary distribution grids have a

ªself-healingº capability, where the switches are automatically

open or closed to isolate outages, restore power supply, and

minimize customer impacts. However, it is still important

to detect, localize, and identify out-of-service branches for

situational awareness of distribution system operators.

Power line outage identification in transmission grids has

received a surge of interest in the past decade, where DC power

flow approximation and phasor measurement units (PMUs) are

the most common approaches. For example, phase changes

across all buses are compared with potential fault events

in [8]. In [9], a transmission grid is formulated as a graphical

model and phase angles are used to track grid topology

change. A regularized linear regression is employed to detect

power outages in [10]. The approach in [11] compares branch

admittance before and after outages. These methods, however,

cannot be directly used in the distribution grid because 1) the

DC approximation has poor performance in distribution grids

as many systems have non-negligible line loss; 2) installing

PMUs at all buses in a distribution grid is expensive and

impractical; and 3) the topology information is unavailable or

inaccurate in distribution grids, because many DERs do not

belong to the utilities and their connectivity are unknown to

system operators [12].

To resolve the issues above, we model voltage measurement

at each bus as a random variable, so the distribution grid

is modeled as a multi-variate probability distribution. We

show that a line outage will lead to a change of statistical

dependence between buses’ voltage data, and consequently,

a change of the joint distribution. Hence, the outage can be

discovered by detecting a change of the multivariate probabil-

ity distribution. A well-known method to sequentially detect

a probability distribution change is a change point detection

method, whose objective is detecting an outage as quickly as

possible with a constraint of false detection rate [13]±[15].

The change point detection methods have been applied to

detect outage in transmission grids [11], [16], [17]. How-

ever, they cannot be directly applied because of the practical

properties of distribution grids. First, the outage patterns in

distribution grids are usually unpredictable. With the growth

of grid size, the possible post-outage distributions increase

exponentially. To overcome this drawback, we propose a

maximum likelihood method to directly learn the unknown

post-outage probability distribution parameters from voltage

data. Secondly, PMUs are not widely installed in distribu-

tion grids. Therefore, unlike the approaches in transmission

grids, we cannot use the voltage phase to identify outages.

We prove that voltage magnitude data, which are collected

from smart meters periodically, are sufficient to detect line

outages. Thirdly, distribution grids usually have outdated or

inaccurate topology [18]. Thus, precisely finding the out-of-

service branch is challenging. We prove the voltages of two

disconnected buses are conditionally independent, which is

subsequently used to find the line outage without knowing

the post-outage probability distribution.

The performance of our data-driven outage detection and

localization algorithm is verified by simulations on the stan-

dard IEEE 8- and 123-bus distribution test cases [19] and 6
European distribution grids [20] with 14 network configura-

tions. Three different real smart meter data sets are utilized for

generating voltage data via data interpolation, different outage

scenarios, and sensitivity analysis: Pacific Gas and Electric

Company (PG&E) data set that contains 110,000 residential

households in North California, ADRES project data set [21],

[22] that contains 30 houses load profiles in Upper-Austria,

and Pecan Street data set, which has net load data of 345

houses with root-top PV panels in Austin, Texas.

The main contributions of this paper are summarized below:

• A novel data-driven distribution grid line outage detection

method is proposed. For a given probability of false

alarm, the proposed outage detector is proved to have

optimal detection delay.

• Unlike many existing works that need to know outage

patterns in advance, we prove that our detection algorithm

can learn the post-outage statistics directly from data.

Hence, implementation of our outage detector does not

require the prior knowledge of outage pattern. Our nu-

merical simulation demonstrates that utilizing estimated

statistics based on post-outage data does not degrade

detection performance.

• PMUs have not been widely installed in distribution grids.

By utilizing the small angle property of distribution grids,

we prove the proposed method only needs to use voltage

magnitudes, which are usually available via smart meters,

to detect line outages.

• We also propose an outage localization algorithm that

finds the out-of-service branch after an outage event

is detected. A highlight is that the proposed outage

localization algorithm does not need the distribution grid

topology, which is usually required in many existing

works.

• We validate the outage identification algorithm using

three real world data sets and eight distribution grids

with 17 network configurations. The numerical results

illustrate the optimality of the proposed algorithm. Ad-

ditionally, multiple sensitivity analyses are conducted to

show the applicability of this new line outage detection

method in a real world distribution grid operation.

The rest of the paper is organized as follows: Section II

introduces the modeling and the problem of the data-driven

power outage detection and localization based on voltage data.

Section III uses a proof to justify the outage can be detected

by a change point detection method. Also, we propose the

outage detection method for only using voltage magnitudes.

Section IV presents the outage localization method. A detailed

algorithm for outage detection and localization is illustrated as

well. Section V evaluates the performance of the new method

and Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In order to formulate the power outage detection problem,

we need to describe the distribution grid and its voltage data.
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A distribution grid is defined as a physical network with buses

and branches that connect buses. For a distribution grid with

M buses, we use S = {1, 2, . . . ,M} to represent the set

of all bus indices. To utilize the time series voltage data,

the voltage measurement at bus i is modeled as a random

variable Vi. We use VS = [V1, V2, . . . , VM ]T to denote all

voltage random variables in the network, where T denotes the

transpose operator. At the discrete time n, the noiseless voltage

measurement at bus i is vi[n] = |vi[n]| exp(jθi[n]) ∈ C,

where |vi[n]| ∈ R denotes the voltage magnitude in per unit

and θi[n] ∈ R denotes the voltage phase angle in degrees.

All voltages are sinusoidal signals at the same frequency.

We use v[n] = [v1[n], v2[n], . . . , vM [n]]T to denote a col-

lection of all voltage measurements in a network at time n.

Thus, v[n] is the realization of VG at time n. Also, we use

v
1:N = (v[1],v[2], . . . ,v[N ]) to denote a collection of all

voltage measurements in the network up to time N .

The problem to detect and localize line outages in a distri-

bution grid is defined as follows:

• Problem: data-driven power outage detection and local-

ization based on voltage measurements

• Given: a sequence of the historical voltage measurements

v
1:N up to the current time N

• Find: (1) the outage time and (2) the branches that are

out-of-service

III. OPTIMAL DISTRIBUTION GRID LINE OUTAGE

DETECTION

Voltage measurements usually have an irregular distribution

and are hard to be used for the goal of this paper. Therefore,

instead of using voltage measurements directly, we use the

incremental change of the voltage measurements to detect

outages, which is defined as ∆v[n] = v[n] − v[n − 1].
Accordingly, ∆v

1:N = (∆v[1],∆v[2], · · · ,∆v[N ]). We use

∆Vi to represent the voltage change random variable at bus i
and ∆VS to represent the voltage change random variables

of the entire system. In the following, we will prove, the

probability distribution of ∆VS will be different after an

outage. In the following context, the operator \ denotes the

complement operator, i.e. A\B = {i ∈ A, i /∈ B}.

Assumption 1. In distribution grids,

• the incremental change of the current injection ∆I at

each non-slack bus is independent, i.e., ∆Ii ⊥ ∆Ik for

all i ̸= k,

• the incremental changes of the current injection ∆I and

bus voltage ∆V follow Gaussian distribution with zero

means and non-zero variances.

The Assumption 1 has been adopted in many works, such

as [18], [23], [24]. In [18], the authors use real data to validate

both assumptions. According to Assumption 1, ∆VS follows

a multivariate Gaussian distribution. With Assumption 1, we

prove the pairwise bus voltages are conditionally independent

if there is no branch between them.

Theorem 1. If the change of current injection at each bus is

approximately independent and no branch connects bus i and

bus k, the voltage changes at bus i and bus k are conditionally

independent, given the voltage changes of all other buses, i.e.

∆Vi ⊥ ∆Vk|{∆Ve, e ∈ G\{i, k}}.

Proof: For bus i, the current and voltage relationship

can be expressed as ∆Ii = ∆ViYii −
∑

e∈N (i) ∆VeYie with

Yii =
∑

e∈N (i) Yie, where Yie denotes the ie th element of the

admittance matrix Y and the neighbor set N (i) contains the in-

dices of the neighbors of bus i, i.e., N (i) = {e ∈ S|Yie ̸= 0}.

If bus i and bus k are not connected, k /∈ N (i) and Yik = 0.

Given ∆Ve = ∆ve for all e ∈ G\{i, k}, the equation above

becomes to:

∆Ii = ∆ViYii −
∑

e∈N (i)

∆veYie,

∆Vi =
1

Yii

(∆Ii +
∑

e∈N (i)

∆veYie). (1)

Similarly, ∆Vk = (∆Ik +
∑

e∈N (k) ∆veYke)/Ykk. With

the assumption of the current change independence, i.e.,

∆Ii ⊥ ∆Ik, ∆Vi and ∆Vk are conditionally independent

given ∆VG\{i,k}.

A branch admittance becomes zero when it is out-of-service.

The voltages at the two ends of this branch become condition-

ally independent. Hence, the probability distribution of ∆VS

is different before and after an outage because some elements

of the mean vector and covariance matrix will change. Let λ
denote the time an outage occurs. We assume that ∆VS follow

a Gaussian distribution g with the mean µ0 and the covariance

matrix Σ0 in the pre-outage status (i.e., N ≤ λ) and a different

Gaussian distribution f with the mean µ1 and the covariance

Σ1 after any outage (i.e., N > λ). An example is illustrated

in Fig. 2. One way to find the outage time λ is performing a

sequential hypothesis test at each time N as follows [13]:

H0(pre-outage) : λ > N,

H1(post-outage) : λ ≤ N.

Δv [n]

λ n

Pre-outage Post-outage

g~N (μ0,Σ0) f~N (μ1,Σ1)

Fig. 2. An example of nodal voltages before and after a line outage. λ
denotes the outage occurrence time.

Finding the outage time is known as the change point

detection problem. Usually, the line outage occurrence time is

unpredictable. Therefore, we assume the power outage time λ
as a discrete random variable with a probability mass function

π(λ). Now, we can use a Bayesian approach to find λ. In

this paper, we assume λ follows a geometric distribution with

a parameter ρ. The joint distribution of λ and ∆VS can be

written as

P (λ,∆VS) = π(λ)P (∆VS |λ).
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When λ = k, all voltage data obtained before time k follow

the distribution g and all the data obtained at and after time k
follow the distribution f . Therefore, the likelihood probability

P (∆VS |λ) above is expressed as follows:

P (∆VS = ∆v
1:N |λ = k) =

k−1∏

n=1

g(∆v[n])
N∏

n=k

f(∆v[n]),

for k = 1, 2, · · · , N + 1. When λ = N + 1, it refers

to the outage not having occurred and all data follow the

distribution g.

Finding the outage time λ is equivalent to finding the

post-outage posterior probability P (H1|∆VS) = P (λ ≤
N |∆VS = ∆v

1:N ) at each time N . If the posterior probability

is large enough, we can declare an outage in the grid. At each

time N ,

P (λ ≤ N |∆v
1:N )

=
N∑

k=1

P (λ = k,∆v
1:N )

P (∆v1:N )
,

=
1

P (∆v1:N )

N∑

k=1

π(λ = k)P (∆v
1:N |λ = k),

= C
N∑

k=1

π(k)
k−1∏

n=1

g(∆v[n])
N∏

n=k

f(∆v[n]), (2)

where C is a normalization factor such that
∑N+1

k=1 P (λ =
k|∆v

1:N ) = 1. In the normal operation, f(∆v[n]) is small

and P (λ ≤ N |∆v
1:N ) is small. Once an outage occurs at

time λ = k ≤ N , all data collected at n ≥ λ follow f(∆v[n])
and P (λ ≤ N |∆v

1:N ) becomes large. Hence, we can set a

threshold and declare an outage when the posterior probability

surpasses this threshold. This process is visualized in Fig. 3.

1.0

P (   1|Δv
1:N)

0.0
λ τ n

outage
detected

threshold

Fig. 3. An example of outage detection based on the posterior probability.
λ is the outage occurrence time. τ is the outage detection time. The brown
dashed line is the detection threshold.

A. Optimal Outage Detection

In the outage detection problem, we consider two per-

formance metrics: probability of false alarm and average

detection delay. The former metric evaluates how frequently a

detector falsely declares an outage in the pre-outage status. If

τ denotes the time of an outage being detected, the probability

of false alarm is defined as P (τ < λ). The latter metric

describes the average latency where a detector finds the outage

after it has occurred. The average detection delay is defined

as E(τ−λ|τ ≥ λ). For distribution grid line outage detection,

we want to find the outage time λ as quickly as possible with

a constraint of the maximum probability of false alarm α, i.e.,

minimize
τ

E(τ − λ|τ ≥ λ)

subject to P (τ < λ) ≤ α. (3)

By the Shiryaev-Roberts-Pollaks procedure [25], we have

the following lemma to solve the optimization problem in (3).

Lemma 1. Given a maximum probability of false alarm α,

the following detection rule

τ = inf{N ≥ 1 : P (λ ≤ N |∆v
1:N ) ≥ 1− α}, (4)

is asymptotically optimal [13].

With Lemma 1, the threshold (brown dashed line) in Fig. 3

is 1−α. Lemma 2 shows the asymptotically optimal expected

detection delay.

Lemma 2. For a given probability of false alarm α, the detec-

tion rule in (4) achieves the asymptotically optimal detection

delay

D(τ) = E(τ − λ|τ ≥ λ) =
| log(α)|

− log(1− ρ) +DKL(f∥g)
, (5)

as α → 0, where DKL(f∥g) is the Kullback-Leibler distance

and log denotes the natural logarithm [26].

The detection process is summarized in Algorithm 1. As

a highlight, the proposed approach does not require the grid

topology.

B. Line Outage Detection with Unknown Outage Pattern

Computing the posterior probability in (2) requires knowing

the parameters of distributions g and f . The parameters of

pre-outage distribution g can be estimated using historical

data. For obtaining the parameters of f , we need to know

the outage pattern as a prior. One way is trying every possible

outage pattern and identifying the most similar one. However,

this approach is infeasible because the outage patterns can

grow exponentially with the grid size. Also, many DERs in

distribution grids are not operated by the utilities. Therefore,

their topology information is usually unknown [27].

In this section, instead of searching the most likely post-

outage distribution, we propose a method to learn f from

data using the maximum likelihood method in Lemma 3. The

computational complexity of our approach is insensitive to the

number of out-of-service branches.

Lemma 3. Using observed data ∆v
1:N , The maximum likeli-

hood estimators of the post-outage distribution f ∼ N (µ1,Σ1)
are:

µ̂1 =

∑N

k=1 π(k)
∑N

n=k ∆v[n]
∑N

k=1 π(k)(N − k + 1)
, (6)

Σ̂1 =

∑N

k=1 π(k)
∑N

n=k(∆v[n]− µ̂1)(∆v[n]− µ̂1)
T

∑N

k=1 π(k)(N − k + 1)
. (7)

The proof of Lemma 3 is given in Appendix A. With

the estimates of µ1 and Σ1, we can compute the posterior

probability in (2) and apply the optimal detection rule in (4).
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C. Line Outage Detection with Voltage Magnitudes Only

Since PMUs have not been widely installed in distribution

grids, the voltage phase angles are hard to obtain in real-

world grids. To resolve this issue, in this section, we prove

the optimal line outage detection approach in Lemma 1 only

requires voltage magnitude data. We define the incremental

change of voltage magnitude as ∆|v[n]| = |v[n]| − |v[n− 1]|
and use the random variable ∆|V | to represent the voltage

magnitude change.

Theorem 2. If the change of current injection at each bus

is approximately independent and no branch connects bus i
and bus k, the voltage magnitude changes at bus i and bus

k are conditionally independent, given the voltage magnitude

changes of all other buses, i.e. ∆|Vi| ⊥ ∆|Vk| | {∆|Ve|, e ∈
G\{i, k}}.

Proof: For bus i, we can rewrite (1) as:

Vi =
1

Yii


Ii +

∑

e∈N (i)

VeYie




Vie
−jθi =

1

Yii


Iie

−jθi +
∑

e∈N (i)

Vee
−jθiYie




|Vi| =
1

Yii


Iie

−jθi +
∑

e∈N (i)

|Ve|e
j(θe−θi)Yie


 . (8)

In the secondary distribution grids, the phase angle differ-

ence between two neighbors’ buses is relatively small [28],

i.e., θi − θe ≃ 0 for e ∈ N (i). Hence, (8) is approximated as

|Vi| ≃
1

Yii


Iie

−jθi +
∑

e∈N (i)

|Ve|Yie


 . (9)

For incremental change of voltage magnitude ∆|Vi|, given

∆|Ve| = ∆|ve| for all e ∈ S\{i, k}, the equation above

becomes to:

∆|Vi| =
1

Yii


∆Iie

−jθi +
∑

e∈N (i)

∆|ve|Yie


 .

Similarly, ∆|Vk| =
(
∆Ike

−jθk +
∑

e∈N (k) ∆|ve|Yke

)
/Ykk.

Since Ii and Ik are multiplied with constants, ∆Iie
−jθi and

∆Ike
−jθk are still independent. Hence, ∆|Vi| and ∆|Vk| are

conditionally independent given ∆|VG\{i,k}|.

With the proof of Theorem 2, the optimal detection rule in

(4) still holds for voltage magnitude data, i.e.,

τ = inf{N ≥ 1 : P (λ ≤ N | ∆|v1:N |) ≥ 1− α}. (10)

For the voltage magnitude data, we can still use the maxi-

mum likelihood estimators in (6) and (7) for unknown outage

patterns.

IV. OUT-OF-SERVICE BRANCH IDENTIFICATION

Identifying the out-of-service branch is important in ur-

ban distribution grid operation. In metropolitan areas, many

branches are underground and not well documented. There-

fore, an efficient and accurate outage localization approach can

reduce power interruption time significantly. In the following

part, we will propose a real-time outage localization method

based on voltage measurements.

Lemma 4. Assuming random vectors X , Y , and Z follow

Gaussian distributions, given Z = z, if X and Y are condi-

tionally independent, their conditional covariance is zero [29].

Because of Theorem 1 and Theorem 2, voltage changes at

the two ends of the out-of-service branches are conditionally

independent after an outage. Due to Lemma 4, we can compute

the conditional covariance matrix of every possible pair of

buses in the grid and check if the off-diagonal term changes

from a non-zero element to zero. When the off-diagonal term

changes to zero, we can identify the out-of-service branches.

Usually, the conditional covariance can be estimated based

on the voltage measurements. However, a large set of post-

outage data is required to have an accurate estimation, and

the delay of localization is long. To enable real-time outage

localization, alternatively, we use the covariance matrix Σ to

compute the conditional covariance. This approach allows us

to localize the outage even if we do not know the distribution

grid topology. In case the post-outage probability distribution

f is unknown, we can use Σ̂1 in (7) to compute the conditional

covariance. For bus i and bus j, suppose I = {i, j} and J =
S\{i, j}, the covariance of the joint Gaussian distribution can

be decomposed as:

Σ =

[
ΣII ΣIJ

ΣT
IJ ΣJJ

]
.

The conditional covariance matrix can be computed by the

Schur complement [30], i.e.,

ΣI|J = ΣII − ΣIJΣ−1
JJΣT

IJ . (11)

If the voltages at bus i and bus j are conditionally

independent, the off-diagonal term of ΣI|J is zero, i.e.,

ΣI|J (1, 2) = ΣI|J (2, 1) = 0. Therefore, we can compare

the conditional covariance of every bus pair before and after

an outage. If the conditional covariance changes to zero after

an outage, we localize one line outage event. This computation

can be repeated when Σ̂1 is updated based on the latest

available measurements. In Section V, we illustrate the similar

performances using the true post-outage covariance matrix Σ1

and the estimated covariance matrix Σ̂1.

Figure 5 visualizes the conditional correlation of a 8-bus

system with loops (see Fig. 4) before and after branch 2±6 is

out-of-service. The conditional correlation between bus i and

bus j is defined as:

ρi,j =
ΣI|J (1, 2)√

ΣI|J (1, 1)× ΣI|J (2, 2)
. (12)

We can observe the conditional correlation between bus 2

and bus 6 has the most significant change. Therefore, we can

locate the out-of-service branch is branch 2±6.
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Fig. 4. An 8-bus system. A node represents a bus and a line represents a
branch. The dashed lines are additional branches with the same admittance
as the branch connected bus 7 and bus 8.
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Fig. 5. Absolute conditional correlation before and after an outage (branch
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We summarize the proposed line outage detection and local-

ization algorithm in Algorithm 1. If only voltage magnitudes

are available, we can apply the same procedure using ∆|v1:N
G |.

At time N , the computational complexity of outage detec-

tion only depends on the grid size, as shown in (2) and (4). As

presented in (11) and (12), the computational complexity of

outage localization also only depends on the grid size. In our

numerical simulations, for distribution grids with up to 200

buses, the process outlined in Algorithm 1 can be completed

within 10 seconds using a modern desktop computer at each

time N . Compared with smart meter sampling rates, which

usually ranges from 1 minute to 1 hour, the computational

delay of the outage identification is negligible. Hence, the

proposed line outage identification algorithm can be used for

real-time applications.

Algorithm 1: Distribution Grid Line Outage Identifi-

cation

1 At each time N :

2 if parameters of post-outage distribution f are

unknown then

3 estimate µ̂1 and Σ̂1 using (6) and (7) with the

observed data ∆v
1:N
G

4 end

5 Compute P (H1|∆v
1:N
G ) by (2).

6 if P (H1|∆v
1:N
G ) ≥ 1− α then

7 Report an outage event and τ = N

8 Compute ΣI|J by (11) using Σ1 or Σ̂1 for every

pair of buses

9 if ΣI|J = 0 for I = {i, j} then

10 Report the branch between bus i and bus j is

out-of-service
11 end

12 end

V. SIMULATION AND RESULTS

The simulations are implemented on the IEEE PES distri-

bution networks for IEEE 8-bus and 123-bus networks [19]

and six European distribution grids [20]. To validate the

performance of the proposed approach on loopy networks, we

add several branches to create loops in all systems. The loopy

8-bus system is shown in Fig. 4. For 123-bus system, we add

a branch between bus 77 and bus 120 and the other branch

between bus 50 and bus 56. The admittances are the same

as the branch between bus 122 and bus 123. For European

systems, the loopy modifications are detailed in [18]. In each

network, bus 1 is selected as the slack bus. The historical

data have been preprocessed by the MATLAB Power System

Simulation Package (MATPOWER) [31].

We use the real power profile of distribution grids from

Pacific Gas and Electric Company (PG&E) in the subsequent

simulation. This profile contains anonymized and secure smart

meter readings over 110,000 PG&E residential customers for

one year spanning from 2011 to 2012. The reactive power

qi[n] at bus i and time n is computed according to a randomly

generated power factor pfi[n], which follows a uniform dis-

tribution, e.g. pfi[n] ∼ Unif(0.8, 1). To obtain measurements

from voltage phasors at time n, i.e. vi[n], we run a power

flow to generate the states of the power system. To obtain

time-series data, we run the power flow to generate voltage

data over a year.

In this simulation, we considered three common outage

scenarios:

1) Mesh networks. In this system, after an outage, most

buses will not have zero voltages because they can re-

ceive power from multiple branches. This outage scenario

usually happens in urban areas.

2) Radial networks with high DER penetrations. In this case,

some buses will be disconnected from the main grid.

However, they are still powered by DERs and thus, their

voltages will not be zero. This outage case is a typical

scenario in residential areas.
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3) Radial networks without DERs. In this case, when a line

outage occurs, some buses will be disconnected from

the main grid and have zero voltage magnitudes. These

smart meters stop to transmit measurements, but they

send last gasp messages before disconnecting from the

grids. Therefore, we can set measurements from all smart

meters that send last gasp message zero. Because the bus

voltages have no variation after outages, our method can

quickly detect and localize this type of outage.

When multiple induction motors are presented in distribu-

tion grids, residual voltages may exist after the terminal buses

disconnect from the main grid [32]. If the residual voltage

is above smart meter measurement threshold and lasts for

a certain period of time (e.g., a few minutes to an hour,

depending on the smart meter sampling frequency), the outage

case is similar to outage scenario 2 above. If the residual

voltage is below the measurement threshold, smart meters may

not report measurements. In this case, smart meters send last

gasp signals and the outage detection case is similar to the

outage scenario 3 above.

A. Outage Detection in Mesh Distribution Grids

Figure 6 illustrates the complementary posterior probability

1−P (H1|∆v
1:N ) for detecting two line outages in a loopy 8-

bus system (Fig. 4) based on voltage magnitude data ∆|VS |. In

this test, branches 3±4 and 2±6 have outages. The false alarm

rate is 10−6. For the complementary posterior probability,

the threshold is α = 10−6. To have a better understanding

of how our proposed outage detection algorithm works, we

assign a uninformative parameter for the prior distribution, i.e.,

ρ = 10−4. The outage time is λ = 21. When the parameters

of post-outage distribution are known, the complementary

posterior probability immediately drops below the threshold

at N = 21. When the parameters are unknown, one more

time step is required to achieve detectable probability. Since

the voltage magnitudes are collected every hour, the additional

delay is one hour when the outage pattern is unknown.

We want to highlight that although the delay is one hour,

customers do not experience power outage because of the mesh

structure. Later, we show that we can reduce the latency by

increasing the sampling frequency of smart meters.

In Fig. 7, the expected delay divided by | log(α)| is plotted

as a function of | log(α)| for two cases: f is known and f is

unknown. The choices of abscissa and ordinate are motivated

by Lemma 2. Specifically, the asymptotically optimal detection

delay in Lemma 2 can be rewritten as:

D(τ)

| log(α)|
=

1

− log(1− ρ) +DKL(f∥g)
.

For a particular outage pattern, the KL distance between

the pre-outage distribution g and the post-outage distribution

f is fixed. Additionally, if the prior distribution is known,

− log(1− ρ) +DKL(f∥g) is a constant. Hence, the detection

delay D(τ) becomes a function of probability of false alarm α.

Plotting the relationship between | log(α)| and
D(τ)

| log(α)| helps

to explore the asymptotic property of the proposed algorithm.

We also show the limiting value of the normalized asymptotic

optimal detection delay 1/(− log(1−ρ)+DKL(f∥g)) in Fig. 7.

5 10 15 20 25 30
Time (N)

100

10−5

10−10

1
−

P
 (

  
 1

|∆
v

1
:N

)

Known post-outage distribution (Benchmark)
Unknown post-outage distribution
Threshold α

Fig. 6. Complementary posterior probability for outage detection. The
branches 3±4 and 2±6 have outage. α = 10−6, ρ = 10−4.
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against | log(α)| for outage detection

for loopy 123-bus system. False alarm rate α ranges in [0.5, 10−20]. Branch
73±74 has an outage.

All plots are generated by Monte Carlo simulation over 1,000

replications. In this simulation, the prior distribution of outage

time λ has a geometric probability distribution with parameter

ρ = 0.04. The start time of test is randomly selected within

one year. In Fig. 7, our approach, which learns the parameters

of the post-outage distribution from voltage measurements, has

identical performances as the optimal method that knows f .

Also, our approach can achieve the optimal expected detection

delay asymptotically. As shown in Fig. 7, when the false alarm

rate α is small, our approach can report the outage immediately

(i.e., detection delay is less than one hour), which can signifi-

cantly reduce the impacts of power outages. In [33], an optimal

change-point detection approach is proposed to identify line

outages in transmission grids using PMU data. Although the

grid type is different, our method has similar performance

as [33] and both converge to the asymptotical detection delay

bound 1/(− log(1−ρ)+DKL(f∥g)). Specifically, for the loopy

123-bus system, with α = 10−5, our algorithm needs 4.89 time

steps to detect outages by using ∆|VS |. The algorithm in [33]

uses ∆VS for outage detection and requires 4.91 time steps to

detect outages. Hence, both methods need the same amount of

data for detecting outages but our method only requires smart

meter data.
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B. Outage Detection in Radial Distribution Grids with DERs

In a radial distribution grid, a line outage will lead to several

isolated islands. However, with integration of DERs, such as

solar panels and batteries, some buses can still receive power.

In mesh systems, the continuous power supply from DERs also

make outage detection difficult. In this section, we simulate

the line outage in IEEE 8-bus and 123-bus systems and

six European medium- and low-voltage distribution systems

based on voltage magnitude data [18], [20]. Similar to the

previous section, we randomly select the start time within one

year. Also, we select a few buses in the distribution grid to

have solar power generation with a battery as storage. Thus,

there is power supply during the entire day. If the battery

is unavailable, the outage can be directly detected when the

nodal voltages are zero. For the solar panel, we use the

power generation profile computed by PVWatts Calculator,

an online application developed by the National Renewable

Energy Laboratory (NREL) [34]. The solar power generation

profile is computed based on the weather history in North

California and the physical parameters of ten 5 kW solar

panels. The power factor is fixed as 0.90 lagging, which

satisfies the regulation of many U.S. utilities [35] and the IEEE

standard [36].

Table I summarizes the average detection delay in eight

distribution grids with 14 configurations. In each network, we

compare the detection performance between voltage magni-

tude and phase (∆VG) and voltage magnitude only (∆|VG |).
We choose ∆VG with 1 minute sampling rate to demonstrate

the relatively faster metering speed and compare to ∆VG

with 1 hour for normal smart meters data. We use a linear

interpolation method to generate the 1 minute data from the

hourly power profile. Although the sampling frequencies are

different, the additional amount of voltage magnitude data for

TABLE I
AVERAGE DETECTION DELAY (TIME STEP) OF LINE OUTAGE DETECTION

IN DISTRIBUTION GRIDS WITH DERS. α = 10−5 . THE POST-OUTAGE

DISTRIBUTION f IS UNKNOWN.

System Total Total ∆VG ∆|VG |
Branches DER (1 min) (60 min)

8-bus 7 8 0.12 0.12
8-bus, 2 loops 9 8 0.13 0.15
123-bus 122 12 3.62 4.77
123-bus, 2 loops 124 12 3.53 4.89
LV suburban 114 10 2.81 5.00
LV suburban 114 20 2.99 5.00
LV suburban 114 33 3.23 5.00
LV suburban mesh 129 33 4.95 5.83
15 loops
MV urban 34 7 1.11 2.02
MV urban 35 7 1.11 1.29
switch 34±35, 1 loop
MV urban 37 7 1.12 1.29
3 switches, 3 loops
MV two stations 46 10 0.92 1.33
MV two stations 48 10 0.87 1.35
2 switches, 2 loops
MV rural 116 20 1.13 2.44
MV rural 119 20 1.98 3.01
3 switches, 3 loops
Urban 3237 300 11.89 29.23
LV large, 465 loops 4030 300 33.29 88.40

outage detection is relatively small (1±3 time steps) for most

networks. This highlights that using voltage magnitude can

achieve a similar detection performance as using both voltage

magnitude and phase angles. Compared with the distribution

grid line outage identification method proposed in [37], our

approach needs fewer samples with the same probability of

false alarm. For the IEEE 123-bus system, which is a radial

network, our algorithm has a detection delay of 4.77 time

steps using ∆|VS | with α = 10−5 and the method in [37]

has a delay of 10.45 time steps with the same α. A note is

that we do not optimize sensor placement for the approach

in [37], which may reduce detection delay. Also, the method

in [37] can only be applied to radial networks but ours can be

deployed to both radial and mesh grids.

For large-scale distribution grids, we need more data to

detect outages when only voltage magnitudes are available.

The reason is the dimension of the covariance matrix is high

and more data are needed for accurate estimation. When

some grid topology information is known, this issue can be

addressed by decomposing the covariance matrix since the

distribution grid is usually sparse. For example, in the MV

distribution grid presented in Fig. 8, there are multiple LV

distribution grids and each of them is connected via a common

MV grid. Therefore, we only need to identify outage within

each LV grid and apply another outage detector for the MV

grid. Such ways can help reduce computational complexity.

Another case is that we can split the grid into different clusters

when a detailed topology is available. In Fig. 9, we can apply

outage identification to each cluster for buses and, hence,

reduce the dimension of covariance matrix.

0 5 km

Fig. 8. A rural median voltage distribution grid (MV rural) [20]. Each color
represents one medium voltage branch. The dots represent the substations and
the low voltage grids are connected via these substations.

Roof-top solar power generation can highly correlate within

one LV distribution grid and may jeopardize Assumption 1.

To validate our algorithm in this scenario, we use data from

Pecan Street [38], which contains hourly load measurements

for 345 houses with roof-top PV integrations in Austin, Texas.

Measurements include both power consumption and renewable

generation. Table II summarizes the average detection delay

using Pecan Street data for both radial and mesh distribution

grids. Compared with results of the same grid in Table I, we

do not observe any major performance degradation. Hence, the

results in Table II demonstrate that our proposed algorithm can

be applied to high-penetration grids.
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Fig. 9. A suburban low voltage network (LV suburban) [20].

TABLE II
AVERAGE DETECTION DELAY (TIME STEP) OF LINE OUTAGE DETECTION

USING PECAN STREET DATA. α = 10−5 . THE POST-OUTAGE

DISTRIBUTION f IS UNKNOWN.

System Total Total ∆VG ∆|VG |
Branches DER (1 min) (60 min)

123-bus 122 12 2.91 5.05
123-bus, 2 loops 124 12 3.37 4.59
LV suburban mesh 129 33 5.08 5.70
15 loops
MV urban 34 7 1.28 3.11

C. Line Outage Localization

When a branch has an outage, the conditional correlation

defined in (12) becomes zero. Fig. 10 shows the absolute

conditional correlation |ρi,j | of the loopy 8-bus system in

Fig. 4 after branch 3±4 and branch 2±6 have outages. The red

boxes indicate the branches that have outages. When the post-

outage distribution f is known, the true Σ1 is used to compute

the conditional correlation. Comparing Fig. 10(a) and 10(b),

clearly, the absolute conditional corrections of outage branches

change to zero after outages. The diagonal terms are the

self-correlation and equal to one. This observation indicates

that this proposed outage localization method is sensitive to

outages and validates our proof in Theorem 1. When f is

unknown, by comparing Fig. 10(a) and 10(c), we can still

identify outage lines. Therefore, the proposed method can still

localize out-of-service branches as accurately as the optimal

approach.

D. Sensitivity to Data Resolutions

The ªADRES-Conceptº project load profile [21], [22] is

used to understand the proposed approach’s sensitivity to data

resolution. This data set contains real and reactive power

profiles of 30 houses in Upper-Austria. The data were sampled

every second over 14 days. The voltage data are generated

using a subset of LV suburban mesh grid with 33 DERs

integrated. To simulate the damage patterns, we randomly set

two branches to be out-of-service. Fig. 11 shows the average

detection delay with different data resolutions. The results are

produced using Monte Carlo simulation over 1,000 replica-

tions. We can see that with the increase of data resolution,

the average detection delay is decreased. The reason is the

distribution change is more significant when data resolution
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Fig. 10. Absolute conditional correlation of 8-bus system before (a) and
after (b & c) an outage (Branches 3±4 and 2±6).

is large. However, for the absolute detection time delay, high

resolution data sources require less time. For example, only

5 seconds are needed to detect outages when the sampling rate
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Fig. 11. The average detection delay with different data resolutions. α =
10−5.

is 1 second. As the sampling frequency is reduced, less data

samples are required for detection. When the sampling rate is

1 minute, the proposed algorithm needs less than 3 minutes

to detect outages. When the sampling rate is 30 minutes and

one hour, the average detection delay is zero. Therefore, the

major bottleneck of detection delay is the sampling period.

As discussed in Section IV, the computational complexity of

both outage detection and localization only depend on the grid

size. The computational time of a grid with less than 200

buses is within 10 seconds. Most smart meter systems have a

sampling rate between 1 minute and 1 hour today. Hence, our

algorithm can immediately detect the outage when the post-

outage measurement is available.

E. Sensitivity to Data Accuracy

Smart meter measurements are usually noisy. Thus, the

analysis of our algorithm under different levels of measure-

ment noise is critical for understanding performance in a real-

world scenario. In the U.S., ANSI C12.20 standard (Class

0.5) permits utility smart meters to have an error within ±
0.5% [39], [40]. The standards in other countries have similar

requirements, e.g., [41]. Table III shows the average detection

delay with different noise levels over 1,000 iterations. The

simulation setup is identical to the one in Section V-A and V-B.

Hence, data resolution is one hour. When the noise level is

less than 0.1%, detection delay is similar to detection delay

of noiseless measurements. Since most measurement noises

are zero-mean additive noise and we use the measurements’

sufficient statistics for outage detection, the noise only impacts

the estimation of a covariance matrix. When noise level is

0.2%, one more data point is needed for detection.

TABLE III
AVERAGE DETECTION DELAY (TIME STEP) OF LINE OUTAGE DETECTION

WITH DERS UNDER DIFFERENT NOISE LEVELS. α = 10−5 . THE

POST-OUTAGE DISTRIBUTION f IS UNKNOWN. ONLY VOLTAGE

MAGNITUDES ∆|VS | ARE USED.

Noise level LV suburban mesh MV rural

0% 5.83 1.29
0.05% 5.42 1.32
0.1% 6.22 1.83
0.2% 7.90 2.53

Other types of device malfunctions may also impact algo-

rithm performances. For example, if the smart meter is not

well calibrated, it may consistently produce measurements that

lack precision and accuracy. For the proposed method, rather

than directly use the raw measurements, we use sufficient

statistics of data, e.g., mean and variance, for outage detection.

Thus, if a systematic error persists across all measurements,

our algorithm can still report outages. The anomaly data can

degrade the performance of our proposed algorithm because

the underlying data statistics may change due to non-outage

events. There are multiple ways to minimize impacts. For

example, data cleansing can be applied before processing data

for outage identification. Also, we can reduce the probability

of false alarm α to increase the confidence of outage report.

F. Short-circuit Faults Identification

Besides line outages, another category of fault in distri-

bution grids is short-circuit faults. In this subsection, we

simulate the short-circuit fault in the radial IEEE 123-bus

system via CYME power system analysis software. Fault

scenarios are summarized in Table IV. In short-circuit fault

analysis, the data collected before n = 20 are pre-fault and

the measurements collected after n = 20 are post-fault. As

TABLE IV
SHORT-CIRCUIT FAULT TYPES IN THE RADIAL IEEE 123-BUS SYSTEM

Branch Fault Type Detection Delay
(Time Step) D(τ)

67-160 Single line-to-ground fault (LG) 0.9
on phase A

67-160 Line-to-line fault (LL) 0.5
on phase AB

67-160 Double Line-to-ground fault (LLG) 0
on phase AB

67-160 Three-phase short-circuit fault (LLL) 0
67-160 Three-phase-to-ground fault (LLLG) 0
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Fig. 12. Nodal nominal voltage measurements in per unit for different fault
types in the radial IEEE 123-bus system.
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plotted in Fig. 12, the means of voltage magnitudes |V [n]|
change significantly after faults. For fault type LG, LL, and

LLG, the nodal nominal voltages drop to a non-zero value.

These fault types are similar to the outage scenario 1, which

we discussed earlier in this section. As shown in Table IV,

less than one time step is needed to detect these faults. As

the reference, to detect line outage between bus 67 and bus

160, the proposed algorithm has zero detection delay. For LLL

and LLLG, the nodal nominal voltages drop to zero. Thus,

the detection case is similar to the outage scenario 3. Our

algorithm can immediately detect faults after they occur.

VI. CONCLUSION

In this paper, we propose a new approach to automati-

cally detect and identify outages in urban distribution grids

with high renewable penetration. Specifically, we develop a

stochastic modeling of nodal voltage data stream and propose

a change point detection approach based on the probability

distribution changes due to outage events. As a highlight, un-

like existing approaches, our method is applicable to existing

distribution grids because we require neither the grid topology

nor the outage pattern as a prior. Also, we only need smart data

measurements to achieve optimal detection performance. In

addition to outage detection, we provide theoretical proof that

optimal out-of-service branch identification can be achieved

due to the conditional independence of voltages based on

power flow analysis. We verify the proposed algorithm on

eight mesh and radial distribution grid systems with and

without DERs. From extensive simulations, our algorithm can

perfectly detect and identify outages in a short time, with and

without the integration of DERs.

There are multiple future works that can further enhance the

proposed algorithm. For example, as discussed in Section V-B,

the computationally complexity of line outage detection scales

up with the growth of grid size. A distributed or decentralized

approach may reduce the computational efforts. Additionally,

we discuss the impact of measurement noise, systemic errors,

and anomaly data in this paper. However, other types of

data quality issues may also degrade performance, such as

missing data and fixed-point measurements. How to handle

these practical scenarios requires further investigation. In this

paper, we focus on detecting and localizing a line outage

event. Identifying fault types that cause line outages is also an

interesting research direction. At last, dynamic topology esti-

mation and switch status identification share some similarities

with the proposed out-of-branch localization method, but also

have more rigorous requirements. How to apply the proposed

out-of-branch localization method to estimate topology is a

direction of future studies.
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APPENDIX

A. Proof of Lemma 3

Proof: To apply the maximum likelihood method, we

need to compute the partial derivative of the posterior prob-

ability P (H1|∆v
1:N ). Unfortunately, P (H1|∆v

1:N ) is not

a convex function and we may have multiple estimates. To

address this challenge, we will provide an approximation of

the posterior probability P (H1|∆v
1:N ). Specifically, the log-

probability logP (H1|∆v
1:N ) is

logP (H1|∆v
1:N )

= logC + log

{
N∑

k=1

π(k)
k−1∏

n=1

g(∆v[n])
N∏

n=k

f(∆v[n];Θ)

}
,

(13)

where Θ = {µ1,Σ1} represents the unknown parameters

of f . In (13), the term within the braces is an expectation

of
∏k−1

n=1 g(∆v[n])
∏N

n=k f(∆v[n];Θ) over the prior distri-

bution π, Eπ(
∏k−1

n=1 g(∆v[n])
∏N

n=k f(∆v[n];Θ)). Also, the

logarithmic function is convex. Therefore, we can apply the

Jensen’s inequality [42] to approximate logP (H1|∆v
1:N ):

logP (H1|∆v
1:N ) ≥ logC+

N∑

k=1

π(k)

(
k−1∑

n=1

log g(∆v[n]) +
N∑

n=k

log f(∆v[n];Θ)

)

= P̃ (H1|∆v
1:N ). (14)

Since g and f are Gaussian distributions, (14) can be written

as

P̃ (H1|∆v
1:N ) = logC +

N∑

k=1

−π(k)

2

·

( k−1∑

n=1

log |2πΣ0|+ (∆v[n]− µ0)
TΣ−1

0 (∆v[n]− µ0)

+
N∑

n=k

log |2πΣ1|+ (∆v[n]− µ1)
TΣ−1

1 (∆v[n]− µ1)

)
.

Since P̃ (H1|∆v
1:N ) is convex, we can estimate µ1 by setting

∂P̃ /∂µ1 = 0. Specifically, we have

∂P̃ (H1|∆v
1:N )

∂µ1
=

N∑

k=1

−π(k)

2

N∑

n=k

(∆v[n]− µ1)Σ
−1
1 = 0.

Since
N∑

n=k

(∆v[n]− µ1) =

(
N∑

n=k

∆v[n]− (N − k + 1)µ1

)
,

the estimate of µ1 is

µ̂1 =

∑N

k=1 π(k)
∑N

n=k ∆v[n]
∑N

k=1 π(k)(N − k + 1)
.

For the covariance matrix Σ1, the partial derivative is

∂P̃ (H1|∆v
1:N )

∂Σ1
=

N∑

k=1

−π(k)

2

(
N∑

n=k

S[k]− (N − k + 1)Σ1

)

where S[k] =
∑N

n=k(∆v[n] − µ1)(∆v[n] − µ1)
T. Letting

µ1 = µ̂1 and ∂P̃ (H1|∆v
1:N )/∂Σ1 = 0, the covariance matrix

estimate is

Σ̂1 =

∑N

k=1 π(k)S[k]∑N

k=1 π(k)(N − k + 1)
.
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