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ABSTRACT

The Sounds of New York City (SONYC) wireless sensor network
(WSN) has been fielded in Manhattan and Brooklyn over the past
five years, as part of a larger human-in-the-loop cyber-physical
control system for monitoring, analyzing, and mitigating urban
noise pollution. We describe the evolution of the 2-tier SONYC
WSN from an acoustic data collection fabric into a 3-tier in situ
noise complaint monitoring WSN, and its current evaluation. The
added tier consists of long range (LoRa), multi-hop networks of
a new low-power acoustic mote, MKII (“Mach 2”), that we have
designed and fabricated. MKII motes are notable in three ways:
First, they advance machine learning capability at mote-scale in
this application domain by introducing a real-time Convolutional
Neural Network (CNN) based embedding model that is competitive
with alternatives while also requiring 10X lesser training data and
~2 orders of magnitude fewer runtime resources. Second, they are
conveniently deployed relatively far from higher-tier base station
nodes without assuming power or network infrastructure support
at operationally relevant sites (such as construction zones), yield-
ing a relatively low-cost solution. And third, their networking is
frequency agile, unlike conventional LoRa networks: it tolerates
in a distributed, self-stabilizing way the variable external interfer-
ence and link fading in the cluttered 902-928MHz ISM band urban
environment by dynamically choosing good frequencies using an
efficient new method that combines passive and active measure-
ments.

KEYWORDS

Resource-efficient deep learning, Audio representations, Low-power,
Robustness, Convolutional Neural Networks, LoRa external inter-
ference, Infrastructure-free, Smart cities

1 INTRODUCTION

Sounds of New York City [13] is a large-scale WSN deployed at op-
erationally relevant locations in Manhattan, Brooklyn and Queens
to facilitate monitoring and mitigation of urban noise complaints—a
true health hazard in megacities like New York City that impairs
the quality of life of its denizens [12, 15, 23, 26]. Since its inception
in 2016, the deployed system has collected audio recordings and
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Figure 1: The current SONYC deployment is infrastructure-
aided and hence can only cover a small fraction of NYC (Im-
age courtesy: [34])

sound pressure level (SPL) data using a network of 55 microphone-
equipped Raspberry Pi 2B-based MKI (“Mach 1”) devices [34]. This
Tier 1 network is managed by a Tier 0 private cloud server infras-
tructure. The data has enabled offline analysis across the interdis-
ciplinary domains of machine listening and citizen science, and
also online use by a key partner, the New York City Department of
Environmental Protection (DEP), to guide planning of its inspection
activities. However, the current system has three limitations:

(i) SONYC currently does not incorporate real-time classifica-
tion of noise sources. This feature is desirable as the 311
line for registering noise complaints in NYC receives ~1300
calls per day on average (as analyzed with 2019 data from
the 311 open dataset [2]), with a large number caused by
construction practices, that are often not timely enough to
be actionable. The converse problem also exists: a fraction
of these complaints turn out to be false alarms upon investi-
gation, thereby wasting DEP and Police Department (NYPD)
resources.
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Figure 2: SONYC Tier 2 is an infrastructure-agnostic exten-
sion to the current data collection fabric that offers im-
proved coverage with cheap installation as well as real-time
noise complaint discrimination capabilities in situ

(if) MKI devices require infrastructure power support, which
adds significant procedural complexity, time, and cost to
their deployment.

(iii) The current deployment uses existing city Wi-Fi infrastruc-
ture (Figure 1), which limits the achievable area that can
be covered in NYC (to only ~3% of the city if leveraging
LinkNYC Wi-Fi, as analyzed with its open data set [6]).

We describe the enhancement of SONYC from a data collection
system to a software-defined, infrastructure-free sensing fabric that
redresses the three current limitations of SONYC (see Figure2).

Contributions of this paper. At the heart of the MKII WSN is
a powerful mote-scale machine listening CNN, SONYC-L3, which
to the best of our knowledge is the first real-time mote embedding
model for urban sound classification. Its performance is competitive
with, and often better than, that of other embedding models in lit-
erature, while also requiring ~2 orders of magnitude fewer resources.
This novel embedding architecture tackles the high activation mem-
ory of the reference CNN, L3-Net [10], through input resolution
reduction and aggressive filter dropping. The model can be effi-
ciently trained with Specialized Embedding Approximation [35], a
variant of knowledge distillation that offers superior compression
while requiring up to an order of magnitude lesser training data. The
overall runtime power consumption of the networked mote app
in classification mode is only 107 mW (the mote app also offers a
continuous SPL meter mode, which offers a substantially lower cost
alternative than existing commercial noise meters such as those
used by airports in NYC).

To support infrastructure-free MKII operation, the acoustic in-
ference module is deployed on a custom-designed low-power mote
that we developed, which is based on an ARM Cortex-M7 and a
Cortex-M3 processor and interfaced to a low-power audio front-end.
MKII is powered by a small, 5W solar harvester with sufficient bat-
tery capacity and a software-defined battery managed subsystem
that yields only rare outages. Its applications are supported by the
eMote, a derivative of the NET Micro Framework runtime. Notably,
eMote has been refined to support high-level programmability of
components that operate with low-jitter and low-power, including
components for ML, wireless networking, and management.

The small form factor and self-powered design of MKII yields
convenient, low-cost deployment. MKII devices can be emplaced
on available natural or man-made structures at significant dis-
tances from available Wi-Fi infrastructure. To this end, MKII devices
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support a self-healing, low-power, multi-hop “long range” (LoRa)
wireless network where link ranges of at least 500m are readily
supported despite the varied urban/wireless clutter conditions of
SONYC deployments. The WSN is scheduled by an ultra low duty
cycle MAC protocol, OMAC [29].

Notably, unlike conventional LoRa networks, our solution dy-
namically tolerates the high degree of external interference and link
fading in the city without unduly decreasing data rate, while being
compliant to Federal Communications Commission (FCC) guide-
lines. It does so by dynamically selecting the frequency associated
with links, via an efficient method that performs passive measure-
ments and then selective active frequency measurements to select
a common frequency that (near) optimizes network reliability. The
limited capacity of LoRa links is accommodated by per-sensor ag-
gregation of classifications and network measurements to reduce
network traffic. A Collection Tree Protocol (CTP)-based routing
mechanism relays the aggregate messages to the nearest MKII Base
Station-MKI Gateway pair. Together, the average power consump-
tion of the radio and network components is below 15mW.

We have fabricated 100 MKII motes for deployment and have
been progressively growing the Tier 2 network in downtown Brook-
lyn (as well as elsewhere in an airport monitoring and in-building
setting; these are for robustness and other evaluations although
those discussions are beyond the scope of this paper). Concurrently,
we have been testing and validating its network and application
level performance over several months, in addition to collecting
new data with the Tier 2 network.

In sum, the SONYC Tier 2 system that we describe in this paper
enables complex edge machine listening for noise sources in an
infrastructure-agnostic manner. It allows coverage to be expanded
to more operationally relevant locations, such as construction sites
and airports. It is deployable in a relatively affordable and easy
manner, while preserving the SONYC system capability of being
managed via the cloud with limited effort. And its software-defined
platform has allowed for repurposing its application, i.e., for other
smart city contexts. Finally, we intend to open source a dockerized
system that should work out-of-the box on compatible hardware, as
well as its individual components: the OS, ML models, and training
and quantization pipelines, that can be leveraged in other sensing

applications as appropriate !.

2 SYSTEM OVERVIEW AND PRELIMINARIES
2.1 System Overview

Figure 3 shows a simplified overview of the MKII hardware-software
system that we developed for SONYC. It has four main hardware
components: For sensing, a digital I2S MEMS microphone based
acoustic front end. For RF communication, a SX1276 LoRa radio
chip with external amplifier. For power, a solar harvester, 4 lithium-
titanate (LTO) cells, and a Cortex-M3 based microcontroller (STM32
F103) for a power management subsystem. For computing, a Cortex-
M7 microcontroller (STM32H753) along with an external 1 MB RAM
and 16 MB QSPI Flash.

We ported eMote [37], a runtime environment for mote-scale
device to the MKII eMote is a substantially stripped down version

!https://github.com/sonyc-project/SONYC-MKII
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Figure 3: Overview of the SONYC MKII system, where user
apps run in a virtual machine or as native components, sup-
ported by the eMote runtime

of the open source .Net Micro Framework [7] that enables low-
power, low-jitter, near real time computing and wireless networking.
Its common language runtime (CLR) supports the execution of
managed components programmed in C# in a virtual machine, as
well as direct execution of components programmed in C++.

The SONYC application consists of five managed and four na-
tive components. The managed components include: A Decision
Aggregation app that aggregates classifier decisions over a time
window and periodically communicates them to the base station.
A SPL Meter app that computes the sound pressure statistics and
likewise communicates periodically. A Router that maintains the
node’s neighborhood and selects paths to the base station using
the CTP protocol [24]. A Configuration Manager component that
handles commands from the base station to change application
parameters (such as aggregation rate, sampling rates, etc.). And a
fault tolerant Distributed Reset [11] component that self-heals the
routing network in the presence of link or node dynamics, and is
used to program the flood to reliably command all nodes. The native
components include an acoustic pre-processor, an embedding CNN
model, a downstream noise source classifier, and a SPL meter.

2.1.1 Integration with Tier 1. Tier 2 integrates into the existing
SONYC infrastructure, utilizing SONYC’s existing data transfer,
storage, and visualization systems. A base station MKII node is teth-
ered via USB to a MKI node and communicates to it over serial. A
background service on the MKI handles the MKII message passing
and provides a simple JSON interface over a UDP socket. Informa-
tion received by the MKI from the MKII network is uploaded to the
existing Tier 0 Elasticsearch database in a data ingestion cluster
and is made available via sensor dashboards. The UDP socket also
makes available an interface to propagate configuration updates to
the MKII base station and edge node using JSON configurations, as
described above.
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2.2 Reference Embedding Models: L*-Net and
Edgel?

Owing to the lack of sufficient labeled data in the urban sound clas-
sification domains, researchers opt for transfer learning to achieve
generalizability. With this approach, one can train a model through
unsupervised or self-supervised methods on large amount of un-
labeled “upstream” audio data and subsequently use it as a robust
featurizer on various domain-specific “downstream” contexts. Look,
Listen, Learn (L3-Net) [10] is one such self-supervised model trained
to learn representations or embeddings via the audio-visual corre-
spondence (AVC) task. This auxiliary task aims to predict whether
a 1s audio segment and a single video image frame come from the
same video and also overlap in time. The learned audio embeddings
can then be used in various downstream scenarios such as acoustic
event detection [21], making it a suitable model to be adopted for
our application. However, its formidable storage (18 MB) and acti-
vation (12 MB) memory requirements make it quite challenging to
be implemented at the scale of a MKII mote.

Previous work, such as EdgeL? [28], has attempted to solve the
storage problem through magnitude-based sparsification, yielding
the first edge reference model for urban machine listening with sens-
ing performance comparable to L3-Net with >95% sparsification.
In particular, this work has demonstrated how aggressive sparsi-
fication, in conjunction with post hoc fine-tuning or knowledge
distillation, can successfully alleviate the storage problem without
compromising downstream sensing quality. However, EdgeL® has
failed to address the activation memory problem: activations of first
two convolution layers of EdgeL>® require a dynamic memory of
~12 MB, making the model infeasible for Cortex-M7 devices with
only 1 MB of SRAM.

3 SONYC-L3: DOWNSCALING L3*-NET TO
MOTES

For real-time implementation on the MKII Cortex-M7, we use a
different strategy to produce a smaller variant of L-Net Audio. We
leverage coarse-grained input processing, coupled with reducing
model width by halving the number of convolution filters at each
layer, to reduce the activation memory by more than 1.2 orders of
magnitude. Further, with 8-bit integer quantization, the model has
a dynamic memory footprint of only ~120 KB and runs in ~800 ms
on each second of audio input, achieving truly real-time operation
on the edge. We refer to this architecture as SONYC-L? and evaluate
it on the SONYC-UST downstream dataset (Section 3.1).

3.1 The SONYC-UST Dataset

Since its inception in 2016, the SONYC sensor network has con-
tinuously collected urban audio data (We note that SONYC data
collection and system development has received exemption from
IRB approval, based on its data collection and processing methodol-
ogy). Through subsequent crowdsourcing efforts on the Zooniverse
[9] platform, a fraction of this data has been annotated and recently
released as the SONYC Urban Sound Tagging (SONYC-UST) dataset
[17]. This is a collection of 3068 10-second clips that were manually
annotated for the presence or absence of a number of 8 sound events
of interest. The dataset exhibit a class imbalance, with engine being
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(ii) alert-signal: SONYC-L3

(iv) human-voice: SONYC-L3

(iii) human-voice: L?

Figure 4: Melspectrograms of representative noise sources
in fine-grained (L3) and coarse-grained (SONYC-L?) resolu-
tions show that the discriminative regions are concentrated
in the lower frequency bands and accentuated in the coarser-
grained representation

the most prominent class with 50% of the data, while human-voice
and dog have only 5% and 6% of the data, respectively.

SONYC-UST is a multi-label task, where the presence or absence
of each label in the 10-second clips are mutually non-exclusive. As
advised in [17], we use macro- and micro-averaged areas under the
precision-recall curve (AUPRC) as the primary evaluation metrics
for this dataset, along with an additional (secondary) metric of
micro-averaged F1 scores at a threshold of 0.5. We also report the
class-specific AUPRCs of each class for a finer-grained assessment
of classifier performance.

3.2 SONYC-L3 Architecture

The SONYC-L? design is based on the observation that large embed-
ding CNNs such as L3-Net Audio are generally overparameterized
for downstream tasks involving urban noise classification [28], and
therefore lend themselves effectively to compression strategies.

3.2.1 Coarser-grained input representation. Through a comparison
of full-resolution input melspectrograms of representative classes in
SONYC-UST used by L* versus their significantly coarser-grained
counterparts used by SONYC-L3 (Table 1), we make two salient
observations:

(i) Most of the energy is distributed in the relatively lower
frequency bands for the majority of classes in UST. This is
true even for alert signals (Figure 4(i)-(ii)) or human voice

Table 1: SONYC-L3 uses a much coarser-grained input repre-
sentation compared to L3-Net or EdgeL?

Model Sampling Freq. DFT Num. Num. Num. Filters
(KHz) Size Mels Hops (convl/conv2)
L3/EdgeL’ 48 2048 256 242 64
SONYC-L3 8 1024 64 51 32
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Figure 5: L3-Net (left) and SONYC-L? (right) Audio Model

(Figure 4(iii)-(iv)): noise sources that are often perceived as
being high-pitched.

(ii) Low spectral resolution, coupled with a reduced number
of mel bins, accentuates the more discriminative regions in
the respective melspectrograms (Figure 4, column (ii)) when
compared with their full-resolution counterparts.

Thus, it might be possible to reduce the granularity of the mel-
spectrograms significantly while still retaining enough informa-
tion to discriminate the classes. This also has two added benefits:
First, it reduces CNN’s runtime activation memory. Second, since
computing melspectrograms is a fairly heavy operation, a coarser
representation is much more amenable to mote-scale realization.

3.2.2  Reduced architecture. In previous work, models such as Effi-
cientNet [36] have demonstrates the efficacy of uniformly scaling
the network’s width, depth, and image resolution to increase the
network capacity. We follow a similar approach for downscaling
L3-Net Audio along the width dimension.

Specifically, we reduce the number of convolution filters in each
conv layer by 50%, keeping the ratio of filters same as L. The final
output is, therefore, a 256-dimensional embedding (Figure 5).

When both these factors are combined with 8-bit quantization,
the result is a model with activation memory that is more than 2
orders of magnitude lower than L*-Net or EdgeL3 (Table 2). And for
static memory, it needs only 1.17 MB in 8-bit integer quantization,
making it a feasible model for Cortex-M?7.

Table 2: SONYC-L3? activation memory is more than 100x
lower than L3-Net or EdgeL3, and ~30x lower than their
quantized equivalents

L3/EdgeL? SONYC-L3
Layer < e —
32-bit float 8-bitint | 8-bit int

convl/conv2 12736 3184 102
conv3/conv4 6336 1584 52
conv5/convé 3136 784 26
conv7/conv8 1536 384 14

Total 47488 11872 388

Authorized licensed use limited to: The Ohio State University. Downloaded on January 31,2023 at 02:54:43 UTC from IEEE Xplore. Restrictions apply.



3.3 SONYC-L? Training: AVC vs. Specialized
Embedding Approximation

As outlined in Section 2.2, the same technique of using AVC to
train L3-Net can be applied to SONYC-L®. However, the AVC setup
doesn’t allow us to leverage domain-specific data as the SONYC data
does not collect multi-modal data. Additionally, L3-Net requires
~11 TB of video data and up to 2 weeks on a 4-GPU HPC cluster
to train both the audio and the video subnetworks, making it an
expensive task to train for.

The above challenges can be addressed through Specialized Em-
bedding Approximation (SEA) [35], a knowledge distillation para-
digm where the student (SONYC-L3) is trained to only partially
approximate the teacher’s (L3-Net) embedding manifold that is
pertinent to the target domain of interest. More formally, given a
teacher model fp, (.) € R”, the technique aims to train a student
fos () € R4 to mimic the teacher’s embeddings on a new, unlabeled
dataset Dg representing the target domain (typically, d < n for
students intended to fit on mote-scale devices). Thus, the following
objective function is optimized:

min 3 [1fos () = ¢ o, ()13 M

s x;€Ds

where ¢ : R" — R9 is an appropriate dimensionality reduction
function (such as PCA or UMAP [32]) whose parameters are learned.

The advantages of using SEA over AVC, or even traditional
knowledge distillation, are two-fold. Firstly, SEA removes the re-
liance on the original training dataset by only requiring new, unla-
beled data in the target domain; this is fairly easy to collect using
deployed IoT sensors such as the SONYC MKI network. Secondly, it
trains the student to learn only the portion of the teacher’s manifold
that is relevant to the target domain instead of its entire embedding
space. Thus, it trades generality for training efficiency and achieves
superior compression with far fewer data points. In fact, using SEA,
SONYC-L3 can be trained with an order of magnitude lesser data,
while also converging up to 10x faster than AVC training.

3.4 SONYC-L3 Evaluation

We evaluate SONYC-L? on the SONYC-UST dataset using metrics
described in Section 3.1 against the following baselines: VGGish
[27], L3-Net [10], and EdgeL3 [28]. For VGGish and L3-Net featur-
izers, we train a multilayer perceptron (MLP) as well as a more
sophisticated multiple-instance learning (MIL) classifier [31] with
0-2 hidden layers, and report the best results. Due to the lack of
support for the MIL classifier’s time-distributed convolutions in
CMSIS-NN on Cortex-M7 devices and TensorFlow Lite on Rasp-
berry Pis, both SONYC-L? and EdgeL> use only MLP classifiers.

3.4.1 Comparative performance on SONYC-UST.

Per-Class Performance. Table 3 lists the AUPRCs of each class
in the multi-label SONYC-UST dataset for the compared baseline
architectures. Out of these classes, the first five are potential sources
of noise complaints and hence of interest to the SONYC project.
To our surprise, we find that SONYC-L? outperforms L3-Net by
0.6—7.4% on four out of these five classes. Interestingly, the AUPRC
of a non-dominant class, dog, is improved by almost 2x. Thus,
SONYC-L3 has a better multi-label classification performance even

Table 3: Class-specific AUPRCs of SONYC-L3 vs baselines

Class Model

Label VGGish L3-Net Edgel® SONYC-L3
engine 0.79 0.836 0.857 0.852
machinery-impact 0.36 0.305 0.342 0.361
non-machinery-impact 0.02 0.429 0.306 0.435
powered-saw 0.66 0.702 0.728 0.774
alert-signal 0.67 0.868 0.816 0.819
music 0.07 0.384 0.556 0.354
human-voice 0.84 0.959 0.945 0.950
dog 0.00 0.049 0.026 0.091

Table 4: Micro-AUPRC, Micro-F1 and Macro-AUPRC of
SONYC-L3 compared with the other baselines

Metric Model
VGGish 13-Net EdgeL3 SONYC-L®
Micro-AUPRC 0.77 0810  0.791 0.785
Micro-F1 (0.5) 0.70 0.723 0.716 0.702
Macro-AUPRC |  0.43 0.566  0.572 0.579

though it is constrained to use a weaker end classifier (MLP). The
performance gains are even more significant when compared with
VGGish, where up to 41% improvement on per-class AUPRCs is ob-
served. With respect to EdgeL3, SONYC-L? offers superior sensing
for 6 out of the 8 classes, and improves the dog class AUPRC by as
much as 3.4X.

Overall Performance. Table 4 outlines the performance of SONYC-
L3 on the three metrics of interest in the SONYC-UST dataset. While

it outperforms all compared baselines on macro-AUPRC, the differ-
ence in the other metrics is <2.5%. This, coupled with the fact that

SONYC-L3 is 3x more efficient than either baseline from a runtime

perspective, ~2 orders of magnitude smaller than L3-Net and uses

1.2 orders of magnitude less active memory than either baseline, it

is clear that our proposed solution is the most adept at navigating

the accuracy-efficiency tradeoft.

The per-class analysis also explains the apparent anomaly in
Table 4, where SONYC-L3 improves upon L3 in terms of macro-
AUPRC but underperforms slightly on micro-AUPRC and F1 (all
three metrics are improved over VGGish by up to 15%). The micro-
averaged metrics are weighed by the distribution of the class labels,
and hence are biased towards the over-represented classes in the un-
balanced SONYC-UST dataset. In particular, the underperformance
of SONYC-L? on the alert signal class skews the micro-averaged
metrics in favor of the baseline, even though SONYC-L3 is the over-
all superior solution. Analogous reasoning can be formulated for
both variants of EdgeL? with regards to the engine class, which has
the highest predominance in the UST test set.

4 INFRASTRUCTURE-FREE, LOW-COST WSN

The cost of mounting infrastructure connected devices on poles or
intersections is on the order of $1000-2000 per device. Additionally,
the process of getting permissions and qualified labor to mount
such devices is onerous and delay prone. Anecdotally, these issues
have materially impacted smart city wireless sensor deployments.
MKII mitigates these issues by being deployable without needing
wall power or existing network infrastructure.
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(a) Assembled Unit

(b) Deployed in Tier 2

Figure 6: The SONYC MKII device, shown in enclosed
form, is affixed behind the solar panel, which is angularly
mounted to maximize solar exposure

Further, we claim that the MKII has sufficient functionality to
compete on a cost basis with more expensive commercial noise and
SPL monitoring equipment (and their service contracts) with reason-
able data quality. Existing high-end longitudinal noise monitoring
solutions typically cost in excess of $10K/sensor with considerable
annual upkeep fees that can run into the millions with larger de-
ployments, reducing their scalability and viability, except in certain
state level initiatives such as aircraft noise monitoring [14]. The
MKII system has the capability to provide a comparable service,
while also delivering enhanced features such as automatic source
ID at a significantly lower cost over time.

4.1 Self-Powered MKII Device Design

While several systems details of the device design, including its
supports for compute performance, SPL meter, and timing are rele-
gated to the Appendix, we focus here on the low power aspects of
the design that support truly wireless operation.

Solar Energy Harvester. At the outset of the design we targeted
a power budget of 100 mW for applications running on the MKII
hardware and a goal of no more than one power outage per year
due to below average solar inputs. From analyzing historical data
from the National Centers for Environmental Information (NCEI)
we concluded that buffering at least three days worth of energy
would meet this requirement. These considerations informed the
power capacity of the solar harvester to deal with variable solar
input and provided a basis for selection of a small (8.75"x10.63") 5
W solar harvester (Figure 6) and lithium-titanate batteries to meet
the requirements safely (as elaborated in the Appendix).

Power Management. The complex power management needs for
MKII—including flexibility in battery chemistry and needing to man-
age solar harvesting as well as batteries—precluded the use of a typ-
ical integrated battery management chip. Instead, a fully software-
defined battery management system (BMS) was programmed to a
separate Cortex-M3 processor based MCU. A small independent
system was desirable because a power manager that was itself
low-power was needed to avoid loading the system in scenarios of
excess depletion. Further, the BMS is computationally simple but
I/O (pin count) heavy while a pin on the STM32H753 is concep-
tually expensive. It was also desirable from a systems perspective
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because the BMS services are critical and always-on, warranting
a degree of isolation. With an independent BMS the STM32H753
can be safely wiped, debugged, or crash without risk of damag-
ing the battery or otherwise interrupting vital services. The core
BMS tasks consist of battery management (including balancing via
selective discharging and overcharge avoidance), solar harvester
management, on-the-fly reconfiguration to use USB power input
when plugged in, and reporting monitored power data to the H7.

Power Analysis. Each inference invocation (consuming 1-second
of audio data) requires about 750 ms of execution time at the maxi-
mum STM32H753 clock frequency of 480 MHz, which all but domi-
nates the power budget. The microphone, acquisition, and front-
end processing consumption is about 6 mW, and the networking
consumption is typically less than 15 mW. Operations outside of
inference are run at reduced clock speed to save power. All told,
our targeted total power budget of 100 mW is thus approximately
met (i.e, at 107 mW) by running the inference at 25% duty cycle,
which is acceptable for the SONYC application.

4.2 Instantiating and Validating LoRa Links

LoRa is a wireless physical layer protocol based on Chirp Spread
Spectrum (CSS), which is reported to have 21 km range in Line of
Sight (LoS) environments and up to 2 km range in Non Line of Sight
(NLoS) urban environments though several (4-6) building with +14
dBm output power [30]. While using the same LoRa chip as that
report, our design supports a total output power of 27 dBm, which
is within the FCC mandated limit of 30 dBm. We operate in the
902-928 MHz ISM band.

Prior to finalizing the MKII design, we did an empirical study to
corroborate the achievable LoRa range in urban settings. We con-
ducted over two dozen LoRa link tests to evaluate the performance
of LoRa in both LOS and NLoS conditions, with different types of
clutter (parks, downtown areas, suburban areas) in Manhattan and
Brooklyn in NYC and elsewhere during different weather/seasonal
conditions. Metrics of Packet Reception Rate (PRR) and Receive
Signal Strength Indication (RSSI) were computed for various LoRa
configurations at distances ranging from 300m to just over 2000m,
between LoRa TX and RX node pairs typically placed atop a 10 ft
pole. In each test, 200 packets were transmitted per frequency, for
a total of 10 (and in a few cases 52) frequencies.

Tables 5 and 6 respectively show the performance in Line-of-
Sight and non Line-of-Sight environments, with medium power
(19 dBm) and high power (27 dBm) links. Based on these tests and
our choice to configure the radio with a bandwidth of 500KHz,
spreading factor of 8, coding factor of 4/5, and power of 27 dBm,
we conservatively estimate 500m links to be reliably realized in the
varied city clutters of SONYC deployment, albeit in most cases we
expect the achievable link length to be substantially higher.

4.2.1 FCC Compliance. While our networking desiderata of achiev-
able range, data rate, and power consumption are the primary guide
for the selection of LoRa radio supported configurations of its phys-
ical layer (in terms of center frequency, spreading factor, coding
rate, and bandwidth), FCC requirements [1] are also a key factor.
To comply with FCC 15.247 [1], our medium access protocol
design has to choose between a single frequency and several multi
frequency access modes. The latter modes require selecting 25 or
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Table 5: Packet Reliability and RSSI in LoS Tests

LoRa Power Link Data Average Average

Location Configuration Level Range Rate PRR RSSI

(BW,SF,CR) (dBm) (m) (kbps) (dBm)
1: City Rooftop (250, 8, 4/6) 19 2160 5.208 0.817 -117.02
2: Downtown Park (250, 8, 4/6) 19 1000 5.208 0.985 -109.00
2: Downtown Park (500, 7, 4/5) 19 1000 21.875 0.968 -108.52
3: Corn Field (250, 8, 4/6) 19 500 5.208 0.998 -101.19
3: Corn Field (500, 7, 4/5) 19 500 21.875 0.998 -99.94
4: Sports Grounds (500, 7, 4/5) 19 500 21.875 0.983 -110.33
5: Parking Lot (500, 8, 4/5) 27 400 12.5 0.995 -82.24

Table 6: Packet Reliability and RSSI in NLoS Tests

LoRa Power Link Data Average
. . Average
Location Configuration Level Range Rate PRR RSSI
(BW, SF,CR) (dBm) (m)  (kbps) (dBm)
7: Campus Oval (250, 8, 4/6) 19 500 5.208 0.956 -109.78
7: Campus Oval (500, 7, 4/5) 19 500 21.875 0.922 -114.99
8: Campus Oval (500, 8, 4/5) 27 493 12.5 0.987 -90.06
8: Campus Oval (500, 8, 4/5) 27 493 12.5 0.981 -87.68
9: Urban Street (250, 8, 4/6) 19 500 5.208 0.764 -120.05
10: Downtown Street (250, 8, 4/6) 19 300 5.208 0.917 -110.28

more frequencies per node and impose dwell time upper bounds
per frequency, which lead to significantly higher overhead. The
former requires a frequency width of at least 500 KHz, but does
not prevent nodes from changing their chosen frequency over time
nor from using different frequencies from each other. We chose the
former, with a physical layer bandwidth configuration of 500 KHz;
to balance between range and power consumption, we selected
spreading factor to 8, which yields a receiver sensitivity of -121
dBm; and to constrain power consumption and transmission length,
we chose a modest coding rate of 4/5. The net result of this LoRa
configuration is a link rate of 12.5kbps.

4.3 Multi-hop, Low-power LoRa Network

Meeting the coverage requirement of up to 5km end-to-end range
with reliable >500m links led us to realize a multi-hop Tier 2 net-
work, as opposed to the star-of-stars topology supported by the
LoRaWAN standard. Our network design incorporates atop the
LoRa PHY layer a MAC protocol, a convergecast routing protocol
for sensing inferences and data from MKII nodes to their gateway
MKII node, and a sort of flooding protocol in the reverse direction
(for configuration, command and control). It has been tested to
reliably handle the expected traffic across a significant number of
hops (~7) in this and previous projects. In the common case, though,
we expect that SONYC ad hoc Tier 2 deployments will be 2-3 hops.

Even though transmission consumes over 2W, our network de-
sign only consumes 15mW power consumption overall. This is
achieved via a duty cycled MAC protocol. Given the limited rate
of both data and control messages, the MAC optimizes for the
receiver power by aggressive (1.1%) duty-cycling using a synchro-
nous, receiver-centric protocol, OMAC [16, 29], where each receiver
shares its respective pseudo random wakeup times with with its
neighbors, which are asynchronously discovered, via a pseudo-
random seed. With an appropriate choice of duty cycle, OMAC
eschews self-interference within the network.

5 DYNAMIC MANAGEMENT OF EXTERNAL
INTERFERENCE AND LINK FADING

In the cluttered wireless environment of the 902-928 MHz ISM
band in NYC, management of external interference and link fading

62

Figure 7: A clustering of min-max normalized noise, SNR,
RSSI metrics over link time intervals collected from Tier 2
network. Clusters 1 and 6 indicate the existence of fading
link time intervals

turns out to be the critical networking challenge that we need to
address. To characterize external interference and link fading, we
conducted data collection campaigns at multiple locations in NYC
and elsewhere prior to deployment, as well as in the Tier 2 network
that we deployed, each ranging from hours to a week. Data was
collected that measured frequency noise passively, both with the
MKII devices and a LimeSDR [5] device, as well as PRR, SNR, and
RSSI actively for links between MKII node pairs.

Figure 7 illustrates the existence of external interference as well
as fading in links. It depicts a clustering of link metrics (over noise,
SNR, RSSI, and PRR measures) taken from our Tier 2 network. Each
point corresponds to metric data collected from some link over a
10 s interval. With respect to external interference, cluster 8 stands
out: it has rather high noise (typically around -9x dBm) and low
SNR values, which indicate the presence of external interference
and explains the low PRR. (An intuitive visualization of external
interference may be seen in the Appendix.) With respect to fading,
clusters 1 and 6 stand out: they have rather low noise (typically
around -125dBm) compared to the other clusters that indicates
a low interference regime. Even when the SNR and RSSI of the
received packets is quite good in these points, packets are lost with
significant probability, pointing to the existence of fading during
these link time intervals.

Fortunately, the empirical data from MKII networks in differ-
ent geographic locations shows that in each network their exist
frequencies that yield high packet reliability, both over time and
over multiple links. More generally, in these and other data (cf. the
Appendix) we find that while the frequency with the best PRR need
not be the same for all links across a large geographic region, a “good”
common frequency often exists across limited geographic regions.

5.1 Offline and Online Management

We now present three methods for selecting a common frequency
that avoids external interference and link fading. One of these meth-
ods is performed offline and then used to configure the frequency it
chooses in a Tier 2 network under deployment. This Offline method
involves collecting short-term time interval metrics from links that
are established in pre-deployment data collection campaigns at
intended or surrogate locations. From the metrics in the collected
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Figure 8: Tier 2 network deployed in a rooftop and street-
level setting in downtown Brooklyn

data, the average of long-term PRR over the surrogate links is used
to rank and accordingly select the top frequency for configuration.

The other two methods are performed online for in situ fre-
quency selection, on a per network or per node basis. In the first
Online method, (say 95%ile) noise, (5%ile) SNR, (5%ile) RSSI, and
interval PRR, is computed for a specified number of short-term
intervals for each frequency. Over all links under consideration
—which may be network-wide or incident at any node— the sum
of the per-link per-time interval average of the sum of min-max
normalized noise, SNR, RSSI, and short-term PRR is computed to
rank and choose the top frequency for the upcoming period.

This online method is communication intensive, so for our low
power solution we approximate it via a Low-power Online version,
which sequentially performs passive metric estimation (on noise)
first for all frequencies, downselects the top-k frequencies with the
best min-max normalized (say 95%ile) noise and then, similar to
its parent method, computes the the sum of the per-link per-time
interval average of the sum of min-max normalized noise, SNR,
RSSI, and short-term PRR to rank and choose the top frequency for
the upcoming period.

Our online methods allow frequency adaptation to be provided
on an ongoing basis and to be performed either locally or glob-
ally: In the local case, each node locally chooses the best frequency
across of its incoming links as its receive frequency. OMAC by
virtue of being a self-stabilizing receiver-centric protocol implicitly
coordinates the use of this frequency with its neighboring nodes,
with little modification to its protocol. In the global case, the net-
work manager convergecasts the active measures from all nodes
to the Tier 1 base station, which chooses the frequency with the
best average of the measures across all links, and wirelessly recon-
figures the Tier 2 network in situ. We support both cases, since
the local adaptation is likely to fine tune the chosen frequency to
improve reliability more effectively on a per node basis. Conversely,
the global adaptation has the advantage that the selection of the
network-wide frequency can be combined with any pre-knowledge
of frequencies to avoid and/or programmatic coordination with
external networks, which is a recommended practice. (Note that we
eschew adaptation of the frequency that is used for discovery: this
is to achieve fault-tolerance, so that nodes that are inadvertently
not up during adaption are not excluded from the WSN.)
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Table 7: Top-5 frequencies selected by different methods: of-
fline, exhaustive online, and low-power online, with their
corresponding metric values

Method [ Top 5 Frequencies (MHz)
Offline 918.5 908 922.5 912 910.5  All others
0.9976  0.9973 0.9972  0.9971 0.9970 0.8961
. 9185 9105 9175 903 912 All others
Online
0.8277 0.8243 0.8167 0.8129 0.8124 0.7381
Low-power | 9185 910.5 917.5 910 918  All others
Online 0.8277 0.8243 0.8167 0.8102 0.8094 0.7394

6 BROOKLYN DEPLOYMENT RESULTS

Figure 8 depicts our Tier 2 WSN deployment in downtown Brooklyn,
with MKII nodes on the roof of a tall building as well as at street
level. Following an extended testing period, we have collected and
evaluated over the last three months acoustic and network data
from this WSN, in various configurations and numbers/locations
of MKIIs. Grossly, the Tier 2 network has remained up over this
period, albeit there have been a few periods of data loss in the Tier 1
node interfaced to the WSN, because of emergent stability issues in
that node’s wired infrastructure network connection and operator
errors in configuring its data collector tools.

We validated the performance of three frequency selection meth-
ods, to show that these methods are effective in (near) optimization
of selection of the best frequency for their (training) period of data
collection but also for upcoming (test) period. Tables 7 and 8 show
that all three methods select the same top frequency, 918.5 MHz,
from the 52 available frequencies, which has the highest ground
truth PRR (of 99.76%) over the method training period and which
continues to have very high PRR in a couple of subsequent method
testing periods. The Online methods, while not producing the iden-
tical (and the ideal) top-5 frequencies chosen by the Offline methods,
still agree on several other frequencies in their top-5 frequencies,
and even the remaining frequencies have relatively high PRR values.
We note that the third-best selection of both Online methods is
less than ideal; this is attributed to the limitation of our chosen
ranking metric for capturing link fading with its short-term metrics,
suggesting that long-term PRR should be used instead of short-term
PRR.

One lesson from this deployment has been the importance of per-
node duty cycle selection relative to its neighborhood degree. Our
de facto configuration of a 1.1% receiver duty cycle is optimized to
avoid self-interference in the network when nodes have 2-3 neigh-
bors; this node degree is both sufficient to tolerate some node loss

Table 8: Validation of frequency selection methods

Frequency | Ground- | Testl Test2 Top 5 Selection
(MHz) truth PRR | PRR PRR Offline | Online Low—p.ower
Online

918.5 0.9976 0.9951  0.9951 1 1 1
908 0.9973 0.9946  0.9965 2

922.5 0.9972 0.9941  0.9926 3
912 0.9971 0.9946  0.9962 4 5

910.5 0.9970 0.9960  0.9959 5 2 2
903 0.9950 0.9951 0.9934 4

917.5 0.9863 0.9942 09174 3 3
910 0.9957 0.9939  0.9947 4
918 0.9967 0.9941  0.9938 5

All others 0.8866 0.8991 0.8924
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Table 9: Impact of density increase on reliability if node duty
cycle remains unchanged

Edge Degrees [ Total Sent [ Total Received [ PRR

2 102217 100142 0.9797
4 62421 55084 0.8825
5 42601 29085 0.6915

while maintaining network connectivity as well as to yield afford-
able coverage. But this configuration predictably underperforms as
the degree increases, as shown in Table 9, since the traffic sourced
by each node is relatively regular and so self-interference becomes
more likely as the degree increases. This motivates the need for a
formulaic increase in the duty cycle, incurring more power con-
sumption for networking, although not in a way that significantly
affects the overall system.

Figures 9 and 10 respectively illustrate the SPL and classification
features of the application based on data collected. The former
showcases the difference in noise level at different heights: rooftop
(20ft) and street (ground) level. We observe that the downtown street
level, which is also close to the railway line, is consistently being
somewhat loud. We leverage the street level deployment to further
analyze the evolution of 3 sound event classes: engine, human-
voice and alert over a continuous period of time. Fig. 10 depicts the
probability of occurrence of a noise source in contiguous 2-hour
periods. Due to its location at the street level and proximity to
the rail line, engine class is the most likely event to occur with
an average probability of occurrence of 0.25. Because the data
corresponds to a weekday (Wednesday), it’s not surprising that
human-voice drops after 5PM and then rises again after 7AM. In
contrast, alert class, which is dominant by the presence of sirens,
does not have any deterministic pattern.
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Figure 9: Average sound level (LAeq) for edge nodes at the
rooftop and street level deployment

7 DISCUSSION

In situ programmability. Like the SONYC MKI system, MKII
also supports a rich management and reconfiguration module for
configuring various system parameters locally as well as remotely,
such as the ML duty cycle, SPL threshold to run the CNN, decision
aggregation and status update periods, calibration compensation
filter configurations, frequency selection, etc. While eMote does
support reprogramming of managed apps in the field, this capability
has not been integrated in the MKII version awaiting fielding. The
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Figure 10: Likelihood of occurrence of engine, human-voice
or alert noise source in contiguous 2-hour periods

case for updating native software components such as the CNN
model in the field remains a relevant consideration for future work,
as we expect active learning and federated learning support at the
mote level to become increasingly important for long lived systems.
This suggests that we either refine the eMote interpreter via a JIT
compiler to reduce the slowdown incurred in the VM (especially
for compute-intensive tasks) and migrate these components to
the managed level, which has implications for ML synthesis and
instrumenting toolchain discussed earlier.

Limited network capacity. While the LoRa network offers good
coverage and low power consumption, its achievable data rates
in LoRa can be limiting for smart city applications that require
continuous streaming, frequent data collection or large model up-
dates. Those apps require substantially higher capacity networks
which typically require more infrastructure support and have very
different coverage considerations.

We chose to operate links at 12.5kbps, for reasons discussed
earlier. As instrumented, the effective MKII edge-to-gateway rate is
only a small fraction of that, since OMAC’s duty cycling emphasizes
energy efliciency and not throughput maximization per se. In a
modest size network of 20 nodes with up to 3 hops, each node
can be expected to source at most ~100KB per day. For achieving
higher rates, OMAC can be refined, by rate adapting its links and by
changing its globally fixed duty cycle to an adaptive duty cycling per
node, while avoiding network self-interference. This could yield
about several times higher traffic. But, even with 1MB capacity
per node per day, MKII networks refined thus would be relevant
primarily for applications which embrace in situ computing in lieu
of communication.

8 RELATED WORK

Mote-scale deep learning. To maximize the performance and

minimize the memory footprint of neural networks on Cortex-
M processors, ARM has developed neural network kernels called

CMSIS-NN [3]. CMSIS-NN combined with quantization have made

several mote-scale applications realizable for neural networks. Zhang
et al [39] implemented a CNN based keyword spotter, 497.6KB in

size with 56.9 MOps, for a Cortex-M7. Cerutti et al [19]. imple-
mented a 3-layer CNN for classifying 8x8 thermal images. The

SONYC-L3 model is much more complex than these models.

With the VGGish model serving as the teacher network, Cerutti
et al [18] knowledge distilled a student for a specific downstream
task and implemented it on Cortex-M4. Unlike their approach, we
employ embedding approximation to train an audio embedding

Authorized licensed use limited to: The Ohio State University. Downloaded on January 31,2023 at 02:54:43 UTC from IEEE Xplore. Restrictions apply.



model that can be used for transfer learning for various audio
applications in New York such as scene classification. Furthermore,
we chose L3-Net as the teacher net over VGGish because it has
fewer parameters (4.7M vs 62M) and requires less training data
(296K vs 70M videos), while consistently outperforming VGGish
for several downstream tasks [21].

Interference management in LoRa networks. Self interference
has been the primary focus of previous work in this area; conversely,
external interference has not been dealt with systematically. Voigt
et al. [38] for instance use multiple base stations and directional
antennas for dealing with internal interference to obtain increased
data extraction rates. Zhu et al. [40] and EXPLoRa [22] allocate
different spreading factors for reducing internal interference, ex-
ploiting the fact that LoRa communications with different spreading
factors enjoy quasi-orthogonality due to which they do not inter-
fere with each other. External interference is implicitly improved by
range management techniques that increase the spreading factor,
but doing this trades off data rate, which we avoid by using the
lowest spreading factor that is compliant with single frequency
FCC 15.247 access requirements.

9 CONCLUSIONS

Our first-of-its-kind real-time smart city monitoring system exem-
plifies scenarios for which it is feasible to achieve a low-power,
infrastructure-agnostic, mote-scale realization of relatively sophis-
ticated ML inferencing. Notwithstanding the considerable interest
today in 5G networking (say using massive MIMO or mmWave
links) for scenarios where high data rate streaming is inherent, our
view is that a software-defined WSN fabric option such as ours
will remain attractive for use in diverse applications, for reasons of
coverage, cost, latency, or privacy.

With an overall power consumption of 107mW, we have come
close to achieving the 100mW target that we budgeted for at design
time for the MKII node. We see potential to further scale SONYC-L?
using compression techniques [20], such as parameter pruning,
low-rank factorization, and efficient convolutions, to further reduce
the memory requirements. We are also interested in extensions
that support learning during field operation, using say federated
learning with limited model state exchange.

The empirical method we have developed for adaptive frequency
selection deals with the key issue of external interference in a simple
way. It does, however, raise questions of learning to predict when
adaption will be necessary or to detect that change is necessary.
And it motivates a re-examination of whether the limitation that
the discovery frequency is not adapted can be efficiently lifted.
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A MKII DEVICE DETAILS

Energy harvester analysis. We assumed on average 3 peak sun
hours per day in NYC, meaning that a 5 W harvester would produce
15 Wh per day. Three days of operation and a power conversion
efficiency of 80% would require 100 mWx72 hx1.25 = 9.0 Wh of
energy storage. Three cells would suffice but we provisioned four
cells in a series configuration for a margin of safety and to better
match the 12 volt nominal output of the solar harvester. The criteria
for physical size (and thus, largely, power constraints) was that the
full system be small enough to be conveniently deployed by a single
city worker in a busy urban setting, for example, while working
out of a bucket truck.

Regarding the chosen battery chemistry, lithium-titanate (LTO)
chemistry was attractive for two reasons: LTO batteries are rated to
(dis)charge across a wider temperature range (in particular at the
low end) and are not associated with dangerous thermal output if
crushed or punctured. However, as sourcing LTO batteries is a po-
tential issue, standard 18650 cell sizes were used so that an alternate
chemistry could be supported with relatively minor modifications
to the MKII should a different application demand it.

Compute performance. The STM32H753 has a high bandwidth
and relatively large capacity (2 MiB) on-die flash. These elements
were key to meeting ML requirements, in particular for storing the
weights. Early in development and profiling of the ML model the
model weights were stored on a 100 MHz external QSPI flash chip
due to their size and this setup resulted in an I/O bottleneck (with
the ML inference being read intensive on the model weights) and
per-iteration times in the 10s of seconds. In addition to this, the
power efficiency was poor due to the CPU wasting cycles waiting
for data. Fitting the model to the much higher performance internal
flash yielded per iteration times well under 1 second with perfor-
mance that is almost completely CPU cycle bound rather than I/O
bound at our operating point. An external 1 MiB 16-bit SRAM was
added in anticipation of ML activation memory requirements; this
particular need ended up being modest but the extra SRAM was
ultimately crucial for other uses, such as buffering, as development
evolved.

Microphone selection. An effective urban noise monitoring mi-
crophone has to transduce sound consistently for long periods
of time under adversarial environmental conditions. We selected
the TDK InvenSense ICS-43434 [4], a digital 1S Micro-Electro-
Mechanical Systems (MEMS) microphone that has a number of fa-
vorable characteristics for this application. Within the microphone’s
shielded housing contains an application-specific integrated circuit
(ASIC) that performs the analog to digital conversion of the analog
audio signal to a digital pulse-code modulated (PCM) representa-
tion. This early stage conversion to the digital domain results in
superior external radio frequency interference (RFI) and localized
electromagnetic interference (EMI) rejection over purely analog
designs. In addition MEMS devices were chosen for their low-cost
and consistency across units, and size, which can be 10x smaller
than traditional electret microphones. The microphone also has an
effective dynamic range of 29-116 dBA ensuring all urban sound
pressure levels can be effectively monitored. Its frequency response
was also compensated for using a digital filter as described in [33].
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The I?S protocol was also convenient for low-power operation in
combination with dedicated IS hardware in the STM32H753.

SPL meter mode. MKII supports general purpose remote continu-
ous SPL meter functionality with 32 kHz sampling and 1-second
integrations with a total power consumption of 61 mW. Remote
edge units report a variety of statistics such as LAeq (Level A-
weighted equivalent) over the network while base stations can
report each measurement. A-weighted SPL data, as specified in
IEC 61672-1:2013 [25], offers a standard commonly used for noise
and regulatory compliance, albeit MKII is not yet certified to any
regulatory standard or type rating. However, with its favorable
acoustic front-end specifications, the MKII design does have the
capability to generate SPL data at the accuracy levels required for
city agency noise monitoring.

Enclosure design for weather tolerance. A polycarbonate en-
closure suitable for outdoor deployment from Hammond manu-
facturing was selected. The enclosure was modified locally with
additional ports. The enclosure was weatherized to reasonably pro-
tect the contents from moisture and provide protection from insects,
dirt, and other debris using by cable glands, bulkheads, etc. The
result was able to withstand a simple water immersion test, not
including the microphone.

Clock analysis. The STM32H753 clock tree allows us to source the
acoustic sampling clock from an always-on crystal based oscillator
while sourcing the CPU core clock from a PLL. Crucially, the core
clock PLL can be reconfigured without disturbing the acoustic
sampling, allowing for pseudo-dynamic frequency scaling to save
power. Finally, a timer is sourced from an external 32.768 kHz
very-high accuracy (5 ppm) low-power (order of 10 microwatts)
temperature compensated oscillator. The latter is needed by the
network for maintaining long-term synchronized operation.
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Figure 11: SONYC ML pipeline from training server to mote
deployment. Associated toolchains in each step are high-
lighted

Programmability Support. A key efficiency in the development
process was establishing a semi-automated model deployment
pipeline from the training server to the MKII mote (Figure 11).
Its key steps and the toolchains associated with each step are as
follows: (i) Training SONYC-L? on the semi-supervised AVC task
using Keras, (ii) Quantizing the featurizer, once again on the semi-
supervised AVC task, using TensorFlow Lite, (iii) Training and
quantizing the end classifier using Keras and TensorFlow Lite, (iv)
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Translating the quantized models into native code for the Cortex-
M7 using STM32 X-CUBE-AI [8], (v) Model integration into the
eMote [37] OS running on the edge devices. eMote is a hybrid plat-
form that allows for programming in high-level languages (e.g., C#)
where possible, but also directly integrating performance/power
critical code close-to-the-metal (with minimal abstraction).

While the aforementioned pipeline in its current form is semi-
automated and requires a human in the loop, it can be fully auto-
mated for continuous integration and continuous delivery (CI/CD)
and we intend to support this in a future release. Changes to the
model or application can be deployed directly on a base station
wired to a MKI gateway through a Docker pipeline. Remote model
updates to edge devices are currently not supported due to the
bandwidth limitations on the LoRa network.

B MKII LINK DETAILS
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Figure 12: 902-928 MHz ISM band frequency spectrograms
collected using a LimeSDR [5] at representative NYC loca-
tions showing significant external interference of different
sorts
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Figure 12 corroborates the observation in Section 5 that exter-
nal interference is commonly experienced by links operating in
different locations and times. Interference is apparent in these vi-
sualizations even though are only over 1 second snippets chosen
randomly from longer collects. Brighter (resp., darker) colors in
the spectrogram correspond to stronger (resp., weaker) external
interference. Unsurprisingly, external interferers are of different
sorts (i.e., narrowband vs. wideband, fixed frequency vs. frequency-
hopping), and vary with location and frequency.

Figures 13 and 14 exemplify that even though PRR varies with
frequency, possibly due to variation in external interference and
frequency selective or shadowing related fading, in each network/lo-
cation there exist frequencies that yield high PRR.

0.8
Trial 1
x 061 Trial 2 1
Eﬂf Trial 3
04 Trial 4 8
Trial 5
0.2 Trial 6 8
R Trial 7
0 y | | |
903 907.5 913 917.5 923 927.5

Frequency (Mhz)

Figure 13: Across day long trials in our Tier 2 deployment,
some frequencies have consistently high PRR over the link
between a pair of MKII nodes
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Figure 14: Packet reliability across links in a network, de-
ployed in a different city, to a common destination MK II
node named A, have some common channels with consis-
tently high PRR
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