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ABSTRACT

The Sounds of New York City (SONYC) wireless sensor network

(WSN) has been fielded in Manhattan and Brooklyn over the past

five years, as part of a larger human-in-the-loop cyber-physical

control system for monitoring, analyzing, and mitigating urban

noise pollution. We describe the evolution of the 2-tier SONYC

WSN from an acoustic data collection fabric into a 3-tier in situ

noise complaint monitoring WSN, and its current evaluation. The

added tier consists of long range (LoRa), multi-hop networks of

a new low-power acoustic mote, MKII (“Mach 2”), that we have

designed and fabricated. MKII motes are notable in three ways:

First, they advance machine learning capability at mote-scale in

this application domain by introducing a real-time Convolutional

Neural Network (CNN) based embedding model that is competitive

with alternatives while also requiring 10× lesser training data and

∼2 orders of magnitude fewer runtime resources. Second, they are

conveniently deployed relatively far from higher-tier base station

nodes without assuming power or network infrastructure support

at operationally relevant sites (such as construction zones), yield-

ing a relatively low-cost solution. And third, their networking is

frequency agile, unlike conventional LoRa networks: it tolerates

in a distributed, self-stabilizing way the variable external interfer-

ence and link fading in the cluttered 902-928MHz ISM band urban

environment by dynamically choosing good frequencies using an

efficient new method that combines passive and active measure-

ments.

KEYWORDS

Resource-efficient deep learning, Audio representations, Low-power,

Robustness, Convolutional Neural Networks, LoRa external inter-

ference, Infrastructure-free, Smart cities

1 INTRODUCTION

Sounds of New York City [13] is a large-scale WSN deployed at op-

erationally relevant locations in Manhattan, Brooklyn and Queens

to facilitate monitoring and mitigation of urban noise complaints—a

true health hazard in megacities like New York City that impairs

the quality of life of its denizens [12, 15, 23, 26]. Since its inception

in 2016, the deployed system has collected audio recordings and

Figure 1: The current SONYC deployment is infrastructure-

aided and hence can only cover a small fraction of NYC (Im-

age courtesy: [34])

sound pressure level (SPL) data using a network of 55 microphone-

equipped Raspberry Pi 2B-based MKI (“Mach 1”) devices [34]. This

Tier 1 network is managed by a Tier 0 private cloud server infras-

tructure. The data has enabled offline analysis across the interdis-

ciplinary domains of machine listening and citizen science, and

also online use by a key partner, the New York City Department of

Environmental Protection (DEP), to guide planning of its inspection

activities. However, the current system has three limitations:

(i) SONYC currently does not incorporate real-time classifica-

tion of noise sources. This feature is desirable as the 311

line for registering noise complaints in NYC receives ∼1300

calls per day on average (as analyzed with 2019 data from

the 311 open dataset [2]), with a large number caused by

construction practices, that are often not timely enough to

be actionable. The converse problem also exists: a fraction

of these complaints turn out to be false alarms upon investi-

gation, thereby wasting DEP and Police Department (NYPD)

resources.
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Figure 2: SONYC Tier 2 is an infrastructure-agnostic exten-

sion to the current data collection fabric that offers im-

proved coverage with cheap installation as well as real-time

noise complaint discrimination capabilities in situ

(ii) MKI devices require infrastructure power support, which

adds significant procedural complexity, time, and cost to

their deployment.

(iii) The current deployment uses existing city Wi-Fi infrastruc-

ture (Figure 1), which limits the achievable area that can

be covered in NYC (to only ∼3% of the city if leveraging

LinkNYC Wi-Fi, as analyzed with its open data set [6]).

We describe the enhancement of SONYC from a data collection

system to a software-defined, infrastructure-free sensing fabric that

redresses the three current limitations of SONYC (see Figure2).

Contributions of this paper. At the heart of the MKII WSN is

a powerful mote-scale machine listening CNN, SONYC-L3, which

to the best of our knowledge is the first real-time mote embedding

model for urban sound classification. Its performance is competitive

with, and often better than, that of other embedding models in lit-

erature, while also requiring ∼2 orders of magnitude fewer resources.

This novel embedding architecture tackles the high activation mem-

ory of the reference CNN, L3-Net [10], through input resolution

reduction and aggressive filter dropping. The model can be effi-

ciently trained with Specialized Embedding Approximation [35], a

variant of knowledge distillation that offers superior compression

while requiring up to an order of magnitude lesser training data. The

overall runtime power consumption of the networked mote app

in classification mode is only 107 mW (the mote app also offers a

continuous SPL meter mode, which offers a substantially lower cost

alternative than existing commercial noise meters such as those

used by airports in NYC).

To support infrastructure-free MKII operation, the acoustic in-

ference module is deployed on a custom-designed low-power mote

that we developed, which is based on an ARM Cortex-M7 and a

Cortex-M3 processor and interfaced to a low-power audio front-end.

MKII is powered by a small, 5W solar harvester with sufficient bat-

tery capacity and a software-defined battery managed subsystem

that yields only rare outages. Its applications are supported by the

eMote, a derivative of the .NET Micro Framework runtime. Notably,

eMote has been refined to support high-level programmability of

components that operate with low-jitter and low-power, including

components for ML, wireless networking, and management.

The small form factor and self-powered design of MKII yields

convenient, low-cost deployment. MKII devices can be emplaced

on available natural or man-made structures at significant dis-

tances from availableWi-Fi infrastructure. To this end, MKII devices

support a self-healing, low-power, multi-hop “long range” (LoRa)

wireless network where link ranges of at least 500m are readily

supported despite the varied urban/wireless clutter conditions of

SONYC deployments. The WSN is scheduled by an ultra low duty

cycle MAC protocol, OMAC [29].

Notably, unlike conventional LoRa networks, our solution dy-

namically tolerates the high degree of external interference and link

fading in the city without unduly decreasing data rate, while being

compliant to Federal Communications Commission (FCC) guide-

lines. It does so by dynamically selecting the frequency associated

with links, via an efficient method that performs passive measure-

ments and then selective active frequency measurements to select

a common frequency that (near) optimizes network reliability. The

limited capacity of LoRa links is accommodated by per-sensor ag-

gregation of classifications and network measurements to reduce

network traffic. A Collection Tree Protocol (CTP)-based routing

mechanism relays the aggregate messages to the nearest MKII Base

Station-MKI Gateway pair. Together, the average power consump-

tion of the radio and network components is below 15mW.

We have fabricated 100 MKII motes for deployment and have

been progressively growing the Tier 2 network in downtown Brook-

lyn (as well as elsewhere in an airport monitoring and in-building

setting; these are for robustness and other evaluations although

those discussions are beyond the scope of this paper). Concurrently,

we have been testing and validating its network and application

level performance over several months, in addition to collecting

new data with the Tier 2 network.

In sum, the SONYC Tier 2 system that we describe in this paper

enables complex edge machine listening for noise sources in an

infrastructure-agnostic manner. It allows coverage to be expanded

to more operationally relevant locations, such as construction sites

and airports. It is deployable in a relatively affordable and easy

manner, while preserving the SONYC system capability of being

managed via the cloud with limited effort. And its software-defined

platform has allowed for repurposing its application, i.e., for other

smart city contexts. Finally, we intend to open source a dockerized

system that should work out-of-the box on compatible hardware, as

well as its individual components: the OS, ML models, and training

and quantization pipelines, that can be leveraged in other sensing

applications as appropriate 1.

2 SYSTEM OVERVIEW AND PRELIMINARIES

2.1 System Overview

Figure 3 shows a simplified overview of theMKII hardware-software

system that we developed for SONYC. It has four main hardware

components: For sensing, a digital I2S MEMS microphone based

acoustic front end. For RF communication, a SX1276 LoRa radio

chip with external amplifier. For power, a solar harvester, 4 lithium-

titanate (LTO) cells, and a Cortex-M3 based microcontroller (STM32

F103) for a power management subsystem. For computing, a Cortex-

M7microcontroller (STM32H753) alongwith an external 1MB RAM

and 16 MB QSPI Flash.

We ported eMote [37], a runtime environment for mote-scale

device to the MKII. eMote is a substantially stripped down version

1https://github.com/sonyc-project/SONYC-MKII
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Figure 3: Overview of the SONYC MKII system, where user

apps run in a virtual machine or as native components, sup-

ported by the eMote runtime

of the open source .Net Micro Framework [7] that enables low-

power, low-jitter, near real time computing andwireless networking.

Its common language runtime (CLR) supports the execution of

managed components programmed in C# in a virtual machine, as

well as direct execution of components programmed in C++.

The SONYC application consists of five managed and four na-

tive components. The managed components include: A Decision

Aggregation app that aggregates classifier decisions over a time

window and periodically communicates them to the base station.

A SPL Meter app that computes the sound pressure statistics and

likewise communicates periodically. A Router that maintains the

node’s neighborhood and selects paths to the base station using

the CTP protocol [24]. A Configuration Manager component that

handles commands from the base station to change application

parameters (such as aggregation rate, sampling rates, etc.). And a

fault tolerant Distributed Reset [11] component that self-heals the

routing network in the presence of link or node dynamics, and is

used to program the flood to reliably command all nodes. The native

components include an acoustic pre-processor, an embedding CNN

model, a downstream noise source classifier, and a SPL meter.

2.1.1 Integration with Tier 1. Tier 2 integrates into the existing

SONYC infrastructure, utilizing SONYC’s existing data transfer,

storage, and visualization systems. A base station MKII node is teth-

ered via USB to a MKI node and communicates to it over serial. A

background service on the MKI handles the MKII message passing

and provides a simple JSON interface over a UDP socket. Informa-

tion received by the MKI from the MKII network is uploaded to the

existing Tier 0 Elasticsearch database in a data ingestion cluster

and is made available via sensor dashboards. The UDP socket also

makes available an interface to propagate configuration updates to

the MKII base station and edge node using JSON configurations, as

described above.

2.2 Reference Embedding Models: L3-Net and
EdgeL3

Owing to the lack of sufficient labeled data in the urban sound clas-

sification domains, researchers opt for transfer learning to achieve

generalizability. With this approach, one can train a model through

unsupervised or self-supervised methods on large amount of un-

labeled “upstream” audio data and subsequently use it as a robust

featurizer on various domain-specific “downstream” contexts. Look,

Listen, Learn (L3-Net) [10] is one such self-supervisedmodel trained

to learn representations or embeddings via the audio-visual corre-

spondence (AVC) task. This auxiliary task aims to predict whether

a 1s audio segment and a single video image frame come from the

same video and also overlap in time. The learned audio embeddings

can then be used in various downstream scenarios such as acoustic

event detection [21], making it a suitable model to be adopted for

our application. However, its formidable storage (18 MB) and acti-

vation (12 MB) memory requirements make it quite challenging to

be implemented at the scale of a MKII mote.

Previous work, such as EdgeL3 [28], has attempted to solve the

storage problem through magnitude-based sparsification, yielding

the first edge referencemodel for urbanmachine listeningwith sens-

ing performance comparable to L3-Net with >95% sparsification.

In particular, this work has demonstrated how aggressive sparsi-

fication, in conjunction with post hoc fine-tuning or knowledge

distillation, can successfully alleviate the storage problem without

compromising downstream sensing quality. However, EdgeL3 has

failed to address the activation memory problem: activations of first

two convolution layers of EdgeL3 require a dynamic memory of

∼12 MB, making the model infeasible for Cortex-M7 devices with

only 1 MB of SRAM.

3 SONYC-L3: DOWNSCALING L3-NET TO
MOTES

For real-time implementation on the MKII Cortex-M7, we use a

different strategy to produce a smaller variant of L3-Net Audio. We

leverage coarse-grained input processing, coupled with reducing

model width by halving the number of convolution filters at each

layer, to reduce the activation memory by more than 1.2 orders of

magnitude. Further, with 8-bit integer quantization, the model has

a dynamic memory footprint of only ∼120 KB and runs in ∼800 ms

on each second of audio input, achieving truly real-time operation

on the edge. We refer to this architecture as SONYC-L3 and evaluate

it on the SONYC-UST downstream dataset (Section 3.1).

3.1 The SONYC-UST Dataset

Since its inception in 2016, the SONYC sensor network has con-

tinuously collected urban audio data (We note that SONYC data

collection and system development has received exemption from

IRB approval, based on its data collection and processing methodol-

ogy). Through subsequent crowdsourcing efforts on the Zooniverse

[9] platform, a fraction of this data has been annotated and recently

released as the SONYC Urban Sound Tagging (SONYC-UST) dataset

[17]. This is a collection of 3068 10-second clips that were manually

annotated for the presence or absence of a number of 8 sound events

of interest. The dataset exhibit a class imbalance, with engine being
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(i) alert-signal: L3 (ii) alert-signal: SONYC-L3

(iii) human-voice: L3 (iv) human-voice: SONYC-L3

Figure 4: Melspectrograms of representative noise sources

in fine-grained (L3) and coarse-grained (SONYC-L3) resolu-

tions show that the discriminative regions are concentrated

in the lower frequency bands and accentuated in the coarser-

grained representation

the most prominent class with 50% of the data, while human-voice

and dog have only 5% and 6% of the data, respectively.

SONYC-UST is amulti-label task, where the presence or absence

of each label in the 10-second clips are mutually non-exclusive. As

advised in [17], we use macro- and micro-averaged areas under the

precision-recall curve (AUPRC) as the primary evaluation metrics

for this dataset, along with an additional (secondary) metric of

micro-averaged F1 scores at a threshold of 0.5. We also report the

class-specific AUPRCs of each class for a finer-grained assessment

of classifier performance.

3.2 SONYC-L3 Architecture

The SONYC-L3 design is based on the observation that large embed-

ding CNNs such as L3-Net Audio are generally overparameterized

for downstream tasks involving urban noise classification [28], and

therefore lend themselves effectively to compression strategies.

3.2.1 Coarser-grained input representation. Through a comparison

of full-resolution input melspectrograms of representative classes in

SONYC-UST used by L3 versus their significantly coarser-grained

counterparts used by SONYC-L3 (Table 1), we make two salient

observations:

(i) Most of the energy is distributed in the relatively lower

frequency bands for the majority of classes in UST. This is

true even for alert signals (Figure 4(i)-(ii)) or human voice

Table 1: SONYC-L3 uses a much coarser-grained input repre-

sentation compared to L3-Net or EdgeL3

Model
Sampling Freq.

(KHz)

DFT

Size

Num.

Mels

Num.

Hops

Num. Filters

(conv1/conv2)

L3/EdgeL3 48 2048 256 242 64

SONYC-L3 8 1024 64 51 32

Figure 5: L3-Net (left) and SONYC-L3 (right) Audio Model

(Figure 4(iii)-(iv)): noise sources that are often perceived as

being high-pitched.

(ii) Low spectral resolution, coupled with a reduced number

of mel bins, accentuates the more discriminative regions in

the respective melspectrograms (Figure 4, column (ii)) when

compared with their full-resolution counterparts.

Thus, it might be possible to reduce the granularity of the mel-

spectrograms significantly while still retaining enough informa-

tion to discriminate the classes. This also has two added benefits:

First, it reduces CNN’s runtime activation memory. Second, since

computing melspectrograms is a fairly heavy operation, a coarser

representation is much more amenable to mote-scale realization.

3.2.2 Reduced architecture. In previous work, models such as Effi-

cientNet [36] have demonstrates the efficacy of uniformly scaling

the network’s width, depth, and image resolution to increase the

network capacity. We follow a similar approach for downscaling

L3-Net Audio along the width dimension.

Specifically, we reduce the number of convolution filters in each

conv layer by 50%, keeping the ratio of filters same as L3. The final

output is, therefore, a 256-dimensional embedding (Figure 5).

When both these factors are combined with 8-bit quantization,

the result is a model with activation memory that is more than 2

orders of magnitude lower than L3-Net or EdgeL3 (Table 2). And for

static memory, it needs only 1.17 MB in 8-bit integer quantization,

making it a feasible model for Cortex-M7.

Table 2: SONYC-L3 activation memory is more than 100×

lower than L3-Net or EdgeL3, and ∼30× lower than their

quantized equivalents

Layer
L3/EdgeL3 SONYC-L3

32-bit float 8-bit int 8-bit int

conv1/conv2 12736 3184 102

conv3/conv4 6336 1584 52

conv5/conv6 3136 784 26

conv7/conv8 1536 384 14

Total 47488 11872 388
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3.3 SONYC-L3 Training: AVC vs. Specialized
Embedding Approximation

As outlined in Section 2.2, the same technique of using AVC to

train L3-Net can be applied to SONYC-L3. However, the AVC setup

doesn’t allow us to leverage domain-specific data as the SONYC data

does not collect multi-modal data. Additionally, L3-Net requires

∼11 TB of video data and up to 2 weeks on a 4-GPU HPC cluster

to train both the audio and the video subnetworks, making it an

expensive task to train for.

The above challenges can be addressed through Specialized Em-

bedding Approximation (SEA) [35], a knowledge distillation para-

digm where the student (SONYC-L3) is trained to only partially

approximate the teacher’s (L3-Net) embedding manifold that is

pertinent to the target domain of interest. More formally, given a

teacher model 𝑓𝜃𝑇 (.) ∈ R
𝑛 , the technique aims to train a student

𝑓𝜃𝑆 (.) ∈ R
𝑑 to mimic the teacher’s embeddings on a new, unlabeled

dataset 𝐷𝑆 representing the target domain (typically, 𝑑 < 𝑛 for

students intended to fit on mote-scale devices). Thus, the following

objective function is optimized:

min
𝜃𝑆

∑

𝑥 𝑗 ∈𝐷𝑆

| |𝑓𝜃𝑆 (𝑥 𝑗 ) − 𝜙 (𝑓𝜃𝑇 (𝑥 𝑗 )) | |
2
2 (1)

where 𝜙 : R𝑛 → R
𝑑 is an appropriate dimensionality reduction

function (such as PCA or UMAP [32]) whose parameters are learned.

The advantages of using SEA over AVC, or even traditional

knowledge distillation, are two-fold. Firstly, SEA removes the re-

liance on the original training dataset by only requiring new, unla-

beled data in the target domain; this is fairly easy to collect using

deployed IoT sensors such as the SONYC MKI network. Secondly, it

trains the student to learn only the portion of the teacher’s manifold

that is relevant to the target domain instead of its entire embedding

space. Thus, it trades generality for training efficiency and achieves

superior compression with far fewer data points. In fact, using SEA,

SONYC-L3 can be trained with an order of magnitude lesser data,

while also converging up to 10× faster than AVC training.

3.4 SONYC-L3 Evaluation

We evaluate SONYC-L3 on the SONYC-UST dataset using metrics

described in Section 3.1 against the following baselines: VGGish

[27], L3-Net [10], and EdgeL3 [28]. For VGGish and L3-Net featur-

izers, we train a multilayer perceptron (MLP) as well as a more

sophisticated multiple-instance learning (MIL) classifier [31] with

0-2 hidden layers, and report the best results. Due to the lack of

support for the MIL classifier’s time-distributed convolutions in

CMSIS-NN on Cortex-M7 devices and TensorFlow Lite on Rasp-

berry Pis, both SONYC-L3 and EdgeL3 use only MLP classifiers.

3.4.1 Comparative performance on SONYC-UST.

Per-Class Performance. Table 3 lists the AUPRCs of each class

in the multi-label SONYC-UST dataset for the compared baseline

architectures. Out of these classes, the first five are potential sources

of noise complaints and hence of interest to the SONYC project.

To our surprise, we find that SONYC-L3 outperforms L3-Net by

0.6−7.4% on four out of these five classes. Interestingly, the AUPRC

of a non-dominant class, dog, is improved by almost 2×. Thus,

SONYC-L3 has a better multi-label classification performance even

Table 3: Class-specific AUPRCs of SONYC-L3 vs baselines

Class

Label

Model

VGGish L3-Net EdgeL3 SONYC-L3

engine 0.79 0.836 0.857 0.852

machinery-impact 0.36 0.305 0.342 0.361

non-machinery-impact 0.02 0.429 0.306 0.435

powered-saw 0.66 0.702 0.728 0.774

alert-signal 0.67 0.868 0.816 0.819

music 0.07 0.384 0.556 0.354

human-voice 0.84 0.959 0.945 0.950

dog 0.00 0.049 0.026 0.091

Table 4: Micro-AUPRC, Micro-F1 and Macro-AUPRC of

SONYC-L3 compared with the other baselines

Metric
Model

VGGish L3-Net EdgeL3 SONYC-L3

Micro-AUPRC 0.77 0.810 0.791 0.785

Micro-F1 (0.5) 0.70 0.723 0.716 0.702

Macro-AUPRC 0.43 0.566 0.572 0.579

though it is constrained to use a weaker end classifier (MLP). The

performance gains are even more significant when compared with

VGGish, where up to 41% improvement on per-class AUPRCs is ob-

served. With respect to EdgeL3, SONYC-L3 offers superior sensing

for 6 out of the 8 classes, and improves the dog class AUPRC by as

much as 3.4×.

Overall Performance.Table 4 outlines the performance of SONYC-

L3 on the three metrics of interest in the SONYC-UST dataset. While

it outperforms all compared baselines on macro-AUPRC, the differ-

ence in the other metrics is <2.5%. This, coupled with the fact that

SONYC-L3 is 3× more efficient than either baseline from a runtime

perspective, ∼2 orders of magnitude smaller than L3-Net and uses

1.2 orders of magnitude less active memory than either baseline, it

is clear that our proposed solution is the most adept at navigating

the accuracy-efficiency tradeoff.

The per-class analysis also explains the apparent anomaly in

Table 4, where SONYC-L3 improves upon L3 in terms of macro-

AUPRC but underperforms slightly on micro-AUPRC and F1 (all

three metrics are improved over VGGish by up to 15%). The micro-

averaged metrics are weighed by the distribution of the class labels,

and hence are biased towards the over-represented classes in the un-

balanced SONYC-UST dataset. In particular, the underperformance

of SONYC-L3 on the alert signal class skews the micro-averaged

metrics in favor of the baseline, even though SONYC-L3 is the over-

all superior solution. Analogous reasoning can be formulated for

both variants of EdgeL3 with regards to the engine class, which has

the highest predominance in the UST test set.

4 INFRASTRUCTURE-FREE, LOW-COST WSN

The cost of mounting infrastructure connected devices on poles or

intersections is on the order of $1000-2000 per device. Additionally,

the process of getting permissions and qualified labor to mount

such devices is onerous and delay prone. Anecdotally, these issues

have materially impacted smart city wireless sensor deployments.

MKII mitigates these issues by being deployable without needing

wall power or existing network infrastructure.
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(a) Assembled Unit (b) Deployed in Tier 2

Figure 6: The SONYC MKII device, shown in enclosed

form, is affixed behind the solar panel, which is angularly

mounted to maximize solar exposure

Further, we claim that the MKII has sufficient functionality to

compete on a cost basis with more expensive commercial noise and

SPLmonitoring equipment (and their service contracts) with reason-

able data quality. Existing high-end longitudinal noise monitoring

solutions typically cost in excess of $10K/sensor with considerable

annual upkeep fees that can run into the millions with larger de-

ployments, reducing their scalability and viability, except in certain

state level initiatives such as aircraft noise monitoring [14]. The

MKII system has the capability to provide a comparable service,

while also delivering enhanced features such as automatic source

ID at a significantly lower cost over time.

4.1 Self-Powered MKII Device Design

While several systems details of the device design, including its

supports for compute performance, SPL meter, and timing are rele-

gated to the Appendix, we focus here on the low power aspects of

the design that support truly wireless operation.

Solar Energy Harvester. At the outset of the design we targeted

a power budget of 100 mW for applications running on the MKII

hardware and a goal of no more than one power outage per year

due to below average solar inputs. From analyzing historical data

from the National Centers for Environmental Information (NCEI)

we concluded that buffering at least three days worth of energy

would meet this requirement. These considerations informed the

power capacity of the solar harvester to deal with variable solar

input and provided a basis for selection of a small (8.75"x10.63") 5

W solar harvester (Figure 6) and lithium-titanate batteries to meet

the requirements safely (as elaborated in the Appendix).

Power Management. The complex power management needs for

MKII—including flexibility in battery chemistry and needing toman-

age solar harvesting as well as batteries—precluded the use of a typ-

ical integrated battery management chip. Instead, a fully software-

defined battery management system (BMS) was programmed to a

separate Cortex-M3 processor based MCU. A small independent

system was desirable because a power manager that was itself

low-power was needed to avoid loading the system in scenarios of

excess depletion. Further, the BMS is computationally simple but

I/O (pin count) heavy while a pin on the STM32H753 is concep-

tually expensive. It was also desirable from a systems perspective

because the BMS services are critical and always-on, warranting

a degree of isolation. With an independent BMS the STM32H753

can be safely wiped, debugged, or crash without risk of damag-

ing the battery or otherwise interrupting vital services. The core

BMS tasks consist of battery management (including balancing via

selective discharging and overcharge avoidance), solar harvester

management, on-the-fly reconfiguration to use USB power input

when plugged in, and reporting monitored power data to the H7.

Power Analysis. Each inference invocation (consuming 1-second

of audio data) requires about 750 ms of execution time at the maxi-

mum STM32H753 clock frequency of 480 MHz, which all but domi-

nates the power budget. The microphone, acquisition, and front-

end processing consumption is about 6 mW, and the networking

consumption is typically less than 15 mW. Operations outside of

inference are run at reduced clock speed to save power. All told,

our targeted total power budget of 100 mW is thus approximately

met (i.e, at 107 mW) by running the inference at 25% duty cycle,

which is acceptable for the SONYC application.

4.2 Instantiating and Validating LoRa Links

LoRa is a wireless physical layer protocol based on Chirp Spread

Spectrum (CSS), which is reported to have 21 km range in Line of

Sight (LoS) environments and up to 2 km range in Non Line of Sight

(NLoS) urban environments though several (4-6) building with +14

dBm output power [30]. While using the same LoRa chip as that

report, our design supports a total output power of 27 dBm, which

is within the FCC mandated limit of 30 dBm. We operate in the

902-928 MHz ISM band.

Prior to finalizing the MKII design, we did an empirical study to

corroborate the achievable LoRa range in urban settings. We con-

ducted over two dozen LoRa link tests to evaluate the performance

of LoRa in both LOS and NLoS conditions, with different types of

clutter (parks, downtown areas, suburban areas) in Manhattan and

Brooklyn in NYC and elsewhere during different weather/seasonal

conditions. Metrics of Packet Reception Rate (PRR) and Receive

Signal Strength Indication (RSSI) were computed for various LoRa

configurations at distances ranging from 300m to just over 2000m,

between LoRa TX and RX node pairs typically placed atop a 10 ft

pole. In each test, 200 packets were transmitted per frequency, for

a total of 10 (and in a few cases 52) frequencies.

Tables 5 and 6 respectively show the performance in Line-of-

Sight and non Line-of-Sight environments, with medium power

(19 dBm) and high power (27 dBm) links. Based on these tests and

our choice to configure the radio with a bandwidth of 500KHz,

spreading factor of 8, coding factor of 4/5, and power of 27 dBm,

we conservatively estimate 500m links to be reliably realized in the

varied city clutters of SONYC deployment, albeit in most cases we

expect the achievable link length to be substantially higher.

4.2.1 FCCCompliance. While our networking desiderata of achiev-

able range, data rate, and power consumption are the primary guide

for the selection of LoRa radio supported configurations of its phys-

ical layer (in terms of center frequency, spreading factor, coding

rate, and bandwidth), FCC requirements [1] are also a key factor.

To comply with FCC 15.247 [1], our medium access protocol

design has to choose between a single frequency and several multi

frequency access modes. The latter modes require selecting 25 or
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Table 5: Packet Reliability and RSSI in LoS Tests

Location

LoRa

Configuration

(BW, SF, CR)

Power

Level

(dBm)

Link

Range

(m)

Data

Rate

(kbps)

Average

PRR

Average

RSSI

(dBm)

1: City Rooftop (250, 8, 4/6) 19 2160 5.208 0.817 -117.02

2: Downtown Park (250, 8, 4/6) 19 1000 5.208 0.985 -109.00

2: Downtown Park (500, 7, 4/5) 19 1000 21.875 0.968 -108.52

3: Corn Field (250, 8, 4/6) 19 500 5.208 0.998 -101.19

3: Corn Field (500, 7, 4/5) 19 500 21.875 0.998 -99.94

4: Sports Grounds (500, 7, 4/5) 19 500 21.875 0.983 -110.33

5: Parking Lot (500, 8, 4/5) 27 400 12.5 0.995 -82.24

Table 6: Packet Reliability and RSSI in NLoS Tests

Location

LoRa

Configuration

(BW, SF, CR)

Power

Level

(dBm)

Link

Range

(m)

Data

Rate

(kbps)

Average

PRR

Average

RSSI

(dBm)

7: Campus Oval (250, 8, 4/6) 19 500 5.208 0.956 - 109.78

7: Campus Oval (500, 7, 4/5) 19 500 21.875 0.922 -114.99

8: Campus Oval (500, 8, 4/5) 27 493 12.5 0.987 -90.06

8: Campus Oval (500, 8, 4/5) 27 493 12.5 0.981 -87.68

9: Urban Street (250, 8, 4/6) 19 500 5.208 0.764 -120.05

10: Downtown Street (250, 8, 4/6) 19 300 5.208 0.917 -110.28

more frequencies per node and impose dwell time upper bounds

per frequency, which lead to significantly higher overhead. The

former requires a frequency width of at least 500 KHz, but does

not prevent nodes from changing their chosen frequency over time

nor from using different frequencies from each other. We chose the

former, with a physical layer bandwidth configuration of 500 KHz;

to balance between range and power consumption, we selected

spreading factor to 8, which yields a receiver sensitivity of -121

dBm; and to constrain power consumption and transmission length,

we chose a modest coding rate of 4/5. The net result of this LoRa

configuration is a link rate of 12.5kbps.

4.3 Multi-hop, Low-power LoRa Network

Meeting the coverage requirement of up to 5km end-to-end range

with reliable >500m links led us to realize a multi-hop Tier 2 net-

work, as opposed to the star-of-stars topology supported by the

LoRaWAN standard. Our network design incorporates atop the

LoRa PHY layer a MAC protocol, a convergecast routing protocol

for sensing inferences and data from MKII nodes to their gateway

MKII node, and a sort of flooding protocol in the reverse direction

(for configuration, command and control). It has been tested to

reliably handle the expected traffic across a significant number of

hops (∼7) in this and previous projects. In the common case, though,

we expect that SONYC ad hoc Tier 2 deployments will be 2-3 hops.

Even though transmission consumes over 2W, our network de-

sign only consumes 15mW power consumption overall. This is

achieved via a duty cycled MAC protocol. Given the limited rate

of both data and control messages, the MAC optimizes for the

receiver power by aggressive (1.1%) duty-cycling using a synchro-

nous, receiver-centric protocol, OMAC [16, 29], where each receiver

shares its respective pseudo random wakeup times with with its

neighbors, which are asynchronously discovered, via a pseudo-

random seed. With an appropriate choice of duty cycle, OMAC

eschews self-interference within the network.

5 DYNAMIC MANAGEMENT OF EXTERNAL
INTERFERENCE AND LINK FADING

In the cluttered wireless environment of the 902-928 MHz ISM

band in NYC, management of external interference and link fading

Figure 7: A clustering of min-max normalized noise, SNR,

RSSI metrics over link time intervals collected from Tier 2

network. Clusters 1 and 6 indicate the existence of fading

link time intervals

turns out to be the critical networking challenge that we need to

address. To characterize external interference and link fading, we

conducted data collection campaigns at multiple locations in NYC

and elsewhere prior to deployment, as well as in the Tier 2 network

that we deployed, each ranging from hours to a week. Data was

collected that measured frequency noise passively, both with the

MKII devices and a LimeSDR [5] device, as well as PRR, SNR, and

RSSI actively for links between MKII node pairs.

Figure 7 illustrates the existence of external interference as well

as fading in links. It depicts a clustering of link metrics (over noise,

SNR, RSSI, and PRR measures) taken from our Tier 2 network. Each

point corresponds to metric data collected from some link over a

10 s interval. With respect to external interference, cluster 8 stands

out: it has rather high noise (typically around -9x dBm) and low

SNR values, which indicate the presence of external interference

and explains the low PRR. (An intuitive visualization of external

interference may be seen in the Appendix.) With respect to fading,

clusters 1 and 6 stand out: they have rather low noise (typically

around -125dBm) compared to the other clusters that indicates

a low interference regime. Even when the SNR and RSSI of the

received packets is quite good in these points, packets are lost with

significant probability, pointing to the existence of fading during

these link time intervals.

Fortunately, the empirical data from MKII networks in differ-

ent geographic locations shows that in each network their exist

frequencies that yield high packet reliability, both over time and

over multiple links. More generally, in these and other data (cf. the

Appendix) we find that while the frequency with the best PRR need

not be the same for all links across a large geographic region, a “good”

common frequency often exists across limited geographic regions.

5.1 Offline and Online Management

We now present three methods for selecting a common frequency

that avoids external interference and link fading. One of these meth-

ods is performed offline and then used to configure the frequency it

chooses in a Tier 2 network under deployment. This Offline method

involves collecting short-term time interval metrics from links that

are established in pre-deployment data collection campaigns at

intended or surrogate locations. From the metrics in the collected
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Figure 8: Tier 2 network deployed in a rooftop and street-

level setting in downtown Brooklyn

data, the average of long-term PRR over the surrogate links is used

to rank and accordingly select the top frequency for configuration.

The other two methods are performed online for in situ fre-

quency selection, on a per network or per node basis. In the first

Online method, (say 95%ile) noise, (5%ile) SNR, (5%ile) RSSI, and

interval PRR, is computed for a specified number of short-term

intervals for each frequency. Over all links under consideration

—which may be network-wide or incident at any node— the sum

of the per-link per-time interval average of the sum of min-max

normalized noise, SNR, RSSI, and short-term PRR is computed to

rank and choose the top frequency for the upcoming period.

This online method is communication intensive, so for our low

power solution we approximate it via a Low-power Online version,

which sequentially performs passive metric estimation (on noise)

first for all frequencies, downselects the top-k frequencies with the

best min-max normalized (say 95%ile) noise and then, similar to

its parent method, computes the the sum of the per-link per-time

interval average of the sum of min-max normalized noise, SNR,

RSSI, and short-term PRR to rank and choose the top frequency for

the upcoming period.

Our online methods allow frequency adaptation to be provided

on an ongoing basis and to be performed either locally or glob-

ally: In the local case, each node locally chooses the best frequency

across of its incoming links as its receive frequency. OMAC by

virtue of being a self-stabilizing receiver-centric protocol implicitly

coordinates the use of this frequency with its neighboring nodes,

with little modification to its protocol. In the global case, the net-

work manager convergecasts the active measures from all nodes

to the Tier 1 base station, which chooses the frequency with the

best average of the measures across all links, and wirelessly recon-

figures the Tier 2 network in situ. We support both cases, since

the local adaptation is likely to fine tune the chosen frequency to

improve reliability more effectively on a per node basis. Conversely,

the global adaptation has the advantage that the selection of the

network-wide frequency can be combined with any pre-knowledge

of frequencies to avoid and/or programmatic coordination with

external networks, which is a recommended practice. (Note that we

eschew adaptation of the frequency that is used for discovery: this

is to achieve fault-tolerance, so that nodes that are inadvertently

not up during adaption are not excluded from the WSN.)

Table 7: Top-5 frequencies selected by different methods: of-

fline, exhaustive online, and low-power online, with their

corresponding metric values

Method Top 5 Frequencies (MHz)

Offline
918.5 908 922.5 912 910.5 All others

0.9976 0.9973 0.9972 0.9971 0.9970 0.8961

Online
918.5 910.5 917.5 903 912 All others

0.8277 0.8243 0.8167 0.8129 0.8124 0.7381

Low-power

Online

918.5 910.5 917.5 910 918 All others

0.8277 0.8243 0.8167 0.8102 0.8094 0.7394

6 BROOKLYN DEPLOYMENT RESULTS

Figure 8 depicts our Tier 2WSN deployment in downtown Brooklyn,

with MKII nodes on the roof of a tall building as well as at street

level. Following an extended testing period, we have collected and

evaluated over the last three months acoustic and network data

from this WSN, in various configurations and numbers/locations

of MKIIs. Grossly, the Tier 2 network has remained up over this

period, albeit there have been a few periods of data loss in the Tier 1

node interfaced to the WSN, because of emergent stability issues in

that node’s wired infrastructure network connection and operator

errors in configuring its data collector tools.

We validated the performance of three frequency selection meth-

ods, to show that these methods are effective in (near) optimization

of selection of the best frequency for their (training) period of data

collection but also for upcoming (test) period. Tables 7 and 8 show

that all three methods select the same top frequency, 918.5 MHz,

from the 52 available frequencies, which has the highest ground

truth PRR (of 99.76%) over the method training period and which

continues to have very high PRR in a couple of subsequent method

testing periods. The Online methods, while not producing the iden-

tical (and the ideal) top-5 frequencies chosen by the Offlinemethods,

still agree on several other frequencies in their top-5 frequencies,

and even the remaining frequencies have relatively high PRR values.

We note that the third-best selection of both Online methods is

less than ideal; this is attributed to the limitation of our chosen

ranking metric for capturing link fading with its short-term metrics,

suggesting that long-term PRR should be used instead of short-term

PRR.

One lesson from this deployment has been the importance of per-

node duty cycle selection relative to its neighborhood degree. Our

de facto configuration of a 1.1% receiver duty cycle is optimized to

avoid self-interference in the network when nodes have 2-3 neigh-

bors; this node degree is both sufficient to tolerate some node loss

Table 8: Validation of frequency selection methods

Frequency

(MHz)

Ground-

truth PRR

Test1

PRR

Test2

PRR

Top 5 Selection

Offline Online
Low-power

Online

918.5 0.9976 0.9951 0.9951 1 1 1

908 0.9973 0.9946 0.9965 2

922.5 0.9972 0.9941 0.9926 3

912 0.9971 0.9946 0.9962 4 5

910.5 0.9970 0.9960 0.9959 5 2 2

903 0.9950 0.9951 0.9934 4

917.5 0.9863 0.9942 0.9174 3 3

910 0.9957 0.9939 0.9947 4

918 0.9967 0.9941 0.9938 5

All others 0.8866 0.8991 0.8924
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Table 9: Impact of density increase on reliability if node duty

cycle remains unchanged

Edge Degrees Total Sent Total Received PRR

2 102217 100142 0.9797

4 62421 55084 0.8825

5 42601 29085 0.6915

while maintaining network connectivity as well as to yield afford-

able coverage. But this configuration predictably underperforms as

the degree increases, as shown in Table 9, since the traffic sourced

by each node is relatively regular and so self-interference becomes

more likely as the degree increases. This motivates the need for a

formulaic increase in the duty cycle, incurring more power con-

sumption for networking, although not in a way that significantly

affects the overall system.

Figures 9 and 10 respectively illustrate the SPL and classification

features of the application based on data collected. The former

showcases the difference in noise level at different heights: rooftop

(20ft) and street (ground) level.We observe that the downtown street

level, which is also close to the railway line, is consistently being

somewhat loud. We leverage the street level deployment to further

analyze the evolution of 3 sound event classes: engine, human-

voice and alert over a continuous period of time. Fig. 10 depicts the

probability of occurrence of a noise source in contiguous 2-hour

periods. Due to its location at the street level and proximity to

the rail line, engine class is the most likely event to occur with

an average probability of occurrence of 0.25. Because the data

corresponds to a weekday (Wednesday), it’s not surprising that

human-voice drops after 5PM and then rises again after 7AM. In

contrast, alert class, which is dominant by the presence of sirens,

does not have any deterministic pattern.

Figure 9: Average sound level (LAeq) for edge nodes at the

rooftop and street level deployment

7 DISCUSSION

In situ programmability. Like the SONYC MKI system, MKII

also supports a rich management and reconfiguration module for

configuring various system parameters locally as well as remotely,

such as the ML duty cycle, SPL threshold to run the CNN, decision

aggregation and status update periods, calibration compensation

filter configurations, frequency selection, etc. While eMote does

support reprogramming of managed apps in the field, this capability

has not been integrated in the MKII version awaiting fielding. The

Figure 10: Likelihood of occurrence of engine, human-voice

or alert noise source in contiguous 2-hour periods

case for updating native software components such as the CNN

model in the field remains a relevant consideration for future work,

as we expect active learning and federated learning support at the

mote level to become increasingly important for long lived systems.

This suggests that we either refine the eMote interpreter via a JIT

compiler to reduce the slowdown incurred in the VM (especially

for compute-intensive tasks) and migrate these components to

the managed level, which has implications for ML synthesis and

instrumenting toolchain discussed earlier.

Limited network capacity. While the LoRa network offers good

coverage and low power consumption, its achievable data rates

in LoRa can be limiting for smart city applications that require

continuous streaming, frequent data collection or large model up-

dates. Those apps require substantially higher capacity networks

which typically require more infrastructure support and have very

different coverage considerations.

We chose to operate links at 12.5kbps, for reasons discussed

earlier. As instrumented, the effective MKII edge-to-gateway rate is

only a small fraction of that, since OMAC’s duty cycling emphasizes

energy efficiency and not throughput maximization per se. In a

modest size network of 20 nodes with up to 3 hops, each node

can be expected to source at most ∼100KB per day. For achieving

higher rates, OMAC can be refined, by rate adapting its links and by

changing its globally fixed duty cycle to an adaptive duty cycling per

node, while avoiding network self-interference. This could yield

about several times higher traffic. But, even with 1MB capacity

per node per day, MKII networks refined thus would be relevant

primarily for applications which embrace in situ computing in lieu

of communication.

8 RELATEDWORK

Mote-scale deep learning. To maximize the performance and

minimize the memory footprint of neural networks on Cortex-

M processors, ARM has developed neural network kernels called

CMSIS-NN [3]. CMSIS-NN combined with quantization have made

severalmote-scale applications realizable for neural networks. Zhang

et al [39] implemented a CNN based keyword spotter, 497.6KB in

size with 56.9 MOps, for a Cortex-M7. Cerutti et al [19]. imple-

mented a 3-layer CNN for classifying 8x8 thermal images. The

SONYC-L3 model is much more complex than these models.

With the VGGish model serving as the teacher network, Cerutti

et al [18] knowledge distilled a student for a specific downstream

task and implemented it on Cortex-M4. Unlike their approach, we

employ embedding approximation to train an audio embedding

64

Authorized licensed use limited to: The Ohio State University. Downloaded on January 31,2023 at 02:54:43 UTC from IEEE Xplore.  Restrictions apply. 



model that can be used for transfer learning for various audio

applications in New York such as scene classification. Furthermore,

we chose L3-Net as the teacher net over VGGish because it has

fewer parameters (4.7M vs 62M) and requires less training data

(296K vs 70M videos), while consistently outperforming VGGish

for several downstream tasks [21].

Interferencemanagement in LoRa networks. Self interference

has been the primary focus of previous work in this area; conversely,

external interference has not been dealt with systematically. Voigt

et al. [38] for instance use multiple base stations and directional

antennas for dealing with internal interference to obtain increased

data extraction rates. Zhu et al. [40] and EXPLoRa [22] allocate

different spreading factors for reducing internal interference, ex-

ploiting the fact that LoRa communications with different spreading

factors enjoy quasi-orthogonality due to which they do not inter-

fere with each other. External interference is implicitly improved by

range management techniques that increase the spreading factor,

but doing this trades off data rate, which we avoid by using the

lowest spreading factor that is compliant with single frequency

FCC 15.247 access requirements.

9 CONCLUSIONS

Our first-of-its-kind real-time smart city monitoring system exem-

plifies scenarios for which it is feasible to achieve a low-power,

infrastructure-agnostic, mote-scale realization of relatively sophis-

ticated ML inferencing. Notwithstanding the considerable interest

today in 5G networking (say using massive MIMO or mmWave

links) for scenarios where high data rate streaming is inherent, our

view is that a software-defined WSN fabric option such as ours

will remain attractive for use in diverse applications, for reasons of

coverage, cost, latency, or privacy.

With an overall power consumption of 107mW, we have come

close to achieving the 100mW target that we budgeted for at design

time for the MKII node. We see potential to further scale SONYC-L3

using compression techniques [20], such as parameter pruning,

low-rank factorization, and efficient convolutions, to further reduce

the memory requirements. We are also interested in extensions

that support learning during field operation, using say federated

learning with limited model state exchange.

The empirical method we have developed for adaptive frequency

selection deals with the key issue of external interference in a simple

way. It does, however, raise questions of learning to predict when

adaption will be necessary or to detect that change is necessary.

And it motivates a re-examination of whether the limitation that

the discovery frequency is not adapted can be efficiently lifted.
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A MKII DEVICE DETAILS

Energy harvester analysis. We assumed on average 3 peak sun

hours per day in NYC, meaning that a 5W harvester would produce

15 Wh per day. Three days of operation and a power conversion

efficiency of 80% would require 100 mW×72 h×1.25 = 9.0 Wh of

energy storage. Three cells would suffice but we provisioned four

cells in a series configuration for a margin of safety and to better

match the 12 volt nominal output of the solar harvester. The criteria

for physical size (and thus, largely, power constraints) was that the

full system be small enough to be conveniently deployed by a single

city worker in a busy urban setting, for example, while working

out of a bucket truck.

Regarding the chosen battery chemistry, lithium-titanate (LTO)

chemistry was attractive for two reasons: LTO batteries are rated to

(dis)charge across a wider temperature range (in particular at the

low end) and are not associated with dangerous thermal output if

crushed or punctured. However, as sourcing LTO batteries is a po-

tential issue, standard 18650 cell sizes were used so that an alternate

chemistry could be supported with relatively minor modifications

to the MKII should a different application demand it.

Compute performance. The STM32H753 has a high bandwidth

and relatively large capacity (2 MiB) on-die flash. These elements

were key to meeting ML requirements, in particular for storing the

weights. Early in development and profiling of the ML model the

model weights were stored on a 100 MHz external QSPI flash chip

due to their size and this setup resulted in an I/O bottleneck (with

the ML inference being read intensive on the model weights) and

per-iteration times in the 10s of seconds. In addition to this, the

power efficiency was poor due to the CPU wasting cycles waiting

for data. Fitting the model to the much higher performance internal

flash yielded per iteration times well under 1 second with perfor-

mance that is almost completely CPU cycle bound rather than I/O

bound at our operating point. An external 1 MiB 16-bit SRAM was

added in anticipation of ML activation memory requirements; this

particular need ended up being modest but the extra SRAM was

ultimately crucial for other uses, such as buffering, as development

evolved.

Microphone selection. An effective urban noise monitoring mi-

crophone has to transduce sound consistently for long periods

of time under adversarial environmental conditions. We selected

the TDK InvenSense ICS-43434 [4], a digital I2S Micro-Electro-

Mechanical Systems (MEMS) microphone that has a number of fa-

vorable characteristics for this application.Within themicrophone’s

shielded housing contains an application–specific integrated circuit

(ASIC) that performs the analog to digital conversion of the analog

audio signal to a digital pulse–code modulated (PCM) representa-

tion. This early stage conversion to the digital domain results in

superior external radio frequency interference (RFI) and localized

electromagnetic interference (EMI) rejection over purely analog

designs. In addition MEMS devices were chosen for their low-cost

and consistency across units, and size, which can be 10x smaller

than traditional electret microphones. The microphone also has an

effective dynamic range of 29–116 dBA ensuring all urban sound

pressure levels can be effectively monitored. Its frequency response

was also compensated for using a digital filter as described in [33].

The I2S protocol was also convenient for low-power operation in

combination with dedicated I2S hardware in the STM32H753.

SPL meter mode.MKII supports general purpose remote continu-

ous SPL meter functionality with 32 kHz sampling and 1-second

integrations with a total power consumption of 61 mW. Remote

edge units report a variety of statistics such as LAeq (Level A-

weighted equivalent) over the network while base stations can

report each measurement. A-weighted SPL data, as specified in

IEC 61672-1:2013 [25], offers a standard commonly used for noise

and regulatory compliance, albeit MKII is not yet certified to any

regulatory standard or type rating. However, with its favorable

acoustic front-end specifications, the MKII design does have the

capability to generate SPL data at the accuracy levels required for

city agency noise monitoring.

Enclosure design for weather tolerance. A polycarbonate en-

closure suitable for outdoor deployment from Hammond manu-

facturing was selected. The enclosure was modified locally with

additional ports. The enclosure was weatherized to reasonably pro-

tect the contents frommoisture and provide protection from insects,

dirt, and other debris using by cable glands, bulkheads, etc. The

result was able to withstand a simple water immersion test, not

including the microphone.

Clock analysis. The STM32H753 clock tree allows us to source the

acoustic sampling clock from an always-on crystal based oscillator

while sourcing the CPU core clock from a PLL. Crucially, the core

clock PLL can be reconfigured without disturbing the acoustic

sampling, allowing for pseudo-dynamic frequency scaling to save

power. Finally, a timer is sourced from an external 32.768 kHz

very-high accuracy (5 ppm) low-power (order of 10 microwatts)

temperature compensated oscillator. The latter is needed by the

network for maintaining long-term synchronized operation.

Figure 11: SONYC ML pipeline from training server to mote

deployment. Associated toolchains in each step are high-

lighted

Programmability Support. A key efficiency in the development

process was establishing a semi-automated model deployment

pipeline from the training server to the MKII mote (Figure 11).

Its key steps and the toolchains associated with each step are as

follows: (i) Training SONYC-L3 on the semi-supervised AVC task

using Keras, (ii) Quantizing the featurizer, once again on the semi-

supervised AVC task, using TensorFlow Lite, (iii) Training and

quantizing the end classifier using Keras and TensorFlow Lite, (iv)
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Translating the quantized models into native code for the Cortex-

M7 using STM32 X-CUBE-AI [8], (v) Model integration into the

eMote [37] OS running on the edge devices. eMote is a hybrid plat-

form that allows for programming in high-level languages (e.g., C#)

where possible, but also directly integrating performance/power

critical code close-to-the-metal (with minimal abstraction).

While the aforementioned pipeline in its current form is semi-

automated and requires a human in the loop, it can be fully auto-

mated for continuous integration and continuous delivery (CI/CD)

and we intend to support this in a future release. Changes to the

model or application can be deployed directly on a base station

wired to a MKI gateway through a Docker pipeline. Remote model

updates to edge devices are currently not supported due to the

bandwidth limitations on the LoRa network.

B MKII LINK DETAILS
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(b) On Jay Street in Brooklyn

Figure 12: 902-928 MHz ISM band frequency spectrograms

collected using a LimeSDR [5] at representative NYC loca-

tions showing significant external interference of different

sorts

Figure 12 corroborates the observation in Section 5 that exter-

nal interference is commonly experienced by links operating in

different locations and times. Interference is apparent in these vi-

sualizations even though are only over 1 second snippets chosen

randomly from longer collects. Brighter (resp., darker) colors in

the spectrogram correspond to stronger (resp., weaker) external

interference. Unsurprisingly, external interferers are of different

sorts (i.e., narrowband vs. wideband, fixed frequency vs. frequency-

hopping), and vary with location and frequency.

Figures 13 and 14 exemplify that even though PRR varies with

frequency, possibly due to variation in external interference and

frequency selective or shadowing related fading, in each network/lo-

cation there exist frequencies that yield high PRR.
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Figure 13: Across day long trials in our Tier 2 deployment,

some frequencies have consistently high PRR over the link

between a pair of MKII nodes
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Figure 14: Packet reliability across links in a network, de-

ployed in a different city, to a common destination MK II

node named A, have some common channels with consis-

tently high PRR
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