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GLOBAL (2% ESTIMATES FOR THE MONGE-AMPERE EQUATION ON
POLYGONAL DOMAINS IN THE PLANE

NAM Q. LE AND OVIDIU SAVIN

ABSTRACT. We classify global solutions of the Monge-Ampére equation det D?u = 1 on the first
quadrant in the plane with quadratic boundary data. As an application, we obtain global C** esti-
mates for the non-degenerate Monge-Ampeére equation in convex polygonal domains in R? provided
a globally C?, convex strict subsolution exists.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In this paper, we establish global C*® estimates for the non-degenerate Monge-Ampere equation
in convex polygonal domains in R? provided a globally C?, convex strict subsolution exists.

For smooth domains € in R”, boundary C? estimates for the convex solution to the Dirichlet
problem for the Monge-Ampere equation

detD>u=f inQ, u=¢ ondf

in the nondegenerate case where f € C(Q2) and f > 0 in Q, have received considerable attention in
the last four decades. On smooth and strictly convex domains 2, these boundary estimates were
obtained starting with the works of Ivockina [I], Krylov [K], Caffarelli-Nirenberg-Spruck [CNS| (see
also Wang [W]). Also on convex domains, global C?® estimates under sharp conditions on the
right hand side and boundary data were obtained by Trudinger-Wang [TW] and the second author
[S1]. On bounded smooth domains €2 that are not necessarily convex, global C%® estimates with
globally smooth right hand side and boundary data were first obtained by Guan-Spruck [GS] under
the assumption that there exists a convex strict subsolution u € C?(Q) taking the boundary values
. The strictness of the subsolution u in [GS] was later removed by Guan [G].

In this paper, we relax the smoothness of the domains 2 in the two dimensional case and
investigate C%® estimates in general convex domains with corners.

Our first main result states:

Theorem 1.1. Let Q be a bounded convex polygonal domain in R%. Let u be a convex function
that solves the Dirichlet problem for the Monge-Ampére equation

{detD2u = f in Q,

1.1
(1.1) u = on L.

Assume that for some € (0,1),

feC? ), f>0, and ¢e C*P(Q),

and there is a globally C?, convez, strict subsolution u € C*(Q) to (L)) (that is, det D?*u > f in Q
and u= ¢ on 0). Then

u € C?(Q),
for some a > 0. The constant o and the global C*® norm ||u||02,a(§) depend on §, 3, ming f,
||f||05(§), el 2.8 002)» ||2_L||Cg(§) and the differences det D*u — f at the vertices of €.
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Remark 1.2. If we relax the assumption on u in Theorem L1l to be a subsolution (not necessarily
strict), then we obtain u € C%(Q). This follows from Theorem 51

Theorem [I.1] establishes continuity estimates of the second derivatives for the solutions to the
Monge-Ampere equation ([[LI]) near the vertices of a domain with corners. Depending on the data,
solutions might develop conical singularities at the corners where the Hessian matrix becomes
unbounded. A necessary condition for the C? estimates is the existence of a classical convex
subsolution with the same boundary data. By the results above, this condition turns out to be
sufficient as well. This is in contrast with the case of second order linear elliptic equations where
the regularity of solutions depends on the smallness of the angles at the vertices.

We also note that Theorem [[LT] cannot hold in n > 3 dimensions. For example, we can take
to be the unit cube [0,1]> C R?, f = ¢ < 1, and ¢ = |z[?/2 on 9. Then u cannot be C? at the
origin since otherwise the boundary data imposes D?u(0) = I hence det D?u(0) = 1 # £(0).

An interesting feature of the C*“ estimates for (LI)) is that they are not stable under small
perturbations of the data ¢ and f. The C?® norm of the solution u depends crucially on the C?
norm of the subsolution u and on the differences det D*u — f at the vertices of Q. In fact we show
that it is possible for D?u to oscillate of order 1 in an arbitrarily small neighborhood of a vertex
when det D?u and f are allowed to be sufficiently close at that vertex. A more accurate analysis
about the possible behaviors of solutions near a corner under general data is given at the end in
Theorem [G.11

We prove Theorem [[1] by first classifying global solutions to the Monge-Ampeére equation in
the first quadrant in the plane with constant right hand side and quadratic boundary data. Our
classification can be viewed as a Liouville type result for the Monge-Ampére equation in angles
in the plane. Liouville type theorems for the Monge-Ampeére equation which state that global
solutions must be quadratic polynomials are known in all dimensions if the domain is either the
whole space or a half-space; see [CLL [S2].

At a vertex of the polygon the solution u to (L)) is pointwise C'*! since it is bounded above by
the convex function generated by the boundary data ¢ and bounded below by the tangent plane of
u, which is also the tangent plane for the upper barrier. Using the affine invariance of the Monge-
Ampere equation (see [Gul), we may assume after an affine transformation that €2 is given by
the first quadrant

Q = {a: = (331,332) € Rz T, T > 0},
in a neighborhood of the origin, and ¢z,5,(0) = ¢4,2,(0) = 1. Then a quadratic blow-up of the
solution must converge to a global convex solution defined in the first quadrant ) that satisfies

(1.2) det D*u=¢, and w>0, inQ,
for some constant ¢ > 0, and

|z
(1.3) u(z) = —-on Q.

We denote by PF the quadratic polynomials that solve (L2)-(L3]) when 0 < ¢ < 1 which are
important in our analysis

1 1
PE(z) = 5:17% + 5:17% +V1—cxizo.

Our second main result classifies global convex solutions w > 0 of the Monge-Ampere equation
in the first quadrant in the plane with quadratic boundary data and constant right hand side.

Theorem 1.3. Assume that u is a solution to (L.2)-(I.3). Then ¢ <1 and
(1) if c = 1 then the only solution u to (L2)-(1.3) is

_ e

u(z) 5
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(ii) if ¢ < 1 then either
_ T
u=PE  or ulx)=\P, <X) ,
for some X\ € (0,00) where P, is a particular solution to (I.2)-(1.3) that satisfies
P- <P.<Pf inQ, andP.(1,1)=1.
Moreover, P. € C*%(Q) for some a = a(c) > 0, and
P.(x) = PF(x) + O(|z|**®) near x = 0 and P.(x) = P, (x) + O(|z|*>~%) for all large |z|,

hence P. interpolates between the quadratic polynomial P near 0 and P at oo.

Theorem [[3]shows that any small positive perturbation of P.~ on 0B;NQ, for example a rescaling
of P, for small A\, produces an arbitrarily large C>® norm near the origin.

In Proposition we give more precise information when ¢ < 1 and classify all global solutions
which do not necessarily satisfy the assumption v > 0. We show that there is a second family of
solutions generated by quadratic rescalings of a particular solution P, of (IL2)-(L3) which has a
conical singularity at the origin.

The rest of the paper is organized as follows. In Section 2 we state a compactness result and
derive second derivative estimates for global solutions. In Section 3 we establish pointwise O
estimates for perturbations of the quadratic polynomials P. The classification of global solutions
is obtained in Section 4. The final section, Section [B, will be devoted to proving the global C%®
estimates in Theorem [T.1]

2. COMPACTNESS AND SECOND DERIVATIVE ESTIMATES FOR GLOBAL SOLUTIONS

In this section, we obtain second derivative estimates and their consequences in the analysis
of solutions to the Monge-Ampere equation det D?u = ¢ in the first quadrant in the plane with
quadratic boundary data.

2.1. Compactness. Assume that u satisfies (L2]) and (L3]).
As mentioned in the Introduction, for = (x1,x2) € @, we have from the convexity of u that
u(z) <
T+ x2
Since u > 0, we can use standard barriers at points on 0@ to obtain
[Vul < C(c) in (Bs\Bis)NQ.

The function u separates quadratically from its tangent plane on 9Q, so by the results in [ST,
Theorem 6.4], we find

L2

1
u(z1 + 29,0) + w(0, 21 + x9) = (21 +22)” < |z
T T9 2

[ulles < Co(e) in (B2 \ Byja) NQ-
Applying the above estimate to the quadratic rescalings of u (that is, those of the form r~
we find

“u(rz)),

(2.1) co(c)I < D*u < Cy(e)] in Q,
thus the Monge-Ampere operator det D?u is uniformly elliptic, and
(2.2) |D3u(z)| < Co(c)|z|™" in Q.

The above estimates easily give the compactness in C’f;c(a\ {0}) for a sequence of solutions to
(L2)-(3) which we state below.

Lemma 2.1. (Compactness) Let uy be a sequence of solutions to (L2)-([L3). Then, there exists
a subsequence which converges (in the C°® norm) on compact sets of Q\ {0} to another solution us

of @2)- @.3).
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2.2. Ol estimates. Our first result is a sharp upper bound for the Hessian matrix D?u.
Lemma 2.2. Let u be a convex function satisfying (1.2) and (I-3). Then, for all x € Q, we have
Uiz, (2) < 1, Ugnay () < 1 and gz, (z)] < V1 —c.

Thus, if ¢ > 1, then there are no solutions u to (1.2) and (I.3). If ¢ = 1 then the only solution to
(L2) and (I13) is u(z) = @
We use the following notation for 1 <4,k < 2:
WUij = Ug,z;,  Uijk = Uz;z my, -

Proof. Tt suffices to prove 0 < uj; < 1. Then by symmetry 0 < ugy < 1, and |uj2| < /1 — ¢ follows
from U%Q = Uj1U29 — C.

Step 1: We show that if u1; attains its maximum value M > 1 at some p € Q\ {0} then we will get
a contradiction. Indeed, suppose that w1 attains its maximum value M > 1 at p. First, since uq;
is a subsolution of the linearized operator of det D?u, p must be on the boundary. Because ui; = 1
on the zj-axis and wu1(p) = M > 1, we find that p must be on the positive x9-axis. It follows that

(2.3) U112(p) =0
We claim that
(24) u122(p) = 0.

Indeed, differentiating both sides of the equation ([L2)), that is uj1uge — u2y = ¢, with respect to x2,
we get

(2.5) U122 + U11U222 — 2ui2ui22 = 0.

Since u112(p) = u222(p) = 0 we find that either uj22(p) = 0 and we are done or uj3(p) = 0. In the

second case, on the zy-axis, we have from ([2]) and uge = 1 that u%z = u11 — ¢. The maximality of

up1 at p shows that, on the zp-axis, u?, attains its maximum value at p. Thus, from u2,(p) = 0,

we find that u12 = 0 on the whole x9-axis, hence u122(p) = 0 and the claim is proved.
Differentiating both sides of the equation (L2 with respect to z1, we find that

(2.6) u111U22 + Ur1U122 — 2u12u112 = 0.
Evaluating (2.6 at p using (2.3))-(24), we find u111(p) = 0. This contradicts the Hopf maximum
principle since w11 is a nonconstant subsolution for the linearized equation.

Step 2: We finally prove that if M := supgui; then M < 1. We argue by contradiction.
Suppose that M > 1. From the definition of M, there exists a sequence {z;} C @ \ {0} such that
u11(2x) — M when k — co. Let us define

rr =2l 2 =rptae and v(z) =1 tu(rg2).
Then, vy, is a solution to (L2)-(L3]); moreover,
vg1(2;) = w1 (zx) = M when k — oo.

By Lemma 1] the functions vy has a limit v in C3 (Q) solving (L2)-(L3) and at any limit point

- loc
Zoo € ST N Q of 2., the function vy attains its maximum value M > 1. This contradicts Step 1.

0
From now on, in view of Lemma we consider only the case
0<e< 1.

Before we proceed further we state a general result about mixed second partial derivative of solutions
to fully nonlinear elliptic equations in two dimensions.



THE MONGE-AMPERE EQUATION ON POLYGONAL DOMAINS 5

Lemma 2.3. In two dimensions, if u € C* solves the fully nonlinear elliptic equation F(D?u) =0,
with F € C*(S) where S is the space of real 2 x 2 symmetric matrices, then u12 is a solution to a
second order linear elliptic equation with no zero order terms.

Proof. Let us denote for each r = (r;;)1<ij<2 € S

P e OF (r)
87’2']‘
Differentiating both sides of F(D?u) = 0 with respect to 7, we get
(2.7) Fijuuj = 0.

Differentiating both sides of the above equation with respect to xo, we find that
Fij(ui2)ij = — Fij kivaijuzk-
The only term in the above right hand side that does not involve w2 is —F11 22u111u222. Note that,
from (2.7)), we have Fljui11 = agujgr for continuous functions a; and ag, and therefore
ApU12k
Fiy

—Fi1,20u111u222 = — F11,22u999.

The result follows.
O

Our final result of this section is concerned with possible limit values of the mixed second partial
derivative of solutions to (L2) and (L3)).

Lemma 2.4. Let u be a convez function satisfying (I.2) and (I.3). Then

(i) if u12 achieves a local minimum or mazimum at some point in Q \ {0} then u = PF.
(ii) we have
linbinf u12, limsupuis € {£v1—c}.
Q

In particular if ujp = +1/T — ¢ at some point in @Q \ {0} then we have u = PZ. By compactness
we obtain:

Corollary 2.5. Let u be a convex function satisfying (I.2) and (I.3).
(i) If u1a < —/1 —c+ 3§ at some point on OB N Q then
(2.8) lu—Plcz<e in (Bi,\B,)NQ
for some €(8) >0 and p(§) > 0 small, and £(5) — 0, p(§) = 0 as § — 0.
(ii) Similarly, if uia > /1 —c— & at some point on dB1 N Q then
(2.9) lu—PFlp~ <e in ByNQ,
for some €(0) > 0 small, and (§) — 0 as § — 0.

Remark 2.6. As a consequence of the above results we find that either u = P or uis has different
limits £4/1 — ¢ at 0 and oo.

We will show, using the C*® estimates in the next section that, for any nonquadratic solution u

to (L2)-(T3), v/1 — ¢ must be the limit at 0 and —+/1 — ¢ the limit at oo for uj9; see Lemma B.I11

Proof of Lemma |24 We prove (i) by showing that if u;5 has a local minimum or a local maximum
in @ \ {0} then it is a constant which is ++/1 — c¢. Suppose that w12 is not a constant in Q. Then,
by Lemma 23] applied to the equation F(D?u) := det D?u — ¢ = 0, we deduce that the extreme
point of u15 must be on the boundary, say at (0,1) on the x9-axis. At this point, we use (23] to
obtain that uj12 = 0. But this is exactly (u12)z, = 0 so, by Lemma 23] we contradict the Hopf
lemma.
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Since u1g is a constant A, then u = Azy + f(z) + g(y) and then we find u = PF.
Now, we prove the two assertions in (i) which follows easily from (i) and compactness using
quadratic rescalings. Let

(2.10) a:= liinnf U12.

Then, by Lemma 22 we have a > —+/1 — c¢. Moreover, there is a sequence {z}72; C Q\ {0} such
that u12(2;) — a when k — oo. Let rj, = |2| and z;, = 7} z),. Define
vp(z) = r,;zu(rkz).
Then vy, satisfies (L2)-(L3), vy 12 > a and
vk,lg(z,;) =uy2(zx) > a as k — oo.

By the compactness result of Lemma 2.1] there exists a subsequence of {vx}, still denoted {vy},
which converges (in the C3 norm) on compact sets of Q \ {0} to another solution v of (L2)- (3.
Moreover, we can also assume (after relabeling a subsequence) that z; — 2z € 0B1 N Q. We have

vi2(2) = a,
and vi2 > a in Q. The fact that a € {£/1 — ¢} follows from (i).

3. POINTWISE C%% ESTIMATES

In this section we prove pointwise C*® estimates at the origin for solutions of the Monge-Ampere
equation in the first quadrant in the plane which are perturbations of Pci.

Following [CC], we say that u is C*% at xg, and write u € C*%(z0), if there exists a quadratic
polynomial P, such that, in the domain of definition of «,

u(z) = Py () + O(|z — 20/>7%).

Assume that the convex function u solves the following Dirichlet problem for the Monge-Ampere
equation

(3.1) det D>°u=f inQ, w=¢ ondQ.

We prove the following pointwise C*¢ estimates when f is close to ¢ and ¢ to |x|?/2. For simplicity
of notation we use ¢ for this quadratic data, that is,

=P

=5

Proposition 3.1. Let c € (0,1). Assume that u satisfies (31 and suppose that
lu—PF<e and |f—c|<éc inB1NQ, and|p—q| < on B;NIQ,

for some € < eg(c) small and §(c) small. Then there exist o € (0,1) and r < 3 depending only on
¢ such that

q(z):

lu — PI| < er®*® in B, NQ.

If f and ¢ are pointwise C® and C?® respectively, then we can apply Proposition B.1indefinitely
and obtain the pointwise C% estimate for u at the origin.

Corollary 3.2. Let c € (0,1). Assume that u satisfies B and suppose that
lu—PF| <eo and |f(x) —c| < deolz|® in BiNQ, and |p(x)—q(z)| < deolz|*T™  on By NOQ,
for some go(c) small and §(c) small. Then

lu(z) — P (z)| < Ceolz|*™ in BN Q.
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This result shows that the only possible limit for ug, 4, (z) as z — 0 is /1 — ¢ for any nonquadratic
solution u to (L2)-(L3). Indeed, by Lemma 4 and Corollary 23] (2.9]) holds after an initial dilation
for some ¢ < g¢, and then Proposition Bl above applies indefinitely.

Our next proposition deals with the case when wu is close to P7. We introduce the following

(&
exponent

Pe = arccos(—v/1 — ¢) € (1.2)

Proposition 3.3. Let c € (0,1) and B € (B, ,2]. Assume that u satisfies (3.1 and suppose that
ju—P7| <elz|’, and |f—¢[<de in(Byy,\ By)NQ,

and
lp —ql <de on (By,\ B,) NOQ
with € < eg(c,B), 6 = d(c,B), p=p(e,B) small. Then

|lu— P | §% on 0B1 N Q.

A consequence of this result is that if v is quadratically close to P.~ at all scales less than 1, i.e.,

u(z) = P ()] < eolaf?, | f(x) — ¢| < deolz|® in QN By, and [p(z) — q(z)| < deolz[*** on 9Q N By,
for some ¢, 0, € (0,1) small depending only on ¢, then

u(z) — P, (z)] < Ceola*™
near the origin; see Lemma [B.12]

3.1. Transformed domains QF and reformulations of Propositions B.1] and B3l We use

2
affine transformations to transform PfE into the quadratic function ¢(x) = % on appropriate an-
gular domains QF in the plane. Then the linearized operator of det D?u around q is the Laplace
operator. We assume that u satisfies (8I]) and the hypotheses of either Proposition B1] or Propo-

sition B3] We start with the affine transformations from R? to R? given by the matrices

1 vl _ 1 £v/1—-c¢
+ NG +y—1 %
A7 <O h ) and (A7) (O /e > ,

/e
and denote
Qét = (Aét)_le uét =1Uuo Aét, and qét = qui:
Then
+ + |z[? +
PFoAf(x)=¢q(x)=— on Q..
Note that :
det D*u* = %foAzE and |det D*ur — 1| = |f ; d < %,
and
_=f?

G (r) = PEo A% (2) = qlw) = 5 on Q.

We restate equivalent versions of Proposition [B.I]and Proposition[3.3lon the transformed domains
QF as follows.

Proposition 3.4. Suppose that |det D?u — 1| < d¢, |u — q| < e < &g in By N QF where 0 <
go(c),d(c) < % are sufficiently small and u has the boundary value ¢ on the edges of QF that
satisfies | — q| < 5c on B1 NOQF. Then there exist o € (0,1) and r € (0,3) depending only on c
such that

lu—q| < er*™ in B.NQT.
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Proposition 3.5. Let 8 € (87,2]. Suppose that |det D*u — 1| < b¢, |u(z) — q(z)| < elz|? in
Q: N (Byy, \ By) where 0 < ¢ < go(c, B),d(c, B), ple, B) < L are sufficiently small and u has the
boundary value ¢ on the edges of Q7 that satisfies |p — q| < de on (By, \ B,) N0Q; . Then

€ _
]u—q\§§ on 0B1NQ;, .

To prove these propositions, we show that the ratio % is well approximated by a harmonic

function on QF which vanishes on the boundary. The approximation results state as follows.
Lemma 3.6. Assume that u satisfies the hypotheses of Proposition[3.4 Then, for any smalln > 0,
we can find a solution w to

(3.2) Aw=0inQF, w=0 ondQS

such that [w| < 1 in By, NQE and

lu—q—cew| <en in By ﬂ@
provided that eo(n, c) and 6(n,c) are chosen sufficiently small, now depending also on 7.

Lemma 3.7. Assume that u satisfies the hypotheses of Proposition[33. Then, for any smalln > 0,
we can find a solution w to

(3.3) Aw=0inQ,, w=0 ondQ,
such that |w| < |z|? in (B1/(2p) \ B2p) NQ: and

lu—q—ew| <en in (B2 \ Bap) N Qe
provided that eo(n, c) and 6(n,c) are chosen sufficiently small, now depending also on 1.

Proof of lemma 3. The proof of this lemma is similar to that of Lemma 2.6 in [LS]. We give the
details below. First we show that in By, N QF we have

(3.4) lu(z) — q(z)| < Cedist(x, 0QF) + de,
for some constant C' depending only on ¢. Pick a point (a,0) on the x; - axis, with a € [0,1/2].
We claim that
W = q + 0c + 4e[(x1 — a)? — 223] + Cexy,
is an upper barrier for v in By N Q, and
w = q — dc — 4e[(x1 — a)® — 23] — Ceas,
is a lower barrier. Indeed,
det D*w <1-—¢e<det D2u,
and
W>q+0e>uondQF NBy,and w > qg+e>wuon dB NQYT,
provided that C'is chosen sufficiently large. Thus u < @ in By N QF by the maximum principle.
Similarly we obtain that v > w in By N Q}. By choosing a = x1, we find
lu(z) — q(z)| < C'exy + e in BiNQIN{0<x <1/2},
and ([B4) easily follows.
Next we define
ve := (u—q)/e,
and, by hypothesis,
vl <1 in BiNQt.
It suffices to show that for a sequence of €, — 0, the corresponding v.’s converges uniformly in
By N Q7 to a solution of ([B3.2)) along a subsequence.



THE MONGE-AMPERE EQUATION ON POLYGONAL DOMAINS 9

By ([B.4) we find that v. grows at most linearly away from 9Q/ .

It remains to prove the uniform convergence of v.’s on compact subsets of By N Q7.

Fix a ball By.(z) C By N QF. Let uy be the convex solution to det D?ug = 1 in By,.(z) with
boundary value ug = u on 0Bs,(2z). We claim that

lu — ug| < 4r26¢ in Bo,(2).
To see this, we use the maximum principle and the following inequality
det(A + ALy) > det A + 2X(det A)/2, if A >0,A >0
to obtain in By, (z)
u+0e(|z — 2|? — (2r)?) <wg  and ug + de(|z — 2 — (2r)?) < u
from which the claim follows.
Now, if we denote
v = (ug — q)/¢
then
lv. — vo| = |u — ug|/e < 4725 in By,(2),

and hence v. — vg — 0 uniformly in B,(z) as § — 0.
Next, we show that, as ¢g — 0, the corresponding vs converges uniformly, up to extracting a
subsequence, in B,.(z), to a solution of ([32). Note that

1
0= g(det D%y — det D2q) = trace(A€D2v0)

where, using cof(M) to denote the cofactor matrix of the matrix M,
1
A = / cof(D?q + t(D*up — D?q))dt.
0

We note that as g9 — 0, we have ¢ — 0 and u — ¢; therefore D?uy — D?q = I, uniformly in
B,(z). This shows that A, — I uniformly in B,(z) and thus vy’s must converge to a harmonic
function w satisfying (8.2]). The bound |w| < 1 in By N Q follows from from the corresponding

bound for v. and the convergence v. — vy — 0. ]

Proof of Lemma [3.7 The proof of this lemma is essentially the same as that of Lemma SO we
omit it.
0

3.2. Harmonic functions in QF. Next we collect some standard facts about harmonic functions
which vanish on the boundary of an angle. We note that, at the vertex 0, the opening of @ is an
acute angle o/ € (0, %) while the opening of Q_ is an obtuse angle oy € (5,7) . In fact, we have

12
oS ozzc =xv1l-—c

Let us denote

+ T

ﬁc - E
Note that
BF > 2 while 1 < 8, < 2.

For any (r1,72) € R?, we can identify it with the complex number z = x; + izg € C. The
conformal mappings z € QF — 2 := e € H map QF to the upper-half plane H. Let us consider
WF(4F) = w(z). Corresponding to any solution w to

szOian, w=20 onan,
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there is a harmonic function w in the upper-half plane H with zero boundary data, that is, w =0
on OH = {z9 = 0}. Moreover, w can be recovered from @ via the formula

w(z) = w(zﬁci).
As such, any solution w to
Aw=01in QF, w=0 on dQS
is C%® in §1/2 N @: for any a € (0, 1] satisfying o < 8+ — 2.
Lemma 3.8. Assume that w solves
(3.5) Aw=01imQF, w=0 ondQS

and HwHLO@(BmQj) < 1. Then there are constants Cy > 0 and o € (0,1) depending only on ¢ such

that w satisfies
lw(z)| < Colz[*T*0 in By NQF.

Proof. Note that the harmonic function « corresponding to w is smooth in Bg/, N H. Thus, we
have

HDw|’L°°(B3/4mﬁ) <C.
It follows that for any 2z € Bz/y N H, we have
[@(2)] = [@(2) —w(0)] < CJ2].

The desired estimate of the lemma with ag := min{1, 8 — 2} follows from w(z) = w(z"% ).

A solution v to
Av=0in Q,, v=0 on 0Q_

can be only C* in By, NQ, .

Notation. We denote by vg = Im(2% ) the positive, homogenous of degree 8. € (1,2) harmonic
function which satisfies the equation above. In polar coordinates (r, ), vg is given by

(3.6) vo(r,0) = rP sin(B6).

We need the following result for the proof of Proposition
Lemma 3.9. Let f € (8,25, ). Suppose that w satisfies
(3.7) Aw=0inQ,, w=0 ondQ,_,
and that

¢

jw(z)| < [z|®  in (B \ Bp) NQ: -
Then, given a positive constant vy, we can find p = p(B,v,c) > 0 sufficiently small such that
lw| <~y on 9B1NQ_.

Proof. Let o := Bi, € (1,2). Using a conformal mapping to transform Q. to the upper half-plane

H, the statement of the lemma is equivalent to the following statement:
Let a € (1,2). Suppose that w satisfies

(3.8) Aw=0imH, w=0 on {xy=0}
and that |w(x)| < [x|% in (Byjep) \ B2p) NH. Then, given a positive constant vy, we can find
p = pla,y) > 0 sufficiently small such that |w| <~ on 0By NH.

Suppose that the conclusion is false for some ag € (1,2). Thus, for each positive integer n, we can
find a harmonic function vy, in (B, \ By,) NH with v = 0 on (B, \ By /,) NOH and [v,,(7)] < |z
in (Bp \ Byyy,) NH but [[vp || e @8,nm) = -
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Using compactness, we can let n — oo along a subsequence to obtain a harmonic function v on
H with the following property:

v=0ondH, |v(z)]<[z[* onH and |[v|L~@pnm) = 7-

By using refection about the x1-axis and the Liouville theorem for harmonic functions with polyno-
mial growth, we conclude that v is at polynomial of degree almost 1. Thus, v is of the form £Czo
for some positive constant C. Using

(a +23)*% = |v(21,22)| = Ozl

near the origin, we conclude that C' = 0. This contradicts ||v|| e 9p,nm) = 7-
O

Remark 3.10. The lemma above is true if we replace |z|® by max{|z|’,|2x|"2} where By, B2 €
(B-,28.) satisfying 81 < 5 < Ba. This means that in Proposition we can relax the hypothesis
onu— P~ to

u— P7| < emax{lz™, [z} in QN (B, \ By)

where (1, By € (B ,26.) satisfying /1 < B < [Ba.
It follows that if 8 is bounded away from B. then we can choose p(c,B) in Proposition [3.3 to be
also bounded away from 0.

3.3. Proofs of Propositions B.1] and B.3l They are reduced to those of Propositions B4 and
which we present in this section.

Proof of Proposition[3.]). Fix a € (0,ap) where ag is as in Lemma The proof, using Lemma
and the C%0 estimates for harmonic functions on @} in Lemma B8] is similar to the C*
estimates in [LS, Section 2]. We briefly indicate some details. For any n > 0, using Lemma [3.6] and
B.8 we find that in By, N Qr

u(z) — q(x)| < (n + Colz[*T20)

provided that e¢(n, c¢) and 6(n,c) are chosen sufficiently small and 0 < € < g¢(n,¢). We choose
n= Corngao for some 7y > 0 small to be chosen later. Then, in B,, N Q7,

lu—q| < 2600r(2]+°‘° < 6r§+a

if rg is sufficiently small depending only on ¢ and a. O

Proof of Proposition[33. Fix n = i. Let w be as in the statement of Lemma 3.7l Then

lu—q| < e(n+|w]) in (B \ Bap) N Qz

provided that eo(3,¢) and 6(8,c) are chosen sufficiently small and 0 < & < g¢(8,¢). Applying
Lemma B9 to w and ~ := % —n= i, we find that,

|lw| <~y ondB1NQ.
provided that p = p(8, ¢) sufficiently small. Therefore, if £q(3, ¢), (8, ¢) and p(B, ¢) are sufficiently
small, we have

6 p—
[u—gl <etn+|w) <etn+v) =5 ondBINQ.
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3.4. Consequences of the second derivative estimates. Next we state several consequences
of the second derivative estimates in Corollary and Propositions B.1] and

Lemma 3.11. Assume that u is a solution to (I.3)-(I-3) which is not quadratic. Then
lim uia(z) =vV1—¢, and lim wus(z)=—-vV1—c
z—0 |z|—o00

Proof. From Corollary and Corollary we know that if u12(2) > /1 — ¢ — 0 at some point z
in 0B, N Q, with § small universal, then

fu(@) — PF(@)] < cor " in B,onQ.

This implies that w5 converges to /1 — ¢ at the origin and the lemma follows by Remark
O

Lemma 3.12. Assume that u satisfies (31]) where ¢ € (0,1). Furthermore, assume that
u(z) =P, ()| < eolzl? | f(x)—c| < deolz|* in QN By, and |p(z)—q(z)| < deola[*T on 0Q N B,
where g, §, a are small depending on c. Then

lu(x) — P (x)] < Ceolz[*™™ in QN By.
Proof. Let g9 = €¢(c,2), d(c,2), and p = p(c,2) be as in the statement of Proposition Choose
a € (0,1) so that p® = 1/2. Let § = 6(c,2)p'+. First, we claim that
(3.9) [u(=) = Pr(2)] < e
for all z € @ satisfying

2] < p.

Indeed, let us fix |z9| = r < p. We write zy = rxg where |xg| = 1. Consider the following functions

i(x) = r2u(re), f(z) = f(re), (@) =r2p(re).
Then on By, NQ

|i(z) — P (x)] = 7’_2\u(m:) — P (rz)| < 7‘_250]7’33\2 = 50]33\2,

and
[f (@) —c| = [f(re) — c| < deor®|z]?,
and
|6(a) —q(@)| = 1% |p(rz) — q(ra)| < degr®|z*T*.
Then 4, f, and ¢ satisfy the hypotheses of Proposition since r < p < 1. By this proposition,
we have |4 — P | < £ on dB; N Q, hence

_ € €
[u(z0) — P (20)] < D2 = Do P
It follows by induction that
(3.10) lu(z) — P (z)] < %W for all z € Q with |z| < p*.

Indeed, as in (B3] we find
lu(z) — P (z)] < egla)? for all z € Q with |z| < 7y, == pF,

with e = 2 %¢y, and for this we used gory = €. The conclusion of the lemma now easily
follows. 0
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4. CLASSIFICATION OF GLOBAL SOLUTIONS

In this section, we prove Theorem concerning classification of global solutions which satisfy
2
x
(4.1) det D’u=c¢ inQ, and u(z)= ‘7 on 0@
for some constant ¢ € (0, 1).
Notice that we are no longer assuming that u > 0 as in Section @l The classification of global

solutions relies on refined asymptotic analysis at infinity of these solutions. Our arguments for a
non-quadratic solution u to (4I]) can be sketched as follows.

C
Next, we establish a boundary Harnack principle at infinity for u. In Lemma we show that
after the affine transformation using A_ that maps @ to Q. and P to ¢, the rescaled difference
(u— P;)o A is asymptotically a nonnegative multiple of the positive, harmonic, homogenous of

degree . function vy defined in (B.0), that is
(u—P7)oA. = (a+o(l))vy at infinity on Q_,

First, we show in Lemma B2 that u — P grows at most |z|% T at infinity for any o > 0.

for some constant a.

This expansion allows us to apply the maximum principle in the unbounded domain Q.. We
construct two global solutions P. and P, to (&I]) for which the corresponding constant a changes
sign. Using quadratic rescalings of these solutions together with P, we obtain a continuous family
of solutions to (4I]) for which the constant a ranges over the full R. The classification of global
solutions then follows by the maximum principle.

We first show that a solution u to (@J]) which is different than P must be close to P, at infinity.

Lemma 4.1. Assume that u satisfies {{-1) and v # P}. Then
(4.2) lim D?u(z) = D*P;.

|z|—o0

Proof. First we show that
(4.3) u(z) — o0 as |z| — .
Indeed, we use P.- — C(z1 + x2) as a lower barrier for w in @ N By and deduce from the convexity
of u that

vi=u+C(z1+22) >0 inQ.
We consider the sections of v, Sy, := {z € Q : v(z) < h} with h large. Since det D*v = ¢ we find
|Sn| < Ch for some large C' depending on ¢. On the other hand S, C @ is a convex set which
contains line segments of length % h along 0Q starting at the origin. In conclusion Sj C B, i

for some large C' which means that v(z) > co|z|? for some co(c) > 0 and for all large |=| and our
claim (£.3]) is proved.

As in Section LT, we have from the convexity of u that u(z) < |z|? in Q. We deduce from this
and ([@3) that the rescalings

ux(z) == A 2u(\x),
must converge uniformly on compact sets of ) along subsequences of A\, — oo to a solution @ to

#J), and @ > 0 by (@3)). If @ # P; then, by Lemma BIIl @2(x) — /1 — ¢ as x — 0 and, after a
quadratic rescaling by a factor we may assume

1
|’L_L—Pc+|§§€0 in @N By

where g9 = £¢9(c) > 0 is the small constant in Corollary This implies that
lun, — P <ep in QN By,
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for a sequence of A\, — oo. By Corollary [3.2] we obtain
luy, — P| < Ceolz*T™ in QN By,

which gives u = P, and we reach a contradiction.
In conclusion @ = P~ for any sequence of A — oo. As in LemmaR.I] in (Bz\ By/3) N Q we have
|lux — P ||c2 — 0 which implies (£.2)). O

Next we establish the asymptotic behavior of solutions to (AIJ]) which have P as a quadratic
limit at infinity.

Lemma 4.2. Assume that uw # P satisfies ({.1)). Then for any o > 0, we have

(4.4) u(z) — P () = O(|z|% +9)  at infinity,
and
(4.5) D?(u— P7)(z) = O(|x|P T°72)  at infinity.

That is, for all |z| > R(o,c), we have
lu(z) = P (2)] < Clo,0)(|z* ) and |D*(u — P7)(2)] < C(o,¢)(|z] *772).
Proof. We define
w:i=u— P .
Let €9 = g¢(c,2) and p = p(c,2) be as in Proposition
First, by applying Proposition B3] in outgoing annuli towards infinity, we conclude that
log %

_ 2—p . . . —
(4.6) w(xz) = O(Jz|*™#) at infinity, with e g o’

The proof of ([@G]) goes as follows. First, by ([£2]), we have
lim D?*w(zx) = 0.

|z|—o0
For each € € (0,&p), using this and the Taylor formula, we can find R(g) > 1 such that
lw(z)| < efz]* = ]2|™ for all z € Q \ Bp).

Here By = 2 and hence p = p(c, By). For all zg € Q with |z =r > R;‘e), we apply Proposition
2

w(rz) with

[i(2)] < erPo=2)2)% for all |z| > p

to the function w(z) = r~

to obtain [w@(zp/r)| < 3er®~2, which implies that |w(zo)| < §[20|®. Therefore, we have
lw(z)| < %]2\60 for all z € Q\ Bre) -
)

By induction, we obtain

lw(z)| < 2%\2]50 for all z € Q\ Br)-

oF

Then, for |z| sufficiently large, we have
(4.7) lw(z)] < 2[R(e)]*|2|P* = O(|z|P0~H) = o(|z|2—%ﬂ)

from which (4.6]) easily follows.

Next, we show that the exponent 5 :=2 — % w in ([@T) can be lowered successively to become as
close as we want to 8. € (1,2). Indeed, if 8 < . then we are done. Otherwise, the same rescaling
argument as above shows that

log %

— O(|2|#~") = o(|2|P~3")  where uy == —22 .
w(z) = O([2|771) = of[2["72") M Tog ple, B)
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Note that, if 8 is bounded away from (3. then p(c, 3) is also bounded away from 0 by Remark B.10]
Thus we can repeat the above argument and can replace 8 by . + o for any o > 0, after a finite

number of steps. In conclusion, we have w = O(|z|% T7) at infinity from which is exactly @4).
Finally, we note that (LX) is a consequence of ([&4]) and Schauder estimates (see [GT]) applied
to the equation

0 = det D?u — det D*P;” = trace(AD?w)
where
1
A= / cof(D*P; 4 t(D*u — D?P"))dt.
0
Here we use cof(M) to denote the cofactor matrix of M. Notice that by [2.1))-(2.2]), the coefficient

matrix A is uniformly elliptic and its first derivatives are bounded by C|z|™! at infinity.
U

Before proceeding further, we recall the notation in Section B.I] and Section Let

V1—c
- - —\—1
Ac:<0 ﬁ)? Qc:(Ac) Q,
Ve
w(r,0) =r% sin(876), B € (1,2).

We recall that vg is the positive, homogenous of degree 8. € (1,2) harmonic function in Q.

The next lemma establishes a boundary Harnack principle at infinity for non-quadratic solutions
to (L2)-(L3]). The precise statement is as follows.

Lemma 4.3. Assume that u # P satisfies ({.1]). Then
(4.8) uo A, =q+ (a+o0(1))vy at infinity on Q,
for some constant a.
Proof of Lemma[{.3 We recall from Section [3.1] that

P oA, =q andu, :=uoA_.
To simplify notation, let us denote

wi=u, —q=uoA, —q.

We need to show that w satisfies
(4.9) w = (a+o(1))vg at infinity on Q_

for some constant a.
We start with the fact that det D?u; = det D?q = 1 in Q. and moreover, w = u_ — ¢ solves a
linearized equation

a;;jwi; =0 inQ., withw=0 ondQ,.
Furthermore, by Lemma 2] we have for any o > 0,
lw(z)| < C(o,c)|z’ 7 and |a;j(z) — 8| + |[D*w(z)| < C(o,c)|z[’ T2 at infinity on Q.
At infinity, we have
Aw(z) = (8ij — asj (@) wij(x) = O(|x e +772))
By choosing o € (0, (2 — 8.)/3], we find

Aw=f, with |f(z)]=O0(z% ~°72) at infinity on Q.
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We can find (see Lemma [4.7]) an explicit homogenous of degree 5. — o function v; > 0 on Q.
which vanishes on the boundary of @), such that

Avy(z) < —|zP =72 on QI

.-
This means that we can solve by Perron’s method
Av = finQ;,
{ v=0 on 0Q_

for some function v such that —Cwv; < v < Cvy. It follows that

w(z) —v(z) = O(Jz|% T9)  at infinity on Q.
is harmonic in @, and vanishes on the boundary 0@, thus
(4.10) w — v = avg,

for some constant a. This can be easily seen using a conformal transformation mapping Q)7 to the
upper half-plane H and arguing as in the proof of Lemma

Now on 0B; N Q. we know that vyg and v; are comparable. Recalling the homogeneities of v;
and vg and using |v| < Cvq, we have

v=o0(1)vg at infinity on @, .
Combining this with ([@I0]), we conclude that w = (a + o(1))vp at infinity on @ .
U

Corollary 4.4. Assume that u,u # P} satisfy (£-1), and let a and a denote their corresponding
constants in the expansion [@8). If a < a then u < 1 in Q.

Indeed, a < a in the expansion (L8] implies that v < @ on A_ (0B,) N Q for all large r’s. Since
u = 4 on 0@ and they both satisfy (4.1]), we can apply the maximum principle in A (Q. N B,)
and conclude that u < @ in this set.

In the following lemma, we construct two particular solutions to (41]) that are not quadratic.

Lemma 4.5. There are two solutions P., P, to (&) so that
P.<P <P.<P’ in Q, and P.(1,1)=1, P.(1,1)=0.

At the origin P. is pointwise C** for some a = a(c) € (0,1) and P. has a conical singularity.
Moreover, their corresponding constants in the expansion at infinity L) satisfy a > 0 and a < 0.
At infinity, we have

P.(x) — P (z) = O(|z|’ *°) and P (x) — P (z) = O(|z|% *°)  for any o > 0.

C C
Proof. We first construct P..
For each R > 0, we solve the Dirichlet problem on Q N Bpr
{det D’Pp =¢ in QN Bg,

(4.11)
Pr =P +1tr z122 0n d(Q N Bg),

where tr € (0,2y/1 — ¢) is chosen such that the solution Pr takes value 1 at (1,1), that is,
Pp(1,1) = 1.
The existence of tp € (0,2v/1 — ¢) follows by continuity. In fact, when tr = 0, we have Pp = P
with P (1,1) = 1—+/1 — ¢, and when tg = 2y/1 — ¢, we have Pr = P with P (1,1) = 1++/1 —c.
From tp € (0,2y/1—¢), we have P < P. + trzize < P on 9(Q N Bg). Thus, by the
comparison principle for the Monge-Ampere equation, we have

P < Pr<Pf inQnBg,
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hence the Pg’s are locally bounded independent on R.

We let R — oo and, by compactness extract a convergence subsequence of Pr to P, satisfying
@) and P.(1,1) = 1. Moreover, by the inequalities above we have P, < P. < P. in Q.

Since P. > P, we obtain from Corollary 4] that @ > 0. We claim that @ cannot be 0.

Otherwise, let u; := P.o A, denote the affine deformation of P, in the angle Q. , and we have
(4.12) u, =q+o(l)vy at infinity on Q.
Thus, for each € > 0, there is R = R(e) large such that
(4.13) ug () < q(x) + evp(z) for all |z| > R.

Since det D?u; =1 in Q. , we have
A(g+evy) =2<Au, in Q. NBg
while from (£13))
u, < q+evy on Q. N Bg).
By the comparison principle, we have u; < g+ ¢cvg in Q. N Bg, hence, together with ([@I3]), we
obtain
u, <qg+evy in Q.
By letting € — 0, we obtain u; < ¢ in @), . Transforming back this inequality to the first quadrant
Q, we find that
P.< P, inQ,

and we reached a contradiction.

Next we discuss the construction of P_. For this we solve (£II]) for each R > 2 with tp € (—1,0)

to obtain the solution Pg so that Pr(1,1) = 0. The existence of such a tg follows by continuity as
above. In fact, when tg = —1, we have the solution Pg of {@II)) with Pr(0) = 0 and Pr(L, L&) =

VBV
——V12_CR2 < 0, hence Pr(1,1) < 0 by convexity.

By symmetry we have Pr > 0 in Q@ N Br N {x1 + x2 > 2} which implies P > —C' in @ for some
C universal. From ¢t < 0, we have P < P on 0(Q N Bgr). Thus, by the comparison principle for
the Monge-Ampere equation, we have

Pr <P~ inQNDBg.

As above, we obtain by compactness the existence of P, satisfying (£I) and P.(1,1) = 0. Also
P, < P in @ which gives a < 0 in view of Corollary @4l We claim that a cannot be 0.

Assume by contradiction that a = 0. Denote as above u; := P, o A_ and (£I2]) remains valid.
Since 25 — 2 € (0,6, ), by Lemma (7], there is a homogenous of degree 25 — 2 function v; > 0
on (). which vanishes on 0Q_ and

(4.14) Avy(z) < —|z* =% on Q.
Define
@t =q—ep-x, and ¢®:=q—e(1+vy+v1).
The linear function p -z is chosen such that p € Q; and ¢! < ¢2 in (By\ By /2) N Q.. We show that
¢ :=max{xp, ¢}, ¢},
is a lower barrier for u_ in Q. N By for some large R. Clearly ¢. = ¢! in a neighborhood of 0 and
q- = q2 outside B, /2 hence g- < u_; on 9(Q; N Bg) for R large. For the interior inequalities in
Q. N Bgr, we have
det D2q€1 =1=det D2uc_,
and outside a neighborhood of the origin, we have

det D22 = 1 — <A\ (o +v0) + O (2202 > 1,
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for e sufficiently small. Here we used (£.14]).

In conclusion ¢. < u, in @_ and by letting ¢ — 0, we obtain ¢ < u_, which gives P, < P, and
we reached a contradiction.

Now, we establish the asymptotic behaviors of P, and P. at the origin and infinity.

Since P. > 0 is not quadratic, by Lemma BII] we have lim, o P.12(z) = v/1 — ¢. Then, from
Corollary and Corollary [3.2], we obtain the following asymptotic expasion

P.(z) = P (x) + O(|z|*T™) near the origin
for some a = a(c) € (0,1). Hence, P. is pointwise C*% at the origin.
On the other hand, we note that P, has a conical singularity at the origin, that is || D*P(z)|| — 0
as  — 0. Indeed, suppose otherwise then the tangent plane of P_ at the origin coincides with the
2
tangent plane of %, hence P, > 0 in Q. This is a contradiction because from P,(0) = P.(1,1) =0,
we have from the strict convexity of P, that BC(%, %) < 0.

Finally, since P, < P. < P, by (4] of Lemma E.2, we have the asymptotic expansions for P,
and P, at infinity as stated in the lemma. O

We are now ready to state the main classification result of this section from which Theorem [I.3]
easily follows.

Proposition 4.6. Assume that u satisfies ({{-1). Then either u = PF or
u(z) =\ P, (;) . or u(z)=X\ P, (;) ,
for some X € (0,00). Here, P., P. are two solutions to [@I)) constructed in Lemma [J.3

Proof. Assume u # P, and let a denote the constant of a solution w in the expansion (48]). Then
a quadratic rescaling of factor A of u (that is, one of the form A?u(%)) has constant aA* % . By
Lemma 4.5 P and the two families of rescalings above generate an increasing continuous family
of solutions indexed by constants a in the expansion (8], with a ranging over all R. Now the

classification result follows by the maximum principle in Corollary 441

O
Proof of Theorem[I.3. Combing Lemma [2.2] Lemma and Proposition [£.6] we obtain the con-
clusions of Theorem O

For completeness, we indicate a construction of vy alluded to in the proof of Lemma [£.3]

Lemma 4.7. Let 8 € [0,8.). There exists an explicit homogenous of degree B function vy >0 on
Q- which vanishes on the boundary of Q7 , such that Avy(x) < —|z|*~2 on Q.

=5
v(r,0) = r%0(0),0 <0 < o
where ¢(0) = p(a;) =0 and ¢(f) >0 for 0 <6 < a .
Compute

Proof. The opening angle of () is o, . We look for v of the following form in polar coordinates

Av =r772[8%0(0) + ¢ (6)].
The problem reduces to finding ¢ such that 52¢(6) + ¢ () < 0 on [0, ], and then choosing
v1 = Av for some large constant A.

We can choose ¢ of the form
©(0) =sin(B.0) + 0 O(a, —0)
with ¢ small. Indeed, for § > 0 small, we have on [0, o ]

B2o(0) + ¢ (0) = —((87)? — B?)sin(B; 0) + 6 [B20(a; —0) —2] <O.
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5. PROOF OF THE GLOBAL C%% ESTIMATES

In this section, we prove Theorem [[.I] and its extension by using the results established in
Proposition B.1] and Proposition

Proof of Theorem[I1. Let u,u, f,€,, 8 be as in the statement of Theorem [[LTT We proceed by
showing first that u is pointwise C?® at each vertex of €2, and then it is C*“ in a neighborhood of
each vertex, and finally, u is globally C*% in Q.
Step 1: u is pointwise C*® at each vertex. Consider a vertex of €2, which we can assume to be the
origin 0.

We show that u is pointwise O at 0. After subtracting a linear function and after performing

an affine transformation, we can assume:
(1) the local geometry of © at 0 is that of the first quadrant,

QNB,=QNB, forsomepec (0,1).
(2)
u(0) =0, Vu(0) =0, 1y;(0) =uy(0)=1
This implies that « > u > 0 and
det D>u=f in QNB,, u=¢ on 0QNDB,
with
[f(z) = FO) <Cla|’ in QN By, |p(x) —q(x)] < Cla** on 0QN B,
for some C' > 0 depending on || f{| s ) and [[¢llcz.sa0)-
Define
c:= f(0),
and using that u is a strict subsolution we have ¢ < 1 since
¢ = £(0) < £(0) := det D*u(0) < 1.
We claim that there exists r small depending on the data above and the C? norm of u such that
the rescalings
1 1
ur($) = ﬁ ’LL(?"QL‘), fr(x) = f(?"l‘), (107“($) = ﬁ (10(7%)7
satisfy the hypotheses of Corollary We can always choose a < 8 if necessary in Corollary [3.2],
so the only part that needs to be checked is
(5.1) lup(x) — P (z)| < eolz|* in QN B.

This follows by compactness. Indeed, we have
1
u = u=gx' D*u(0)z +ofjxf?),

and any blow-up limit @ of a sequence of u,’s must be one of the global solutions characterized in
Proposition Since u is above the quadratic tangent polynomial of u at the origin, which in

turn separates quadratically above P we find @ = P, which proves our claim.

Step 2: u is C*® in a neighborhood of each verter. Now it is standard to extend the pointwise C%®
estimate from one vertex to C*% estimates in a neighborhood of that vertex. For this we use the
C?% estimates at the boundary for the Monge-Ampere equation (see [ST, Theorem 1.1]).

Assume that we are in the setting of Step 1. Notice that as Section 21l we have that u separates
quadratically from its tangent plane at the boundary points on 9@ in annular domains QN (By, \ B;)
for all > 0 small. We can apply the results in [S1l Theorem 1.1] and conclude that

H’LLT — PC+||C2,a <Cr% in Q M (Bgr \ BQT),
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for all » small. This implies that u is C?® in a neighborhood of the origin.

Step 3: Conclusion. Having proved that u is C*® in a neighborhood of each vertex of 2, we
can combine these with C%? estimates for the Monge-Ampeére equation at the boundary (see [STl,
Theorem 1.1]) and in the interior (see [C]) to conclude that u € C%%(Q). O

Next we give a version of Theorem [[.I]in which the hypothesis that u is a strict subsolution is
removed and we list all possible scenarios for the regularity of u at the origin. For simplicity we
assume that

Q:=QnNBhB.

Theorem 5.1. Assume that u is a conver function that satisfies
det D*u = f in Q,
{ u = on 0Q
where for some 5 € (0,1),
feC?), f>0, and ¢eC*(0QN B).

(i) If £(0) < ©11(0)pa2(0) then either u is C*“ in a neighborhood of the origin for some
a >0 orwu has a conical singularity at 0.

(ii) If f(0) = p11(0)p22(0) then either u is C? in a neighborhood of the origin or u has a
conical singularity at 0.

(i5i) If £(0) > p11(0)p22(0) then u has a conical singularity at 0.

Proof. Assume that ¢(0) = 0, Vip(0) = 0. If u has a conical singularity at 0 then we are done.
Now, suppose that u does not have a conical singularity at 0. Then its tangent plane at the origin
coincides with the tangent plane of ¢, hence v > 0 in 2.

The proof of (i) is essentially given in that of Theorem [[I] above. The only difference is that
now the blow-up limit % > 0 can also be P, or a quadratic rescaling of P.. In the second case,
after a rescaling by a large factor we end up again in the situation (5.I). On the other hand, if
u = P for any blowup limit of the u,’s, then we are in the setting of Lemma B.I21 Now we obtain
that u is C>* at the origin with P, as its quadratic tangent polynomial at the origin.

The proof of (ii) corresponds to the case ¢ = 1 of Theorem [[.3] Then the blowup limit @ is
unique %@ = ¢ which gives that w is pointwise C? at the origin. We can extend this estimate in a
neighborhood of 0 as in the proof of Theorem [[.I] above.

The case (iii) corresponds to ¢ > 1 and it is obvious by Theorem [[3] 0

Remark 5.2. The C%>® norm of u cannot be easily quantified in the case (i) of Theorem[51] above.
This is because by Proposition [{.0 the quadratic polynomial P is unstable for the C? norm: any
small postive perturbation on 0B NQ produces a jump of order 1 for D*u(0) while a small negative
perturbation produces a conical singularity at the origin, i.e., |D*u(z)|| — oo as x — 0. On the
other hand, in Theorem [I1l the existence of a global strict subsolution u € C? prevents D*u being

close to D>P near the origin.

We finally mention that our results in Theorem [5.] are sharp in the sense that u ¢ C*%(0) in
the case (ii). Indeed, if ¢ = 1 and consider a solution to
det D>u=1 in QN By, u=gq on 0Q,
with
U > G+ T2 on 0B NQ.
Then u > ¢ by the maximum principle and, as shown above ¢ is the tangent quadratic polynomial
of u at the origin. We claim that

(5.2) u>q+ (e — Ce¥)wyas on 9By NQ,
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which after iteration implies that

u > ¢ + min {E/2,C’]10g\mH_1} 129,

for some small ¢ > 0. This shows that u ¢ C*%(0) for any a > 0.
The claim (5.2]) follows from the maximum principle by checking that

q+exixe + 2

is a lower barrier for u, where v is a C? function that satisfies

and

Av>2, ||D*[|<C in QNBy,

v<0 on J(QNBy), v=0 on 9QN(Bs\ Bys)-
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