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RFTemp : Monitoring Microwave Oven Leakage to Estimate Food
Temperature
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Microwave ovens have been widely used in recent years to heat food quickly and efficiently. Users estimate the time to
heat the food by prior knowledge or by trial and error process. However, this often results in the food being over-heated
or under-heated, destroying the nutrients. In this paper, we present RFTemp, a system that can monitor microwave oven
leakage to estimate the temperature of the food that is being heated and thus estimate the accurate time when the food has
reached the targeted temperature. To design such a system, we propose an innovative microwave leakage sensing procedure
and a novel water-equivalent food model to estimate food temperature. To evaluate the real-world performance of RFTemp we
build a prototype using software defined radios and conducted experiments on various food items using household microwave
ovens. We show that RFTemp can estimate the temperature of the food with a mean error of 5◦𝐶 , 2x improvement over
contactless infrared thermometer and sensors.
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1 INTRODUCTION
Over the past few years, advancement in intelligent wireless sensing technologies has improved human interaction
with various household devices and appliances. With the development of various smart sensing applications like
vibration sensing [46, 52], pressure sensing [21], electrical sensing [23, 37, 38], audio sensing [16], temperature
sensing [13], camera-based sensing [19, 20] has allowed us to monitor and control various indoor appliances
to a great extent. However, all such techniques require installation of specific hardware sensors for respective
applications which becomes costly and requires high maintenance.
On the other side, Radio-Frequency (RF) sensing has also been widely used in recent works to leverage

information from the RF environment. Various RF sensing techniques like WiFi, RF identification (RFID), acous-
tics, ultra-wideband (UWB) have been widely used to localize and monitor human activities [34, 42, 49] to
control various indoor smart devices [29, 43, 48]. Even though RF sensing provides a low-cost and ubiquitous
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Fig. 1. (a) Variation of temperature at different thickness levels (0-2cm) for a steak heated for 1 minute. The average
temperature of the food measured after heating is around 15◦𝐶 . Infra-Red (IR) thermometer measured 30◦𝐶 (∼ 15◦𝐶 error),
RFTemp estimated the final temperature 18◦𝐶 (∼ 3◦𝐶 error). (b) Leakage observed by heating 50-250 gm of water for 1
minute in a plastic container. (c) Leakage observed by heating 100 gm of water for 1 minute in different containers. RFTemp
container is the container used to develop our water model described in Sec. 5. The leakage pattern varies across different
weights and containers.

service compared to hardware sensors, it cannot be directly used for physical measurements like humidity and
temperature.

Microwave oven, also referred to as microwave, is one of the most commonly used appliances in household and
commercial kitchens. Recent research suggested that around 13 million microwave ovens have been shipped in
the United States during the year 2019 [8] and around 96% of the households use microwave oven [51]. Microwave
ovens heat and cook food using dielectric heating by exposing food to high-frequency electromagnetic radiation
which is absorbed by polar molecules (like water) in food. Most modern microwave ovens require users to
manually set the cooking or heating time for a particular food. The required time to cook food to a targeted
temperature in a microwave oven depends on factors like the orientation of the food, microwave container
surface area, dimensions and power output of the microwave oven. It also depends on initial temperature of the
food, moisture content, thermal conductivity, and thickness of the food. However, this process requires complex
calculations, and it is not feasible for any user to estimate the correct time to heat or cook the food without
knowing the above-mentioned factors accurately. Users either estimate the time to heat food by prior knowledge
of trial and error technique or keep on checking the temperature of the food and repeat the process until the
target temperature has reached. This process is highly time-consuming and often results in overheating of the
food, destroying nutrients. Research survey [51] shows around 75% of users use the microwave oven more than
thrice a day. Thus, such error in estimation can have a negative impact on human health in a long run.

However, we notice that the above challenge to measure the temperature of the food in the microwave oven has
been researched extensively. Camera-based techniques [5, 6, 15, 17, 31], installation of Infra-Red (IR) temperature
sensors [14, 30, 33, 44], image classification and temperature sensing technique [26, 31], monitoring leakage to
classify food types [50] have successfully addressed the problem to great extent. However, these techniques
mostly need direct contact with the food or require installation of sensors and cameras on the microwave oven
which is not cost-efficient and cannot be installed by users easily. Over that, temperature sensors and thermal
cameras can only measure the temperature of the surface of the food [41]. Fig. 1(a) shows the thermal map after
heating steak for 1 minute. As we can see, with increasing thickness, the temperature decreases from the surface.
Thus, for thick food like meat, the infrared sensors and cameras can result in errors in temperature estimation of
the food as the surface heats faster than inside. Even the machine learning and image processing-based approach
can only successfully classify a given set of food of a particular weight and using a specific container. Fig. 1(b)
shows the leakage observed for different weights of water using a particular microwave container. Fig 1(c) shows
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the leakage observed for 100 gm of water across different containers. As we can see from the figures, the leakages
are quite different across weights and containers. This can severely affect the accuracy of the leakage classification
techniques [50] if not taken under consideration and training models for all such weights, containers, and food
combinations is not realistic.

Fig. 2. Overview of RFTemp sensing microwave power leakage to estimate food temperature.

To address these challenges, in this paper, we present RFTemp, as shown in Fig. 2, an RF sensing system that
can monitor leakage coming out from the microwave oven window to estimate the temperature of the food that
is getting heated. Overall, the paper makes the following contributions:
1) We propose an intelligent RF sensing technique that can retrieve information from the microwave leakage

and directly maps it to the amount of heat absorbed by the food.
2)We propose a novel water-equivalent food model that maps the food properties to an equivalent, known

water model to determine the temperature and the properties of the heated food.
3) We propose a practical error correction technique that makes RFTemp robust to any microwave containers

and distance of measurements.
To the best of our knowledge, we are the first to realize a practical contact-less RF sensing system to measure

the temperature of the food being heated in a microwave oven without any extra hardware installation and can be
integrated easily into existing systems. Table 1 shows the comparison between RFTemp and other state-of-the-art
works.

Table 1. Comparison with other works

Work
Contactless
temperature
sensing

Hardware
installation

Robust to
containers and
ovens

Robust to food
with different
thickness and
types

Real time
temperature
sensing

E. Belotserkovsky et al. [14]
(IR fiberoptic radiometer) Yes Yes Yes No Yes
G. Cuccurullo et al. [17]
(FLIR camera) Yes Yes No No Yes
June Intelligent Oven [6]
(RTD sensor) No Yes Yes Yes Yes
T.Khan [26–28]
(IR temperature sensors) Yes Yes No No Yes
W. Wei et al. [50]
(Microwave leakage
and Machine Learning) No No No No No
RFTemp (Fig. 2)
(Microwave leakage sensing)
(Proposed) Yes No Yes Yes Yes
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2 RELATED WORK

2.1 Thermal Imaging Based Techniques
Thermal imaging-based techniques have been well researched in recent years to estimate the temperature of the
food in the microwave oven in real-time. Works like [15, 28] uses Forward-Looking InfraRed (FLIR) camera-based
techniques to produce thermal imaging of the microwaved food. In [17], thermaCAM flir P65 camera was used to
perform contactless thermal imaging of the food surface. [6] uses High-Definition (HD) camera to predict the
cooking time of some predefined food items. All these works require the installation of cameras and sensors in
the microwave ovens which is not cost-efficient and cannot be implemented easily on commercial microwave
ovens. Low-cost thermal imaging techniques like temperature sensing using a Charge-Coupled Device (CCD)
camera is proposed in [31] to sense the temperature inside the microwave oven. However, such techniques may
not have high accuracy.

2.2 Temperature Sensor Based Techniques
Various temperature sensing techniques are used in recent works to measure the temperature of the food inside
the microwave oven in real-time. However commercial low-cost temperature sensors can be highly affected
by the electromagnetic radiations inside the microwave oven and cannot be used. Fiber optic sensors have
been commonly used in such settings as they are not affected by such radiations [45]. However, such sensors
require direct contact with the food, which is not hygienic and require cleaning before using every time. For
contact-less sensing, [14] proposed an Infra-Red (IR) fibroptic temperature sensor to measure the temperature of
the food. However, such techniques require the sensors to be placed very close to the sample and require extensive
calibration. Works like [30, 33, 44] use feedback and control techniques using infrared sensors, cameras, and
network analyzers to optimize the microwave heating. Such techniques cannot be implemented in commercial
microwave ovens easily. Resistance temperature detector (RTD) sensor probes are used in [6], but such techniques
require physical contact of the sensor probe to the food. Works like [26] used IR temperature sensor, [27] used
8X8 IR temperature sensors grid to measure the temperature of the food inside microwave oven. The sensors
are placed on the oven roof with a 4mm hole inside the cavity to receive the IR signals. The electromagnetic
radiations (wavelength ∼ 120 mm) cannot pass through the 4mm hole thus cannot affect the sensors. These
sensors measure the surface temperature of the food only and will result in wrong estimations in thicker foods
like meat.

2.3 Image Classification Techniques
Recent works also used image classification models to identify different food items and recommend temperature
based on previous knowledge. In [26], an HD camera is used to take food pictures, and a histogram-based
classification technique is used to identify the food. However, such techniques are highly dependent on the
microwave-container color and the food color, which makes it difficult to implement on everyday food items.
Convolution Neural Network (CNN) model is used in [28] to classify food images and recommend heating
temperature based on previous knowledge. But this technique is also prone to erroneous classification for
different container colors and shapes. A median filter approach is proposed in [31] to classify thermal images
using a low-cost CCD camera. However, such techniques are not accurate on complex food items. [6] use an HD
camera for capturing high definition images but can only classify a few predefined foods.

2.4 Microwave Leakage Classification
Microwave oven leakage has been used in recent work to classify different food items that are being heated
[50]. However, such classification is not robust to different weights of food, container shape and size and can
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only classify few predefined tested food. Training models for various such combinations is not realistic and time
consuming.

3 MOTIVATION
Typical household microwave ovens operate at a frequency of 2.45 GHz with a bandwidth of only a few MHz
[47]. They use a high-powered vacuum tube called magnetron [10] that converts the electrical input of the oven
into a microwave signal that oscillates at 2.45 GHz. A wave-guide directs these signals from the magnetron into
the metal cooking chamber of the microwave oven where it creates an alternating electromagnetic field [47].
In a microwave oven, the electrically bipolar molecules present in the food (like water) absorb most of these
microwaves by a process called dielectric heating [11] and causes molecular vibration, which eventually results
in heating the food. The important components of microwave heating are as follows:

3.1 Power Absorbed by Dielectric Material
The average power absorbed (𝑃𝑎𝑏𝑠 𝑊𝑎𝑡𝑡𝑠/𝑚3) by a dielectric of volume 𝑉 is given by Eq. 1 [18], where 𝜔 is the
angular frequency of microwave, 𝜖0 = 8.8542 ∗ 10−12𝐹/𝑚 is the permittivity of free space, 𝜖 ′′

𝑒 𝑓 𝑓
is the effective loss

factor of the dielectric and 𝐸 is the microwave electric field.

𝑃𝑎𝑏𝑠 = 𝜔𝜖0𝜖
′′

𝑒 𝑓 𝑓
𝐸2𝑉 (1)

To be noted that 𝑃𝑎𝑏𝑠 is the prime source of microwave heating that dissipates in the food.

3.2 Permittivity
The interaction of the dielectric with the electric field is characterized by its permittivity (𝜖). The permittivity of a
dielectric is expressed by Eq. 2 [18], where 𝜖0 is the permittivity of free space and 𝜖𝑟 is the relative permittivity of
the material. The 𝜖𝑟 is a complex term and can be expressed by a real part (𝜖 ′) also known as dielectric constant
and an imaginary part (𝜖 ′′

𝑒 𝑓 𝑓
) as shown in Eq. 3.

𝜖 = 𝜖0𝜖𝑟 (2)

𝜖𝑟 = 𝜖
′ − 𝑗𝜖

′′

𝑒 𝑓 𝑓
(3)

𝜖
′′

𝑒 𝑓 𝑓
measures the losses when electromagnetic radiations are absorbed by the dielectric and 𝜖 ′ determines lossless

storage and how much radiation is reflected at the surface of the dielectric. Permittivity is an important measure
of the property of the food. However, permittivity is temperature dependent and in most of the foods it decreases
with increase in temperature [18].

3.3 Penetration Depth
Power penetration depth or simply the penetration depth 𝛿𝑝 of dielectric material is the measure of how far
the electromagnetic fields can penetrate the material before it gets attenuated to one-third of its value on the
surface [18]. Thus, food with a thickness smaller than 𝛿𝑝 absorbs the radiation uniformly compared to a thick
food. The penetration depth can be expressed by Eq. 4 [3, 18], where 𝜆 is the wavelength of microwave signal
and 𝜖 ′ >> 𝜖

′′

𝑒 𝑓 𝑓
which is valid for most of the food materials. With increase in temperature 𝛿𝑝 decreases as 𝜖 ′

decreases.

𝛿𝑝 = (𝜆/2𝜋) (
√
𝜖
′/𝜖 ′′

𝑒 𝑓 𝑓
) (4)
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Fig. 3. (a) RF leakage around microwave oven. Maximum leakage occurs around 6 cm from the front door panel. (b) Simplified
block diagram of RFTemp. (c) Typical microwave leakage observed for 60 secs for oil and milk.

3.4 Reflection Coefficient
When the microwaves hit the dielectric material, a part of it gets reflected, and a part penetrates the material.
Permittivity is directly proportional to the square of the refractive index [47]. Thus using Eq. 4, we can say,
penetration depth is inversely proportional to the square the complex part of the refractive index of the medium
[47]. On the other hand, theoretical power-reflectance or the reflection coefficient is directly proportional to
the refractive index of the material [18]. Thus, 𝛿𝑝 is indirectly related to reflection coefficient. Shallower the
penetration depth, more is the reflection. Thus, with an increase in temperature, as penetration depth decreases,
the reflection coefficient increases.

All these parameters play an important role in determining the temperature of the food getting heated in the
microwave oven. However, to measure these properties explicitly, we require specialized instruments and direct
access to the microwave oven food chamber. These can be highly dangerous as microwave radiation inside the
food chamber is hazardous to human health and can cause damage to other electrical instruments [18]. Moreover,
the food chamber acts as a Faraday cage that attenuates most of the electromagnetic radiation escaping from the
oven [4]. United States Federal standard limits the amount of microwaves that can leak from an oven throughout
its lifetime to 5 milliwatts (mW) of microwave radiation per square centimeter at approximately 2 inches from
the oven surface. Thus a very small portion of the RF waves is able to penetrate through the microwave oven
walls which makes the RF sensing highly difficult.

RFTemp addresses this challenge by proposing an intelligent sensing technique to retrieve useful information
from the microwave leakage. Details of the process are described in Section 5.

4 OVERVIEW
Fig. 3(a) shows a heat map of the microwave leakage power around the microwave oven. As we can see, the
maximum leakage occurs through the front-door panel of the microwave oven and, it gets attenuated with
increasing distance. Even though microwave oven (operating at 2.45 GHz) shares the same RF spectrum as other
household applications like WiFi, Bluetooth, however, the power density of these applications are several times
smaller than the measured microwave leakage and thus causes no interference. RFTemp leverages this leakage
in real-time to estimate the temperature of the food in the microwave oven. Fig. 3(b) shows the overall system
design of RFTemp. Fig. 3(c) shows a typical leakage pattern observed by RFTemp while heating 100 gm of milk
and oil respectively in the microwave oven for a duration of 1 minute. As we can see from the figure, the power
leakage value varies in intervals of ∼ 15 secs which is equivalent to one cycle duration of the turntable plate
in the microwave oven [50]. Moreover, the leakage is different for oil and milk. We use this time varied power

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 144. Publication date: December 2021.



RFTemp : Monitoring Microwave Oven Leakage to Estimate Food Temperature • 144:7

leakage pattern to evaluate the food property and estimate the temperature of the food in the microwave oven.
Details are described in Sec. 5.

5 DESIGN
In this section, we discuss the details of RFTemp.

Fig. 4. Design overview

Fig. 4 shows the different stages of RFTemp design model. The first stage uses fundamental concepts of
electromagnetic radiation to develop a simplified measurable power absorption variable. To estimate the power
absorption and to find a relation with the microwave oven leakage, RFTemp introduces a novel water model.
Based on the microwave absorption basis and experiments on water with different weights, the water model
defines four different experimental parameters. Using these trained parameters, our system maps the leakage
observed to the power absorbed by the food inside the microwave oven and develops experimental properties of
water. These together make the training phase of our design model. The last part of our design model uses these
trained water model parameters and the real time microwave oven leakage to estimate the temperature of the
food. Each of these blocks are discussed in detail in this section.

5.1 Microwave Power Absorption Basis
As we have seen in Eq. 1, the power absorbed by any food in a microwave oven depends on the electric field
strength 𝐸 inside the oven. It is difficult to directly estimate this electric field strength as we have no access to the
food chamber. RFTemp utilizes the fundamental concepts of electromagnetic radiation to solve this challenge. We
develop a simple model assuming the electromagnetic radiation in microwave oven as plane waves in free space.
Later in Sec. 5.2 we fit this simple model’s parameter using experimental measurements.
As we know, the energy associated with the electromagnetic wave is the sum of the energies of the electric

and magnetic fields as shown in Eq. 5, where 𝑢 is the energy per unit volume or total energy density and 𝑢𝑒 and
𝑢𝑏 are the energy density of electric field and magnetic field respectively.

𝑢 = 𝑢𝑒 + 𝑢𝑏 (5)

We can rewrite Eq. 5 based on [32, 36] as

𝑢 =
1
2
𝜖0𝐸

2 + 1
2𝜇0

𝐵2 (6)
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Since 𝐸 = 𝑐𝐵 = 1√
𝜖0𝜇0

𝐵, where c is the speed of light,

𝑢 = 𝜖0𝐸
2 (7)

where 𝐸 and 𝐵 are the electric and magnetic field strengths respectively, 𝜖0 is the permittivity of free space and
𝜇0 is the permeability of free space. Thus, the energy flux (S) associated with the wave can be represented as

𝑆 = 𝑢𝑐 = 𝜖0𝑐𝐸
2 (8)

The power per unit area (A) is the time average of this energy flux (S). Thus from Eq. 8 we can write,

𝑃

𝐴
=
1
2
𝜖0𝑐𝐸

2 (9)

Thus, for a microwave oven with an average surface area of 𝐴𝑎𝑣𝑔 and output power of 𝑃𝑚𝑖𝑐𝑟𝑜 (∼1000 Watt), we
can write Eq. 9 as

𝑃𝑚𝑖𝑐𝑟𝑜 =
1
2
𝜖0𝑐𝐸

2𝐴𝑎𝑣𝑔 (10)

Based on the above derivation we can rewrite Eq. 1 as

𝑃𝑎𝑏𝑠 =
4𝜋
𝜆
𝜖
′′

𝑒 𝑓 𝑓

𝑉𝑓 𝑜𝑜𝑑

𝐴𝑎𝑣𝑔

𝑃𝑚𝑖𝑐𝑟𝑜 (11)

where, 𝜔 = 2𝜋𝑐
𝜆
, 𝜆 is the wavelength of electromagnetic radiation. 𝑃𝑎𝑏𝑠 now depends on measurable variables

and can be estimated. However, it is to be noted that 𝑉𝑓 𝑜𝑜𝑑 here is the volume of the food exposed to microwave
radiation uniformly, that is, the thickness of the food is less than the penetration depth of the microwave signals.

5.2 Water Model
Even though Eq. 11 helps us to estimate the power absorbed by the food inside a microwave oven, it is difficult to
explicitly measure both 𝑉𝑓 𝑜𝑜𝑑 and 𝜖 ′′

𝑒 𝑓 𝑓
. This is because different types of food have different penetration depths

due to their complex permittivity. Similarly, the 𝜖 ′′
𝑒 𝑓 𝑓

term is dependent on the constituents of food like protein,
fat, carbohydrate, and water. Thus estimating these factors for everyday food is not trivial. Moreover, it is not
clear how the leakage observed through the microwave door is related to the power absorbed by the food. To
address these challenges, we propose a water model to estimate the 𝑃𝑎𝑏𝑠 directly from the microwave leakage
observed over time.

We conducted series of experiments with the weight of water ranging from 50-500 gm (at room temperature).
We placed the receiver antenna (Rx) of the RFTemp at a 6 cm distance from the center of the microwave oven
front door to measure the power leakage pattern 𝑟 (𝑡) for each load of water microwaved for 15 secs duration. We
physically measured the initial and final temperature of the water with a food thermometer. Most of the recent
microwave oven has a turntable cycle of 15 secs. So the training interval for RFTemp was chosen to be 15 secs.
However, this can be further reduced to a time less than 15 secs. Based on these experiments we defined the
following terms.

5.2.1 Power Amplification Factor (𝛼) . From Eq. 11 we know 𝑃𝑎𝑏𝑠 <= 𝑃𝑚𝑖𝑐𝑟𝑜 . Most of this radiation that is not
absorbed by the food (𝐸𝑙𝑒𝑎𝑘𝑎𝑔𝑒 ) escapes through the front panel of the microwave oven after getting attenuated.

𝐸𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = (𝑃𝑚𝑖𝑐𝑟𝑜 − 𝑃𝑎𝑏𝑠 ) × 𝜏 = 𝐸𝑚𝑖𝑐𝑟𝑜 − 𝐸𝑎𝑏𝑠 (12)

where 𝜏 is the time duration in seconds and 𝐸𝑙𝑒𝑎𝑘𝑎𝑔𝑒 is the total leakage energy observed, and 𝐸𝑎𝑏𝑠 is the total
energy absorbed for 𝜏 secs. Fig. 5(a) shows a typical power leakage pattern, 𝑟 (𝑡), observed for 𝜏 = 60 secs. Thus
we can write,
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Fig. 5. (a) Power leakage observed by RFTemp for 1 minute by heating 100 gm of water in microwave oven. (b) Experimental
and Theoretical power absorbed per second for different weights of water. (c) Penetration depth correction for different
weights of water.

𝐸𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = 𝛼

𝜏∑
𝑡=0

𝑟 (𝑡) (13)

The power amplification factor (𝛼) maps this leakage observed outside, 𝑟 (𝑡), to the original power leakage
inside the microwave oven. However, to estimate 𝛼 we need to calculate 𝐸𝑎𝑏𝑠 based on Eq. 12 and 13.
Thus using the experimentally measured initial and final temperatures of different weights of water and the

heat capacity relationship ( Eq. 14) we calculated the heat energy absorbed by the equivalent mass of water for 15
secs duration.

𝐸ℎ𝑒𝑎𝑡 (𝑚,𝑇 ) = 𝑃ℎ𝑒𝑎𝑡 (𝑚,𝑇 ) × 𝜏 =𝑚𝑠 (𝑡2 − 𝑡1) (14)
where𝑚 and 𝑠 are the mass and specific heat of water, 𝑡2 and 𝑡1 are the final and initial temperatures and 𝜏 = 15
secs. 𝐸ℎ𝑒𝑎𝑡 is dependent on mass and temperature difference of the water. The blue line in Fig. 5(b) shows the
power absorbed per sec by corresponding mass of water. Now 𝐸ℎ𝑒𝑎𝑡 is nothing but 𝐸𝑎𝑏𝑠 for the whole volume of
water. Thus we can express 𝛼 as

𝛼 =
(𝑃𝑚𝑖𝑐𝑟𝑜 − 𝑃ℎ𝑒𝑎𝑡 (𝑚,𝑇 )) × 𝜏∑𝜏

𝑡=0 𝑟 (𝑡)
=
𝐸𝑚𝑖𝑐𝑟𝑜 − 𝐸ℎ𝑒𝑎𝑡 (𝑚,𝑇 )∑𝜏

𝑡=0 𝑟 (𝑡)
(15)

In the above mentioned experimental setup, for 𝜏 = 15 secs, 𝛼 ∼ 150 for all the experiments. Thus it is to
be noted, the power amplification factor depends on experimental variables only like the distance between the
receiver and microwave oven front panel, microwave oven output power, and the microwave container shape.
It is independent of the properties of food. To address these experimental factors, we propose error correction
techniques in Section 5.4.

5.2.2 Penetration Depth Correction (𝛽 (𝑚,𝑇 )) . The red dotted line in Fig. 5(b)1 shows the theoretical power
absorbed 𝑃𝑎𝑏𝑠 for the same mass of water used for the power amplification factor calculations. 𝑃𝑎𝑏𝑠 is calculated
using Eq 11, where 𝜖 ′′

𝑒 𝑓 𝑓
∼ 10 for water (at room temperature). As we can see from Fig. 5(b), 𝑃ℎ𝑒𝑎𝑡 experimental is

highly uncorrelated with 𝑃𝑎𝑏𝑠 theoretical. The main reason behind this is, as the weight of water increases, the
microwave radiation is not uniformly absorbed. To compensate for this error, we define the penetration depth
correction factor 𝛽 as the ratio between 𝐸𝑎𝑏𝑠 and 𝐸ℎ𝑒𝑎𝑡 , so that both the theoretical and experimental energy
absorbed values map to the same mass of the food.

1In Fig. 5(b), to represent the power in watts we presented the time averaged values.
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Fig. 6. Leakage pattern observed by RFTemp

𝛽 (𝑚,𝑇 ) = 𝐸𝑎𝑏𝑠 (𝑚,𝑇 )
𝐸ℎ𝑒𝑎𝑡 (𝑚,𝑇 ) =

𝑃𝑎𝑏𝑠 (𝑚,𝑇 ) × 𝜏
𝑃ℎ𝑒𝑎𝑡 (𝑚,𝑇 ) × 𝜏 =

𝑃𝑎𝑏𝑠 (𝑚,𝑇 )
𝑃ℎ𝑒𝑎𝑡 (𝑚,𝑇 ) (16)

Fig. 5(c) shows the 𝛽 (𝑚,𝑇 ) variation with different weights of water. It is to be noted that, this factor depends
on the mass (m) and temperature (T) of the food. With increase in temperature 𝑃𝑎𝑏𝑠 decreases as 𝜖

′′

𝑒 𝑓 𝑓
decreases,

thus 𝛽 2 decreases. However, during the training phase for 15 secs, 𝛽 is independent of the temperature factor.
It is only effective while measuring microwave leakage at the end of every 15 secs time slot as explained in
the feedback block in Sec 5.3. 𝛽 is calculated as the ratio between a theoretical quantity and an experimentally
measured quantity. Both of them are independent of the experimental environment so 𝛽 is also independent of
experimental environment.

5.2.3 Reflection Coefficient ( Γ(𝑚,𝑇 ) ) . This experimental coefficient has an indirect relationship with the
penetration depth of the food. Shallower penetration depth results in more reflection of the incident radiation. To
address this factor, we introduce Γ 2, which is measured as the maximum leakage during one cycle of rotation
of the microwave oven turntable (∼ 15 secs). Fig. 6(a) shows a typical leakage pattern observed. It is a realistic
estimation, as the leakage observed is directly proportional to the reflection of the incident wave on the food. To
verify this claim, we experimented on 25 gm of water and an empty microwave.

As shown in Fig. 6(b), when there is no food in the oven there is a nominal leakage. However, in such a situation
the leakage will slowly decrease with time. However, even there is a very small load like 25 gm of water, the
leakage is quite dominant, and we can observe the cyclic pattern which is mainly because of the food present
inside. Thus the leakage observed is related to the reflection of the microwave from the food items to certain
extent. This reflection coefficient corrects for overestimation of the water equivalent of any food, explained in
Sec. 5.3.

Γ(𝑚,𝑇 ) =𝑚𝑎𝑥 (𝑟 (𝑛) : 𝑛 = [0 · · · 15]) (17)
where 𝑛 is measured in seconds and 𝑟 is the leakage observed. As shown in Fig. 6(a), Γ is marked by the

red dotted circles which is the maximum leakage observed in 15 secs interval. Γ is dependent on the mass and
temperature of the food as the leakage pattern is different for different weights of water and with increase in
temperature, reflection coefficient increases as mentioned in previous section. Similar to the penetration depth
correction parameter, Γ varies with temperature after every 15 secs time slot.

2 𝛽 (𝑚,𝑇 ) , Γ (𝑚,𝑇 ) and 𝜎 (𝑚) are represented in many places as 𝛽 , Γ and 𝜎 respectively for simplicity.
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5.2.4 RFTemp Dielectric Coefficient (𝜎 (𝑚)). This parameter is used to measure the experimental dielectric
property of water. It is expressed as the area under the power leakage curve 𝑟 (𝑡). It is an experimental measure of
the food property and how good they can absorb the radiation. We calculated 𝜎 2 for different water experiments
as the leakage pattern is different. We used these as training set. Thus it is dependent on the mass of water. Later
in Sec. 5.3, we verified the accuracy of this parameter.

𝜎 (𝑚) =
𝜏∑
𝑡=0

𝑟 (𝑡) (18)

In Fig. 6(a), the area under curve marked by the red dotted box shows the leakage observed will heating 400 gm
of water for 15 secs. It is to be noted that 𝜎 is an experimental parameter focused for your system.
The parameters 𝛽 , Γ and 𝜎 are measured for weights of water within a range of 50 to 500 gm.

Fig. 7. Detailed block diagram of RFTemp. This flow is repeated every 15 secs.

This phase of defining the water model is called the RFTemp training phase. Using this trained water model as
reference, our system estimates the temperature of the food every 15 secs that is being heated.

5.3 Temperature Estimation of Microwaved Food
Based on the proposed water model, RFTemp introduces the following design blocks to estimate the food
temperature every 15 secs interval. Fig. 7 shows the complete workflow of RFTemp.

5.3.1 Power Absorbed Estimation Block . RFTemp observes the power leakage when the food is being heated
and calculates

∑𝜏
𝑡=0 𝑟 𝑓 𝑜𝑜𝑑 (𝑡), where 𝜏 is equal to 15 secs duration. Now, with the known 𝛼 , and corresponding 𝛽 ,

calculated using the water model, we can estimate the power absorbed by the food inside the microwave oven by
Eq. 19 and 20.

𝛼

𝜏∑
𝑡=0

𝑟 𝑓 𝑜𝑜𝑑 (𝑡) = 𝐸𝑙𝑒𝑎𝑘𝑎𝑔𝑒 (19)

𝐸𝑎𝑏𝑠 = 𝛽𝑚 × 𝐸ℎ𝑒𝑎𝑡 = 𝛽𝑚 × (𝐸𝑚𝑖𝑐𝑟𝑜 − 𝐸𝑙𝑒𝑎𝑘𝑎𝑔𝑒 ) (20)
where, 𝛽𝑚 is the penetration depth correction factor for the particular mass of food (m) and

∑𝜏
𝑡=0 𝑟 𝑓 𝑜𝑜𝑑 (𝑡) is

the area under the leakage curve. It is to be noted that 𝛽𝑚 is taken from the water model parameter 𝛽 (𝑚,𝑇 )
which consists of series of values for different weights of water. For example, 𝛽100 represents the penetration
depth correction factor value 𝛽 for 100 gm of water.

5.3.2 Water Equivalent Estimation Block . From the calculated 𝐸𝑎𝑏𝑠 we can estimate the equivalent mass of water
(𝑀𝑤𝑒𝑞) using Eq. 11. 𝑀𝑤𝑒𝑞 is the equivalent mass of water when replaced with the food, will absorb the same
amount of radiation. The density of water is taken as 1 gm/cc.
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𝐸𝑎𝑏𝑠𝐴𝑎𝑣𝑔

𝐸𝑚𝑖𝑐𝑟𝑜

× 𝜆

4𝜋𝜖∗
𝑒 𝑓 𝑓

= 𝑀𝑤𝑒𝑞 (21)

Dielectric Correction: However, to address the dielectric property of different food i.e how easily it can absorb
the microwaves, we introduce the relative dielectric property of the food with respect to water (𝜖∗

𝑒 𝑓 𝑓
).

𝜖∗
𝑒 𝑓 𝑓

=
𝜖
′′

𝑒 𝑓 𝑓√
(
∑𝜏

𝑡=0 𝑟 𝑓 𝑜𝑜𝑑 (𝑡 )
𝜎𝑚

)
(22)

where,
∑𝜏

𝑡=0 𝑟 𝑓 𝑜𝑜𝑑 (𝑡) is the leakage observed by RFTemp while heating the food in the microwave oven, and
𝜎𝑚 is the RFTemp dielectric coefficient of water of same weight as that of the food taken from the water model
parameter 𝜎 (𝑚), introduced in the previous section.

Reflection Correction: Some foodmay have shallower penetration depth, compared to water, and results in larger
reflection of microwaves. Larger reflection or leakage means smaller absorption, resulting in underestimation of
water equivalent mass. To address this factor, we introduce reflection correction parameter (Γ∗).

Γ∗ =
Γ𝑓 𝑜𝑜𝑑

Γ𝑚
(23)

where Γ𝑓 𝑜𝑜𝑑 = max(𝑟 𝑓 𝑜𝑜𝑑 (𝑛) : 𝑛 = [0 · · · 15]), n is measured in seconds and Γ𝑚 is the reflection coefficient of
the corresponding mass of water taken from the water model parameter Γ(𝑚,𝑇 ). Thus the final water equivalent
mass for the food is

𝑀∗𝑤𝑒𝑞 = 𝑀𝑤𝑒𝑞 × Γ∗ (24)
However, it is to be noted that, this reflection correction occurs only when Γ∗ > 1. 𝜖∗

𝑒 𝑓 𝑓
and Γ∗ are used to

estimate the food property and are different from the parameters of water model (𝜖 ′′
𝑒 𝑓 𝑓

and Γ).

Realization of Dielectric and Reflection Correction : Fig. 8 shows the leakage observed by water, steak, and oil,
each of 200 gm when heated for 1 minute duration. If we focus on the first 15 secs time slot, we observe, the
area under the curve of both steak and oil is less than water. Qualitatively it shows that these foods have a
lesser affinity to absorb electromagnetic radiation than water. Thus even though smaller leakage points to higher
absorption, these absorbed radiations due to lack of polar molecules in the food cannot result in dielectric heating.
Fig. 8 shows that the leakage observed by steak is around 0.7 times of water while that of oil is 0.03 times of
water. Dielectric correction takes care of this property of food and accurately estimates the𝑀𝑤𝑒𝑞 . Similarly, the
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reflection observed by the foods is shown in Fig. 8 by the dotted red circles. We can see steak has high reflection
compared to water, which means the penetration depth is shallower. This factor is taken care of by the reflection
correction parameter (Γ∗).

Dielectric value of steak measured in [35] by sophisticated cavity perturbation technique is around 58, while
that of oil is around 2. Compared to the dielectric value of water (80), the dielectric property of steak relative
to water is ∼ 0.725 while that of oil is ∼ 0.025. These values closely match with the relative leakage observed
values by our system (steak - 0.7 and oil - 0.03). Fig. 9 shows the relative dielectric property of different foods
with respect to water. As we can see, RFTemp relative leakage parameter closely follows the theoretical values.
This verifies that the area under the leakage curve accurately estimates the dielectric property of the food. The
dielectric correction parameter (𝜖∗

𝑒 𝑓 𝑓
) introduced, thus takes care of the property of the food.

5.3.3 Temperature Estimation Block . Once the water equivalent mass is known, we can simply use the specific
heat relationship to find the final temperature of the food in the microwave oven.

𝑡𝑓 𝑖𝑛𝑎𝑙 =
𝐸𝑎𝑏𝑠

𝑀∗𝑤𝑒𝑞 × 𝑆 × 𝛽𝑤𝑒𝑞

+ 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (25)

Here 𝑆 is the specific heat capacity of water since the𝑀∗𝑤𝑒𝑞 is the weight of water equivalent of the food. 𝛽𝑤𝑒𝑞 is
the penetration depth correction for the water equivalent of weight𝑀∗𝑤𝑒𝑞 . 𝐸𝑎𝑏𝑠 calculated needs to be converted
to 𝐸ℎ𝑒𝑎𝑡 before using the heat capacity equation. For that reason we introduce the 𝛽𝑤𝑒𝑞 for this new𝑀∗𝑤𝑒𝑞 which
converts 𝐸𝑎𝑏𝑠 to 𝐸ℎ𝑒𝑎𝑡 before using the heat capacity equation (Eq. 25).

5.3.4 Feedback Block . This process is repeated every 15 secs. However, as we know 𝜖
′′

𝑒 𝑓 𝑓
of water is temperature

dependent, the parameters 𝜖∗
𝑒 𝑓 𝑓

, 𝛽𝑚 and Γ∗ also varies with temperature due to the temperature dependency of
the trained water model parameters. Fig. 10 shows the behaviour of 𝜖 ′′

𝑒 𝑓 𝑓
with temperature theoretically [25].

To address this variation we use the 𝑡𝑓 𝑖𝑛𝑎𝑙 as a feedback into the next 15 secs slot to estimate the new 𝜖
′′

𝑒 𝑓 𝑓
. We

introduce the feedback parameter 𝐹 which is the ratio of new dielectric loss 𝜖 ′′
𝑒 𝑓 𝑓

𝑇 at temperature T to the 𝜖 ′′
𝑒 𝑓 𝑓

.

𝐹 =
𝜖
′′

𝑒 𝑓 𝑓
𝑇

𝜖
′′
𝑒 𝑓 𝑓

(26)

𝛽𝑇𝑚 = 𝐹 × 𝛽𝑚 (27)

𝜖∗
𝑒 𝑓 𝑓

𝑇 = 𝐹 × 𝜖∗
𝑒 𝑓 𝑓

(28)

Γ∗𝑇 = 𝐹 × Γ∗ (29)

where 𝛽𝑇𝑚 , 𝜖∗𝑒 𝑓 𝑓
𝑇 and Γ∗𝑇 are the updated values at temperature 𝑇 after using feedback 𝐹 .

RFTemp uses these blocks to accurately estimate the temperature of the food. The leakage observed is directly
related to how the food interacts with the microwave radiation. It is to be noted that since RFTemp uses the
observed leakage to determine the properties of food, the estimation of temperature is the average of the whole
food rather than just the surface.

5.4 Experimental Error Correction
As we have seen in the previous section, both the dielectric correction and the reflection correction parameters
depend on the leakage observed over time, 𝑟 𝑓 𝑜𝑜𝑑 (𝑡). In this section, we address the practical experimental errors
to measure the leakage and define intelligent biasing techniques to overcome it.
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5.4.1 Container Effect. To understand the effect of containers of different shapes on the leakage observed, we
microwaved 100 gm of water across different containers for 1 minute. Fig 11 shows that leakage pattern across
different containers. The variations in the leakage observed are mainly due to the orientation, surface area, and
material of the container. These variations affect how the food inside is exposed to radiation. However, the
dielectric correction 𝜖∗

𝑒 𝑓 𝑓
and the reflection correction Γ∗ being measured as a relative term to the water model,

takes care of the variations of the leakage due to the container as well as the property of the food. This makes
RFTemp robust to all kinds of containers of shape and material. In Fig. 11, the RFTemp is the container used for
developing the water model as mentioned in Sec. 5.2. The performance of our system across different microwave
containers is shown in Sec. 6.

5.4.2 Distance Effect. For different distances of the receiving antenna from the microwave oven, the leakage
observed varies. It is due to the path loss of electromagnetic waves. This can affect the error in leakage estimation
as the above-discussed water model does not take into consideration of the path loss. Thus to avoid this error, we
introduce, distance bias (𝐵𝑑 ).

𝐵𝑑 =
𝐸𝑑

𝐸𝑅𝐹𝑇𝑒𝑚𝑝𝑑
(30)

where 𝐸𝑑 is the leakage energy due to a different position of the rx from the microwave oven and 𝐸𝑅𝐹𝑇𝑒𝑚𝑝𝑑 is the
leakage observed at 6cm distance (used for defining water model) measured for 15 secs. We can set this biasing
term while calculating the 𝛼 in Eq. 19.

𝛼
′
=

𝛼

𝐵𝑑
(31)

However, it is to be noted that the distance biasing is a one-time thing and can be done during the installation
of RFTemp. Fig. 12 shows the biasing factor for different distances.

5.4.3 Microwave Oven Effect. Different microwave ovens have different output power (𝑃𝑚𝑖𝑐𝑟𝑜 ) and volume
capacity of heating (𝑉𝑚𝑖𝑐𝑟𝑜 ). Greater is the volume, greater is the area of heating (𝐴𝑎𝑣𝑔). As shown in Eq.11, this
affects the leakage observed outside the oven. Thus to remove this error, we define a microwave bias (𝐵𝑚) solely
depending on the microwave oven specifications. The amount of leakage escaping depends on the output power
of the microwave oven and the volume of the microwave oven cavity.

𝐵𝑚 =
𝐸1 ×𝑉1

𝐸𝑅𝐹𝑇𝑒𝑚𝑝𝑚 ×𝑉𝑅𝐹𝑇𝑒𝑚𝑝𝑚
(32)
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where 𝐸1 and 𝑉1 are the observed leakage and volume of the different microwave oven and 𝐸𝑅𝐹𝑇𝑒𝑚𝑝𝑚 and
𝑉𝑅𝐹𝑇𝑒𝑚𝑝𝑚 is the leakage and volume of the microwave oven used for defining water model. We can set this biasing
term while calculating the 𝛼 in Eq.19.

𝛼
′
=

𝛼

𝐵𝑚
(33)

Like the distance biasing, this is also a one-time thing and can be performed during initialization. Fig. 13 shows
the need for microwave oven biasing. The grey area shows the leakage observed by the RFTemp microwave
while heating 200 gm of water, that is being used for defining the water model (1000 W 1 cu. feet). The blue area
shows the leakage observed by Microwave 1 while heating 200 gm of water ( 1200 W and 2 cu. feet). This high
leakage can result in wrong estimations. After using the microwave biasing (𝐵𝑚 ∼ 3), the leakage is corrected
shown by the red line.

5.4.4 Sampling Effect. If there is a mismatch in the sampling rate of the receiving data, between the trained
water model and the food temperature estimation phase, the area under curve calculation will be very different.
For example, if the water model is trained with a sampling rate of 5 KHz and while doing food temperature
estimation the sampling rate is 20 MHz, the leakage estimation will be erroneous. This error can be corrected by
a sampling bias (𝐵𝑠 ).

𝐵𝑠 =
𝑠𝑓 𝑜𝑜𝑑

𝑠𝑤𝑚𝑜𝑑𝑒𝑙

(34)

𝛼
′
=

𝛼

𝐵𝑠
(35)

where 𝑠𝑤𝑚𝑜𝑑𝑒𝑙 is the sampling rate used in training for the water model and 𝑠𝑓 𝑜𝑜𝑑 is the sampling rate used during
food temperature estimation. In Sec. 6 we have shown RFTemp’s performance across different sampling rates.

Algorithm 1: RFTemp system flow
1 Input: Trained Water Model (𝛼, 𝛽, Γ, 𝜎),𝑀𝑓 𝑜𝑜𝑑 , 𝜖

′′
𝑒𝑓 𝑓

, 𝑡𝑒𝑚𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑒𝑚𝑝𝑡𝑎𝑟𝑔𝑒𝑡 , F =1

2 for𝑇 ≤ 𝑡𝑒𝑚𝑝𝑡𝑎𝑟𝑔𝑒𝑡 do

3 for 𝑡 ← 1 to 𝜏 do
4 Record 𝑟 𝑓 𝑜𝑜𝑑 (𝑡 )
5 Calculate 𝜖∗

𝑒𝑓 𝑓
and Γ∗ subject to Eq.22- 23

6 Recalculate using Feedback parameter (F) 𝛽𝑇𝑚 , 𝜖∗
𝑒𝑓 𝑓

𝑇 and Γ∗𝑇 Eq. 27-29
7 Estimate 𝐸𝑎𝑏𝑠 Eq.20
8 Estimate𝑀𝑤𝑒𝑞 Eq.21
9 if Γ∗ > 1 then
10 𝑀𝑤𝑒𝑞 ←(𝑀𝑤𝑒𝑞 × Γ∗)
11 Calculate 𝑡𝑒𝑚𝑝𝑓 𝑖𝑛𝑎𝑙 Eq. 25
12 T←temp𝑓 𝑖𝑛𝑎𝑙
13 Calculate 𝐹 Eq. 26

5.5 RFTemp Algorithm
Fig. 7 shows the complete workflow of RFTemp. Our system makes the following assumptions: 1) the mass of the
food (𝑀𝑓 𝑜𝑜𝑑 ) is known; 2) initial temperature (𝑡𝑒𝑚𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ) is known; 3) target temperature (𝑡𝑒𝑚𝑝𝑡𝑎𝑟𝑔𝑒𝑡 ) is known.
These are realistic assumptions as most of these information are known by the user when they use microwave
oven. The input mass and initial temperature of the food need not be accurate. In Sec. 6, we have shown RFTemp
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Fig. 15. Experimental setup of RFTemp

performs with high accuracy within a realistic range of input temperature and weight making our system quite
flexible. The algorithm of RFTemp system flow is provide by Alg.1.

5.6 Frozen Food
Ice has a completely different dielectric property with respect to water. The water molecules in ice are packed
tightly in a crystalline form. So they do not vibrate due to dielectric heating. Thus ice does not interact with
electromagnetic radiation, and the loss factor (𝜖 ′′

𝑒 𝑓 𝑓
) of ice is very low relative to water. However, with the increase

in temperature, the 𝜖 ′′
𝑒 𝑓 𝑓

value of ice increases [22], thus it has a better absorbing capability, and leakage will
decrease. This property is the opposite of water. This process will be dominant and continue till the ice melts off
to water. Further heating will result in the water being warmed up. For water, 𝜖 ′′

𝑒 𝑓 𝑓
will decrease with temperature,

so the leakage peaks will increase. This phenomenon of melting ice into water will create a notch in the leakage
pattern. Fig. 14 shows the leakage pattern of 150 gram of ice heated in a microwave oven for 3 minutes. As we
can see, the initial spikes represent the melting phase of ice. As we know from Eq. 4 as the dielectric property
increases, penetration depth increases, so the reflective power decreases. Thus with an increase in temperature,
the power level of the spikes decreases. At a certain point in time, around 120 secs in Fig. 14, the leakage pattern
creates a notch, and the leakage spikes increase with further increase in time following the dielectric property of
water. This notch represents that the ice has melted completely. RFTemp uses this sensing technique and gets
initialized after detecting the notch. The temperature of the notch is assumed to be 0◦𝐶 . In Sec. 6 we evaluated
the performance of RFTemp on various frozen food.

6 EVALUATION
To evaluate the performance of RFTemp in the real world, we build a prototype with WARP v3 software-defined
radio platform [9]. The carrier frequency is set to be 2.45 GHz and the bandwidth used is 20 MHz. The power
leakage is measured using omni-directional antenna [12]. We used a down-sampler to process the receiving
samples at 5 kHz. Experiments are performed in a household environment. The training of water model is
performed using Emerson Stainless Steel Microwave oven (1.1 cu. ft, 1000 W output power) 3. This is referred
as RFTemp Microwave. A round plastic container (2 litres in max quantity) as shown in Fig. 15 has been used
as RFTemp container to train the water model [7]. LMV2031SS LG Microwave oven (2 cu. ft 1200 W)4 has been
used to verify the robustness of RFTemp across different microwaves. This is referred as Microwave 1. Etekcity

3Dimensions (Overall): 11.81 Inches (H) x 21.22 Inches (W) x 16.26 Inches (D)
4Dimensions (Overall): 16.44 Inches (H) x 29.94 Inches (W) x 15.88 Inches (D)
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Infrared (IR) Thermometer 774 and Habor 022 Digital Meat Thermometer with a probe are used to measure the
temperature of different foods. We took 10 temperature measurements at different parts of the food using the
probed thermometer and took the mean of them as the final measured temperature. KUBEI Digital Food Scale is
used to measure the weight of different food items. Everyday household microwave containers are used to heat
the food. Fig. 15 shows the setup and instruments used in this work. In all the experiments, the containers are
placed at the centre of the microwave oven turntable which rotates clockwise. We evaluate the performance of
RFTemp by calculating the mean absolute error between the measured temperature of the food and the RFTemp
estimated temperature.

6.1 Verification of RFTemp
The training of RFTemp water model is done for weights of water ranging from 50 to 500 gm at an integral
multiple of 50. For all the cases, the receiver antenna (RX) has been placed at 6 cm distance from the microwave
oven front panel and the RFTemp container has been used as shown in Fig. 15. Parameters mentioned in Sec. 5.2,
𝛽 , Γ, 𝜎 are calculated for the corresponding weights of water. We used a curve fitting algorithm with interpolation
to make it continuous for the mentioned range of weights.

6.1.1 Water Model Accuracy . To verify the accuracy of the proposed Water Model described in Sec. 5.2, we
conducted a series of experiments with the training setup shown in Fig. 15. We heated different weights of
water ranging from 50-500 gm in the RFTemp container for a 1-minute duration. We set the dielectric correction
and reflection correction parameters to 1 as, it is with respect to the same water model setup. We repeated the
experiments 10 times and measured the final temperature with the digital thermometers. It is to be noted that,
RFTemp estimates the temperature every 15 secs and the estimated value is used as an input parameter for the
next slot. Fig. 16 shows the mean and standard deviations of final temperature estimated by RFTemp with the
final temperature measured across the different weights. As we can see, our system estimates quite closely with
the actual measurements.

6.1.2 Performance across Different Microwave Containers. We verified our system across microwave containers
of different shapes and materials and repeated the same sets of experiments with water 10 times. Fig. 17 shows the
mean and standard deviations of absolute error between RFTemp estimations and experimental measurements of
the final temperature with the dielectric and reflection correction parameters disabled. The high error is mainly
because of different orientations and surface area of the containers affect the leakage as mentioned in Sec. 5.4.
However, this error can be corrected easily, by enabling the dielectric and reflection correction parameters, as
shown in Fig. 18. The mean absolute error is ∼ 5◦𝐶 . RFTemp is robust across different containers.
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6.1.3 Performance across Different Distance. As we have seen in Fig. 12 the microwave oven leakage power
decreases with distance and needs distance correction. This can result in erroneous estimations as the distance
factor has not been included in the water model.
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We placed the receiver at 1 meter (m) line-of-sight (LOS), 2m LOS, 3m LOS, ceiling. We also experimented
at non-line-of-sight (NLOS) positions like 1m NLOS, inside rooms 5m and 6m away, and even on the top floor
of the house. We observed the power leakage of the microwave for 15 secs at these different positions and set
the respective distance biases. We then heated 100 gm of water in the microwave oven for one minute with the
receiver placed at those positions. Each experiment is repeated 10 times. Fig. 19 shows the mean and standard
deviation of error in RFTemp estimation before and after setting the distance correction parameter at different
positions. As we can see, RFTemp performs quite accurately with a mean error ∼ 3◦𝐶 . The error value varies
from 35 to 40 ◦𝐶 before distance correction. It is difficult to comment on if the error is directly proportional to
the distance of separation. As based on the leakage, RFTemp does dielectric correction as mentioned in Sec. 5.3
that estimates the water equivalent mass. All these factors together estimate the final temperature of the food.
Thus the error seems to be in the same range however factors affecting it are different.

6.1.4 Performance across Different Microwave Ovens. To verify the performance of RFTemp for different mi-
crowave ovens, we experimented on Microwave 1 previously mentioned. The power output is 1200 W and the
volume capacity is 2 times than the microwave oven used for defining the water model (RFTemp microwave). We
calculated the microwave bias 𝐵𝑚 as proposed in Sec. 5.4 and experimented on different weights of water for 1
minute. Fig. 20 shows the performance of RFTemp in estimating the final temperature of the food. As we can see
it closely follows the measured value with a mean error less than ∼ 3◦𝐶 .

6.1.5 Performance across Different Sampling Rates. To verify the robustness of RFTemp, we performed the water
model training at 5 kHz sampling rate and tested the food temperature estimation process at different sampling
rates ranging from 5 kHz to 20 MHz. In this experiment we heated 50-250 gm of water for 1 minute. As described
in Sec. 5.4 we set the sampling bias each time. Fig. 21 shows the performance of RFTemp across the different
sampling rates. The estimation is almost similar across different sampling rates. The mean absolute error is less
than ∼ 3◦𝐶 .

6.2 Temperature Estimation Accuracy for Different Foods
In this part, we evaluate the performance of RFTemp on different food items. We used 13 different food items
(5 kinds of vegetables, 5 kinds of liquids and 3 kinds of proteins) each of 100 and 200 gm of weight and heated
them in the microwave oven for 1 minute. We measured the final temperature of the food using both an IR
thermometer and a probed digital thermometer. Due to non-uniformity in microwave heating, different parts of
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Fig. 22. Performance of RFTemp for different foods.

the food get heated differently. So, we took 10 temperature measurements at different parts of the food and took
the mean of them as the final measured temperature. This process is repeated for 3 different types of containers
of different size and shape. We calculated the absolute error between the temperature estimated by RFTemp and
the measured final temperature to evaluate the performance of RFTemp. Since the water model has been trained
for 15 secs, our system estimates the temperature of the food after every 15 secs and the estimated temperature is
used as an input for the next time slot. Fig. 22 shows the performance of RFTemp across the 13 different food
items. The experiments were repeated 6 times for each of the food items and the mean and standard deviation
are shown. As we can see the mean absolute error for the food items is ∼ 5◦𝐶 .

6.2.1 Liquid Food vs Solid Food. Fig. 23 shows the absolute error in RFTemp estimation. We experimented on 8
different solid and 5 different liquid foods as listed on Fig. 22. The experiments have been repeated 6 times. The
red circles show the absolute errors for liquid foods and the blue squares for the solid foods. Mean and standard
deviations are shown for both the categories. As we can see for both solid and liquid food RFTemp estimates the
final temperature with a mean absolute error ∼ 5◦𝐶 . However, our system performs better for liquid food than
solid food which is mainly because of non-uniform heating of solid food.
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6.2.2 Across Different Containers. Fig. 24 shows the RFTemp’s performance across different containers. The
scatter plots show the experiments on food under each category. The experiments were repeated 26 times under
each category on the food items mentioned in Fig. 22. The means and standard deviations are presented. As we
can see the mean absolute error across different containers is around 5◦𝐶 as shown by the dotted lines. However
as we can see RFTemp container performs better ( ∼ 3◦𝐶 error ) than the glass and porcelain containers (∼ 5◦𝐶
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error). The increase in error is mainly because of slight variations in the dielectric and reflection correction as
mentioned in Sec. 5.3. Fig. 24 shows that RFTemp is robust across different containers.
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Fig. 26. Performance for different frozen foods.

6.2.3 Across Different Food Weights. To evaluate the performance of RFTemp across different weights we
experimented with different food items each of 100 and 200 gm of weight. The experiments were repeated 39
times for each of 100 and 200 gm, on the food list presented earlier. Fig. 25 shows the performance of RFTemp. As
we can see for both the weights RFTemp performs almost same with a mean error of ∼ 5◦𝐶 . Thus variation of
weights does not affect the performance of our system.

6.2.4 Frozen Food. As we have discussed in Sec. 5.6, to estimate the temperature of frozen food, RFTemp is
initialized by estimating the notch in the time varied power leakage pattern. To experiment system performance,
we heated 7 different ready-to-eat frozen food in microwave oven and estimated the temperature at the end of 3
minutes. We repeated the experiments 5 times on each of them. Fig. 26 shows the performance of RFTemp. As
we can see, it can estimate the temperature with a mean error ∼ 7◦𝐶 . Error increases due to error in the notch
detection. RFTemp can easily differentiate normal foods from the frozen foods by the initial input temperature.
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6.2.5 Verification of RFTemp Algorithm. To verify the performance of RFTemp algorithm, we conducted ex-
periments on the 13 different food items as listed in Fig. 22 for 1 minute. We set a random target temperature
each time and measured the absolute error between the target temperature and the temperature when RFTemp
notifies to stop the microwave oven. The experiments were repeated 6 times on each of the food items. The
decision boundary was fixed at 15 secs, that is RFTemp will notify only after every 15 secs of interval. Fig. 27
shows the absolute error with 15 secs decision boundary. The mean error is ∼ 8◦𝐶 , which is mainly because of
the time slot of the decision boundary. It is to be noted that RFTemp still estimates the actual temperature quite
accurately in real time. However, due to the time slot of 15 secs, the food can get overheated compared to the
target temperature. This is more prominent on food with smaller weights as they get heated faster and there is a
considerable temperature difference in consecutive slots. However, using a decision boundary of 7.5 secs, the
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error is reduced to ∼ 5◦𝐶 as shown in Fig. 28. This can be achieved easily by training the water model for 7.5 secs.
Further reduction of decision boundary is unrealistic as the water model will not be accurate as the increase
in temperature for different weights of water during the training phase will be nominal. It is to be noted that
accumulation error takes place in every time slot, however, this error is very nominal and does not affect the
performance of RFTemp as shown in the Fig. 28.
RFTemp assumes the mass of the food and the initial temperature of the food are known by the user before

using the microwave oven. However, these are not hard assumptions. Fig. 29 shows the error in temperature
estimation for 100 gm of water with an initial temperature of 23◦𝐶 . The actual values are marked with red boxes.
The dotted red box shows the admissible errors for the range of weight and temperature values centered around
the actual measured input values. As we can see for weights from 80-120 (± 20 gm) and temperature 18-28 (±
5◦𝐶), the estimated errors are below 5◦𝐶 . This is valid for food with any weight. Thus even if users have a rough
idea about the food weight and temperature, RFTemp can perform with high accuracy.

6.2.6 Across Complex Food. To evaluate the performance of RFTemp on different food items, we conducted
experiments in a household environment for a duration of 30 days. We experimented on 35 different everyday
food items of different weights and initial temperature. To be noted, these food items were heated in random
microwave containers for an average duration of 1-3 minutes. We measured the final temperature using a probed
food thermometer as a baseline. We measured at different thickness of the food and estimated the average of the
measurements as the final temperature. To evaluate the performance of infrared sensors and thermometers, we
measured the temperature of the food using a contactless IR thermometer.
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Fig. 30. RFTemp performance on complex food

We also let the users estimate the final temperature based on their experience of microwave oven heating
mechanism. The green points in Fig. 30 shows the human error for all the food items. As we can see, the mean
human error in estimation is above ∼ 25◦𝐶 . This proves that it is not trivial for a human being to estimate the
temperature of the food which results in either overheating or reheating again. The blue scatter plots show the
error of IR thermometer. The mean error in this case is ∼ 13◦𝐶 . This error is mainly because IR thermometers can
only pick the surface temperature rather than the actual average temperature of the food. On the other hand, the
red scatter plots show the performance of RFTemp on these different foods. As we can see, RFTemp has the least
mean absolute error of ∼ 5◦𝐶 among the others. Even though both RFTemp’s and IR thermometer’s performance
is very close to one another, RFTemp performs better on solid food compared to IR thermometer. Thus RFTemp,
as proposed, can estimate the temperature of the food inside the microwave oven with very high accuracy, 2x
better than IR thermometers.
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7 DISCUSSION

7.1 RFTemp Water Model Granularity
7.1.1 Training Period. RFTemp water model is trained for 15 secs of duration. That is our system senses leakage
every 15 secs interval and estimates the temperature of the food. The 15 secs interval has been chosen because it
takes around the same time for the turntable in most microwave ovens to complete one cycle of rotation. It is to
be noted that in every 15 seconds interval, RFTemp uses a feedback technique to estimate the relative parameters
for the next interval. Thus estimation errors in each section can add up in every interval. However, in Sec. 6 we
showed that RFTemp can estimate the temperature with a mean error of ∼ 5◦𝐶 even heating food for 3 minutes.
Thus the addition of error is very nominal. This error can further decrease if the duration of the water model
training increases as RFTemp will observe more samples to train the water model. However, there will be a
trade-off as with the increase in duration, RFTemp can estimate temperature every such interval. For example, if
the water model is trained for 60 secs, RFTemp will estimate temperature every 60 secs resulting in overheating
as shown in Fig. 27.

7.1.2 Training Weights. The water model in RFTemp is trained for food having weights of integral multiple of 50
gm between 50 to 500 gm and a curve fitting is used to estimate the parameters for intermediate weights. The
training set can be improved by experimenting on weights of water with a smaller interval. The weight range
is very realistic as most of the everyday food that is being heated in a microwave oven falls within that range.
However, RFTemp can easily incorporate more weights by extending the training phase for higher amounts of
water.

7.2 RFTemp Thawing and Cooking
Microwave ovens are used mostly for reheating purposes. Surveys [1, 51] show that majority of the people are
using microwave ovens for heating purposes for 1-3 minutes on average. However, in some cases, microwave
ovens are used for thawing and cooking food. Our system does not handle the thawing and cooking of food cases
directly. Thawing is the process of ice or any frozen substance becoming liquid by getting heated [2]. RFTemp
can be used for thawing purposes using the notch detection technique introduced by frozen food in Sec. 5.6.
However, cooking is a more complex process that involves the change of state of water, like cooking pasta and
rice in boiling water. RFTemp water model does not cover the change of state of water which involves latent heat
of evaporation. Also the volume of the food changes during cooking which makes the system very complex for
RFTemp to estimate. However, RFTemp can train the water model with some intelligent cooking techniques to
incorporate the latent heat of evaporation of water. This has been left for future research.

7.3 RFTemp Error Accumulation
For scenarios using sampling, distance and microwave biasing parameters, error accumulation in the final
estimation can take place. However, such errors will be very nominal and can result in mean 1-2◦𝐶 extra error.

7.4 RFTemp Deployment
The question is how RFTemp can be integrated into existing systems. As we have mentioned in Sec. 4, microwave
operates in the same frequency range as other wireless applications like WiFi. Thus the leakage from the
microwave oven interferes with the WiFi communication systems. Commercial Access Point (AP) can observe
the wireless activity of its channel like in [39, 40] and measure the leakage due to microwave oven both in
presence and absence of WiFi packet transfer and reception. Most of these commercial access points have software
platforms that can be used for user-defined applications and can also forward data to the cloud or remote servers
without any functional degradation [24, 39]. Thus RFTemp can be easily deployed in the commercial access
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points using these features. During the setup phase, the initial parameters of RFTemp water model can be fed
into a remote server connected with the APs. Then the empty microwave oven in the household is run for 15
secs. RFTemp running in APs can be self initialized when it detects high leakage and measures the time varied
leakage and send it to the server. This is used to set up the biasing parameters as mentioned in Sec. 5.4. This
is a one-time thing that is done during the setup phase. Once the setup phase is over, RFTemp can be used for
temperature estimation. During heating of food, the user provides the weight of the food, initial temperature,
and target temperature values to a cloud application and starts the microwave oven. APs can detect microwave
leakage and forward it to the cloud server. Using the RFTemp algorithm proposed in Sec. 5.5, the cloud application
estimates the temperature of the food inside the microwave oven. Once it has reached the target temperature, it
can notify the user to stop further heating. It is to be noted that RFTemp deployment does not require any update
on WiFi protocol and can be easily implemented in commercial APs. It also does not require any changes on the
commercial microwave ovens. Thus it can be easily integrated into the existing systems.

8 CONCLUSION
In this paper, we present RFTemp, the first practical RF sensing technique to measure the temperature of the food
inside the microwave oven. Our evaluations show that, RFTemp is robust to all varieties of food types, microwave
ovens, microwave containers and can be easily integrated into the commercial systems. Thus, RFTemp converts
commercial microwave oven into a smart microwave oven without any hardware change, which can estimate the
food temperature and notify the users when the target temperature has reached, with great accuracy.
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