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ARTICLE INFO ABSTRACT

Keywords: The ongoing deployment of Distributed Energy Resources, while bringing benefits, introduces significant
Topology clustering challenges to the electric utility industry, especially in the distribution grid. These challenges call for closer
Meter-transformer mapping monitoring through state estimation, where real-time topology recovery is the basis for accurate modeling.

Density-based clustering Previous methods either ignore geographical information, which is important in connectivity identification

or are based on an ideal assumption of an isolated sub-network for topology recovery, e.g., within one
transformer. This requires field engineers to identify the association, which is costly and may contain errors.
To solve these problems, we propose a density-based topology clustering method that leverages both voltage
domain data and the geographical space information to segment datasets from a large utility customer pool,
after which other topology reconstruction methods can carry over. Specifically, we show how to use voltage
and GPS information to infer associations within one transformer area, i.e., to identify the meter-transformer
connectivity. To give a guarantee, we show a theoretic bound for our clustering method, providing the ability
to explain the performance of the machine learning method. The proposed algorithm has been validated by
IEEE test systems and Duquesne Light Company in Pittsburgh, showing outstanding performance. A utility
implementation is also demonstrated.

1. Introduction making them unsuitable for distribution grid topology reconstruction.
For instance, most transmission changes are planned for weeks, months,

The power distribution grid has been designed with the idea of one- or even years ahead, allowing the topology model to be updated
way power flows from feeders to end-users [1]. However, increasing with high accuracy [10]. Unfortunately, the telemetry infrastructure is
demand for renewable energy (i.e., photovoltaic and storage devices) limited on the distribution system, which has regular and “unexpected”
changes one-way power flows into two-way power flows [2]. As a topology changes [11-13], due to routine but unreported reconfig-
large portion of the infrastructure pre-dates modern communication uration [11,14-16]. Even worse, with the introduction of DER, the

methods, many distribution assets were not designed for two-way
power flows. Therefore, Electric Distribution Companies (EDCs) need to
have visibility of these assets to avoid potential risks of two-way power
flows, e.g., outages and equipment damages. For example, EDCs can
use topology information to monitor the power grid in real-time and
run associated analyses or optimizations. But, a significant challenge
for EDCs to gain such visibility today is a lack of system-wide models
of their distribution systems based on accurate topology [3,4].

distribution grid becomes less predictable with the addition of the
intermittent generation and is undergoing multiple reconfigurations
and upgrades almost every day of operation for many utilities [17-19].

Fortunately, with the deployment of Advanced Meter Infrastructure
(AMI), there is hope for utilities to conduct data mining of the big
AMI data set. Therefore, there has been work done to develop methods
to use the AMI and micro-synchrophasor data to recover the system

For identifying topology, one idea is to replicate the approaches topology leveraging voltage correlations [11-13]. For example, [20]
used on the transmission grid. But, transmission grid approaches rely estimates system topology using voltage magnitudes. However, it as-
on mature telemetry and relatively infrequent topology changes [5-91, sumes all lines to have the same per unit length inductance to resistance
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ratios. [21] uses Chow-Liu algorithm for identification of topology.
Additionally, [22] estimates the topology and the line parameters com-
bined using historical real and reactive power, voltage magnitudes, and
voltage angle measurements. A common issue of these methods is that
they need voltage magnitudes at all the nodes of the system, including
poles and transformers. Such assumptions are invalid due to the vast
spread of distribution systems, making voltage sensing unavailable at
every pole and transformer.

Additionally, existing approaches usually require a tremendous ef-
fort to narrow down data so that one can obtain smart meter data
within each feeder. However, since the topology is unknown in general,
it is hard for a utility to tell which smart meters belong to which
transformers beforehand. This difficulty prevents the application of
the data-driven approaches above. For example, a pull of data from
a medium-size utility can lead to an analysis of voltages from 100,000
customers from different feeders. Therefore, if the information on the
parent transformer was unavailable at the time of installation, it is
extremely hard to require the utility metering department to assign
a feeder label to meters within each feeder. Even worse, such a data
pull from smart meters can cover areas where no data is available,
e.g., prepaid meters such as M-Power meters or un-metered accounts.
A voltage-data-based topology recovery in a large area, e.g., 100,000
customers, will cause incorrect inter-area topology connections cover-
ing large distances, especially when a non-metered area is between two
metering areas.

So, a better idea is to use GPS information to help analysis purely
based on voltage domain. This is because geographically different and
unconnected smart meters can have similar voltage profiles leading
to errors for algorithms that consider voltage only. Therefore, [23]
estimates the voltage at the point of coupling (VPC), which is the
point where the customer service wire meets the secondary line. [23]
uses VPC and the prior connection information from utility GIS system
information for joint decision. But, no theoretical guarantee of cor-
rection is provided. In addition, such ideas require a fairly accurate
prior knowledge of meter-transformer connection information [23,24],
which is hard to obtain in reality.

To resolve these issues, we propose to use a carefully selected
and customized clustering method based on both the voltage space
and the geographical space. To achieve this goal, we analyze the
typical design mechanisms of clustering methods, based on within-
cluster distance (e.g., K-means [25]) and the number of points within
each cluster (e.g., BIRCH method [26]), and density-based method
(e.g., DBSCAN [27]). But, the within-cluster approach is not good when
a feeder can be quite long, and the number of points within a cluster can
vary among different feeders and utilities. But, a density-based method
can work well among different feeders with some adjustment because
the density is relatively high along the feeder, surrounded by buildings.

To include the voltage information into the clustering, we also need
to quantify the distances in the voltage domain. While there are dif-
ferent metrics, mutual information has been proved to be quite useful
in the distribution system analysis via the Chow-Liu algorithm [21].
Therefore, we propose to use mutual information to create a relative
distance in the voltage domain and combine it with spatial domain
information for density-based clustering. Moreover, we provide a the-
oretic guarantee for the robustness of our clustering method, giving
explainability to the performance of the machine learning method. In
particular, we show that adding new data does not break, disrupt,
or merge the original clusters. Finally, we show how to improve the
method further for robustness.

To summarize, the main contributions of this paper are as follows:

1. We provide a comparative analysis of various topology cluster-
ing approaches for power system data. We combine voltage and
geographic information in a natural way using density-based
clustering.

2. We provide an explainable and intuitive theoretical guarantee
for the robustness of our proposed clustering method.
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3. We improve our method further for robustness.

Numerical experiments are carried out on the standard distribution
testbeds, e.g., IEEE 123-bus, and by our partner EDC’s local grid with
10,000 customers. The result shows that the proposed method segments
the distribution grids accurately and helps to achieve a highly accurate
topology estimate.

The rest of the paper is organized as follows: Section 2 defines topol-
ogy clustering. Section 3 introduces the proposed clustering methods
for integrating utility GPS and public GIS information. Section 4 pro-
vides a robustness guarantee. Section 5 validates the idea numerically,
and Section 6 concludes the paper.

2. System model

In order to define the problem better, we need to define the graph-
ical backbone of the targeted network clearly. A distribution system
is graphically characterized by nodes (buses) V = 1,2,..., M and by
branches €& = (i,i’),i,i’ € V. N leaf nodes in V are the smart meters,
k nodes in V are the service transformers. The meter-transformer
connections are modeled as branches in £. To define the method for
topology clustering, we describe time-series voltage data given by smart
meters. The voltage at meter i and time ¢ can be represented as v;(f) =
|v;()| exp/ %, where |v,(t)] € R denotes the magnitude of the bus in-
stantaneous voltage in per-unit, and 6;(r) denotes the phase angle of the
voltage in radian. The root mean square (RMS) voltage measurements
are sampled every 5 mins from meter i to form a vector v'. The voltage
time-series with T timeslots for N smart meters v!,..., vV e RT*!
are stored as row vectors in matrix V € RVXT, In addition to time
series data definition, it is equally important to understand how the
location data is going to impact our learning. The latitude-longitude
pairs in radians for N smart meters 1!, ...,1¥ € R?>*! are stored as row
vectors in matrix L € RN*2, R represents the set of real numbers.
With spatial structure and temporal slots well defined, we will need
to quantify the measurements based on them before mathematically
defining our problem. For example, the combined dataset becomes
[L, V] € R¥NXT+2) with row vectors x!, ...,xN for N smart meters. The
k service transformer secondaries form a k-way partition of N smart
meters in the distribution grid. Cluster(j) represents a vector of all
meters indices supplied by transformer ;. Due to radial configuration, a
smart meter i € {1,..., N} is uniquely present in a cluster j € {1, ..., k}
that is supplied by a common transformer. There exists a many-to-one
mapping f : i — j. We define the problem below.

* Problem: Identify smart clustered meters to different transformers
» Given: Smart meter voltage data and location [V, L],
» Find: The mapping rule f : i — j.

3. Clustering methods for grid segmentation
3.1. Data preparation

In the past, most topology-related studies in the distribution grid
assume to use AMI temporal data only, e.g., voltages. The past methods
did not use the location information, although the location information
is equally important, and many utilities have such information for
usage. Even if a utility does not have the locations of smart meters,
utilities can convert building addresses into latitudes and longitudes
of the smart meters by using Google Maps API. Similarly, for poles
location, a utility can employ a person to obtain fairly accurate GPS
coordinates of poles using Google Street View without field visits.

For spatial data preparation, we had the GPS coordinates of trans-
formers, poles, and smart meters. The transformers and poles GPS
measurements are usually conducted using accurate GPS measure-
ments, while the GPS inside smart meters is inaccurate. Therefore, we
discarded the GPS measurements from meters. Instead, we geocoded
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Fig. 1. Comparison of three important families of algorithms for clustering based on both GIS and AMI data.

the addresses using Bing Maps API to get the GPS coordinates for
meters.

For temporal data from our partner electric utility, the raw data
consists of a separate data file for each customer based on the utility
collection mechanism. To process such temporal data, we need to
merge the data in a tabular form, e.g., rows representing smart meters
and columns representing timesteps. To combine the data files, we
select the timesteps that are common in all the files. In addition, we
removed all values that do not lie within the +1% of the base values,
as such measurements are more likely to be erroneous than the values
in the normal range.

3.2. Metric evaluation for clustering algorithm design

For data clustering, there are numerous approaches. For these meth-
ods, three categories are popular in machine learning fields. One is
to consider the group properties, e.g., calculate the sum of distances
within each cluster. The second category is to bound the cluster with
a limit, e.g., maximum diameter for clusters. The third category inves-
tigates the importance of cluster “density”, e.g., the number of data
points in a neighborhood of points. Fig. 1 provides the visual ideas of
the three categories, and we analyze their typical algorithm’s suitability
for power data.

3.2.1. K-means for average distances

One idea for clustering is to consider the average distances for
all the members in a group. For example, K-means was originally
proposed in [25]. It is one of the common clustering methods that is
applied in a variety of scenarios. For example, it has been applied to
identify optimal placement of distributed generation sources in distri-
bution systems [28], security assessment of power systems [29], and
renewable power forecasting [30]. Also, K-means is critically evaluated
in the literature. For example, [31] evaluated the performance of K-
means, [32] evaluated the accuracy and running time of K-means,
and [33] evaluated various initialization techniques for the K-means
algorithm.

K-means creates k centroids x/ = nl Yiccluster(j) x/, where n; is the
number of smart meters in cluster j. It aims at minimizing the square
error loss

k
-3
Jj=1iecluster(j)

@

X" =%/ [1?,

where ||x — x/|| is the Euclidean distance between a point x' and
centroid x/ iterated overall points in the jy, cluster, for all n clusters.

Drawback for our problem: While such a method can be used for
clustering, determining the number of clusters beforehand would be
a problem for distribution grids. Moreover, for the geographical space,
the streets can be curved and may be of irregular shape due to the
terrain. Even in the voltage space, the true clusters can have irregular
shapes due to the feeder geometry, confusing K-means.

3.2.2. BIRCH for maximum cluster distance

Instead of looking at the grouping effects in K-means, one can
also bound the extreme points, e.g., in BIRCH. The BIRCH method
was proposed in [34]. It has been used in transformer health status
monitoring in [35], improving the economy of power systems with
high capacity thermal power [36], and scenario generation of wind
power [37]. BIRCH has been evaluated for big data in [38], and its
performance is compared with other clustering algorithms in [39].

BIRCH requires three parameters: the branching factor B,, the
threshold T, and the cluster count k. The cluster centers x/
=L Y icctuster(jy X'» Where n; is the number of smart meters in cluster j,

n
and the cluster radii

1 i T
R; = \/n_ Z (xf —x/)
J i€cluster(j)

can then be computed for each cluster. Every point is assigned to the
nearest-center sub-cluster.

(2)

Drawback for our problem: For distribution systems, the geographical
radius can be different, e.g., long feeders and short feeders. Thus, it
is hard to put a limit on the diameter for the geographical space and
voltage space.

3.2.3. DBSCAN for local densities

In the two approaches above, the focuses are on either the group
property or on the property of an extreme limit. Another idea is to
focus on a subgroup of points and check how the trend is propagating,
which is the third category. For example, DBSCAN (Density-based
spatial clustering of applications with noise) forms clusters based on
two parameters: 1) a neighborhood region specified by the radius ¢ and
2) the minimum number of data points minPoints in the neighborhood.
The algorithm counts the data points in the sphere of radius ¢ around
a data point and includes it in the cluster if it exceeds minPoints.

The DBSCAN algorithm was originally proposed in [27]. Density-
based clustering (DBSCAN) finds applications in various areas of power
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systems. For example, DBSCAN is used for outlier detection in [40],
for consumer behavior analysis in [41], and to detect grid voltage
oscillatory modes with high amplitudes for corrective action.
Advantage for our problem: Since DBSCAN can identify clusters of
any irregular shape, it is good for power system geographical data
since the streets may have an irregular shape. Moreover, setting the
parameter minPoints = 1 can avoid any smart meter being neglected as
an outlier without affecting other clusters.

3.3. Proposed density-based method

3.3.1. Distance for geographical data and for voltage data

For GPS data, let 1',12 € L be two latitude-longitude pairs in radi-
ans. Their distance in km on Earth’s surface is given by the Haversine
formula

dp (', 1%) = 2R,
ll _ 12 12 _ ll
arcsin sin? ( ! 5 L > + cos (l}) cos (lf) sin’ <%) , 3

where R; = 6371 km is the radius of Earth. For the distance in the
voltage domain, we use mutual information to quantify the distance.
Specifically, the voltage-distance between two points v',v?> € V is
defined as dy(v!,v?) = where I(v!,v?) is the mutual information

between v! and v2. The key idea of mutual information-based topology
analysis in the past is based on using voltage correlation in a proba-
bilistic way [42]. A distribution system typically has a radial structure.
Therefore, we can represent the voltage data in a graphical model via
the joint probability density

Py, 0%, o) = Py Py 0P 0?) -+ Py @V |02, . 0N T, Q)

where we assign the swing bus as bus 1 with a deterministic value,
which is eliminated from the measurements.
Based on such a chain rule, mutual information can be used for
measuring voltage similarity, e.g., in the discrete-time scenario, mutual
information is defined as

T T 1,2

P(vl,vl)(v[ > Uj)

IV, vH) = Pt vy, 0 In | —————2 ). 5)
;J;} vl v\ PVI(U,'I)PVZ(UJZ')

Essentially, it is a weighted sum measuring the averaged similarity

between the joint probability density p1,2)(v},v7) and the products

of the individual probability densities, p,: (U}) . pvz(vjz.). For example, if

! and sz_ are independent random variables, p(vlyvz)(l)il, ujz.) = pa(v))-

Py (sz_ ), making In <

v
Pt 32y (0] %)
Py ()P0 (07)
between buses i and j. On the other hand, neighboring smart meters
sharing a common transformer have similar voltage profiles resulting
in high mutual information.

Based on the distances in the voltage and geographical domains,
the combined distance of two datapoints x',x* € [L,V] is given as
diyx1,x%) = dp (11, 12) + dy(v!, v2).

) =01in Eq. (5), showing no connection

3.3.2. Evaluation of the density in the combined space of geographical and
voltage data

To define a notion of density in (n + 1)-dimensional space [L, V],
we first consider the two-dimensional space L. For argument’s sake,
consider two points 1',12 € L. 1' = (li,l;), 2= (12,15) in a 2-D space.
The Euclidean distance for these two points is d(I',I?) = [(l} - I%)2 +
(1 = 12)?1°%. If we fix the distances to be less than ¢, then we obtain
the following: d(1',1?) = [(/] — ?)? + (I — 2)’1° < e. Squaring both
sides yields: (I} — 12)? + (1] — 13)* < ¢?. The equation looks similar to
the equation of a circle with radius ¢ and center is at the point (/2, l;).
Thus, the algorithm counts the data points in the sphere of radius e
around a data point and includes it as a core point in the cluster if it

International Journal of Electrical Power and Energy Systems 142 (2022) 108291

exceeds minPoints. However, using Euclidean distance is wrong due to
Earth’s spherical shape, and therefore, we use Haversine distance that
gives the distance on the surface of Earth in km.

Definition 1 (e-neighborhood of a Point). The e-neighborhood of a
datapoint x' € [L, V], denoted by N,(x'), is defined by

N, ={x?€[LV]: dpyx'.x*) <e}. (6)

The e-neighborhood of a point is a notion of the density of points. If
N,(x') > minPoints then x! is a core point. The points at the boundary of
a cluster may not qualify to be a core point. For such points, we cluster
them with a core point if they are in e-neighborhood of a core point.

Definition 2 (Directly Density-reachable). A point x*> € [L, V] is directly
density-reachable from a point x! € [L, V] with respect to (w.r.t.) ¢ and
minPoints, if (1) x> € N,(x!), and (2) N,(x') > minPoints (x' is a core
point).

Directly density-reachability is not transitive. To ease algorithmic
development, we need a transitive property.

Definition 3 (Density-reachable). A point x> € [L, V] is density-reachable
from a point x' € [L, V] w.r.t. ¢ and minPoints, if there is a sequence
of points y!,...,y" € [L,V],y! = x2, y" = x!, so that y'*! is directly
density reachable from y'.

Definition 4 (Density-connected). A point x? is density-connected to a
point x! w.r.t. ¢ and minPoints if there is a point x* such that x? and x!

are density-reachable from x°.

According to DBSCAN, two points are in the same cluster if and
only if they are density connected. Density connectedness is a reflexive,
symmetric, and transitive property. Therefore, it is guaranteed to form
equivalence classes that are the clusters.

3.3.3. Density-based algorithm
We start with some point, x!, and check if it is a core point by the
condition N,(x!) > minPoints. For example, we can set minPoints = 1
to ensure that no smart meter is neglected as an outlier in the rural
sparse distribution grid. Essentially, the distance between x' and x? is
not the usual Euclidean distance but the specific Haversine distance.
If x!' is a core point, we keep it as a starting point for the cluster.
If x! is not a core point, we put it in the outliers list and randomly
select another point and repeat the procedure until we find a core
point. In such a case, all of N,(x!) are in the same cluster as x'. Next,
we individually check each point in N,(x!) for core point. All newly
discovered core points are inserted in a queue. Next, we repeat the same
procedure for each core point in the queue, thereby adding new points
to the cluster and the core points queue until the core points queue is
empty, making cluster one complete. Subsequently, we randomly start
searching the remaining points for a new core point for the second
cluster and repeat such a process. Algorithm 1 is different from the
original DBSCAN [27] as it considers only the core points. Algorithm
2 is an improved version that is robust against adversarial noise [43].
Algorithm 2 calls Algorithm 1 in step 2.
Algorithm 1: Core_ DBSCAN
Input: X, €, minpts =1
1.H:={x€X:|Bxe)nX)| > minpts}.
2 G := undirected graph with vertices H. An edge between x,x’ € H
exists if [x —x'| <e.
3 return connected components of G.
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Fig. 2. Street lanes cannot have any smart meters, which causes a discontinuity at the street boundary, but a removal can remove such a discontinuity problem.

Algorithm 2: Robust DBSCAN
Input: X, ¢, €, minpts = 1
1.H:={x€X:|BXe)NX)| > minpts}.
2 D := Core_DBSCAN(X, €, minpts).
3 C:={CnH:CeD}.
4 return C.

4. Guarantee of the density-based algorithm

In this section, we provide an explainable and intuitive theoretical
guarantee for the Robust DBSCAN in Algorithm 2 and show that the
algorithm is robust against the addition of new data. In particular, we
show that adding / new utility customers with smart meter voltage and
location data to the original data does not change the original clusters,
and the cluster assignments to the original points remain unchanged,
i.e., the original points that were clustered together (separate) remain
together (separate) after adding new points.

4.1. The first assumption on differential density function

Assumption 1. The density function f(x) should be differentiable.

The assumption is regarding the theoretical density f(x) for a point
x in the combined geographic-voltage space and not the measured
density N,(x). Therefore, the assumption remains valid if the measured
density is not differentiable. Even for spatial analysis with smart meter
geographic density f,(x) equaling zero on the street lanes, as shown
in Fig. 2, we can remove the street lanes from the domain of the
density function to avoid a step change discontinuity. In order to have
a mathematical analysis of the density, we need to define superlevel-set
L #(4) of the density function f corresponding to a given threshold (level)
4 as a set of all points in the dataset [L, V] with a density equal to
or greater than the threshold A. Moreover, if Assumption 1 holds, the
superlevel-sets consist of closed intervals rather than discrete points.

4.2. The second assumption on curvature

Usually, the shape of a density function has one or more overlapping
bell curves or some flat regions. Therefore, if we have two levels, 4
and A, such that 0 < 1 < A < ||f|l, Where | f|l,, represents the
peak density, then the superlevel-set for level A’ is a subset of the
superlevel-set for level A. Mathematically, L f(/l’ ) C L(A).

Given a continuous set A, if we “trim” set A from all sides of the
boundary by a depth §, the remaining set is called the é-interior of A.

Liay © g2 = A1) € Le(ary

(a) A probability density function that satisfies Assump-
tion 2.

Ly © g(IA = A1) S Ly
fx) 1)

(b) A probability density function with a strictly posi-
tive flat region does not satisfy Assumption 2.

Fig. 3. Examples of probability density functions based on Assumption 2.

For example, in Fig. 3(a), we can “trim” L,(4) from its boundary by
a depth g to make it a subset of L f(A’ ). Mathematically, we denote
“trimming” a depth g from all boundaries of a superlevel-set L (1) as
L,(MHog [43]. Such a concept is the basis for Assumption 2.

To provide a guarantee for the robustness of density-based cluster-
ing, we need the density function to decay around the cluster bound-
aries so that the clusters are salient enough to be detected. In particular,
we need no strictly positive flat regions in the smart meter density
function. Strictly positive flat regions in the density function can be
avoided in the following way. For Fig. 3(a), assume g is an increasing
homogeneous function of (A — 1) and assume for all 0 < 4 < A <
I fllo, where |[f]l, represents the peak density, we have L (1) ©
g(|A=A|) € Ly(¥). This is because there is no strictly positive flat
region in Fig. 3(a). However, for Fig. 3(b), if we set 4 and A’ just below
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and above the flat region, we cannot obtain L (1)©g(|4 - 4'|) € L (4)
due to the strictly positive flat region. Assumption 2 below gives a
formal description of this concept. Flat regions in density function with
a zero value satisfy Assumption 2, as the superlevel-set L /(4 = 0) is not
included in the assumption.

Assumption 2 (Curvature). There exists Cy >0 and § > 0 such
that the following holds. For any 0 < 4 < A < |[f|l,, we have
L, (M) ©g(i—A)) C LX) where g(r) = C; - 1P

In the voltage domain, a density function satisfying Assumption 2
means that the voltage distances (inverse of the mutual information)
gradually increase as we move from the center of clusters (houses
supplied by the same transformers) to external areas. The function
g(r) = Cy - r# mimics the exponential structure. For example, the
family of exponential probability densities can estimate many real-
world phenomena. Assumption 2 ensures that the density function is
not strictly positive and flat simultaneously. Moreover, Assumption 2
forces sufficient density decay around the superlevel-sets so that the
superlevel-sets are salient and will be detected [43]. We can introduce
a slightly different density estimator concept than N,(x), i.e., to keep
the number of points k fixed and adjusting the radius r(x) to enclose
k nearest neighbor points with the sphere called the k-NN density
estimator. A lot of literature is based on this approach, formally defined
as fr(x) := m, where v, is the volume of a unit ball in djy,y),
r,(x) is the adjusted radius of the sphere to enclose k points. vp-r,(x)? is

the volume of the sphere with radius r;(x), and — is the number

prk(X)

of points per unit volume. In order to remove the effect of the total
number of points n, we divide it by n. Once we have the required
assumptions and definitions, now we can go ahead with the proof.

4.3. Robustness guarantees against meter number

We now show robustness guarantees on the core points returned by
Algorithm 2. In particular, we show that adding / new utility customers
with smart meter voltage and location data to the original data does
not change the original clusters. The cluster assignments to the original
points remain unchanged i.e., the original points that were clustered
together (separate), remain together (separate) after adding new points.
That is, when running Algorithm 2 on [L, V] vs. running it on [L/,V’]
with / additional samples, any new core points that appear will be near
the original core points.

The k-NN density estimation error can be given by a probabilistic
bound between the true density f(x) and the k-NN density estimation
f1(x). Such a bound can be used to identify the upper bound of the
theoretical density given the k-NN density estimation via density-based
clustering. The upper bound of the true density can be used to provide
a guarantee for core points. For measuring f,(x), if k is very small, it
can lead to estimation errors due to less samples within the sphere,
reducing the estimation accuracy. Therefore, to provide a confidence
level (1 — 6) for the bound, one needs to have a lower bound on k. The
lower bound on k is directly related to the sample size n. Moreover,
k is directly related to the confidence level (1 — §). Lemma 1 directly
follows from Lemma 3 and 4 of [43,44].

Lemma 1 (k-NN Density Estimation Accuracy). Let 0 < § < 1. Suppose
that f satisfies Assumption 1. Then the following holds for some constants
C and C, depending on f. Suppose k satisfies k > C, ~log(5i2) -logn. Then
with a probability of at least 1 — §, the following holds:
-1 ficen a
sup [£(%) = f,(00] < (M B (E)D).
xe[LV] k n

)
NG
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Lemma 1 provides the limit to the error in the k-NN estimator
accuracy f,(x). Indeed, the range of error is directly related to the
confidence level (1—46). Also, a greater sample size n can lead to greater
error if k is small since the number of points within the sphere will
be even smaller as compared to the total sample size n. Moreover, a
higher degree of continuity « of the density function will result in a
lower error. From Assumption 1, we have that the density function is
continuous. Moreover, from Assumption 2, we have that the density
function has a curvature and is never flat. Furthermore, using Lemma 1,
we have that the true density will not be much different than measured
by DBSCAN. Therefore, the new / points will lie close to the original
clusters. In fact, using the above three arguments, we can calculate the
probabilistic maximum extension 7 from the original DBSCAN clusters.
Therefore, the new clusters C’ will be bounded by the original clusters
extended by the distance 7 with a confidence of 1 — 6. The lower bound
on k remains the same as Lemma 1. However, the total number of
points becomes (n + ).

Lemma 2. Suppose that Assumptions 1 and 2 hold. There exists constants
C, and C depending on f such that the following holds. Let 0 < 6 < 1
and k satisfy k > C - log((;—z) ~logn + 1), and € > € > 0. Let C
and C' be the core points returned by Algorithm 2 when run on [L,V]
and [L', V'], respectively. With probability at least 1 — &, the following
holds: C' c C @7, where @ denotes a tube around a set (ie. A®r =
{x€[L,V] :inf,cs [x—a|l <r,}) and ¥ < co.

The proof of Lemma 2 follows Assumptions 1, and 2, and Lemma 1
[43]. The result C’ C C @ 7 suggests that the new points lie within the
tube of thickness 7 around the original clusters. Therefore, if the edges
of the original clusters are at a distance 2¢ + 27, there will not be any
original clusters merging to form one cluster. Moreover, if 7 < €, then
the new points will not form separate clusters.

Theorem 1. Suppose that conditions of Lemma 2 hold. Let C, C' be the
output of Algorithm 2 on [L, V] and [L/, V'], respectively, and define the
minimum inter-cluster distance of the returned clusters
= min min  d, x!,x%). 8
CLORLE 20,y et B ec, iL.vy( ) (8
If additionally, the following holds: 7 < € < %R—?, then |C| = |C'| (i.e. the
number of clusters does not change) and there exists a one-to-one mapping
of the clusters ¢ : C — C’ such that C C o(C) for dll C € C (i.e., original
clusters are preserved).

Proof. Note that all the points appearing in a cluster of C will also
appear in some cluster of C’. By Lemma 1, we have that any newly
appearing points in C’ will be at a distance of at most 7 from a
point appearing originally in C, mathematically ¢’ c C @ 7. From the
assumption ¢ > 7, we have that the radius hyperparameter for DBSCAN
is lesser than 7, then such new points will become reconnected to the
same cluster in C since they will be present in the sphere of radius 7.
Finally, from the assumption € < %R — 7, we have that the original
clusters are separate by more than 2¢ + 27, which means that no two
distinct clusters in C will become merged in C'. []

5. Deployment

Fig. 4 shows a deployment of the proposed algorithm in our utility
partner’s territory. It is obtained by directly running the algorithm on
the sets of data without any human intervention. For example, in the
middle one, the green lines show the connections from poles to poles,
the yellow lines show the connections from the poles to smart meters,
and the red one is the primary feeder topology. This visualization shows
that such an algorithm is suitable for large-scale topology recovery.
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Fig. 4. Demo of deployed topology clustering algorithm.

6. Numerical validation
6.1. Data description

The simulations are implemented on the IEEE PES distribution
networks for IEEE benchmark systems, such as 123-bus systems. We
also implement our algorithm on a utility grid. For benchmark systems,
the feeder bus is selected as the slack bus. To simulate the power system
behavior in a more realistic pattern, the load profiles from Pacific Gas
and Electric Company (PG&E) and “ADRESConcept” Project of Vienna
University of Technology [45] are adopted as the real power profile
in the subsequent simulation. PG&E load profile contains hourly real
power consumption of 123,000 residential loads in northern California,
USA. “ADRES-Concept” Project load profile contains real and reactive
powers profile of 30 houses in Upper-Austria. The data were sampled
hourly over 14 days, so we generate voltage data using the historical
consumption data with load flow analysis by the MATPOWER and
OpenDSS.

For the utility grid, it is a mid-sized northeast system that includes
approximately 600,000 customers, 7200 miles of overhead conductors,
250,000 poles, 108,000 transformers, 4500 miles of cable, 1000 sec-
tionalizers, 400 capacitors, and 500 network protectors. A sample of
10,000 customers’ AMI voltage data was used as well as the nearby
transformers’ GPS coordinates and the GPS coordinates of the poles. A
summary of the voltage information is shown in Table 1.

6.2. Robust clustering

6.2.1. Validation on IEEE-123 test case system

As public secondary distribution is hard to find, we adjust IEEE 123-
bus test system by adjusting its line parameters, e.g., R/X ratio, into
the parameter range of the secondary grids. Afterwards, we randomly
cut and separated the system into two systems, each with its own
transformer, shown in Fig. 5, so that the validation process is free
from any biases and for extensive testing. Since there is no test system
available for the secondary distribution system, we use the IEEE 123-bus
test system. Moreover, we change the line parameters of the IEEE 123-
bus test system to mimic a secondary distribution feeder. For example,
we change the X/R ratio of the lines to 0.2, which is a typical value for
the X/R ratio of low voltage cables.

The system is disconnected at any bus to create two separate subsys-
tems, e.g., split between bus 67 and 68 to provide an even split in Fig. 5.
Afterwards, we run load flow analysis on 500 load scenarios for each
split to generate a voltage dataset over a typical load cycle, similar to
what the utility provided us. As the IEEE 123-bus test system does not
provide any GPS coordinates of the nodes, we use the location coordi-
nates using coordinates from the OpenDSS IEEE-123 bus model. With
voltage data and “GPS coordinates”, we run the proposed clustering
algorithm.

To understand the performance of our clustering process, we com-
pare two other clustering methods to our proposed clustering method.
The input to BIRCH and Kmeans is the voltage time-series, while
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Fig. 5. Network Partition. The IEEE 123-bus system was used to understand the
different dynamics of the three clustering algorithms for illustration purposes.

Table 1
Voltage data summary provided by utility partner.
Area 1 Area 2 Area 3
Total number 3442 x 8640 2578 x 8640 2357 x 8640

MAC addresses 3442 2578 2357

Starting time 2016/7/22 2016/7/22 2016/7/22
Ending time 2016/8/21 2016/8/21 2016/8/21
Units Volt Volt Volt

DBSCAN uses mutual information of voltage time-series designed in
this paper. This is due to the ability of DBSCAN to utilize the mutual
information by considering mutual information as an inverse of the
distance in feature space, while Kmeans and BIRCH cannot utilize
mutual information. Moreover, since Kmeans also need the number of
clusters while DBSCAN and BIRCH do not need it, we specify k = 2 for
Kmeans as there are two transformers as prior information.

The result of the comparison is shown in Fig. 6. The Kmeans
algorithm divides the network based on the minimum sum of within-
cluster centroid distances. As can be observed from Fig. 6a, the sum of
within-cluster centroid distances will be higher for the ground truth,
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(a) Result of Kmeans clustering algorithm.
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(c) Result of our proposed algorithm is the
same as the ground truth of the modified
IEEE-123 bus feeder, as shown in Fig. 5.
The cluster —1 represents the outliers.

Fig. 6. Comparison of the three clustering algorithms using voltage and location information on IEEE-123 bus test feeder.

i.e., forming buses 1 — 67 into a cluster. It is because the ground truth
clusters have less gap between them near the primary bus. Moreover,
considering the usual scenario of one way power flow, the ground
truth clusters only gradually separate, moving towards the ends of
the feeders, as shown in Fig. 6. To minimize the sum of within-
cluster centroid distances, the Kmeans algorithm introduces an error,
i.e., splitting the ground truth cluster of buses 1 — 67. Therefore, the
approach of minimizing the sum of within-cluster centroid distances
(i.e., the Kmeans algorithm) is not suitable for splitting the utility data.

Similar logic can be used for the BIRCH algorithm since it imposes a
strict diameter threshold on the clusters, as can be observed in Fig. 6b.
Moreover, for BIRCH, the order of data presentation also matters,
resulting in different clusters if it begins from the root or leaf nodes.
In this example, cluster 0 grows until it reaches the threshold. The
algorithm abruptly stops adding more points to cluster 0 and starts
cluster 1.

By comparing Fig. 6¢ with the other two subfigures, we can see
that only our density-based method is clustering consistently. Such an
observation remains when we change the loads and topology, showing
the power of integrated design of the machine learning method with
the needs of power systems. It is because a density-based method

starts with a high-density point (core-point) and progresses through
high-density regions until it finds a break due to the two transformer
impedances. It is how the ground truth clusters are formed in the volt-
age feature space, as can be observed in Fig. 6¢. With hyper-parameter
tuning, such a method can segment the utility data effectively.

We also observe that more data availability increases the accuracy,
where Table 2 presents a numerical comparison of accuracy versus the
data availability, where we tune the hyperparameters of DBSCAN to
maximize accuracy for each value of data availability. Moreover, we
add the execution times, mean absolute error, and mean square error
of the algorithm. With the exception of a few samples, i.e., 10, we see a
straight relationship between the samples and the execution time. In the
case of few samples, the density-based method considers the majority of
data points as outliers. Outliers are rechecked once clusters are finalized
to verify if they correspond to a cluster’s border. As a result, the time
necessary to execute 10 samples is longer than the time required to
execute more samples.

Finally, we put our method to the test with noisy data. The supplied
data is contaminated by 0.1% noise. For example, we multiply a stan-
dard normal distribution by 0.1% of the input voltage dataset’s mean

value. As indicated in Table 2, the results remain mainly unaffected for
larger numbers of samples.



International Journal of Electrical Power and Energy Systems 142 (2022) 108291

(b) DBSCAN clustering using Voltage
information only.

(d) DBSCAN clustering using GIS in-
formation.

(f) DBSCAN clustering using Voltage

and location information.

Fig. 7. Comparison of the three clustering algorithms using voltage and location information on a sample in our partner utility.

E. Cook et al.
(a) Kmeans clustering using Voltage
information only.
(¢) Kmeans clustering using location
information only.
(e) Kmeans clustering using Voltage
and location information.
Table 2
Voltage sample versus accuracy.
Samples 10 50 75 100 150 250 500
Execution time [s] 11.99 532 542 553 555 593 6.10
Accuracy 1%  36% 95% 100% 100% 100% 100%
Mean absolute error (MAE) 099 064 005 O 0 0 0
Mean square error (MSE) 099 0.64 0.05 0 0 0 0

Accuracy with 0.1% Noise data 0% 0% 54% 54% 54% 98% 96%

6.2.2. Validation on real utility system

As our utility partner provides geographical location information,
we also use real GPS data for validation of algorithmic results. To
validate the importance of using the combined voltage-location dataset,
we compare the results of two algorithms with (i) voltage dataset only,
(ii) location dataset only, and (iii) combined voltage-location dataset,
as shown in Fig. 7. Moreover, to validate the importance of using our
proposed method, we compare our method to four other algorithms us-
ing the combined voltage-location dataset in Fig. 8. The scenarios also
include comparisons with both recent and classical methods. However,
we observe that our proposed method with results in Fig. 8(e) is the best
with a consistent segmentation of transformer to meter connectivity
among all combinations. Our algorithm is also the best according to

the accuracy in Table 3, due to its capability to integrate the voltage
information and ground distance in the best way.

6.3. Overall accuracy

To evaluate the accuracy, we conduct our algorithm throughout the
utility territory in Fig. 8. For methodology, we compare our algorithm
with respect to a mutual information method with the Chow-Liu al-
gorithm, the BIRCH method, and the k-means method. The results are
displayed in Fig. 9, where the proposed method has an accuracy of near
95% over a large number of buses. The result is also quite robust if the
bus number continues to grow. Moreover, we can see that for the large
area, as shown in Fig. 9, location information improves the accuracy
since voltages can be similar for smart meters over large areas due to
similar neighborhood consumption profiles.

Remark 1. To deploy our method for large-scale validation, we
assign addresses to poles to reverse-geocode each pole, which requires
purchasing Google Maps API. With the parent transformer, poles, and
the smart meters belonging to the same cluster, we can use a mini-
mum spanning tree to connect them to obtain the secondary overhead
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(a) Kmeans clustering using Voltage

(b) BIRCH clustering using Voltage

and location information. and location information.

(c) Hierarchical clustering [46] using

(d) InfleCS [47] clustering using Volt-

Voltage and location information. age and location information.

(e) DBSCAN clustering using Voltage

and location information.

Fig. 8. Comparison of Kmeans, BIRCH, and our proposed density-based clustering algorithms using voltage and location information on a sample in our partner utility.

Table 3

A numerical comparison of methods on various datasets shown in Fig. 8 based on five reference metrics: accuracy, execution

times, MSE, MAE, and AMI score.

Algorithm and data Accuracy Execution MSE MAE AMI
[%] Times [s] Score
Kmeans (Voltage Info.) 55.56% 0.26 0.44 0.44 0.768
BIRCH (Voltage Info.) 66.67% 0.01 0.33 0.33 0.751
Kmeans (GIS Info.) 33.33% 0.37 0.67 0.67 0.656
BIRCH (GIS/Voltage Info.) 66.67% 0.73 0.33 0.33 0.751
Kmeans (GIS/Voltage Info.) 55.56% 0.07 0.44 0.44 0.768
InfleCS [46] (GIS/Voltage Info.) 10.64% 28.6 0.89 0.89 —0.03
Hierarchical Clustering [47] (GIS/Voltage Info.) 80.85% 0.01 0.19 0.19 0.751
DBSCAN (GIS and Mutual Info of Voltage) 97.87% 1.91 0.02 0.02 0.966

MSE: mean square error; MAE: Mean absolute error; AMI: adjusted mutual information; InfleCS: Clustering Free Energy

Landscapes with Gaussian Mixtures.

connections. Minimum spanning tree works by connecting the houses
with the poles and transformers by minimizing the total length of wire.
Such an algorithm is correct as (1) houses are usually supplied from
their nearest poles without any measurements, and (2) the distribution
system has a tree structure.

10

7. Conclusion

Electric utilities typically do not have an accurate distribution sys-
tem topology readily available. With the advent of DERs, the electric
utility faces challenges in the distribution grid. These challenges need
greater visibility of their distribution system circuits through state
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Fig. 9. Accuracy comparison for the

estimation, where real-time topology recovery is the basis for mod-
eling. Past technology is based on either outdated maps or use tem-
poral information only and ignore the geographic information. How-
ever, temporal information is not enough for associating transformers
with smart meters. This paper resolves this challenge by accurately
clustering the topology. Specifically, we propose a density-based clus-
tering method that leverages both voltage and geographical space data.
And we show how to use GPS coordinates with voltage information to
refine the connectivity within one transformer. Finally, we not only
show how to improve our method but also provide an explainable
theoretical bound. The proposed method is validated on the IEEE-123
bus system and the real system from our partner utility.

The proposed method does not require PMUs, a large amount of
sensors as in transmission system, or voltage measurements at poles or
transformers. Moreover, it can even work on areas having streets with
irregular shapes. However, the proposed method requires both voltage
and geographic data. Moreover, the guarantee for the proposed method
exists under the conditions mentioned in the paper.
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