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Abstract—This paper describes how domain knowledge of
power system operators can be integrated into reinforcement
learning (RL) frameworks to effectively learn agents that control
the grid’s topology to prevent thermal cascading. Typical RL-
based topology controllers fail to perform well due to the large
search/optimization space. Here, we propose an actor-critic-based
agent to address the problem’s combinatorial nature and train
the agent using the RL environment developed by RTE, the
French TSO. To address the challenge of the large optimiza-
tion space, a curriculum-based approach with reward tuning
is incorporated into the training procedure by modifying the
environment using network physics for enhanced agent learning.
Further, a parallel training approach on multiple scenarios is
employed to avoid biasing the agent to a few scenarios and make
it robust to the natural variability in grid operations. Without
these modifications to the training procedure, the RL agent failed
for most test scenarios, illustrating the importance of properly
integrating domain knowledge of physical systems for real-world
RL learning. The agent was tested by RTE for the 2019 learning
to run the power network challenge and was awarded the 2nd

place in accuracy and 1st place in speed. The developed code is
open-sourced for public use. Analysis of a simple system proves
the enhancement in training RL-agents using the curriculum.

Index Terms—reinforcement learning, cascading mitigation,
actor-critic agents, parallel computing, open-sourced, L2RPN.

I. INTRODUCTION

Grid operators need to ensure that line currents do not
exceed physical limits. If left unattended or an appropriate
response is delayed, then overloaded lines could lead to
cascading due to line thermal limit violations [1]. Transmission
system operators (TSOs) prefer an economical and flexible so-
lution like dynamic topology reconfiguration that uses existing
infrastructure over the other solutions like load shedding, peak
shaving, curtailment, transmission expansion planning [2]–[4].
Even though dynamic topology reconfiguration is preferred
by the TSOs [4], it is still beyond the state-of-the-art to
optimally control the grid topology “at scale”, beyond the level
of “transmission line switching” operation [2]. For example,
implementation of “bus splitting/merging” operation (node
reconfiguration at a substation using the node-breaker model)
“at scale” is non-trivial due to the nonlinear combinatorial
nature of the graph-like structure of the power grids [5].

[6] proposed an expert system-based approach that in-
corporates both transmission line switching and bus split-
ting/merging operations. This expert system-based approach
is sufficiently fast but suffers from accuracy issues at times,
and also, it cannot account for the impact of an optimal control
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action over a time horizon [5]. To solve this issue, controllers
for dynamic topology reconfiguration are developed to provide
optimal control actions over a time horizon. [7] includes
the time horizon concept but uses a mixed-integer nonlinear
optimization method which takes longer times to solve. [8],
[9] proposed a fast method for topology reconfiguration, but
due to the problem’s large search space, they do not look for
the optimal control actions.

Recently, with interest to develop real-time recommendation
systems, artificial intelligence (AI) based controllers have been
of interest to the industry [4], [5]. AI is used in diverse
applications by the industry and few such examples are
power grid voltage control [10], stability [11], emergency load
shedding [12], energy storage systems [13]. [14] proposes a
reinforcement learning-based topology controller but training
such a controller to perform well over a wide range of
operating scenarios is non-trivial. [5] overcomes such issues
by training with more scenarios that resemble real-world
behaviors. However, the controllers developed in [5] cannot
account for large grids and do not optimize for the line losses.

In this work, a systematic approach to develop topology
controllers that plan over a time horizon is proposed. The
advantage of the proposed method is that it uses domain
knowledge to make the AI-based controller learn well, even
in the case of a large solution search space. We propose
an actor-critic (A3C) topology controller that can learn by
deploying multiple agents in parallel worlds/environments and
aggregating the learned policies into a single agent. Fur-
thermore, to simplify the hard-to-solve learning process of
developing topology controllers for power grids, we propose
power grid domain-specific curriculum learning strategies that
can improve any arbitrary AI-based controller’s performance
and training time.

The contributions of this work are
• A physics-based action-space reduction, state selection

and reward design that can enable the learning of topol-
ogy controllers to prevent thermal cascading.

• A curriculum-learning strategy for accelerating A3C-
controller learning with the potential to generalize to
other sequential network flow planning problems.

• Testing and validating the proposed curriculum approach
on the IEEE 14-bus system and comparing its behavior
with a non-machine learning forecast-based agent and
an out-of-the-box RL training approach. The proposed
method outperforms the other agents because of the
domain knowledge embedded in the curriculum strategy.

• Theoretical analysis of curriculum learning on a 3-bus
system demonstrating the increased region of conver-
gence for learning the optimal parameter of the RL agent.
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We explain the transfer learning phenomenon from lower
levels to higher levels by relating the optimal parameter
values and the region of convergence between levels.

We have also open-sourced the code [15] which implements
the physics-based curriculum learning along with the physics-
based reward function and state selection. The agent learnt
by this code placed 2nd in accuracy and 1st in computation
speed in the L2RPN-2019 competition [5] conducted by RTE,
the French transmission system operator.

The rest of the paper is organized as follows. Section
II describes the problem of managing the transmission line
congestion and formulates it as a sequential decision-making
problem that can be solved by reinforcement learning; Section
III describes the general advantage-actor-critic architecture and
the training procedure. Section IV describes the challenges in
training an A3C grid topology controller and the modified
reward to enable agent learning. Section V describes the
physics-inspired curriculum-based approach to accelerate the
learning of the A3C agent. Section VI presents the simulation
results of the trained RL agent using the curriculum approach;
Section VII concludes the paper.

II. PROBLEM DESCRIPTION: MANAGING THE
TRANSMISSION LINE CONGESTION OF POWER GRIDS

In this section, first, we introduce the problem of transmis-
sion line congestion which causes a cascading event that may
result in the blackout of the power grid. Second, to manage
such congestion in the power grids, we briefly mention the
various preventive techniques and introduce “actions” (real-
time topology switching) that are flexible as well as cost-
effective from the power grid operator’s perspective [2]. Third,
we formulate this energy management of power network as
a dynamic/sequential planning problem using an objective
function and set of constraints. Finally, the complexity of the
formulated optimization problem and the size of search space
is presented as motivation to “learn” a “policy” (sequence of
actions) for the real-time oriented control solution.
A. Black out of power grids due to cascading events

In this subsection, we present the 14 bus system [16] to
demonstrate the problem of maximizing the transfer capability
of the power grid while avoiding the cascading events over
a time horizon. Fig. 1 presents a 14-bus system with 14
substations, 20 transmission lines and 16 injections (both
generations and loads combines). In Fig. 1, the substations
are indicated by the nodes (blue circles) in the graph; the
yellow circles indicate loads, and the green circles indicate
generations. Additionally, as shown in the legend of Fig. 1,
each substation has two bus bars, namely “bus 1” and “bus
2”. An element (either a line or load or generator) can be
located at a substation connected to either “bus 1” or “bus 2”
(node breaker model).

To represent the realistic power grid operation scenario,
realistic generation and load consumption profiles are injected
into the power grid for 2000 time-steps of 5 minutes each
(equal to 1 week) [17], [18]. Fig. 2 plots the generation and
load injection profiles for one scenario. The nomenclature
for the generators is gen {substation ID} {gen ID}, where
generators with IDs 0, 1, 2, 3 & 4 correspond to nuclear,
thermal, wind, solar, and hydro-power generation profiles. For

Fig. 1: Power grid cascade event in the 14 bus system due
to generation and load injections designed by the L2RPN
competition [16], [17].

Fig. 2: Generation and load injection profiles in the grid versus
time for 2000 time steps of 5 minutes each [17], [18].

example, gen 7 3 has ID = 3 which is the code for a solar
plant, and it can be seen that its injection pattern in yellow
rises from zero (at dawn) and reaches its peak (at noon) and
then drops to zero (at dusk) everyday.

Without performing any modification to the given topology
presented in Fig. 1, the injections in Fig. 2 result in a cascading
event that leads to power grid blackout. One such cascading
event is as follows; first, the transmission line connecting
substations 1 and 4 are overloaded and becomes out-of-service.
The loss of this line reduces the power grid’s overall transfer
capability, which in turn overloads the other transmission lines
in the power grid. This overloading causes the disconnection
of the transmission line 4−5 two time steps later. Finally, the
transmission lines 8−9 and 8−13 disconnect simultaneously
the next time step due to high line loading of 311.72% and
174.11% respectively, resulting in an island as shown in Fig. 1.
However, the formation of islands is not a necessary condition
for the blackout of the power grid, and blackout can also occur
due to voltage instability condition [16] which is identified by
the lack of a solution for a specific set of injections. Hence, it
is equally essential to consider cascades that create islands
(network flow problem) and voltage stability conditions to
ensure power flow solution exists when managing the power
flows in the power grid.
B. Topology switching actions

The current focus of the industry is to not only manage
power flows in the grid to avoid cascading events as described
in Section. II-A, but it is also to maximize the transfer
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(a) Power grid with
nominal bus bar con-
nectivity.

(b) Bus splitting ac-
tion using the bus bar
connectivity.

(c) Final state of the
topology after a bus
splitting action.

Fig. 3: Bus splitting using bus bars in a substation [5].

capability of the power grid by minimizing the line losses [5].
Both industry and academia have provided many preventive
actions based solutions for congestion management and loss
minimization problems. Some of them are new transmission
lines (transmission expansion problem), reactive power sup-
port, transmission switching, etc. However, installation of new
equipment on the power grid is not only expensive, but public
acceptance is also a growing concern [5]. Thus, it is preferred
to optimize the operation using the flexibility of existing
infrastructure. One such method that is both cost-efficient and
flexible is the dynamic reconfiguration of grid topology.

The actions required to implement dynamic reconfiguration
of grid topology are 1) transmission line switching and 2)
bus splitting/merging using the bus bars in a substation. The
transmission line switching action involves the decision to
make a line in-service or out-of-service. However, bus splitting
actions are more complex, and it is explained using a simple 4-
bus system from Fig. 3. Fig. 3a presents 4-bus system with five
transmission lines and four substations. Each substation in the
network has two bus bars to which the power network elements
such as loads, generators, transformers, shunt admittances, and
transmission lines are connected. Fig. 3a shows a topology
with three transmission lines connected to the bus bar 1 (B1)
and 2 (B2). For example, as shown in Fig. 3b, a bus splitting
action can be triggered to connect two incoming transmission
lines to bus bar 2 (B2) and one transmission line to bus bar
1 (B1) separately. This results in a new topology with five
nodes, as shown in Fig. 3c, and the new topology can have
very different power flow routing properties compared to the
original topology.
C. Model formulation: topology controllers for power grids

This subsection discusses the topology controller problem
formulation from a traditional optimization approach as a
large-scale mixed-integer non-linear programming problem.
The difficulty in solving this problem motivates the need for
state-of-the-art dynamic optimization techniques. Finally, we
provide a concise mathematical representation of the topology
controllers for power grids solved in this paper.

The objective of a topology controller for the power grid
involves identifying the optimal topology grid configuration
(combinatorial) that minimizes the total line loading on the
power grid to avoid the formation of islands. This objective
must be achieved while ensuring that a power flow solution
exists for the optimized grid topology with line currents below
thermal limits.

It is shown in [19] that the traditional optimization formu-
lation of identifying optimal topology at a given snapshot is a

large scale non-convex mixed-integer non-linear programming
problem (in the interest of space, we did not provide full
optimization formulation). This is a computationally intensive
optimization problem to solve even for commercial solvers.
However, the real-world problem is not a single snapshot
problem but rather the optimal topology must be designed con-
sidering the variation of load and generator injections over a
time horizon (several time steps). This significantly increases
the computational complexity of the problem. However, there
is a need for real-time/fast optimal topology recommendation
systems. To address this need, the topology controller problem
for power grids is first formulated as a sequential decision-
making problem, and then RL agents are trained to solve
the problem in real-time using historical data. The sequential
planning problem is shown below:

min
τ

t=n∑
t=1

∑
∀p∈E

(
Ip,t
Ip,max

)
, (1)

sub. to : fτ (xt) = 0; ∀t = {1, 2, · · · , n}, (2)
T (xt) ∈ A(T (xt−1));∀t = {2, · · · , n}, (3)
Ip,t ≤ Ip,max ∀p ∈ E; ∀t = {1, · · · , n}. (4)

The aim of the topology controller is to minimize the total
line loading on the grid over a time horizon t = {1, 2, . . . , n}
(equation (1)) by identifying the optimal topology τ for
every time step t with transmission line switching and bus
splitting/merging actions. For entire time horizon t, fτ (xt) = 0
represents the AC power flow constraint of the power grid with
different topologies τ and state vectors xt. The state vector
xt includes the bus voltages, load injections and generator
injections and the grid topology representation. The constraint
(3) represents the constraint between topologies in consecutive
time steps. The grid topology at a time t (T (xt)) should lie
in the allowable set of topologies based on the topology at the
previous time step (A(T (xt−1))). The constraint (4) represents
limit on the current magnitude in a transmission line p (Ip,t).
The current must be less than its thermal limits Ip,max over
the entire time horizon t where ∀p ∈ E where E is the set of
all transmission lines in the power grid.
D. Real-time topology controllers for power grids: size of

topology space
The total possible line switching topologies for a grid in

Fig. 1 with 20 transmission line is 220. Similarly, the total bus
splitting/merging topologies at a substation with k elements
is ≈ 2k−1 which equal to 1, 397, 519, 564 unique topologies
for the system in Fig. 1. Thus, the total number of possible
topology configurations available at a given time step is
1, 397, 519, 564×220. Most of these topologies are not viable
as they lead to islanding or power flow divergence. Thus, the
complexity of selecting an optimal topology at a given time
step is not trivial, let alone computing the strategy over a time
horizon. Hence, there is a need to “learn the strategy” to pick
optimal topology (considering the several time steps) rather
than exhaustive optimization search methodologies whenever
a new grid operating conditions is considered. The field of
reinforcement learning deals with learning controllers (also re-
ferred to as agents) for sequential decision processes to achieve
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a specific objective using techniques from machine learning.
The approach to developing such an agent for non-linear
sequential planning problems like controlling grid topologies
with discrete actions is described in the next section.

III. DEEP REINFORCEMENT LEARNING

This section considers a standard reinforcement learning
setup where an agent interacts with a power grid environment
ξ over a discrete number of time steps. At each time step t,
let the state of the environment be st. The agent selects an
action at from an action set A which is implemented in the
environment ξ. The environment ξ returns the resulting next
state st+1 due to action at and a reward rt+1. The higher
the reward, the better the action at corresponds to the state
st. This procedure is repeated until the environment reaches a
terminal state.

The proposed deep reinforcement learning agent uses coop-
erative actor & critic agents. The actor & critic are represented
as deep neural networks with parameters θ, as shown in Fig. 4.
The actor-critic architecture is valid for discrete action spaces
and is appropriate for node-splitting. The size of the output is
equal to the number of discrete actions in the system. Given
an action at−1 on an environment ξ, the critic looks at the next
state st and reward rt corresponding to action at−1, it then
predicts the value V (st) for the state st (policy evaluation).
The actor-network then uses the value V (st) and state st as
inputs into its neural network, and by using the property of
the softmax layer, it outputs the probabilities of each action as
p̄(a). The action with the largest probability, which is equal
to argmax(p̄(a)), is selected as the action at at time t. This
specific action is then implemented in ξ resulting in the next
state and reward. During training, the actor uses the feedback
of the critic network to update its weights to output higher
probabilities for better actions at a given state.
A. Training the actor-critic agent

The objective of an RL agent is to maximize the expected
reward overall trajectories τ such that the policy parameter θ
optimizes the total reward from the environment. A trajectory
is also known as an episode/scenario which constitutes com-
plete gameplay, i.e., a sequence of actions (policy) from the
initial state to the terminal state. This is given by

θ∗ = argmax
θ

E
τ∼πθ(τ)

[∑
t∼τ

r(st, at)

]
,

θ∗ = argmax
θ

E
τ∼πθ(τ)

[r(τ)] ,

θ∗ = argmax
θ

J(θ). (5)

The update of policy parameter during the training process
at iteration k + 1 is given by θk+1 = θk + η · ∇θJ(θ), where
η is the learning rate. The efficient learning behavior of the
actor-critic network involves the better design of the gradient
update of the objective function ∇θJ(θ).

Policy gradient on objective function: Usually, (5) is
solved using gradient descent if the desired objective function
J(θ) is represented as an explicit function. However, in
reinforcement learning, the objective function includes the dy-
namics of the environment, which is a black box. To overcome
this drawback, we present the standard REINFORCE update

for the policy gradient [20]. [20] shows the derivation of (6)
from (5).

∇θJ(θ) = E
τ∼πθ(τ)

[r(τ) · ∇θlog (πθ(τ))] . (6)

(6) provides the vanilla gradient update equation for a policy
gradient neural network-based RL agent. However, this for-
mulation does not provide an efficient learning/optimization
algorithm. Specifically, we include a few modifications to (6)
in order to make it more efficient by reducing the variance in
θ, and discounting future rewards.

Reducing the variance of network weights using the
advantage: The gradient update using (6) suffers from high
variance, which often results in convergence or bad learning of
the reinforcement learning agent. It is not reliable or efficient
to reduce the high variance by increasing the batch size. To
address this, we subtract a constant baseline value V π(s)
that is independent of network parameter θ [21] as shown
below. This term (r(τ)− V π(s)) is known as advantage
value and quantifies the improvement in the total reward for
implementing a selected action versus taking no action from
the policy network πθ(τ) in a given trajectory τ .

∇θJ(θ) = E
τ∼πθ(τ)

[∇θlog (πθ(τ)) · (r(τ)− V π(s))] , (7)

where r(τ) 6=
∑
t∼τ r(st, at) but rather the total accumulated

reward in a given trajectory discounted such that the actions
preformed far away from the current state st has minor impact
on the reward rt and similarly the actions implemented in
neighborhood of time step t i.e., {t − 3, t − 2, t − 1} have
a non-zero impact on the reward rt. This is known as time
discounting of the rewards. By simulating N trajectories with
fixed neural network weights to approximate the Eτ∼πθ(τ),
the final gradient is given by (8) below where Qπ(s, a) =∑tmax
t′=t

γt
′
−t · r(ai,t′ , si,t′ ). γ is the discount factor. tmax,i is

the total time for each trajectory and is the time taken to reach
the terminal state.

∇θJ(θ) ≈ 1

N

N∑
i=1

tmax∑
t=1

∇θlog (πθ(ai,t|si,t)) ·

(Qπ(s, a)− V π(s)) . (8)

The trajectories τ can be simulated in parallel to exploit
the multi-core nature of modern high-performance computing
hardware. As each of the trajectories is independently simu-
lated, the neural network weights are updated asynchronously.
This training approach combined with the actor-critic with
regularized advantages leads to the asynchronous-advantage-
actor-critic (A3C) [21]. A3C is a conceptually simple RL
framework that can be trained in a distributed manner while
having the flexibility to address complex problems [21]. We
will demonstrate in the results that the curriculum approach
shows significant improvement even when using basic RL
training methods like A3C. The application of the A3C method
to learn grid topology controllers is described in the next
section.
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Fig. 4: Neural network architecture for actor critic based RL agent with continuous state and discrete action spaces.

IV. TRAINING A3C GRID TOPOLOGY CONTROLLERS

The python package PyPOWNET [16], developed by the
French system operator RTE, is used as the power grid
environment to simulate the action of a topology change.
The environment uses varying load injection and generation
dispatch and the topology resulting from the actions at a time
step to estimate the resulting system states such as line flows,
number of consecutive time steps in an overload condition, and
node voltages. More information on the pypownet package is
found in [16]. Each episode consists of load and generation
profiles lasting for one unique week from the year 2016.

The default reward from the environment is simple - if the
action in the previous time step leads to an unexpected episode
termination, then the reward is equal to -1. Otherwise, the
return is equal to +1. Unexpected termination occurs when a
load/generator is islanded or if the power flow diverges. The
islanding can occur due to a bad action in a previous time step
or due to line disconnection caused by overloading or by a
combination of the two factors. A line disconnection occurs if
the actual current exceeds the rating for three consecutive time
steps or if the actual current exceeds 1.5 times the rating for a
single time step. Thus, the maximum total award occurs when
the agent can take actions that make an episode successful for
the maximum number of time steps.

We initially trained the A3C agent (Fig.4) on the IEEE
14-bus system using the binary +1/-1 reward using the full
state vector as the input to the RL agent. The total number
of node splitting actions equals 312, and the state vector
size is equal to 438. Any grid topology can be created by
a sequence of the node splitting actions, and so the number of
actions is significantly less compared to the number of possible
topologies mentioned in Section II-D. We observed that the
agent could not continuously operate the grid for more
than 50 time-steps even after training for 5,000 episodes.
On closer examination of the actions taken by the agent,
we realized that the agent was unable to learn effectively
due to the following reasons

• Redundant actions: The equivalence among various node-
splitting actions introduces more parameters in the actor
neural network slowing its training.

• Correlated and unnormalized states: Correlations are
present among the states and their values lie in a wide
region as they are not normalized. These attributes lead
to ill-conditioned gradients and impede agent learning.

• Unsuitable reward: The binary +1/-1 reward signal is not
informative enough for the A3C learning as the agent

Fig. 5: Two complimentary configurations of a substation
containing 4 elements.

cannot recognize that the line flows should be maintained
below a threshold.

Thus, RL agents cannot learn to control the grid topology
unless these shortcomings are addressed. In order to overcome
the challenge of training the A3C agent, we (i) simplified the
action space by logically analyzing the dependence of network
topology on the line currents, (ii) reduced the state space
by first grouping states based on physics and then analyzing
correlations withing the groups, (iii) designed a physically
meaningful reward function that is an explicit function of the
line current flows. The next subsections discuss the details.
A. Action Space Reduction

The action space for this problem essentially is the con-
nectivity of elements in a substation to the two busbars (bus
bar 0 and bus bar 1). Consider a single substation with 4
elements (Line A, Line B, Load & Gen) shown in figure 5. The
connectivity of the elements in this substation can be expressed
as a 4-d binary configuration vector : [Line A busbar, Line B
busbar, Load busbar & Gen busbar]. The figure 5 illustrates
two substation configurations [0,1,0,1] and [1,0,1,0].

From the rules of combinatorics, there are a total of 24

possible connections for this substation which are the total
number of actions available for this substation. However, if
we look closely at the two configurations shown in figure 5,
it can be seen that the currents in the lines A & B do not
change between these two configurations i.e. the current in
line A is the same for substation configurations [0,1,0,1] and
[1,0,1,0]. The currents are identical because the swapping of
elements is same as renumbering the busbars. As the power
flow equations are invariant to bus numbering permutations,
the resulting line flows under these two actions are the same.
Hence, the substation configurations [0,1,0,1] and [1,0,1,0] are
complementary.

As thermal cascading is triggered by line currents, we only
need to consider one of the complementary actions as the im-
pact of the complementary action is identical from a cascading
perspective. For every substation configuration, we can find a
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Fig. 6: Dendrogram with clusters of the observations of the
current & forecast, active & reactive powers for 5 loads. Obs
1-Obs 10: Active power. Obs 11-Obs 20: Reactive power.

complimentary configuration by swapping ‘0’s and ‘1’s and
this complementary configuration is a redundant action due
to the same reasoning. Thus, the pairing of complementary
actions is true for any substation with any number of elements.
We select only one of the two complementary configurations
as valid actions that are output by the RL agent and thus the
total number of actions possible can be halved, reducing the
total number of node splitting actions from 312 to 156.
B. State Space Analysis and Reduction

The observations from the environment are used as inputs
by the RL agent to determine the action in the next time
step. The full observation vector of the environment has
detailed information about the status of the grid such as
- (i) Topology information such as the busbar that each
load/gen./line connects to in a substation along with the line
status (ii) Power flow information such as load/gen. injections,
line flows, and load/gen. voltages (iii) Forecasted load powers,
generator powers & voltages. The total number of observations
at each time step is equal to 438. The large number of
the observations increases the number of parameters in the
actor and critic neural networks (NNs). Furthermore, there is
significant correlation among various observations. The large
number of NN parameters and correlations impede the learning
of the RL agent. Thus, to improve RL-agent learning, a key
step is to choose a subset of the observations that retain the
key information about the system with minimal correlations.
As the observations at a time step are a function of the actions
at the previous time step, the observation subset chosen should
be able to uniquely identify the grid topology and line flows
under the many actions possible by the agent. This will be the
state vector used as input for the training and evaluating the
RL agent.

Traditionally, data-analytics techniques such as clustering
[22] are used to reduce the number of observations from
correlations. However, applying these approaches to the full
438-dimensional observations for a few random actions will
lead to spurious correlations and inappropriate clustering. A
large dataset resulting from many actions is necessary to
fully characterize the correlations due to the large size of the
observation vector [22] and the action space, making the state

Fig. 7: Flowchart of the state space reduction approach
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Fig. 8: Dendrogram with clusters of the observations of the
current & forecast active (left) & reactive (right) powers for 5
loads using the reduced subset of data. Obs 1-Obs 10: Active
power. Obs 11-Obs 20: Reactive power.

space reduction a difficult task. To illustrate this, consider the
current and forecasted active and reactive injections for 5 loads
- a total of 20 observations. The hierarchical clustering results
using the Ward method [22] for these observations with a large
and small dataset is presented in Figure 6. A normalized cutoff
distance of 1 (along y-axis) is used to identify the clusters.
Clustering using the large dataset splits the observations into
10 clusters, with each cluster consisting of the current and
forecasted active/reactive powers. However, for the clustering
using a smaller dataset, a spurious correlation between active
power at load-5 and reactive power at load-4 causes them to
be clustered together along with their forecasted observations.
These spurious correlations are likely to be present when
clustering high dimension data [22] and so a more physically
meaningful state-space reduction approach is necessary.

This challenge is addressed by leveraging the physics of the
grid. We first split the observations into groups corresponding
to the physical quantity measured. Then the observations
within each group are separately clustered and only one
measurement from each cluster is used. This approach is
illustrated in Figure 7. The clustering result on applying this
approach on the reduced observation data for the current and
forecast active and reactive injections for 5 loads is shown in
Figure 8. Even though this clustering is derived from a smaller
data-set, it is same as the clustering derived from large data
in Figure 6, demonstrating the advantage of physics-informed
clustering approach to perform state space reduction.

We further reduce the states by leveraging the power flow
equations that relate the active and reactive power flows in
a line to the grid topology, bus power injections and bus
voltages. Thus, the line active and reactive power flows do
not need to be monitored explicitly if the element connectivity
information, bus injections & voltages are used. The final
states used as input to the RL agent are:
• Line status & busbar to which each element is connected.
• Normalized current magnitude and current direction.
• Generator active power and voltage dispatch.
• Load active power and reactive power demand.
• Time-steps before a substation can be controlled.
These final chosen states are then individually scaled so
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that the maximum values of all the states are in the same
order of magnitude which ensures numerical instabilities are
not present during the training of the RL agents. The final size
of the state space is reduced from 438 to 162 - a reduction
of more than 2.5x. Reducing the number of actions and
states significantly cuts the number of NN parameters θ
from ∼ 110k to ∼ 50k.
C. Designing a Suitable Reward

As the RL agents are trained to maximize the total reward
over a time horizon, the reward needs to be appropriately
defined to reflect the user’s intention for the agent. As the grid
controllers should maximize the duration of grid operation,
the binary +1/-1 reward seems to be sufficient as the maxi-
mum cumulative reward (J(θ)) occurs when the agent avoids
termination and increases the number of successful steps.
However, the discrete reward leads to a difficult optimization
problem as the gradient of J(θ) can be zero over large regions.
Furthermore, the reward at a particular step is independent of
the state and does not provide any information about the risk
of cascading.

As the underlying mechanism for cascading and thermal
disconnections is the line current exceeding its limit, a reward
function that explicitly uses the line currents and limits is
preferred. Further, this reward function should be designed to
discourage line overloading and scenario termination. Thus,
we define a new reward function, r(st) , shown in (9), with
these properties. The reward is essentially the sum of line
margins for all the lines if no unexpected termination occurs
and is a large negative value (-100) if the termination occurs
due to islanding or divergence.

The function R(x) (shown in Fig.9) is a proxy for the line
margin and its value reduces as the line loading increases. It
is negative if the line current is greater than 0.95 times its
maximum current limit. A threshold of 0.95 is used instead of
1.0 during training to ’robustify’ the A3C agent and aids in
generalizing the A3C agent to similar but unseen states. The
value of α in (9) determines the penalty for a line overload.
Fig.9 plots the function R(x) for varying values of α. The
explicit dependence of the reward on the state facilitates the
value function (V π(s)) learning which in turn makes the
learning of the policy π easier. This reward is maximum
when the A3C agent has the maximum number of continuous
successful time steps for all training scenarios with the least
line usage, leading to the same outcome of the binary reward.
Thus, the solution of (5) using the modified reward is also a
solution to the (5) using the binary reward.

r(st) =


∑
∀p∈E

R
(

Ip,t
Ip,max

)
; if not terminal time step

−100; if terminal time step
(9)

R(x) =

{
(0.95− x); x ≤ 0.95

α · (0.95− x), α ≥ 1; x > 0.95
(10)

The identification of bottlenecks impacting the A3C
agent learning and developing mitigation strategies re-
solving them by exploiting the physical understanding of
the grid is the first main contribution of the paper. This
behavior of the reward function was conveyed to RTE and
disseminated to a wide audience. As a result, multiple partici-
pants of the L2RPN-2020 challenge used this reward function,
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Fig. 9: Plot of the function R(x) versus the line current for
various parameters of α.

including the winners. Implementing the above strategies
enables the A3C agent to operate the 14-bus system for more
than 200-time steps for a few scenarios after training for 5,000
episodes. However, the learning was very slow, and most of
the scenarios failed after 100-time steps. Based on the states
and actions analysis, we observed that the agent needs many
episodes to learn to avoid risky actions. This is because the
number of time steps the environment can operate in a risky
topology is typically very low (< 5 time steps) before causing
line overloads leading to episode termination. Thus, standard
RL training approaches are not designed for learning topology
controllers effectively. To address this drawback and accelerate
the learning, we developed an efficient training method using
physics-inspired curriculum learning to obtain high accuracy
for the RL-based topology controllers. This is explained in the
next section.

V. PHYSICS INSPIRED CURRICULUM STRATEGY FOR
ACCELERATED LEARNING

Curriculum learning is the idea that neural networks learn a
difficult task most effectively when first trained on a simpler
task. Curriculum learning is inspired by how humans learn -
initially learning simple concepts before attempting complex
tasks. It is a form of transfer learning as solving simple
tasks is leveraged to solve the more complicated task. A
proper curriculum (sequence of tasks with increasing hardness)
should be designed to apply this approach for effectively
learning grid controllers. Designing an effective curriculum is
not easy, and a bad curriculum can impede agent learning.
Recent approaches [23] have proposed to learn curriculum
strategies as a part of the overall ML-based approach for
classification or regression tasks. In recent years, curriculum
learning to accelerate training of RL agents has been explored
in various settings [24]. However, it has not been explored for
controlling network flows. In this section, we present the
physics-inspired curriculum using the behavior of network
flows and cascading. The designed curriculum accelerates
the A3C agent learning and is the second contribution of
the paper. As far as the authors are aware, this is the first
time a curriculum has been designed to train RL agents
to control network flows.

There are a few settings in PyPOWNET that indirectly can
increase or reduce the hardness of the environment, as seen
by the agent. These configuration parameters are:
• The soft overload threshold (SOT), which is the fraction

Ip,t
Ip,max

beyond which an overload alarm is triggered.
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TABLE I: Environment parameters for the curriculum levels.

Level Reward α SOT COL HOT
1 1 109 109 109

2 5 2 15 109

3 10 1 3 1.5

• The consecutive overload limit (COL) which determines
how long a line can be continuously in soft overload
before the line is disconnected.

• The hard overload threshold (HOT) which is the fraction
Ip,t

Ip,max
beyond which line p immediately disconnects.

The default parameters of the environment are SOT = 1.0,
COL = 3 time steps and HOT = 1.5. These parameters imply
that the overload counter is triggered when the line current
exceeds its rating, and the line will be disconnected if the
current remains continuously above the SOT limit for 3 steps
(COL). If the line current exceeds 1.5 times the rating (HOT),
then it is immediately disconnected. Cascading line outages
are the main reason for unexpected termination due to the RL
agents, and so initially, we need to prevent cascading in the
environment. As the problem of cascading occurs due to a
sequence of lines disconnecting due to overloads, relaxing
the line limit enforcement will directly prevent cascades.
It is important to emphasize that the line limits (Ip,max)
are not modified in any of the levels, only the enforcement
of the limits is relaxed. Thus, the reward will be negative
if the line limits are exceeded. This negative reward will
discourage the A3C agents from taking actions that cause
line overloads even if the line limit is not enforced.

The designed curriculum consists of three levels with in-
creasing difficulty. The environment parameters for the three
levels are shown in Table I. The α parameter used in the
reward function is also increased to ensure that the penalty
for overload increases at higher curriculum levels. In Level-
1, the SOT is very large (109), which implies no line limit
enforcement. In level-2, the line disconnections are enforced
with a large COL of 15. The HOT is very large for this
level which prevents immediate line disconnection. Level-3
corresponds to the default environment behavior described
above. The levels are designed in a sequential manner that
gradually increases the ’strictness’ of the enforcement. Next,
three propositions are discussed that provide the rationale for
improved agent learning with the designed curriculum.
A. Proposition 1: More training samples are seen by the agent

for lower levels than higher levels
The relaxed line limit enforcement allows the operation

of the grid for more time steps in an episode and generates
more samples for training the agent at lower levels. Consider
the situation shown in Fig 10 displaying the normalized line
current in a line for three-parameter values. An agent with any
of the three parameters will see the entire scenario in level-
1. The training samples for level-1 include samples where
the agent’s actions led to unfavorable/risky states. However,
in level-2 an agent with the parameter θ1 will cause the
environment to terminate 15 time-steps after t1. A similar
case occurs for θ2 at t3. Hence, there are lesser samples from
unfavorable/risky states with level-2 and level-3 enforcement.

Fig. 10: Conceptual plot of the normalized line current versus
time for three parameter values in a single scenario.

Fig. 11: Conceptual behavior of the objective function J(θ)
versus varying parameters θ for different curriculum levels.

B. Proposition 2: Agent learning for lower levels is easier
than higher levels as the function J(θ) is smoother

Local maxima in the objective function impede the agent
learning as they prevent gradient-based methods from escaping
them. Curriculum learning smooths out the objective function
and makes it easier for the optimization approaches to escape
the local maxima. Consider Fig. 11 which plots the conceptual
objective function for two levels assuming one dimensional θ.
J2(θ) has sharper peaks and troughs due to the fact that the
enforcement of line currents is strict. Based on proposition 1,
the relaxation of constraint enforcement in level-1 leads to a
larger region of the parameter space where the agent performs
well. The performance enhancement is largest for parameters
that performed poorly in level-2 as they have the most room to
improve (θ1 & θ2 in this case). The performance of θ3 does not
improve musch as it is very successful in level-2. Hence, the
overall effect on J(θ) is to reduce the variation between the
peaks and troughs. Thus, J(θ) is smoother for level-1(level-
2) than level-2(level-3) over a larger parameter set, easing the
agent learning in lower levels compared to higher levels.
C. Proposition 3: Agents trained on lower levels perform well

on higher levels as well
The region in the parameter space which maximizes the

objective J1(θ) is close to the optimal value for the objective
for J2(θ). This is due to the design of the reward function,
which penalizes overloads. An agent trained for sufficient
episodes in level-1 will prevent large line overloads and avoid
actions that island a part of the grid. Thus, an agent trained
on level-1 for a level of success is likely to perform well on
level-2 as well. Using the agent trained on level-1 as an initial
agent for level-2 has the advantage of transferring learning
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TABLE II: Mapping of physical components of networked
infrastructure to a graph along with the overload phenomenon

Network Graph Node Graph Edge Overload Phenomenon
Electric Substation Lines Current flow in lines

Gas Compressors Pipelines Gas flow in pipelines
Internet Routers Fiber Optics Data flow thru routers

Interstate Junctions Roads Traffic flow on roads

from a simpler level as it does not need to relearn some
action sequences. This property leads to efficient learning.
The same logic holds while using an agent from level-2 to
level-3. Hence, learning the agent sequentially from level-1 to
level-3 ensures that the knowledge learned by the agent for
’easier’ levels is retained, and the agents need fewer scenarios
to satisfy the ’stricter’ constraints of a ’harder’ level.

Hence, gradually increasing the level during the learning
will lead to accelerated learning of the A3C agent because
of the above three prepositions as follows: (1) it can observe
and learn from more samples in lower levels and (2) gradient
steps are more likely to skip the local maxima in the objective
function in the relaxed levels (3) effective transfer learning
occurs due to the design of the reward function. Theoretical
analysis and proof of the three propositions for a sim-
ple system is described in the appendix. The curriculum
approach is very much related to continuation and homotopy
methods [Section 3 in 23], [25]–[27] and can be understood
by an analogy to the power flow problem. Solving power flow
for stressed systems is sensitive to initial conditions. Continu-
ation/homotopy methods [25], [27] overcome the challenge
by solving a low load scenario and gradually increase the
loading just like increasing the levels from ‘easy’ to ‘hard’
for cascading. Next, we discuss how the curriculum can be
adapted to prevent overload cascading in other networks.
D. Justification for extending curriculum to prevent cascading

in other networks
The curriculum design and the three propositions discussed

in the previous subsections only used the properties of over-
loading in power networks (flow in the lines) after an outage.
The curriculum design does not explicitly use any other feature
of power grids such as the power flow equations. There
is significant literature in network sciences [28], [29] that
demonstrates that the overload cascading model shares very
similar features in many physical infrastructures that can be
represented as graphs such as electric networks [30], computer
networks [31], natural-gas networks [32] and transportation
networks [33]. Further proof of the close analogy between
the cascading phenomenon in these disparate networks is
the scale-free power law that governs the distribution of
the cascading sizes in power grids [34] and transportation
networks [35]. The mapping between the physical components
for a few infrastructure networks to the graph nodes and edges
along with the overload constraint is presented in Table II.
Hence, the curriculum design can be translated to learn agents
that prevent cascading overload failures in other infrastructure.

A node/edge overloading in these networks causes the
failure of the component and the redistribution of the network
flow that can lead to overloading and failure of the remaining
nodes/edges. This is a generalization of the cascading failure

propagation which we described in section II for power
grids with line-limits. For example, computer networks, which
are node-limited, can exhibit cascading when routers stop
responding due to an excessive number of data packets. The
data packets are then redirected to other routers that can also
overload and fail, leading to cascading [28], [31].

The curriculum design relaxes the overload constraints on
the limiting components of the network and penalizes over-
loads in the reward function design. Thus, the curriculum
described in the section can be applied to prevent cascading
in various networks due to component overloads arising
from flow reconfiguration. For example, in the case of
computer networks, we can allow an overloaded router to
continue operating with a penalty dependent on the amount
of data overload it observes. The penalty (α) will be initially
low and will be increased as training progresses. Thus, training
RL agents in these domains to prevent cascading by optimizing
network flow can benefit from the proposed network physics-
based curriculum based on the overload phenomenon.

VI. SIMULATION RESULTS
In this section, results on the IEEE 14 bus system are

presented. The load & generation scenarios are taken the
pypownet package [16] as a part of the Learn to Run the
Power Network (L2RPN) 2019 challenge [5].
A. Agent Training and Evaluation Setup

Deep neural networks represent both the actor and critic
with two hidden layers of sizes 200 and 50. The first layer
of the neural network is shared between the actor and critic
leading to joint training of the A3C agent. The learning rate for
the actor is 0.0005, and the learning rate for the critic is 0.001.
A discount factor (γ) equal to 0.95 is used to calculate the
time discounted rewards for the training. A total of 50 unique
training scenarios are selected from the dataset, and 50 threads
are used in parallel during the A3C training procedure. Each
unique scenario is made up of 2000 time steps of 5 minutes
each that corresponds to 1 week of operation. An agent that
continuously operates the grid for all time steps in a scenario
is categorized as a successful agent for that scenario.

The following agents are used to verify the utility of
reinforcement learning and curriculum learning to address the
topology problem. There is no training in the forecasted power
flow-based agent, as it is a brute-force approach, while the
A3C agents are trained for 30,000 episodes on the 50 unique
scenarios.
• Forecasted power flow (FPF) based agent: This is the

non-machine learning approach in which the forecasted
injections at the next time step are used to identify the
best action at a given time step. This approach is a
’greedy’ approach as it is based only on a single-step
forecast. It cannot account for how an action would
change the line currents further into the future.

• Baseline A3C (A3C) Agent: This agent is trained on
level-3 enforcement, the hardest level, using the mod-
ified reward with action/state-space reduction and state
normalization throughout the training process.

• Curriculum A3C (CA3C) Agent: This agent is trained
using the curriculum strategy presented in Section V
along with the modified reward with action/state-space
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Fig. 12: Plot of the number of successful steps versus the
episodes during training of A3C and CA3C agents.

reduction and state normalization. The transition between
the levels occurs when the agent can continuously operate
the grid for >1000 time-steps on at least 25 scenarios.

B. Training of the A3C and CA3C Agents
The agents are implemented in Keras and are trained using

TensorFlow for 30,000 episodes and the code is available on
GitHub [15]. The number of successful time steps at each
training episode for the two agents is shown in Fig. 12.
The median of successful time steps for each of the 30,000
episodes over a window of 15 different scenarios/weeks is
plotted in Fig. 12 to smooth out the large variation among
the episodes. The enforcement level of CA3C is initially level-
1. Based on the agent’s performance, the enforcement level is
increased to level-2 at episode 6000 and increased to level-3
at episode 14000. The agent at these episodes is saved for the
further analysis presented in subsection-D.

It can be seen from the plot in Fig. 12 that the learning
is comparatively slow for the A3C agent. The number of
successful steps of the A3C agent in the training phase at the
end of 30,000 episodes is around 500 steps. For the CA3C
agent, there is a much faster training rate as the number
of successful steps increases quickly. This is because the
enforcement level is low (level-1). As soon as the level is
increased after 6k episodes, there is a drop in the number
of successful steps. After a few more episodes, the learning
algorithm will update the network parameters appropriately
and improve them till the next level is enforced at 14k
episodes. The same temporary drop in performance can be
seen after 14k episodes. It was observed that the variance of
the rewards observed during A3C training is higher compared
to CA3C training. This is due to the ’rough landscape’ of the
objective function J(θ) for level-3 enforcement.
C. Evaluation of Various Agents on Test Scenarios

In this section, the performance results of the various agents
are presented and analyzed. The three (FPF, A3C, and CA3C)
agents are evaluated on 150 test scenarios enforced at the
hardest level, with each scenario lasting 2000 time steps. The
agents are used to identify topology actions only during the
time-steps when the current flow in at least one line exceeds
80% of its limit. The agents are scored on each scenario based
on the number of continuous successful time steps before the
scenario terminates due to islanding or system divergence. This
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Fig. 13: The number of successful steps for the various agents
in each test scenario with level-3 enforcement. Each scenario
is a unique one week worth of operating conditions.
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Fig. 14: Histograms of the successful steps for the various
agents for 150 test scenarios with level-3 enforcement.

information is plotted in Fig. 13.
The performance of the A3C agent is poor as only a few

of the scenarios successfully reached the end. Most of the
scenarios with the A3C agent terminated within 500 time-
steps. In contrast, the performance of the CA3C agent is much
better as most (120 out of 150) of the scenarios successfully
reached the end. The behavior of the three agents is sum-
marised in Fig. 14 which plots the histogram of the number
of successful time steps for each test scenario partitioned into
bins of 200-time steps. The superior performance of the CA3C
agent can be clearly seen from this histogram. These results
demonstrate that (i) reinforcement learning agents can perform
better than a single look-ahead non-ML-based approach on
systems with complex constraints on the actions (ii) The CA3C
agent performs significantly better than the A3C agent trained
without a curriculum.
D. Illustrating Accelerated Learning Due to Curriculum

To demonstrate why the proposed approach-based curricu-
lum training leads to a better agent, we analyze the behavior of
the A3C agents on the test scenarios with level-1 enforcement.
In addition, we also evaluated the behavior of the CA3C agents
stored when the enforcement levels were raised. CA3C-6k
is the agent when the curriculum transitions from level-1 to
level-2 at episode 6000, and CA3C-14k is the agent when
the curriculum transitions from level-2 to level-3 at episode
14000. We recorded the normalized line currents for all the
lines for each agent and scenario, leading to a large database.
A box-whisker plot is used to present the statistics of the
dataset visually and is shown in Fig. 15. The red line within
each box is the median current flow for all test scenarios for
a particular A3C agent. The top and bottom boundaries of
the box correspond to the inter-quartile range of the current
for each line. The top and bottom whiskers correspond to the

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3213487

This work is licensed under a Creative Commons Attribution­NonCommercial­NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by­nc­nd/4.0/



11

2 3 4 5 6 7 10 11 12

Line Number

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
o

rm
al

iz
ed

 c
u

rr
en

t

2 3 4 5 6 7 10 11 12

Line Number

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

2 3 4 5 6 7 10 11 12

Line Number

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

2 3 4 5 6 7 10 11 12
Line Number

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
CA3C agent - 14,000 EpisodesCA3C agent - 6,000 Episodes CA3C agent - 30,000 Episodes A3C agent - 30,000 Episodes
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agents for all the time steps in the 150 test scenarios with over-current cascading disabled. Normalized current = I/Imax.
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estimated maximum and minimum values of the current for
each line without the outliers. The outliers of the current for
each line are represented as red crosses.

By observing the box plots in Fig. 15, it can be seen
that the CA3C-6k agent has many samples with overload.
This is expected as the agent has not yet learned fully to
reduce the line currents. Instead, the agent has prioritized
the identification of action sequences that would lead to
termination due to islanding without any cascading. In the box
plot of the CA3C-14k agent, we can observe that the agent
has learned to reduce the line current below the maximum
value for many of the lines. This is exactly the intention
behind increasing the value of α and adding a time delay to
the overload disconnection. Finally, after 30,000 episodes, the
CA3C agent reduces the overload to just 2 lines. In contrast,
the A3C agent after 30,000 episodes has overloads in 4 lines,
making it more susceptible for cascading.

However, this analysis does not fully explain the poor
performance of the A3C agent, as most of the lines have
avoided overloading. This is because the number of time steps
that a line is continuously overloaded (tp,over) is the actual
reason for line disconnection, and this is not the same as
the total number of time steps that a line is overloaded. For
example, an agent that can immediately rectify a line overload
in one step will have a tp,over equal to 1. Thus, a successful
agent has smaller values (tp,over) for all lines. The data set is
analyzed, and tp,over is calculated. The resulting tp,over are
plotted in Fig. 16.

The box plots in Fig. 16 demonstrate that the time spent
by each line continuously in overload reduces as the CA3C
agent learns. Initially, many lines have high tp,over. As the

learning progresses, the value of tp,over reduces. At the end
of 30,000 episodes, the CA3C agent can limit tp,over to 1 for
all lines except line-5. These values of tp,over are low enough
that most overloads do not cause line disconnections, limiting
the impact of most of the overloads. In contrast, the maximum
inter-quartile value of tp,over for the final A3C agent is equal
to 3 for line 5, 4 for line 7, 1 for line 10, and 8 for line 11.
These values are much larger than the HOT, and thus they will
lead to cascades in most test cases. This is exactly what we
observe in Fig. 13 for the A3C agent.

Hence, the CA3C agent can minimize the overloading
occurrences and also reduce the continuous-time in the over-
loaded state, thus leading to improved performance compared
to the A3C agent. The efficient learning of the CA3C agent
is verified on the IEEE 14 bus system by systematically
analyzing the cause of the failure of the partially trained
CA3C agents and the A3C agent. The statistical analysis
of the line currents and consecutive duration of the line
overloads is used to justify the gradual improvement in
the performance of the CA3C agent as training proceeds.
This is the third contribution of the paper.
E. Agent Performance in L2RPN-2019 Competition

The A3C agent trained using the curriculum presented
in this paper placed 2nd in the L2RPN-2019 challenge by
RTE. RTE tested the trained CA3C agent on hidden scenarios
of varying length, and the agent was successful in all the cases.
RTE’s analysis from [5] for the trained CA3C agent mentions
that the agent is quite stable due to its small action space but
has the ability to go back and forth, illustrating the impact of
using the physics of the system in the designing of the action
space. The authors have open-sourced the code to train the
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A3C agent with the physics-based curriculum approach
for controlling grid topology on GitHub from [15]. The
novel approach (state-space reduction, action space reduction,
modified reward, & curriculum training methodology) and the
corresponding code has been already used by another team to
win the L2RPN-2020 challenge on a larger system [36].

VII. CONCLUSION AND FUTURE WORK

This paper describes how domain knowledge of power
system operators can be integrated into reinforcement learning
frameworks to effectively learn agents that control the grid to
prevent cascading through grid reconfiguration. The non-linear
and combinatorial nature of the grid reconfiguration problem
means that no existing optimal power flow based approach can
tackle this problem. We have developed a training approach
for RL agents that has successfully operated the grid under
various test scenarios. The key to training is to incorporate
the knowledge of power system operation into various aspects
of the reinforcement learning framework.

First, we reduce the action space and the state space dimen-
sions reduce by analyzing the grid topology and operating
conditions. Next, a reward function is designed to provide
gradients to improve the RL agent even when the lines in the
grid have overloaded. Finally, an effective physics-based cur-
riculum approach is incorporated into the training procedure
through environment modifications that enables the agent’s
accelerated learning. The learning procedure is stabilized and
made robust to the natural variability in grid operations by
employing a parallel training procedure that trains on multiple
scenarios of the power grid at the same time. This training
procedure reduces the sampling bias that is likely to deteriorate
performance when training in a sequential. Without these
enhancements to the training procedure, the RL agent failed
for most test scenarios, illustrating the importance of properly
integrating domain knowledge of the physical system for RL
learning for a real-world system. The developed code is open-
sourced [15] for use by researchers and utilities. The agent
was tested by the French transmission system operator, RTE,
in the 2019 learning to run the power network challenge
and was awarded the 2nd place in accuracy and 1st place in
computation speed.

Our next steps are to increase the scalability of the approach
and to apply the method to (a) larger power grids with
additional actions such as generator and load controls and
(b) other networked infrastructure demonstrating cascading.
We plan to utilize graph based neural networks to increase
the generalization capability of the RL agents. Further, we
will leverage recently developed RL frameworks such as
RLzoo [37] that include advanced RL algorithms such as soft-
actor-critic (SAC) and distributed proximal policy optimiza-
tion (DPPO) which efficiently handle continuous and discrete
action spaces for large problems. Finally, we will explore
merging model predictive control based approaches with this
framework and increase the confidence of power system
planners and operators in these agents. More theory will be
developed for the curriculum design and deeper analysis will
be performed to improve the explainability of the approach.
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APPENDIX

Consider the 3-bus system shown in figure 17. The total
load is split between bus-1 and bus-2, with the power flow
on the line-1 (line-2) equal to the load on bus-1 (bus-2). The
fraction β, that divides the total load between bus-1 and bus-2,
is determined by an RL agent based on the total load. The flow
limit of line-1 and line-2 is P1,max and P2,max respectively.
The total load demand, PL, is a function of the time-step,
n, and is given by (11). Let the RL agent be represented by
a sigmoid layer with a single learnable parameter, θ1. The
fraction, β, in terms of the total load and θ1 is given by (12).
The expression (12) implies that β continuously increases with
θ1 and 0 ≤ β ≤ 1.

PL(n) = P0 − 0.5 · cos(2πn/100) (11)

β(PL(n), θ1) = 1/(1 + e−(0.5PL(n)+θ1)) (12)

The goal of the RL agent is to prevent cascading due to
line overloads. In this simple example, a line disconnection
transfers all its load to the other line in the next time step. This
behavior emulates the network flow reconfiguration in meshed
power networks after a line outage. The RL-agent needs to be
learnt so that the system operates for 100 time-steps without
cascading. The learnable parameter, θ1, of the RL-agent is the
value that maximizes the objective function (13), which is the
sum of the rewards for each line. When an early termination
occurs due to cascading, the rewards are only summed till the
termination time-step. The reward function R(x) is given by
(16), where α is the overload penalty.

J(θ1) =ΣnR(P1(n, θ1)/P1,max)+

ΣnR(P2(n, θ1)/P2,max) (13)
P1(n, θ1) =β(PL(n), θ1) · PL(n) (14)
P2(n, θ1) =(1− β(PL(n), θ1)) · PL(n) (15)

Fig. 17: Simple 3-bus system with RL-Agent controlling β.
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R(x) =

 (0.95− x), x ≤ 0.95
α · (0.95− x), x > 0.95
−100, early termination

(16)

For illustration purposes, we will fix P0 = 1.0, P1,max =
1.0 & P2,max = 0.75 for the rest of the analysis. Figure
18 plots the variation of PL, P1 & P2 versus the time-
step for θ1 = 0. The three powers are in phase, i.e., they
all attain the maximum and minimum at the same time-step.
Further, the flows are monotonically increasing for n < 50 and
monotonically decreasing for n > 50 with the peak at n = 50.
Finally, there is a symmetry arising from cos(x) before and
after n = 50, with the same flows at a time-step k and the
time-step (50− k). The training of the RL agent is equivalent
to finding the optimal value of θ1 that maximizes the objective
function J(θ1). The ease of training the RL agent is directly
related to the likelihood of estimating the optimal value of
θ1 using stochastic gradient methods. A high likelihood of
reaching the optimal value implies faster training, while a low
likelihood implies longer training as more simulations of the
environment need to be performed before a consistent rise in
the objective function is observed.

We will demonstrate how the curriculum approach will aid
in the estimation of the optimal θ1. Three levels of curriculum
are considered, and their settings are identical to Table I with
the following two modifications - (a) α for level-1 = 2 (b)
the SOT for level-2 is 1.2. Level-1 and level-2 are the relaxed
versions of the environment while level-3 is the true behavior
of the environment. The optimal value of θ1 for level-x is
denoted by θx∗1 .
A. Analysis of Region of Convergence for the Three Levels

For level-1, the SOT and HOT are high (109) and so, early
termination does not occur for any value of θ1. Thus, the
reward function R(x) for level-1 will be piece-wise linear and
concave (as α = 2). Further, as β increases continuously when
θ1 is increased, the overall objective J(θ1) is also continuous
without any sudden transitions. When θ1 << 0 ⇒ β ≈ 0,
most of the power flows through line-2. Hence, when θ1 << 0,
the reward of line-2 becomes negative for many time-steps
and the value of the overall objective function is reduced. As
θ1 increases to 0, the overload in line-2 reduces and so the
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objective increases. When θ1 ≈ 0, the P1 ≈ 1 and P2 ≈ 0.5
at the peak power (n = 50), which causes much lesser negative
rewards. Finally, when θ1 >> 0⇒ β ≈ 1, the reward of line-
1 is negative for many time-steps which again reduces the
value of the objective function. Thus, the objective function
is a continuous concave function that increases to a peak near
θ1 ≈ 0. So, the region of convergence using gradient methods
for level-1, ROClevel−1, is [-1.5,1.5] and θ1∗1 ≈ 0.

For level-2, there is a chance of early termination if P1 >
1.2 · P1,max or P2 > 1.2 · P2,max for more than COL (10
time steps). By the symmetry of PL(n) and the monotonic
property of PL(n) for n < 50, the SOT limit of 1.2 must
be reached for line-1 or line-2 at n = 45 if a disconnection
must occur. If this limit is not reached by n = 45, then the
SOT will not be violated after n = 55 and the line will not
get disconnected as the COL limit of 10 steps will not be
reached. As we discussed in the analysis of level-1, θ1 >> 0
(θ1 << 0) implies that the line-1 (line-2) limit gets violated.
The values of θ1 which cause line-1 limit to be violated for
more than 10 time-steps satisfy the relations (17)-(19), which
are simplified using (14) for P1(45, θ1) and P1,max = 1.

P1(45, θ1) > 1.2 · P1,max (17)

⇒PL(45)/(1 + e−(0.5·PL(45)+θ1)) > 1.2 (18)
⇒θ1 > −log((PL(45))/1.2− 1)− 0.5 · PL(45) (19)

Similarly, the values of θ1 which cause line-2 limit to be
reached for more than 10 time-steps satisfy the relations (20)-
(22), which are simplified using expression (15) for P2(45, θ1)
and P2,max = 0.75.

P2(45, θ1) > 1.2 · P2,max (20)

⇒(1− 1/(1 + e−(0.5·PL(45)+θ1))) > 0.9/PL(45) (21)
⇒θ1 < −log(0.9/(PL(45)− 0.9))− 0.5 · PL(45) (22)

On calculating the numerical values of θ1 by using (19) &
(22) and P0 = 1, the lower and upper limits for θ1 are found
to be −1.18 & 0.74. Thus, the region of convergence for level-
2, ROClevel−2, is [-1.18,0.74]. The optimal value of θ1 for
level-2, θ2∗1 , is approximately the midpoint of the ROC, which
implies θ2∗1 ≈ −0.22.

For level-3, the SOL is 1 and the COL is 3 time-steps. Thus,
the θ1 that causes the line limit to be reached by n = 48
determines the limits of the ROC. The final expressions for
θ1 to reach the line limits are presented in (23) & (24). On
substituting P0 = 1, the region of convergence for level-3,
ROClevel−3, is found to be [-0.05,-0.75].

⇒θ1 > −log((PL(48))− 1)− 0.5 · PL(48) (23)
⇒θ1 < −log(0.75/(PL(48)− 0.75))− 0.5 · PL(48) (24)

The theoretical analysis above is used to prove the three
propositions discussed in Section V.
B. Proof of Propositions for the 3-bus System

Proposition-1 relates the number of successful time-steps
for the three levels. The number of successful steps of level-1
is always 100, which is the maximum possible number of
time-steps. As COLlevel−2 > COLlevel−3, lines in level-3
disconnect with shorter time delay than level-2 for a fixed
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Fig. 19: The objective function versus θ1 for the three levels.

θ1. Thus, the number of steps for level-1 is always more than
level-2 which is always more than level-3. This is precisely
the claim of Proposition-1.

Proposition-2 relates the ease of training for the three
levels. As RL methods essentially use gradient methods, the
likelihood of learning is high when θ1 is initialized in the
ROC and the likelihood is low if it is initialized outside the
ROC. Thus, the ease of training is directly related to the size
of the ROC interval as the probability of initializing in the
ROC increases if the ROC interval is large. The ROC of the
three levels are related by 25. Hence, level-1 is easier to train
than level-2 which is in turn easier to train than level-3. This
is precisely the claim of Proposition-2.

ROClevel−3 ⊂ ROClevel−2 ⊂ ROClevel−1 (25)

Proposition-3 describes the transfer learning property of the
lower levels to the next level. From the analysis above, we
can see that θ1∗1 ∈ ROClevel−2 and θ2∗1 ∈ ROClevel−3. This
implies that θx∗1 from a lower level will perform well on the
next level. Furthermore, initializing level-2 training from θ1∗1
will lead to a faster convergence than starting from a random
θ1. The same observation holds for level-3 when initializing
from θ2∗1 . This is exactly the claim of proposition-3 and is the
key motivation to use curriculum methods, as initializing from
the solution of a simple curriculum will likely lead to faster
convergence on a harder curriculum.

To numerically validate the analysis, the 3-bus system is
simulated with cascading in MATLAB for the three levels with
varying θ1 between -1.5 and 1.5. The line flows at each step are
used to calculate the objective function, J(θ1). Figure 19 plots
the J(θ1) for varying θ1 for the three levels. it can be seen that
the J(θ1) curve is smooth for level-1 and no sharp transitions
are observed. In contrast, level-2 and level-3 have a sharp cut-
off. These boundaries closely match the theoretically estimated
ROC intervals for level-2 and level-3, validating the theoretical
analysis. Also, figure 19 illustrates that θ1∗1 ∈ ROClevel−2 and
θ2∗1 ∈ ROClevel−3, which numerically validates the transfer
learning property between the curricula.

Hence, we have proven analytically and shown numerically
the validity of the propositions that ensure that curriculum
design will lead to effective RL agent training by relating the
region of convergences and θx∗1 between various levels. This
is the final contribution of our work.
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