

Jasmine and Iris: population-scale structural variant comparison and analysis

Received: 27 May 2021

Accepted: 15 December 2022

Published online: 19 January 2023

 Check for updates

Melanie Kirsche¹, Gautam Prabhu^{1,2}, Rachel Sherman¹, Bohan Ni¹,
Alexis Battle¹, Sergey Aganezov¹✉ & Michael C. Schatz^{1,2}✉

The availability of long reads is revolutionizing studies of structural variants (SVs). However, because SVs vary across individuals and are discovered through imprecise read technologies and methods, they can be difficult to compare. Addressing this, we present **Jasmine** and **Iris** (<https://github.com/mkirsche/Jasmine/>), for fast and accurate SV refinement, comparison and population analysis. Using an SV proximity graph, **Jasmine** outperforms six widely used comparison methods, including reducing the rate of Mendelian discordance in trio datasets by more than fivefold, and reveals a set of high-confidence *de novo* SVs confirmed by multiple technologies. We also present a unified callset of 122,813 SVs and 82,379 indels from 31 samples of diverse ancestry sequenced with long reads. We genotype these variants in 1,317 samples from the 1000 Genomes Project and the Genotype-Tissue Expression project with DNA and RNA-sequencing data and assess their widespread impact on gene expression, including within medically relevant genes.

SVs are defined as large-scale genomic mutations affecting more than 50 base pairs (bp), and include insertions, deletions, duplications, inversions and translocations^{1,2}. Such variants are responsible for more divergent base pairs across human genomes than any other class of variation³, and have been associated with many major diseases and phenotypes, including cancer^{4,5} and autism⁶. They have also been shown to have phenotypic effects in other species, such as altered growth under stress in yeast⁷. However, much of the impact of SVs remains unknown because of the inability of SVs in complex regions to be accurately identified by short reads, which make up the majority of existing genomic sequencing data^{8,9}. In a similar manner, indels larger than 30 bp in length, while not typically considered to be SVs under the 50-bp threshold, have been shown to be similarly associated with changes in phenotypes¹ and also suffer from an inability to be mapped and resolved in short-read genomic data^{10–12}. Therefore, while the main focus of our analysis is on SV calling, we also demonstrate how our methods can be applied to indels, which affect at least 30 bp as well. Throughout this paper, we use 'SVs' to refer to variants affecting at least 50 bp, but use 'SVs and indels' to refer collectively to all variants affecting 30 or more base pairs.

In recent years, the emergence of long-read genomic sequencing technologies^{13–16} and the development of specialized software for alignment^{17–19} and variant calling^{18,20} have enabled the characterization of complex SVs, which were difficult or impossible to study from short reads alone⁸. For this reason, many population variant inference studies include long-read sequencing data for multiple individuals instead of or in addition to short-read data^{21–23}.

Because there are multiple sequencing technologies, aligners and SV callers that could be used, SV-processing pipelines for population-scale studies are frequently optimized for the particular dataset being analyzed^{7,23}, making it difficult to compare SVs called in different studies or to accurately screen newly sequenced samples for known variants. In addition, existing tools for comparing SV callsets from different samples have issues such as collapsing multiple variants in the same individual, including variants of different types, and producing callsets that vary substantially when the order of the input samples is changed. As the cost of long-read sequencing continues to fall and the number of population-scale SV studies continues to rise, there is an increasingly apparent need for methods that can accurately compare variants across a range of datasets.

¹Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. ²Department of Biology, Johns Hopkins University, Baltimore, MD, USA.

³Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. ✉e-mail: sergeyaganezovjr@gmail.com; mschatz@cs.jhu.edu

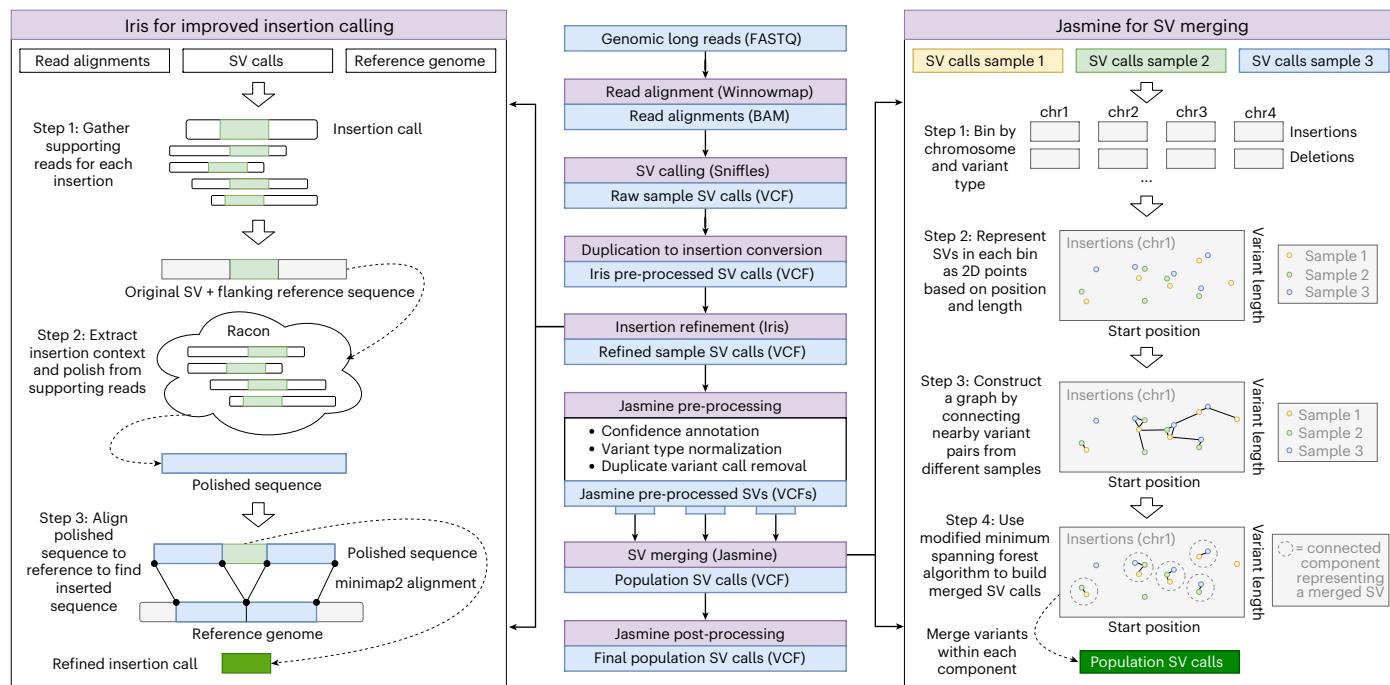


Fig. 1 | Structural variant inference pipeline. This pipeline produces population-level SV calls from FASTQ files using a number of existing methods as well as two new methods, Iris and Jasmine. Iris uses consensus methods to

improve the accuracy of the breakpoints and sequence of insertion SVs. Jasmine uses a graph of SV proximity and a constrained minimum spanning forest algorithm to compare and combine variants across multiple individuals.

To address this need, we introduce an optimized software pipeline for accurately detecting SVs and comparing these variant calls across large numbers of individuals (Fig. 1). This pipeline enhances existing methods for alignment¹⁷ and variant calling¹⁸ with new methods for refining the sequences and breakpoints of SV calls, and for comparing variant calls between different individuals to achieve a unified callset. Using a combination of simulated and real datasets, we show that this pipeline produces more accurate SV calls than several widely used methods across a variety of metrics. First, by applying our methods to a HiFi dataset from the HG002 Genome-In-A-Bottle (GIAB) Ashkenazim trio, we illustrate that our approach achieves a fivefold reduction in the number of Mendelian discordant variants, while identifying multiple high-confidence *de novo* variants in the child supported by three independent sequencing platforms. We also analyze this trio to identify signatures of variants specifically derived from each particular technology. This enables us to establish recommended variant calling parameters for different sequencing technologies that minimize Mendelian discordance as well as false merges. We next show that Jasmine improves SV merging and addresses the major issues that other methods encounter when scaling up to large cohorts. We call variants with our pipeline from publicly available long-read data for 31 samples, and generate a panel of long-read SV and indel calls, which can be used for screening further samples. Finally, we genotype this variant panel in 444 high-coverage short-read samples from the 1000 Genomes Project (1KGP)²⁴ along with 873 samples from the Genotype-Tissue Expression (GTEx) project²⁵ and discover thousands of previously undetected SV associations with gene expression. Many of these SVs have CAVIAR posterior probabilities of causality that exceed those of previously reported single-nucleotide polymorphisms (SNPs), indicating likely functional relevance, including within medically relevant genes.

Results

Optimized structural variant refinement, comparison and population analysis with Iris and Jasmine

Addressing the need for accurate SV refinement, comparison and population analysis, we introduce two methods, Iris and Jasmine.

The first method, Iris, refines variant calls by using Racon²⁶ to polish the variant sequence from reads supporting the alternate allele and realigning this polished sequence to the reference with minimap2 (ref. ¹⁹). The second method, Jasmine, compares and merges calls in different individuals corresponding to the same variant. Jasmine represents variants as points in space based on their breakpoints and lengths, and constructs a graph of SV proximity, where edges represent pairs of SVs with a small Euclidean distance between them. Jasmine then treats the comparison/merging problem as one of finding a minimal-weight acyclic subgraph of the proximity graph, which satisfies constraints such as user-specified distance thresholds and the avoidance of intra-sample merging. Jasmine solves this problem with a constrained version of Kruskal's algorithm for minimum spanning trees²⁷, and avoids the high time and memory overhead of computing and storing the entire graph by using a KD-tree²⁸ to dynamically locate nearby variant pairs and implicitly detect low-weight edges. This optimization is key to Jasmine's performance, as it enables it to implicitly consider the entire SV proximity graph and prioritize merges that encompass edges of globally minimal weight. This is in contrast to prior methods, which often perform suboptimal merging because they utilize heuristics to consider smaller subgraphs of the variant proximity graph and potentially disregard minimum-weight edges, which would be included in the optimal merging. Both Iris and Jasmine are available as stand-alone software packages and are available within Bioconda as well as within Galaxy²⁹.

Reduced Mendelian discordance in an Ashkenazim trio

A common application of SV and other variant inference methods is the identification of *de novo* variants, or variants that are present in an individual but neither of their parents. Such variants have been associated with autism³⁰ and cancer³¹, and *de novo* variant analysis is frequently used as a starting point for identifying the cause of genetic diseases or other phenotypes of interest³². However, because of shortcomings in SV inference and comparison methods, identifying *de novo* SVs and indels remains a difficult problem. For example, one widely

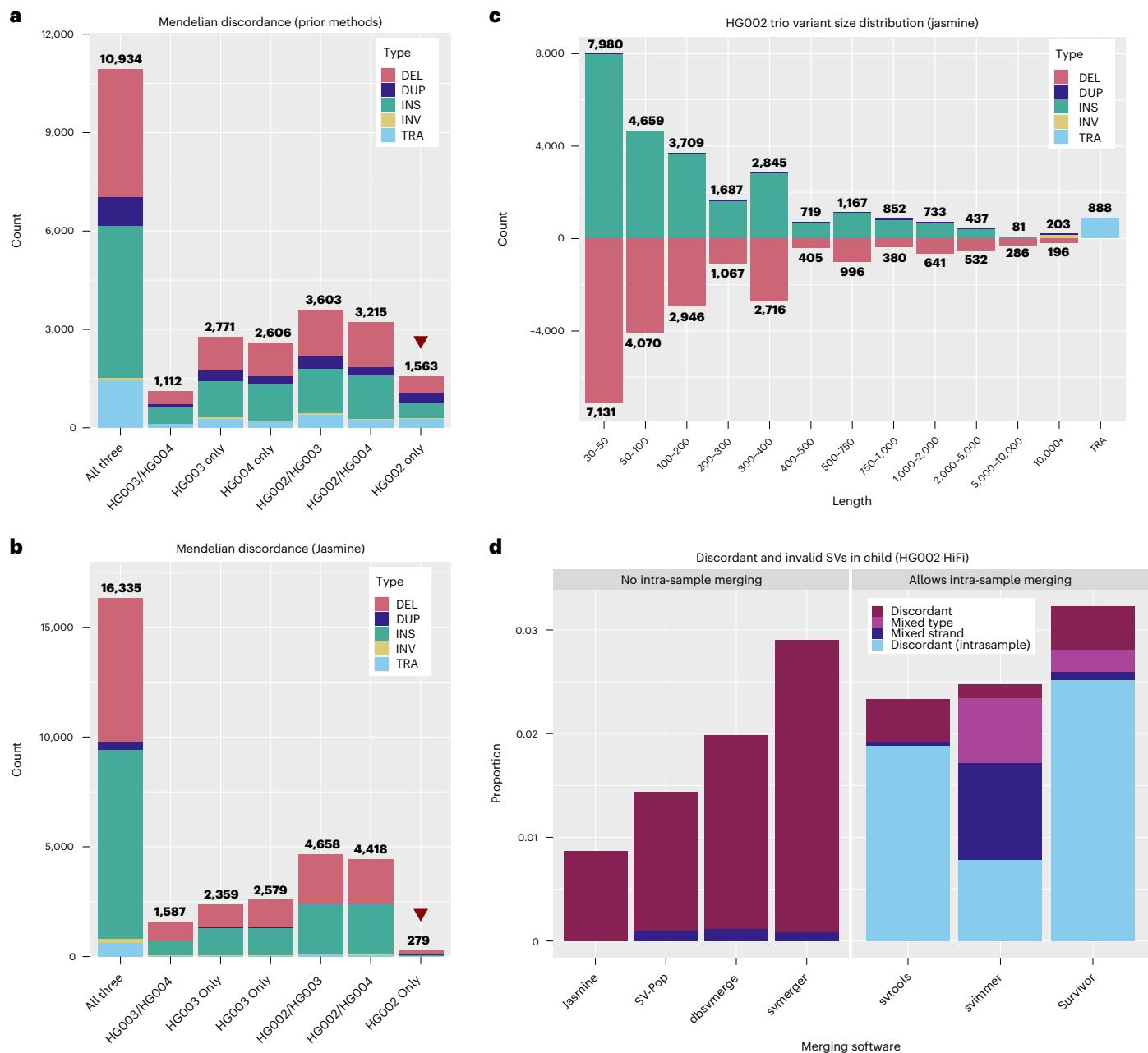


Fig. 2 | Mendelian discordance in the HG002 Ashkenazim trio. We called SVs from HiFi data for the Ashkenazim trio consisting of HG002 (son; 46,XY) and parents HG003 (46,XY) and HG004 (46,XX) using several prior methods as well as our pipeline. **a**, The number of SVs called in each subset of individuals when using prior methods: ngmlr for alignment, Sniffles for SV calling and SURVIVOR for consolidating SVs between samples. **b**, The number of SVs called in each subset of individuals when using our optimized pipeline. **c**, The distribution of variant

types and lengths in the HG002 trio with our pipeline. **d**, The rate of discordance when comparing SVs between individuals with Jasmine as well as six existing methods for population inference. Jasmine reduces the discordance rate, while at the same time addressing issues present in other methods such as merging variants of different types, variants with the same type but corresponding to unique breakpoint adjacencies (mixed strand), or variants within the same sample.

used pipeline consisting of ngmlr, sniffles¹⁸ and SURVIVOR⁷ gives thousands of candidate de novo SVs when applied to high-accuracy HiFi sequencing data from the HG002 Ashkenazim trio (Fig. 2a). Because the number of de novo SVs is typically estimated to be less than ten per generation on average³³, almost all of these variant calls are either false positives in the child, false negatives in one or both parents, or errors in merging the callsets. Collectively, we refer to these false outcomes as Mendelian discordant variants.

To address the large number of discordant variants, our optimized pipeline offers a number of improvements that reduce the

rate of Mendelian discordance by more than a factor of five with <1% (279/32,215 = 0.009) of merged SVs being discordant (Fig. 2b). At the same time, our pipeline enabled the discovery of 10–20% more SVs than existing methods, with a size distribution and indel balance similar to prior work (Fig. 2c and Supplementary Fig. 1). The methodological improvements include double thresholding ('Double thresholding'), which mitigated threshold effects in variant detection (Supplementary Fig. 2) and improved variant calling parameters (Supplementary Fig. 3), and using Jasmine for SV merging. Furthermore, we compared Jasmine to six existing methods for SV comparison between samples

(Fig. 2d and Supplementary Fig. 4): dbsvmerge³⁴, SURVIVOR⁷, svpop³⁵, svtools³⁶, sv-merger²³ and svimmer³⁷. For each software, we merged the unfiltered callset from each of the three samples, and after merging, we filtered the variants based on the read support, length and breakpoint precision of the corresponding input SV calls. We found that Jasmine achieves the lowest rate of discordance and correctly avoids merging variants of different types or variants from the same sample. This is largely due to its ability to detect and merge the closest pair of variants among all variant pairs, which is in contrast to other methods that use heuristics to reduce the number of mergeable pairs beforehand, leading to suboptimal merging. In addition, Jasmine avoids merging mismatched variants corresponding to partial inversions or translocations, which is particularly important when resolving complex nested SVs (Supplementary Fig. 5). The resulting reduction in Mendelian discordant variants is an important step toward the rapid identification of de novo variants, as it is typically necessary to screen all discordant variants manually when searching for true de novo variants.

We also evaluated the discordance rate among SVs overlapping tandem repeats (TRs), and found that the discordance of SVs overlapping TRs was similar to the overall rate ($195/22,626 = 0.0086$ overlapping TRs; $84/9,589 = 0.0088$ outside TRs). However, manual inspection revealed a large number of discordant variants where the true SV was within a TR, but disrupted alignment and variant calling resulted in an SV call just outside the repeat region. We investigated discordance among SVs near TRs and found that there was a higher discordance rate for SVs within 500 bp of TRs ($252/26,300 = 0.0096$ within 500 bp of TRs; $27/5,915 = 0.0046$ at least 500 bp outside TRs). Because the discordance is so much lower in regions at least 500 bp away from TRs (<0.5%), we refer to these regions as non-TR regions.

Structural variant analysis across sequencing technologies

Improved methods for comparing multiple SV callsets also enable the comparison of variants identified in a single individual from different sequencing technologies. We evaluated three different technologies applied to HG002: Pacific Biosciences continuous long reads (CLR), Pacific Biosciences high-fidelity (HiFi) circular consensus sequencing (CCS) and Oxford Nanopore long reads (ONT) basecalled with Guppy 4.2.2. variants were called separately from each technology, and the resulting callsets were merged with Jasmine. The three callsets were largely in agreement, with 18,778 of 28,348 SVs being supported by all three technologies (Fig. 3a,b and Supplementary Fig. 6). The set of technology-concordant variants (Fig. 3c), shows that insertion and deletion calls are largely balanced, with a slight enrichment of insertions, shown in previous studies to be caused by missing sequence in the human reference genome²², as well as a tendency for deletions to be more deleterious³⁸. There is also an increased number of variants around sizes of 300 bp and 6–7 kbp (Supplementary Fig. 7), corresponding to SINE and LINE elements respectively.

We also examined variants that were identified only by a single technology, as these may reveal systematic biases in variant calling caused by each technology's error model, particularly in CLR and ONT, which have higher rates of sequencing error. Of the 499 variants identified exclusively in CLR data (Fig. 3d), there were 244 insertions and 155 deletions, with an excess of insertions in the size range of 750 to 1,000, corresponding to a known error characteristic of CLR sequencing¹⁸. Of the 3,329 ONT-only variant calls (Fig. 3e), there were 539 insertions and 2,652 deletions, with an enrichment of small deletions less than 50 bp in length. In addition, we found that many of the variants, particularly deletions, unique to ONT or HiFi are in centromeric regions or satellite repeats (Supplementary Figs. 8 and 9). We also called and merged SVs separately for each technology across the HG002 trio and measured the discordance among the SVs discovered by the individual technologies. We found that ONT and HiFi data result in similar discordance rates ($279/32,215 = 0.0087$ in HiFi; $295/34,062 = 0.0087$ in ONT), while CLR-derived calls have a higher rate of discordance ($310/19,206 = 0.0161$).

De novo variant discovery

We next leveraged our methods, as well as data from all three technologies listed above, to screen the HG002 trio for de novo SVs and indels. We called variants from each of the three technologies in HG002 as well as both parents, for a total of nine callsets. We merged these nine call sets with Jasmine and filtered out any variants that were present in one or more of the six parent callsets. Of the remaining variants, we stratified them by which technologies supported their presence in the child and found that there were 16 that were supported by all three technologies (Fig. 4a), with an additional 35 that were supported by HiFi and at least one other technology, a 43-fold reduction in candidates compared to evaluating HiFi data alone with prior methods (Supplementary Fig. 10).

Upon manual inspection, six of these were high-confidence de novo variants (Fig. 4b), while the remaining candidates were in noisy regions that displayed split-read alignments, but we could not be certain whether the alignments were correct (Supplementary Fig. 11). One of the high-confidence candidates, a 107-bp deletion at chr17: 53,340,465 (Fig. 4c), was previously identified as a de novo SV in an effort to characterize the variants in HG002 (ref. ³⁹). Another example, a 537-bp insertion at chr14: 23,280,711, consists of a microsatellite repeat expansion on the paternal haplotype, a known class of mutations often caused by replication slippage⁴⁰ (Fig. 4d). These and other examples (Supplementary Figs. 11–13) show that our approach can correctly identify known de novo SVs as well as identify previously undiscovered potential de novo variants, and that these variants are supported by multiple independent sequencing technologies. This ability coupled with the reduced rate of discordance demonstrates a major step toward automated de novo variant detection.

Population structural variant inference

As the cost of long-read sequencing has continued to decrease in recent years, long-read studies including large cohorts have become more prevalent^{23,34}. As this trend is expected to continue⁴¹, it is particularly important for SV inference methods to be able to scale to many samples. To compare Jasmine to existing approaches, we called SVs and indels in 31 publicly available long-read samples (Supplementary Table 2) and observed the results of merging these callsets with each method. We attempted to run all six prior methods, although sv-merger did not terminate after 72 h, and so was excluded from this analysis. All other methods produced a population-level callset within a few hours with 24 threads on a modern 4-GHz server with 192 GB of RAM, but the callsets produced by existing approaches suffer from a number of issues. In addition to the invalid merges mentioned above (Fig. 2d), several of the existing methods use algorithms that give different merging results, and consequently different numbers of total variant calls, based on the input order of the sample callsets (Fig. 5a). This problem only worsens as the number of samples grows and the number of possible sample orderings increases exponentially. Conversely, Jasmine's algorithm, which merges variant pairs in increasing order of their breakpoint distances irrespective of the input order, produces identical results after any permutation of input files. Jasmine additionally offers the lowest median breakpoint range within merged variants (Fig. 5b and Supplementary Fig. 14) and avoids merging variants from the same sample. Finally, there is an abundance of low-confidence likely false-positive variant calls in samples sequenced with CLR (Supplementary Figs. 15 and 16), and methods that use a constant breakpoint distance threshold incorrectly merge these calls with high-confidence variant calls in other samples to obtain an unreasonable trimodal allele frequency distribution (Supplementary Figs. 17 and 18).

Using our SV inference pipeline, we created a panel of long-read 122,813 SVs and 82,379 indels from these 31 samples. The datasets we used include individuals from a wide range of ancestral backgrounds, as well as sequencing data from multiple technologies. Variants were

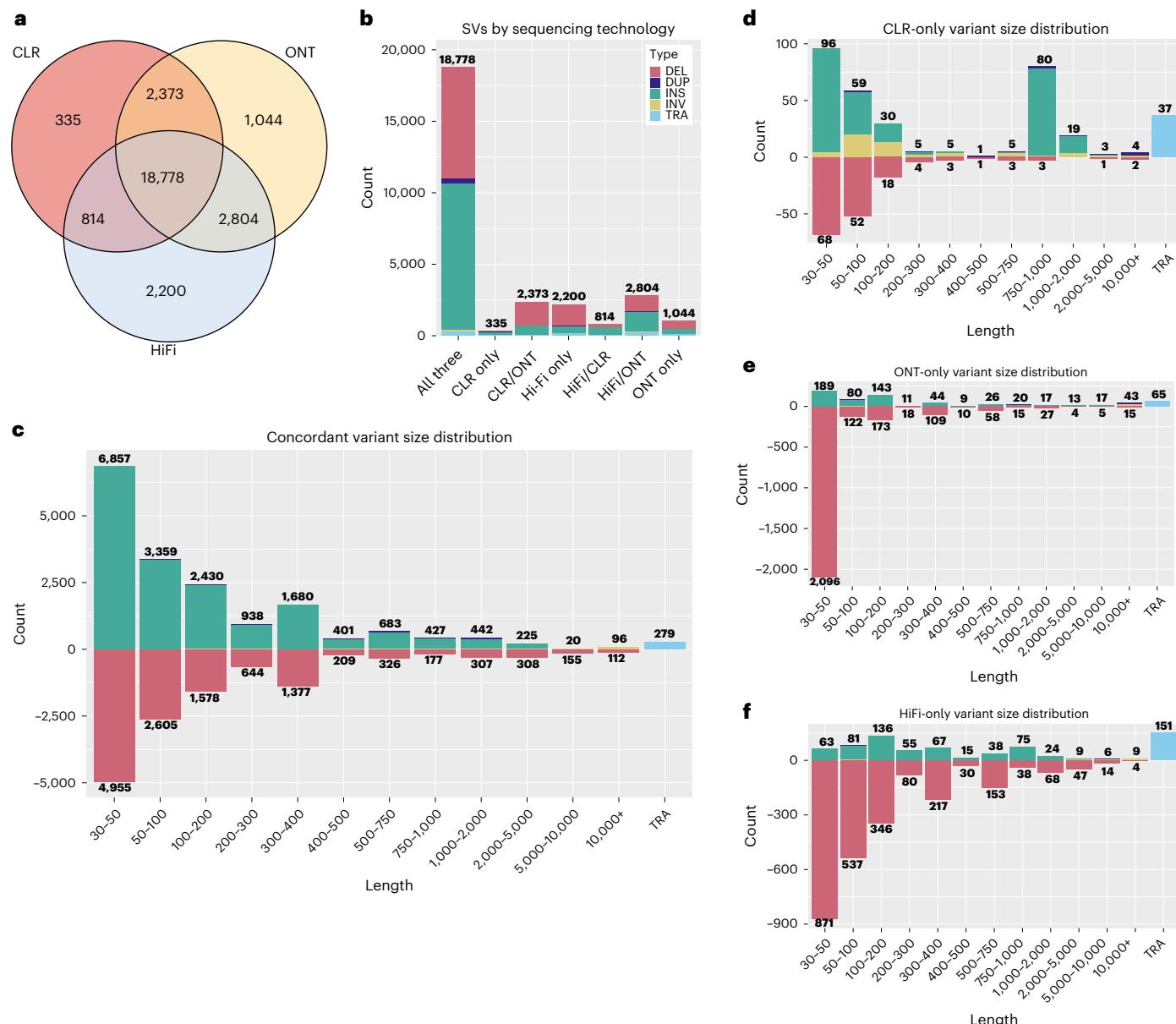


Fig. 3 | Structural variant inference across sequencing technologies in HG002. We called SVs in HG002 separately from PacBio CLR data, Oxford Nanopore data and PacBio HiFi CCS data, and used Jasmine to compare the variants discovered by each of them. **a**, The number of SVs discovered by

each subset of technologies. **b**, The SV type distribution within each subset of technologies. **c**, The distribution of types and lengths among variants for which all of the technologies agree. **d–f**, The type and length distributions for variants unique to CLR, ONT and HiFi, respectively.

called in each sample separately and merged with Jasmine to create a unified callset. The allele frequency distribution is monotonically decreasing as expected, except an excess of variants at 100% corresponding to errors and/or minor alleles in the reference²² (Fig. 5d). The cumulative number of variants increases with the number of samples, but at a decreasing rate (Fig. 5e). The indels are approximately balanced (Fig. 5f), with a slight bias toward insertions, and there are spikes in the size distribution around 300 bp and 6–7 kbp for SINE and LINE elements (Supplementary Fig. 19). There is also an enrichment of SVs in the centromeres and telomeres (Fig. 5g and Supplementary Fig. 20), likely due to a combination of missing reference sequence, repetitive sequence, which is difficult to align to, and greater recombination rates²². We also filtered our callset by the non-TR regions defined above (>500 bp away from TRs), and found that 22,132 SVs and 13,615 indels are contained in these regions.

Measuring effects of structural variants on gene expression

Previous expression quantitative trait loci (eQTL) studies have shown that SVs often have large effects on gene expression and that they are causal at 3.5–6.8% of eQTLs^{3,42}. To investigate this with our enhanced catalog of SVs, we first used Paragraph⁴³ to genotype each SV in 444 individuals from 1KGP for which gene expression data are publicly available⁴⁴, after removing SVs that were inconsistent with population genetics expectations based on the Hardy–Weinberg equilibrium (HWE; Supplementary Fig. 21a). Following the prior studies, we mapped SV-eQTLs by pairing common (minor allele frequency (MAF) ≥ 0.05) SVs to genes within 1 Mbp using gene expression data in lymphoblastic cell lines from the GEUVADIS consortium⁴⁴. Each SV–gene pair was considered independently. We then fit a linear model to measure the effect sizes of these SVs on gene expression, and found that 5,456 pairs passed a significance threshold with 10% false discovery rate (FDR; matching

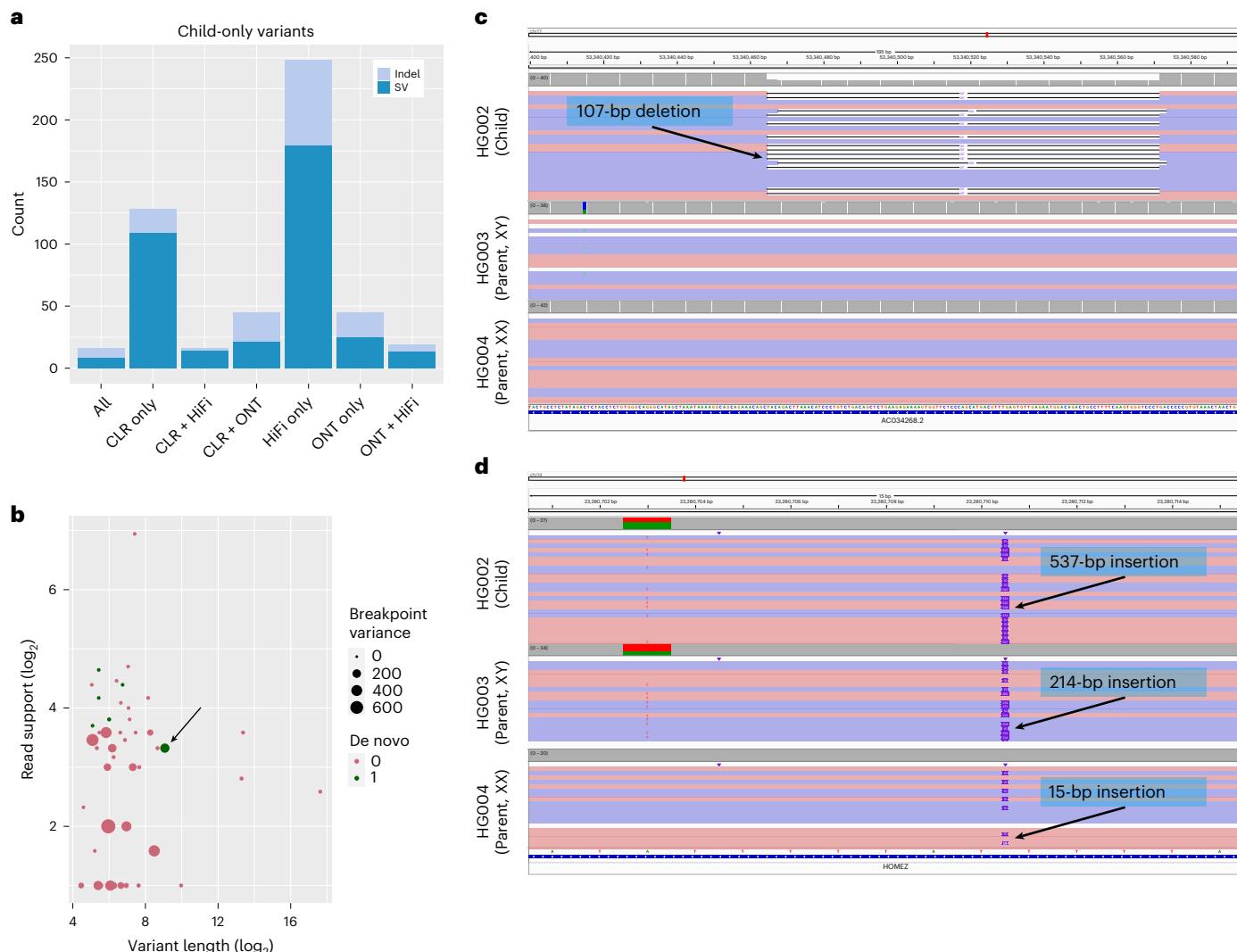


Fig. 4 | De novo variant discovery in HG002. We called variants in each of HG002, HG003 and HG004 from three different sequencing technologies—CLR, ONT and HiFi—to identify potential de novo variants that were called in none of the six parent callsets but one or more of the HG002 callsets. **a**, The number of SVs and indels which are absent in all six parent callsets whose presence in HG002 is supported by each subset of technologies. While we manually inspected all SVs supported by HiFi and at least one other technology, both of the examples in **c** and **d** were supported by all three technologies. **b**, All variants supported

by HiFi and at least one other technology in HG002 that are absent in all parent callsets. The identified potential de novo variants are highlighted in green, with the microsatellite repeat expansion denoted by an arrow. While filters based on length, read support and breakpoint standard deviation could be used to filter out many false de novo candidates, the microsatellite repeat expansion is an example of a higher-confidence de novo SV that would be incorrectly filtered out. **c**, A potential de novo 107-bp deletion in HG002 at chr17: 53,340,465. **d**, A potential de novo microsatellite repeat expansion in HG002 at chr14: 23,280,711.

previous studies of this dataset⁴⁴), which is substantially higher than the 478 pairs that we observed among short-read SVs using the same FDR. These associations occur for both deletions and insertions, and both have approximately the same effect size distribution (Supplementary Fig. 21b). These data suggest that many of the SVs that are only visible through genotyping long-read-based variant calls have large effects on gene expression and thus are potentially functionally relevant.

To evaluate which SVs are likely to have causal effects on their associated genes, we used the fine-mapping tool CAVIAR⁴⁵ to measure the posterior probability that any given SV is causal compared to nearby SNPs within a 1-Mbp window, taking into account possible linkage disequilibrium (LD) between variants. We found that SVs had high posterior scores (>0.1) at 68 genes of 1,863 genes examined (3.65%). Additionally, when compared to existing databases of SNP-eQTLs from the GTEx project^{3,25}, SVs had a higher CAVIAR posterior than reported SNPs for 53.5% of genes with an SV-eQTL (Supplementary Fig. 21c).

This shows that previously undetected SVs are likely causal at a large number of sites where the effects on gene expression were reported as SNP-eQTLs instead. Inspecting all SV–gene pairs with a CAVIAR posterior greater than that of any previously reported SNP-eQTL for that gene (and greater than 0.2 overall), we identified several potentially functional SVs in high LD with reported SNPs (Supplementary Figs. 22 and 23). Several of our top candidates have been reported by other studies as SV-eQTLs, which serves to validate our overall approach and increase confidence in our discoveries.

To further demonstrate the application of merging variants with Jasmine for SV-eQTL discovery, we next genotyped and analyzed the long-read reference SV set in the GTEx dataset^{3,25}. The GTEx dataset contains short-read whole-genome sequencing data from over 800 individuals with matched RNA-sequencing (RNA-seq) data in up to 49 non-diseased tissues. We first genotyped 26,377 common SVs detected in the reference SV set with Paragraph⁴³ within the NHGRI AnVIL Terra

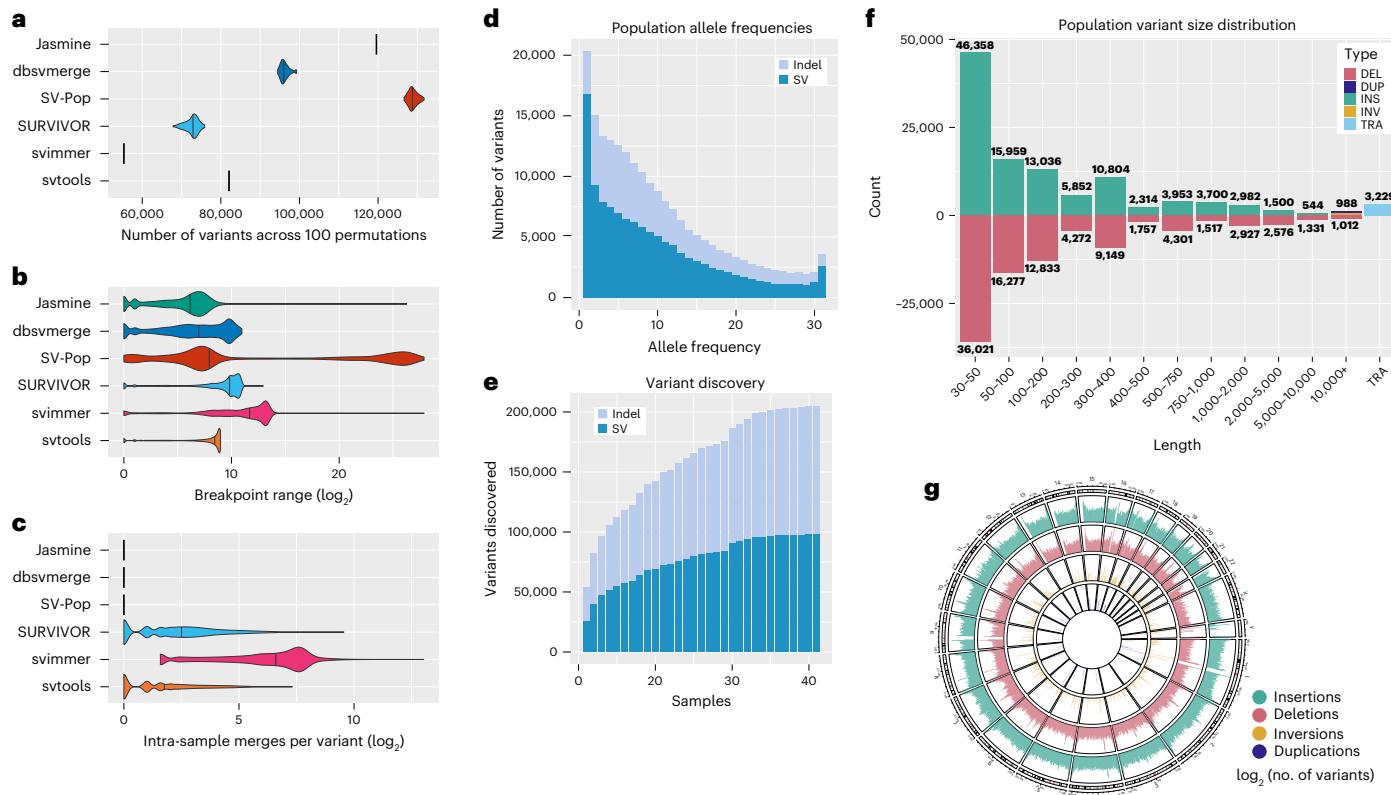


Fig. 5 | Population-scale inference from public datasets. We called SVs and indels with our pipeline in a cohort of 31 samples from diverse ancestries and sequencing technologies and used Jasmine as well as five prior methods to combine the individual samples' SVs into a population-scale callset. **a**, The number of variants obtained with each merging software across 100 runs with the list of input VCF files randomly shuffled each time. **b**, The distribution of the range of breakpoints of variant calls merged into single variants by each software,

excluding unmerged variants. **c**, The number of intra-sample merges within single merged variants, defined as the number of variants minus the number of unique samples, for each software. **d**, The allele frequency distribution of variants merged by Jasmine. **e**, The number of variants discovered by Jasmine as the number of samples increases. **f**, The distribution of variant types and lengths in the cohort when using Jasmine. **g**, The distribution of variant types and lengths in the cohort when using Jasmine.

platform⁴⁶ in 873 GTEx individuals. Here we focused on common SVs with MAF of at least 0.05 that passed conservative Hardy–Weinberg filtering at genome-wide significant *P* values. Using this approach, we discovered over twofold more variants per individual than previous efforts by the GTEx consortium³ in identifying SVs exclusively using the short-read data (Fig. 6a).

We subsequently obtained gene expression measurements and technical covariates from GTEx for these individuals from 48 tissues (those with at least 70 individuals) and computed eQTLs using the same *cis*-eQTL calling framework as previously described in GTEx (v8)²⁵. As GTEx contains more individuals than GEUVADIS and provides gene expression measurements across dozens of tissue types, we used a 5% FDR rate, which is even more conservative than previous studies⁴⁷. At 5% FDR, we identified 111,291 significant eGenes across 48 tissues, including 11,046 SVs affecting the same genes in multiple tissues (Fig. 6b). Among the eGenes, we intersected the SV-only eGenes with previously reported SNP-based eGenes, and conservatively estimated the new number of cases where an SV-eQTL is the top variant to be 10,436, which is over 2,000 more examples than previously reported even when using the stricter threshold⁴⁷. We next repeated the CAVIAR analysis on gene expression as with the 1000 Genomes dataset but scaled the analysis to all tissues. Overall, we find 5,580 SV-eQTLs where an SV has the highest CAVIAR score for the eGene, including 750 SVs affecting genes in two or more tissues (Fig. 6b). The median proportion of significant eGenes with an SV as lead causal variant within each tissue is 5.7%, and across all tissues, an SV is the top CAVIAR predicted causal variant in approximately 5% of the cases, consistent with our estimate from the

1000 Genome-Geuvadis SV-QTL dataset of 3.5–6.8%. We evaluated the SV-eGenes with SV length < 100,000 bp across all tissues available for enrichment and found a highly significant 9.5-fold enrichment (*P* value = 8.5×10^{-10} , Fisher exact test) for coding SVs to have high CAVIAR posteriors.

One notable example of an SV-eQTL identified using our Jasmine-Paragrapah pipeline in GTEx is a deletion of 168 bp within chromosome 3 in an intron of *HACL1* (encoding 2-hydroxyacyl-CoA lyase 1), a gene associated with multiple metabolic diseases⁴⁸. The deletion is not previously reported by GTEx or other major databases of variants but is strongly supported by the long-read sequencing and genotyping results. Based on the GTEx expression data, we identified it as an eQTL in testis tissues with a \log_2 allelic fold change of 1.11 (Fig. 6c). We also computed the *t*-statistic as the beta effect size divided by the variance of beta and found that both the *P* value and *t*-statistic values are substantially stronger for the deletion than any flanking SNPs (Fig. 6d and Supplementary Fig. 24). The deletion is more common in the population than a non-deletion, indicating the reference genome itself carries a minor allele insertion variant. Consequently, the direction of effect for the deletion is opposite the top SNP, as they are in LD with an r^2 value of −0.6. Overall, the stronger CAVIAR score, *P* value and *t*-statistic suggests the SV is more likely than the flanking SNPs to be causal and the top SNP is effectively a marker for the SV. Another example of an SV-eQTL we discovered using our approach is a 37-kbp deletion on chromosome 22 near the gene *DDTL* (encoding D-dopachrome tautomerase like), a paralog of the gene *DDT*, which has been associated with the chronic autoimmune disease discoid lupus erythematosus⁴⁹. The deletion was

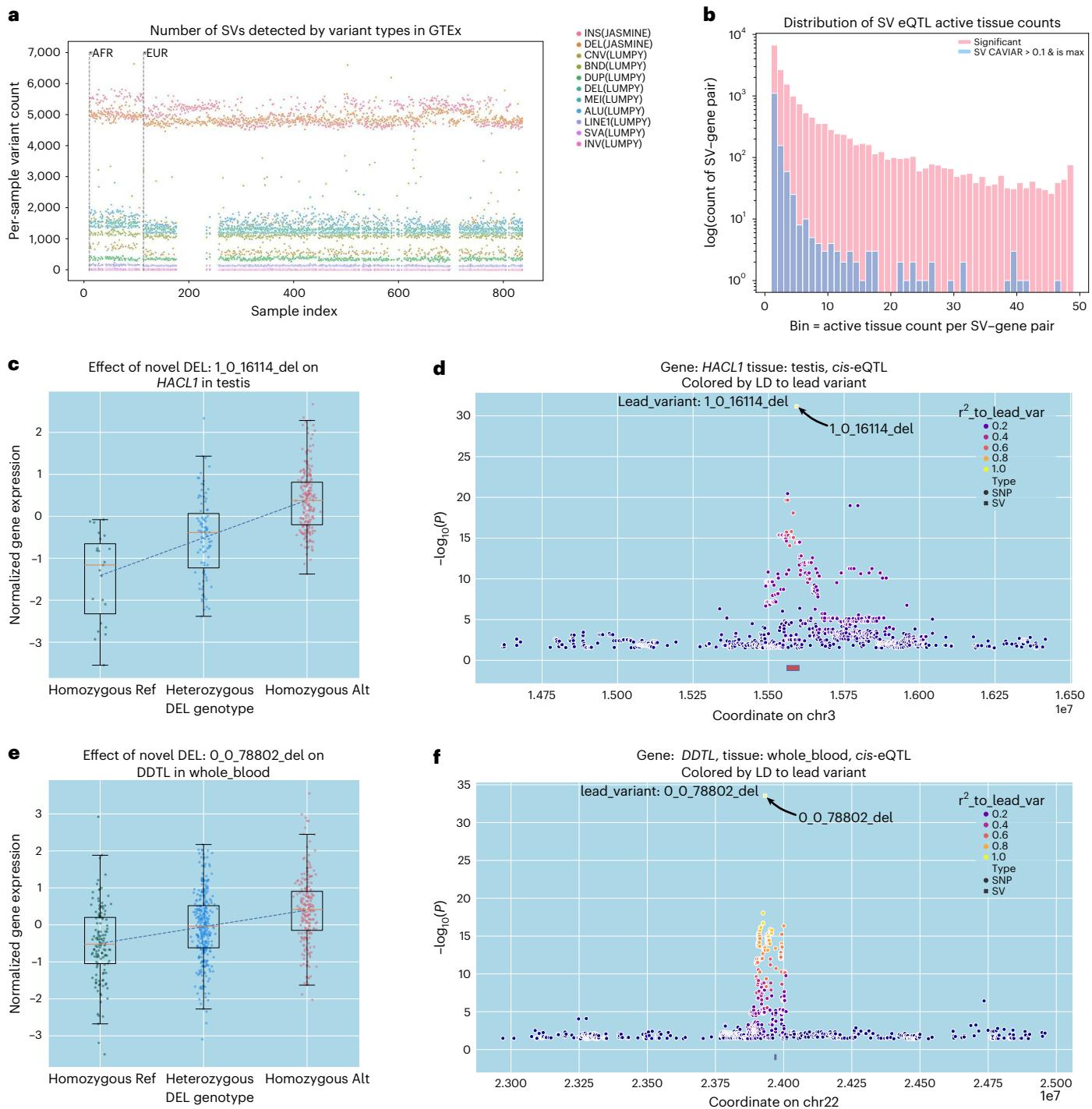


Fig. 6 | Functional impact of structural variants from JASMINE. We used Paragraph to genotype SVs and indels from the cohort of 31 samples in 873 samples from the GTEx Consortium that have RNA-seq data in multiple tissues. We used 48 tissues in our analysis with sufficient samples. **a**, Number of variants detected per sample for genotyped SVs and indels (Jasmine) versus SVs reported in the GTEx SV dataset after HWE filtering. Note short-read-based SV calls are not available for all samples, thus some samples only display the counts using Jasmine. **b**, Distribution of the number of tissues and SV-gene pair found as a significant eQTL (FDR correction at 5%). We further plotted the distribution for SV-gene pairs with significant eQTLs where the SV has the maximum CAVIAR score compared to all flanking SNPs. **c**, Genotype and gene expression distribution in GTEx samples with expression in testis for the *HACL1*-associated deletion ($n = 318$). **d**, Manhattan plot for SNPs and the novel SV near *HACL1*, with the $\log_{10} P$ value measured by a generalized linear model accounting for GTEx covariates. The annotated variant is the top variant, 1_0_16114_del, and points are colored by LD to this variant. For **c** and **d**, we used 318 individuals with both SV calls and RNA-seq data in testis tissue. **e**, Genotype and gene expression distribution in GTEx samples with expression in whole blood for *DDTL*-associated deletion ($n = 666$). **f**, Manhattan plot for SNPs and the novel SV near *DDTL*, with the $\log_{10} P$ value measured by a generalized linear model accounting for GTEx covariates. The annotated variant is the top variant, 0_0_078802_del, and points are colored by LD to this variant. For **e** and **f**, we used 666 individuals with both SV calls and RNA-seq data in whole-blood samples. Examples **c** and **e** were selected based on a two-sided t -test to assess the nominal P value of a variant-gene pair after gene-level multiple hypothesis testing using Bonferroni correction at an FDR of 5%. Box plots describes the first to third quartiles of the expression z-score distribution and the whiskers describe the first quartile minus 1.5 times the interquartile range (IQR) and the 3rd quartile plus 1.5 times the IQR centered on the mean expression value of each genotype group.

are colored by LD to this variant. For **c** and **d**, we used 318 individuals with both SV calls and RNA-seq data in testis tissue. **e**, Genotype and gene expression distribution in GTEx samples with expression in whole blood for *DDTL*-associated deletion ($n = 666$). **f**, Manhattan plot for SNPs and the novel SV near *DDTL*, with the $\log_{10} P$ value measured by a generalized linear model accounting for GTEx covariates. The annotated variant is the top variant, 0_0_078802_del, and points are colored by LD to this variant. For **e** and **f**, we used 666 individuals with both SV calls and RNA-seq data in whole-blood samples. Examples **c** and **e** were selected based on a two-sided t -test to assess the nominal P value of a variant-gene pair after gene-level multiple hypothesis testing using Bonferroni correction at an FDR of 5%. Box plots describes the first to third quartiles of the expression z-score distribution and the whiskers describe the first quartile minus 1.5 times the interquartile range (IQR) and the 3rd quartile plus 1.5 times the IQR centered on the mean expression value of each genotype group.

previously reported by the 1000 Genomes Consortium, although previous studies did not report it as an SV-eQTL. Within whole blood, a log₂ allelic fold change of 1.46 is observed, and as with *HACL1*, the *P* value, *t*-statistic and CAVIAR posterior are strongest for the SV compared to flanking SNPs (Fig. 6e,f and Supplementary Fig. 25). Interestingly, we find the SV-eQTL is putatively causal with CAVIAR posterior >0.9 for 36 tissues, and the tissue log *P*-value distribution is significantly higher (*P* value = 1.1×10^{-8} , one-sided Wilcoxon rank-sum test) than the top SNP associations in the same tissues (Supplementary Fig. 26). A third significant SV-eQTL is a 60-bp insertion on chromosome X that is an SV-eQTL of *ASMTL* (encoding acetylserotonin *O*-methyltransferase like), a gene associated with melanotic neurilemmoma and other rare tumor types⁵⁰, in GTEx left-ventricle heart tissue (Supplementary Fig. 27). Overall, our eQTL and causal SV-QTL analysis broadly agrees with our analysis with 1000 Genome Project and previous GTEx analysis^{3,47}, although the Jasmine-Paragraph workflow enabled us to genotype and analyze more SVs than previous approaches. Consequently, with our more accurate and complete SV catalog, we were able to discover substantially more significant and putatively causal eQTLs than in any previous analysis.

Discussion

Here we introduced Iris and Jasmine. Iris improves the sequence fidelity of SVs by computing the consensus of the reads that span each SV. Jasmine is a fast and accurate method for population-level SV comparison and analysis. It improves upon existing methods and achieves highly accurate results by merging pairs of variants in increasing order of their breakpoint distance, while maintaining favorable scaling qualities (Supplementary Fig. 28) through the use of a KD-tree to efficiently locate nearby variant pairs. Jasmine also separately processes the SV calls by chromosome and SV type and strand to enable built-in parallelization, while many alternative methods incorrectly combine SVs of different types. By combining Jasmine with additional new methods and carefully optimizing existing methods, we produced an SV-calling pipeline that reduces the rate of Mendelian discordance by more than a factor of five over prior pipelines, while at the same time being applicable to large cross-technology cohorts and resolving a number of issues encountered when using other methods. Finally, by calling SVs and indels in 31 publicly available long-read samples with our pipeline, we developed and released a database of human SVs. By genotyping these variants in 444 short-read samples from the 1KGP and 873 samples from GTEx, we cataloged thousands of novel eQTLs across the human genome, including in medically relevant genes, and including 750 variants affecting multiple tissues.

While Jasmine offers highly accurate population SV analysis, we remain limited by the sequencing data that are available. A major challenge we faced when applying our methods to a cohort consisting of samples from multiple sequencing technologies was the additional noise in the samples sequenced with high-error CLR reads (Supplementary Figs. 16 and 29). While we mitigated this noise through computational means, we expect that even more accurate SV calls could be obtained by using HiFi or ONT sequencing for all samples. We also found that the rate of discordance among SVs within 500 bp of TRs, while less than 1%, was more than double the discordance rate of SVs outside these regions. Other methods have mitigated this by separately processing and normalizing the breakpoints of these variants²³, and integrating these or similar modules with Jasmine's merging algorithm could further improve SV analysis. In addition, there were systematic anomalies in the SV calls in highly repetitive regions such as the centromere and satellite repeats (Supplementary Figs. 30–32) and an overall excess of variants that are found in all samples. There has recently been work to improve the reference genome to more accurately reflect these regions⁵¹, and this reference has been shown to substantially improve long-read alignment and SV calling including improved indel balance, a reduction in uniform SVs, and SV calls in

previously inaccessible regions of the genome⁵². As tools for aligning to and calling variants in these regions continue to mature, we expect the accuracy of these calls to even further improve. Finally, while we have detected a large number of SVs in the 31 samples we studied, there is still much to be discovered. As the costs of long-read genome sequencing continue to decrease, we expect to apply these methods to even larger populations, as well as to other species, to deepen our understanding of the role of SVs in disease, development and evolution.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at <https://doi.org/10.1038/s41592-022-01753-3>.

References

1. Alonso, M. et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. *Cell* **182**, 145–161 (2020).
2. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. *Nat. Rev. Genet.* **12**, 363–376 (2011).
3. Chiang, C. et al. The impact of structural variation on human gene expression. *Nat. Genet.* **49**, 692–699 (2017).
4. Aganezov, S. et al. Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing. *Genome Res.* **30**, 1258–1273 (2020).
5. Nattestad, M. et al. Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line. *Genome Res.* **28**, 1126–1135 (2018).
6. Bandler, W. M. et al. Paternally inherited cis-regulatory structural variants are associated with autism. *Science* **360**, 327–331 (2018).
7. Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. *Nat. Commun.* **8**, 14061 (2017).
8. Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. *Nat. Rev. Genet.* **19**, 329–346 (2018).
9. Mahmoud, M. et al. Structural variant calling: the long and the short of it. *Genome Biol.* **20**, 246 (2019).
10. Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. *Nat. Biotechnol.* **32**, 246–251 (2014).
11. Sirén, J. et al. Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. *Science* **374**, abg8871 (2021).
12. Narzisi, G. et al. Accurate de novo and transmitted indel detection in exome-capture data using microassembly. *Nat. Methods* **11**, 1033–1036 (2014).
13. Korlach, J. et al. Real-time DNA sequencing from single polymerase molecules. *Methods Enzymol.* **472**, 431–455 (2010).
14. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. *Genome Biol.* **17**, 239 (2016).
15. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. *Nat. Biotechnol.* **37**, 1155–1162 (2019).
16. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. *Nat. Rev. Genet.* **17**, 333–351 (2016).
17. Jain, C., Rhee, A., Hansen, N. F., Koren, S. & Phillippy, A. M. Long-read mapping to repetitive reference sequences using Winnnowmap2. *Nat. Methods* <https://doi.org/10.1038/s41592-022-01457-8> (2022).

18. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. *Nat. Methods* **15**, 461–468 (2018).
19. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–3100 (2018).
20. Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. *Genome Biol.* **21**, 189 (2020).
21. Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. *Nat. Commun.* **10**, 1784 (2019).
22. Audano, P. A. et al. Characterizing the major structural variant alleles of the human genome. *Cell* **176**, 663–675 (2019).
23. Breyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. *Nat. Genet.* <https://doi.org/10.1038/s41588-021-00865-4> (2021).
24. Byrska-Bishop, M. et al. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. *Cell* **185**, 3426–3440 (2022).
25. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. *Science* **369**, 1318–1330 (2020).
26. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. *Genome Res.* **27**, 737–746 (2017).
27. Kruskal, J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. *Proc. Am. Math. Soc.* <https://doi.org/10.1090/s0002-9939-1956-0078686-7> (1956).
28. Bentley, J. L. Multidimensional binary search trees used for associative searching. *Comm. ACM* <https://doi.org/10.1145/361002.361007> (1975).
29. Jalili, V. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. *Nucleic Acids Res.* **48**, W395–W402 (2020).
30. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. *Nature* **515**, 216–221 (2014).
31. Renaux-Petel, M. et al. Contribution of de novo and mosaic mutations to Li-Fraumeni syndrome. *J. Med. Genet.* **55**, 173–180 (2018).
32. Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. *Nat. Rev. Genet.* <https://doi.org/10.1038/nrg3241> (2012).
33. Belyeu, J. R. et al. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. *Am. J. Hum. Genet.* **108**, 597–607 (2021).
34. Shi, J. et al. Structural variant selection for high-altitude adaptation using single-molecule long-read sequencing. Preprint at *bioRxiv* <https://doi.org/10.1101/2021.03.27.436702> (2021).
35. Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. *Science* **372**, eabf7117 (2021).
36. Larson, D. E. et al. svtools: population-scale analysis of structural variation. *Bioinformatics* **35**, 4782–4787 (2019).
37. Eggertsson, H. P. et al. GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. *Nat. Commun.* **10**, 5402 (2019).
38. Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. *Nat. Genet.* **43**, 838–846 (2011).
39. Zook, J. M. et al. A robust benchmark for detection of germline large deletions and insertions. *Nat. Biotechnol.* **38**, 1347–1355 (2020).
40. Ellegren, H. Microsatellites: simple sequences with complex evolution. *Nat. Rev. Genet.* <https://doi.org/10.1038/nrg1348> (2004).
41. Ranallo-Benavidez, T. R. et al. Optimized sample selection for cost-efficient long-read population sequencing. *Genome Res.* <https://doi.org/10.1101/gr.264879.120> (2021).
42. Consortium, T. 1000 G. P. & The 1000 Genomes Project Consortium. A global reference for human genetic variation. *Nature* <https://doi.org/10.1038/nature15393> (2015).
43. Chen, S. et al. Paragraph: a graph-based structural variant genotyper for short-read sequence data. *Genome Biol.* **20**, 291 (2019).
44. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. *Nature* **501**, 506–511 (2013).
45. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. *Genetics* **198**, 497–508 (2014).
46. Schatz, M. C. et al. Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space. *Cell Genom.* **2**, 100085 (2022).
47. Scott, A. J., Chiang, C. & Hall, I. M. Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. *Genome Res.* <https://doi.org/10.1101/gr.275488.121> (2021).
48. Mezzar, S. et al. Phytol-induced pathology in 2-hydroxyacyl-CoA lyase (HACL1) deficient mice. Evidence for a second non-HACL1-related lyase. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids* **1862**, 972–990 (2017).
49. Caltabiano, R. et al. Macrophage migration inhibitory factor (MIF) and its homologue d-dopachrome tautomerase (DDT) inversely correlate with inflammation in discoid lupus erythematosus. *Molecules* **26**, 184 (2021).
50. Torres-Mora, J. et al. Malignant melanotic schwannian tumor: a clinicopathologic, immunohistochemical, and gene expression profiling study of 40 cases, with a proposal for the reclassification of 'melanotic schwannoma'. *Am. J. Surg. Pathol.* **38**, 94–105 (2014).
51. Nurk, S. et al. The complete sequence of a human genome. *Science* **376**, 44–53 (2022).
52. Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. *Science* **376**, eabl3533 (2022).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2023

Methods

Refined variant breakpoints and sequences with Iris

Many existing long-read SV callers identify variants from read alignments based on signatures such as an extended gap in the alignment or a segment of the read that aligns to a distant region of the genome^{18,20}. In the widely used variant caller Sniffles¹⁸, a variant is called when multiple reads show similar signatures that cluster together based on their type, span and location. However, when reporting the variant's breakpoints and sequence, the alignment from a single representative read (chosen arbitrarily) is used to infer this information. This is particularly problematic for insertions, where the novel sequence being inserted is taken directly from the single read. Because some read technologies such as CLR and ONT have error rates of 5% or higher, it is expected that the sequence reported will have a sequence with a similar or higher rate of divergence from the true insertion sequence (Supplementary Fig. 33). When comparing across samples, especially those sequenced using different technologies with different error models, this may cause the same variant in both individuals to be falsely identified as two separate variants.

Addressing this, we introduce Iris, a method for refining the breakpoints and novel sequence of SV calls by aggregating information from multiple reads that support each variant call (Fig. 1). Iris refines each variant call separately, but supports the processing of multiple variants in parallel. For an insertion variant call, Iris starts with an initial sequence consisting of the variant sequence plus flanking sequence from the reference genome (default 1 kb on each side of the variant). Then, it gathers all of the reads which support the variant's presence—indicated by the RNAMES field in the output of Sniffles—and aligns those reads to the initial sequence with minimap2 (ref. ¹⁹). These alignments are used as input to the polishing software Racon²⁶, which polishes the initial sequence. Finally, the polished sequence is aligned to the reference with minimap2 and the CIGAR string is parsed to extract the insertion in the polished sequence relative to the reference that most closely resembles the original insertion call. If such an insertion is found, the variant call is refined to reflect the updated sequence and breakpoints. Iris also supports the refinement of deletion breakpoints, which is of particular interest when the sequencing technology being used has a biased error model in favor of either insertions and deletions. These are handled similarly to insertions, with the initial sequence instead consisting of the concatenation of the reference sequences immediately before and after the deleted region. Iris is available as a stand-alone tool at <https://github.com/mkirsche/Iris/>.

Simulation results. To test the performance of Iris on simulated data, we simulated 400 indels with uniformly random lengths—200 with length [50, 200] and 200 with length [900, 1,100]—in a 5-Mbp segment of chr1 (20,000,000–24,999,999). Then, we used SURVIVOR⁷ with a read error and length model trained on HG002 Oxford Nanopore reads to simulate 30× coverage of long reads. We aligned these reads back to the unmodified segment of chromosome 1 with winnowmap2 (ref. ¹⁷) and called SVs with Sniffles¹⁸. From the insertion SV calls, we measured the similarity scores of the reported sequences to the ground truth using the formula: $\text{Similarity}(S, T) = (1 - \text{EditDistance}(S, T) / \max(\text{length}(S), \text{length}(T)))$. We also refined these variant calls with Iris and measured the similarity score of the updated insertion sequences (Supplementary Fig. 34a). The average sequence similarity score increased from 94.7% to 98.6%, demonstrating that Iris refinement substantially improves insertion sequence accuracy.

Real results in HG002. While this simulated experiment demonstrated that Iris can improve sequence accuracy in simulation conditions, we wanted to ensure that it also improves the novel sequences of true genomic variants, where the novel sequences are typically more repetitive and the alignments noisier than when the insertions are random base pairs. To do this, we used the cell line HG002, which

was sequenced with multiple technologies, notably including both ONT and HiFi. While the ONT reads have a high error rate of around 8%, the HiFi reads have approximately 99.5% accuracy¹⁵, so even novel insertion sequences taken from only a single HiFi read are expected to be highly accurate. Therefore, we used winnowmap and Sniffles for variant calling as in the simulated experiment, but used the HiFi SV calls' sequences in place of a ground truth. For each ONT SV call, we matched it with the nearest HiFi call if it was within 1 kbp, they shared at least 50% sequence identity, and no other ONT call had already matched with it. This resulted in 13,467 matched ONT calls before and 14,401 after refinement, with 12,978 having a matching HiFi call both before and after refinement. Among these, 9,522 (73.37%) had been changed by Iris. The average sequence identity among these 9,522 SVs increased from 91.6% before Iris to 96.2% after Iris, and the distributions of sequence accuracy scores are shown in Supplementary Fig. 34b.

We also investigated the impact of Iris refinement on Mendelian discordance in the HiFi-derived SV and indel calls for the HG002 trio. To measure this effect, we called and merged variants in this trio with our SV-calling pipeline but with Iris refinement disabled and compared the discordance to the results from the full pipeline (Supplementary Fig. 35). Without refinement the discordance was 484/47,561 = 1.02%, while the discordance with our full pipeline was 404/47,326 = 0.85%.

Comparing variant calls at population scale with Jasmine

To perform SV inference at population scale and identify variants associated with diseases or phenotypes, it is important to identify when multiple individuals share the same (or functionally identical) variants. However, the same variant call can manifest differently in unique samples because of sequencing error or samples being processed with different sequencing technologies, levels of coverage, or upstream alignment and variant calling software. These differences, along with the increasing availability of long-read sequencing data for many individuals, highlight the need for careful variant comparison when analyzing SVs in multiple samples.

We refer to the problem of consolidating multiple variant callsets into a single set of variants as the 'SV merging problem'. This is because the problem consists of identifying variant calls in separate samples corresponding to the same variant and merging them into a single call, which is annotated with the samples in which it is present. A number of methods already exist for SV merging, but each has major issues such as invalid merges, results which vary substantially based on the order of input samples, or high levels of Mendelian discordance when evaluated on trio datasets.

Jasmine methods. We introduce Jasmine, a new method that solves the SV merging problem. Jasmine takes as input a list of VCF files consisting of the variant callsets for each individual, and produces a single VCF file in which each variant is annotated with a list of samples in which it is present (as well as the IDs of the input calls corresponding to that variant).

Jasmine first separates the variants by their chromosome (or chromosome pair in the case of translocations), variant type and strand. Each of these groups is processed independently with an option for parallelization because no two variants in different groups could be representations of the same variant. When processing a group of variants, Jasmine represents each variant as a two-dimensional (2D) point in space representing the start position and length of the variant. When represented this way, variants that are closer together along the genome (and are therefore more likely to represent the same variant) have a smaller Euclidean distance between them. Consequently, each pair of variants can be assigned a quantitative distance which reflects how dissimilar they are.

After projecting these variants into 2D Euclidean space, Jasmine implicitly builds a variant proximity graph, or a graph in which nodes are individual variants and each pair of variants has an edge between

them with a weight corresponding to the Euclidean distance between them. Then, the SV merging can be framed as selecting a set of edges (merges) making up a forest, which is a subgraph of the variant proximity graph, and which minimizes the sum of edge weights chosen subject to a few constraints:

1. **No intra-sample merging:** No connected component of the forest contains multiple variants from the same individual because they have already been identified as different variants. Note that Jasmine enables this constraint to be disabled with the command line flag `--allow_intrasample`, which is useful if a single VCF file has callsets from multiple SV discovery methods within a single individual.
2. **Distance threshold:** No chosen edge has a weight greater than the user-chosen distance threshold (default maximum (100 bp, 50% of variant length))
3. **Maximality:** To prevent the trivial solution of no edges, we require that, given a set of chosen edges, no additional edges can be added to the solution while still satisfying the other constraints.

Jasmine seeks to solve this optimization problem with a greedy algorithm similar in design to Kruskal's algorithm for finding a minimum spanning tree. In this algorithm, the set of chosen edges is initially empty, and each edge is considered in order of non-decreasing edge weight. If adding the edge to the solution would violate any of the above constraints given the previously added edges, it is ignored; otherwise, it is added to the solution. When the edges being considered start to exceed the distance threshold, the algorithm terminates.

One issue with this algorithm is that in order to sort the edges by weight, they may need to be loaded into memory. This is problematic because some population datasets, with tens to hundreds of thousands of SVs per sample, include millions of variants, with the number of edges potentially scaling quadratically with the variant count. This is prohibitive even with existing datasets, and will only be more of a problem as even larger datasets are produced. Therefore, Jasmine instead stores the edges implicitly, making use of a KD-tree to quickly find the next smallest edge in the variant proximity graph.

To avoid storing the entire graph in memory, Jasmine maintains a list of a small number of nearest neighbors (initially 4) for each node, which are computed by forming a KD-tree with all of the variant points, a data structure that supports k -nearest-neighbor queries with a logarithmic runtime with respect to the number of variants. Then, the edge to the single nearest neighbor of each variant is stored in a minimum heap, and it is guaranteed that the first entry removed from this heap will be the edge with the smallest weight in the entire graph. When an edge is processed, the node for which it was the minimum-weight incident edge has its next nearest neighbor added to the heap based on the next entry in its nearest neighbor list. If the list of nearest neighbors for a node becomes empty, the KD-tree is queried for a set of twice as many nearest neighbors, and the list is refilled. In this manner, the next smallest edge in the graph will always be the edge removed from the heap, and the data structures that Jasmine uses help to maintain this property without requiring a prohibitively large amount of time or memory. The pseudocode for this algorithm can be found in Supplementary Note 1.

Jasmine distance threshold. When merging variants, it is important to determine for a given variant pair whether or not the two variants are sufficiently close together in terms of their breakpoints to be considered the same variant. In Jasmine, this is based on a distance threshold—if the distance between them (according to the chosen distance metric) is above the threshold, they will be considered two different variants, while if their distance is less than or equal to the threshold, they will be a candidate for merging. Jasmine offers a number of classes of distance thresholds, including constant thresholds, thresholds that vary based

on a fixed proportion of each variant's size, or even per-variant distance thresholds. By default, the distance threshold for Jasmine is a maximum of 100 bp (50% of variant length). We measured the difference in merging when using different values for the 'min_dist' parameter, which is 100 by default (Supplementary Fig. 36), and found that while larger values for this parameter offer lower Mendelian discordance, these more lenient thresholds perform poorly in a cross-technology cohort setting because of false merges, and 100 bp offers a good balance in performance across use cases.

Building a structural variant inference pipeline

Our SV inference pipeline is implemented in Snakemake, and supports multi-threaded as well as multi-node execution. It takes as input a list of FASTQ files for each sample being studied as well as a reference genome, and produces as its final output a VCF file containing population-level SV calls. It is highly customizable, supporting unique configurations for alignment and variant calling on a per-sample or per-sequencing-technology level. It also enables the user to specify the alignment software to use—ngmlr, winnowmap and minimap2—and separately sets the recommended default parameters for samples sequenced with each specific technology. On each sample we processed, the pipeline took about a day to run on a single Intel Cascade Lake 6248R compute node with 48 cores and 192 GB RAM at 3.0 GHz. The Snakemake files to run the pipeline are included in the Jasmine repository available at <https://github.com/mkirsche/Jasmine/tree/master/pipeline/>.

Evaluating Mendelian discordance

When performing de novo variant analysis, we are particularly interested in Mendelian discordant variants, or variants which are called as present in the child of a trio but neither parent. This includes genuine de novo variants, but in practice most of these calls are actually false de novo variants caused by errors in variant calling or merging. Accordingly, one major goal of trio SV inference is to reduce the number of discordant variants while retaining any true de novo variants in that set.

To measure Mendelian discordance, we called variants in the Ashkenazim individual HG002 as well as their parents HG003 (46,XY) and HG004 (46,XX). We merged these three callsets with Jasmine (or other merging software when comparing them to Jasmine), and counted the number of variants identified in HG002 but not merged with any variants from either parent. We then filtered these variants by confidence by requiring that they be supported by a minimum of 10 (25% of average coverage) of the reads and have a length of at least 30. In addition, we filtered out any variants not marked with the PRECISE INFO field by the sniffles variant calling. The discordance rate was calculated as the quotient of the number of discordant variants over the total number of variants in the merged and filtered trio callset.

Optimized Sniffles variant calling parameters

As shown in Supplementary Fig. 3, we used Mendelian discordance to measure the effects of different variant calling parameters in HiFi data for HG002. We varied the 'max_dist' parameter when running Sniffles for variant calling and measured the number of variants and discordance for each trio callset; based on these results, we used `max_dist = 50` for calling variants from HiFi data.

Similar to the HiFi analysis, we used Mendelian discordance to measure the effects of different variant calling parameters in CLR data for HG002. We varied the `max_dist` parameter when running Sniffles for variant calling and measured the number of variants and discordance for each trio callset. Supplementary Fig. 37 shows the effect of this parameter on these metrics, and, based on these results, we used `max_dist = 50` for calling variants from CLR data.

Next, to optimize variant calling parameters in ONT data from HG002, we repeated the experiment used for HiFi and CLR data, varying the `max_dist` variant calling parameter in Sniffles and measuring

the number of variants and discordance for each trio callset. These results are shown in Supplementary Fig. 38, and based on them we used $\text{max_dist} = 50$ for calling variants from ONT data. While this doesn't give the lowest discordance rate, all settings examined yielded less than 1% discordance, so we used a value of 50 to enable a high degree of variant discovery and consistency across technologies.

Double thresholding

To reduce the impact of threshold effects on variant calling, our pipeline uses two different variant calling thresholds: a highly specific, strict high-confidence threshold and a highly sensitive, more lenient low-confidence threshold. To be a high-confident call, a variant must be at least 30-bp long supported by a number of reads greater than or equal to a minimum of 10 (25% of average coverage over that sample); otherwise, a variant is called with low confidence if it is at least 20-bp long and supported by at least two reads. All of the variants that meet either threshold are used as input to Jasmine's cross-sample merging, and any low-confidence variants that do not get merged with any high-confidence variants are discarded. This allows variants which are close to the strict threshold to be properly detected in all of the samples in which they are present (Supplementary Figs. 39–41).

When evaluating the impact of double thresholding, we consider the SV and indel calls in the HG002 trio which were identified as being present in HG002 and group them into one of four categories:

- **Discordant:** Variants present only in HG002, regardless of whether we used double thresholding or only a single stricter threshold.
- **Not discordant:** Variants present in HG002 as well as one or both parents, regardless of whether we used double thresholding or only a single stricter threshold.
- **Rescued from absence:** Variants present in HG002 as well as one or both parents, but the call in HG002 had low enough length or read support that it would have been missed in that sample if just the stricter threshold was used.
- **Rescued from discordance:** Variants present in HG002 as well as one or both parents, but the call in the parents had low enough length or read support that it would have been called only in HG002, and therefore discordant, if just the stricter threshold were used.

Associating structural variants to genes

To obtain genotypes for SV–gene association, we called SVs in 31 long-read samples with our inference pipeline and merged them into a unified cohort-level callset with Jasmine. We then genotyped these SVs in the 1000 Genomes Collection with Paragraph after filtering out translocations and other variants that Paragraph cannot genotype, for a total of 189,581 genotyped variants across 444 individuals (Supplementary Fig. 42). Following previous studies⁴³, we then used the HWE test to filter out variants not consistent with population genetic expectations, removing variants found to be significant with $P < 0.0001$ using an exact test of HWE⁵³. After filtering with HWE and additionally removing any variants that were left uncalled in 50% or more of the samples, we were left with 138,715 variants across the 444 individuals (Supplementary Fig. 43).

We examined common *cis*-SV-eQTLs by associating our SV genotypes to gene expression data in the same cell lines collected by the GEUVADIS consortium⁴⁴. We first paired each gene with every SV that had a MAF ≥ 0.05 and resided within a window of 1 Mbp from the gene's transcription start site. We then tested whether the distribution of normalized (zero-mean, unit variance) gene expression was different for those individuals with or without the variant by using a Wilcoxon rank-sum test for each variant–gene pair with a P -value cutoff reflecting a Benjamini–Hochberg multiple testing correction with an FDR of 0.1. For genes with multiple SVs tested, each individual SV–gene pair

was considered independently. After identifying a set of significantly associated SV-eQTLs, we fit a linear model between each variant genotype (where reference was encoded as 0 and the alternate allele was encoded as 1 if heterozygous and 2 if homozygous) and gene expression to determine the effect size (β) and the R^2 value of the association. We then analyzed the relationship between the effect size and various features of the SV or gene.

Comparing structural variants and SNP-eQTLs with fine mapping.

We used the dataset of SNP-eQTLs from the GTEx project for all tissues³ as a set of known SNP-eQTLs which we could use as a benchmark to compare the effects of SVs to SNPs on genes for which both may be associated. We examined the set of genes for which there were both associated SNP-eQTLs in GTEx (which were also significantly associated in our data) and significantly associated SVs from our callset within a 1-Mb window. We then collected a set of 1,000 most-closely associated variants (SNP or SV) to each gene within the 1-Mb window and computed the z -score from a linear regression as well as the LD between each pair of variants. We used these values as input to the fine-mapping program CAVIAR⁴⁵ to predict which variants within the set are causal. We used CAVIAR's posterior probability as a measure of how likely a particular variant was to be causal.

Measuring enrichment of structural variants based on CAVIAR scores.

We examined the relationship between CAVIAR's posterior probability for each SV's most highly associated gene and various variant features, such as the distance to various regulatory elements (Supplementary Fig. 44). We used the `bedtools closest` function to compute the distance between each SV and the nearest ENCODE candidate *cis*-regulatory element from the UCSC Genome Browser database⁵⁴ (Supplementary Fig. 44a). Using the Ensembl regulatory build⁵⁵, we performed a similar distance calculation to measure the distance between each variant and the nearest Ensembl Regulatory Element (Supplementary Fig. 44b). We also found that higher CAVIAR posteriors are associated with other regulatory elements, distance to the associated gene (as previously reported in ref. ³), as well as to FunSeq high occupancy of transcription factor (HOT) regions⁵⁶ (Supplementary Figs. 44 and 45).

We also examined the relationship between CAVIAR posterior probability and various conservation scores, as well as other sequence features such as GC content. To compute conservation scores, inspired by previous works⁵⁷, we used pyBigWig to extract regions covered by the SV and computed the mean of the top ten scores of individual bases within that region. For insertion variants, we extracted the flanking reference sequence—75 bp in each direction—to assess the conservedness of the affected context. We calculated CADD scores⁵⁸, LINSIGHT scores⁵⁹ and PhastCons⁶⁰ in a similar fashion. Based on these prediction scores, we do not observe signs of enrichment of extreme pathogenicity or conservation among SVs with high CAVIAR posteriors (Supplementary Figs. 46 and 47). We also did not observe a pattern among the GC percentage for SVs with high CAVIAR posteriors (Supplementary Fig. 47a). However, larger-scale studies are needed to make definitive conclusions, as the number of SVs we observed with high CAVIAR posterior are limited.

Validating 1000 Genomes eQTL calls in GTEx lymphocyte tissue.

We implemented a workflow description language (WDL) workflow in AnVIL Terra platform⁴⁶ to rapidly genotype the previously mentioned novel variants using Paragraph. The environment is based off of the original docker containers provided by <https://github.com/Illumina/paragraph/blob/master/doc/Installation.md/>. The latest version (2.4a) can be found on a docker image in 'bni1/paragraph:2.4a'. The workflow is available at https://portal.firecloud.org/?return=terra#methods/run_paragraph/run_paragraph/23. eQTL calling was performed using the OLS module in statsmodel with GTEx expression and covariates

publicly available on the GTEx portal. We also performed fine mapping using CAVIAR with default parameters. Preprocessing of the data was performed using the aforementioned scripts.

Among the SV-eQTLs in the 1000 Genomes data is an intronic 3,143-bp insertion in *NCF4*, upstream of the associated gene *CSF2RB* (Supplementary Fig. 21e). These two genes have previously been shown to be linked to Crohn's disease⁶¹. We found that a SNP which was reported in the GTEx SNP-eQTL dataset to be associated with *CSF2RB* expression was in high LD with the insertion ($r^2 = 0.75$), but the insertion was more strongly associated with gene expression than the reported SNP (Supplementary Fig. 21f). To ensure that our finding is replicable, we proceeded to genotype this variant in 873 GTEx individuals using Paragraph⁴³ within the NHGRI AnVIL Terra platform, and found a similar alternate allele frequency of 0.796 in GTEx compared to 0.814 in 1KGP. We then analyzed GTEx publicly available expression measurements and expression covariates of the matched tissue, EBV-transformed lymphocytes, to evaluate the candidate SV-eQTL, and found the SV was an eQTL with *P* value of 3.95×10^{-8} , which is even more significant than in 1KGP. The SV-eQTL measured in GTEx is in high LD ($r^2 = 0.79$) with the reported SNP-eQTL, and has a more significant *P* value than the reported top SNP association ($P = 1.6 \times 10^{-6}$). We similarly validated using GTEx data two additional strongly supported SV-eQTLs in *LRGUK* and *CAMKMT* that were detected using our cohort-level Jasmine SV calls. We found both SV-eQTLs were more significant than the SNP-eQTLs reported by GTEx (Supplementary Figs. 22 and 23).

GTEx SV-eQTL analysis. We used the WDL-based Paragraph workflow described above in the AnVIL Terra platform to rapidly genotype the SV variants in the GTEx v8 dataset. For this analysis, we cloned the GTEx data within AnVIL (https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_GTEx_V8_hg38/). To reduce the effect of genotyping error, we filtered the variants by whether they significantly deviated from HWE at a genome-wide significance threshold. For eQTL analysis, we filtered for common variants with MAF > 0.05. eQTL calling was performed using the OLS module in statsmodel with GTEx expression and covariates publicly available on GTEx portal. Gene-level eQTL *P* values were obtained by Bonferroni correcting the minimal eQTL *P* value associated with a gene by a factor of the number of eQTLs for that gene. Subsequently, the gene-level *P* values were corrected for multiple testing using the Benjamini–Hochberg method at an FDR rate of <5%, yielding 111,291 significant eGenes across 48 tissues. We performed fine mapping with CAVIAR, using the top SV-eQTL signal with the 1,000 strongest SNP-eQTLs for a gene. Preprocessing of the data was performed using the aforementioned scripts.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

The sequencing data used in this study are available from the publications listed in Supplementary Table 1 and Supplementary Table 2. All variant calls and associations are available at <http://data.schatz-lab.org/jasmine/>.

Code availability

The Jasmine and Iris code and documentation are available open source at <https://github.com/mkirsche/Jasmine/> and <https://github.com/mkirsche/Iris/>. The versions used in the paper are archived in Zenodo for Jasmine⁶² and Iris⁶³. These methods are also available in Bioconda and Galaxy to simplify use on the command line or within the Galaxy graphical user interface. The versions of all software packages used in the manuscript are described in Supplementary Table 3.

References

53. Wigginton, J. E., Cutler, D. J. & Abecasis, G. R. A note on exact tests of Hardy–Weinberg equilibrium. *Am. J. Hum. Genet.* **76**, 887–893 (2005).
54. Navarro Gonzalez, J. et al. The UCSC Genome Browser database: 2021 update. *Nucleic Acids Res.* **49**, D1046–D1057 (2021).
55. Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flieck, P. R. The Ensembl regulatory build. *Genome Biol.* **16**, 56 (2015).
56. Fu, Y. et al. FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. *Genome Biol.* **15**, 480 (2014).
57. Abel, H. J. et al. Mapping and characterization of structural variation in 17,795 human genomes. *Nature* **583**, 83–89 (2020).
58. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. *Nucleic Acids Res.* **47**, D886–D894 (2019).
59. Huang, Y.-F., Gulk, B. & Siepel, A. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. *Nat. Genet.* **49**, 618–624 (2017).
60. Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. *Brief. Bioinform.* **12**, 41–51 (2011).
61. Chuang, L.-S. et al. A frameshift in *CSF2RB* predominant among Ashkenazi Jews increases risk for Crohn's disease and reduces monocyte signaling via GM-CSF. *Gastroenterology* **151**, 710–723 (2016).
62. Kirsche, M. Jasmine: Population-scale structural variant merging. Jasmine software release v1.1.0 from <https://github.com/mkirsche/Jasmine>. Zenodo. <https://doi.org/10.5281/zenodo.5586905> (2021).
63. Kirsche, M. Iris: Structural variant breakpoint and sequence refinement. Iris software release v1.0.4 from <https://github.com/mkirsche/Iris>. Zenodo. <https://doi.org/10.5281/zenodo.5586965> (2021).

Acknowledgements

We thank F. Sedlazeck and M. Alonge for helpful discussions. This work was supported, in part, by National Science Foundation grants DBI-1350041 (to M.C.S.), IOS-1732253 (to M.C.S.) and IOS-1758800 (to M.C.S.) and National Institutes of Health grants NCI U01CA253481 (to M.C.S.), NCI U24CA231877 (to M.C.S.), NHGRI U41HG006620 (to M.C.S.), NHGRI U24HG010263 (to M.C.S.), NIH R03CA272952 (to M.C.S.) and NIGMS R35GM139580 (to A.B.). This work was also supported in part by the Mark Foundation for Cancer Research award 19-033-ASP (to M.C.S.) and a Microsoft Research Fellows award (to A.B.). Part of this research project was conducted using computational resources at the Maryland Advanced Research Computing Center (MARCC). We also thank the investigators and the patient donors from the Human Pangenome Reference Consortium, GTEx, and 1000 Genomes for making their data available.

Author contributions

M.K. was the principal author of the Jasmine and Iris software, and led most of the presented analyses. G.P. contributed to the genotyping and eQTL analysis of the 1000 Genomes cohort. R.S. contributed to the genotyping of the 1000 Genomes cohort. B.N. led the genotyping and eQTL analysis of the GTEx cohort. A.B. assisted in the analysis of the GTEx cohort. S.A. helped design the software methods and the overall research strategy. M.C.S. oversaw all aspects of the research and analysis. All authors read and approved the final manuscript.

Competing interests

S.A. has become an employee at Oxford Nanopore. R.S. has become an employee at Illumina. M.K. has become an employee at Variant Bio.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41592-022-01753-3>.

Correspondence and requests for materials should be addressed to Sergey Aganezov or Michael C. Schatz.

Peer review information *Nature Methods* thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Lin Tang, in collaboration with the *Nature Methods* team. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d , Pearson's r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about [availability of computer code](#)

Data collection Oxford Nanopore basecalling performed with Guppy 4.2.2

Data analysis Jasmine 1.1.0, Iris 1.0.4 sniffles 1.0.11, winnowmap 2.0, racon 1.4.10, minimap2 2.17, samtools 1.9, SURVIVOR 1.0.7, svtools 0.5.1, svimmer 0.1, dbsvmerge commit 85b3687a54ce21ba25862c58707daa212b9fbcdb, svpop commit 8be50c55f8e81f8c701077bb9c00ee5bea3e0d2b, Paragraph 2.4, CAVIAR commit 135b58baffac92b5e9b45f8db78315a9b4d713bc, plink 1.90b6.4, snphwe 1.0.2.

Jasmine and Iris are novel and are on Github at: <https://github.com/mkirsche/Jasmine> and <https://github.com/mkirsche/Iris>

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research [guidelines for submitting code & software](#) for further information.

Data

Policy information about [availability of data](#)

All manuscripts must include a [data availability statement](#). This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The sequencing data used in this study is available from the publications listed in Supplemental Table 1 and Supplemental Table 2. All variant calls are available at <http://data.schatz-lab.org/jasmine/>.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Long-read data was collected from several large publicly-available resources. Short-read analysis considered all 444 of the 1000 Genomes samples and all 873 GTEx samples with appropriate datatypes available.
Data exclusions	No data excluded
Replication	Some of the SV-eQTLs identified in 1000 Genomes had been replicated in other studies, although since we used new methods for SV discovery not all SV-eQTLs were replicated, as expected
Randomization	N/A; All available samples with appropriate data were used
Blinding	N/A; All available samples with appropriate data were used

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
<input checked="" type="checkbox"/>	<input type="checkbox"/> Antibodies
<input checked="" type="checkbox"/>	<input type="checkbox"/> Eukaryotic cell lines
<input checked="" type="checkbox"/>	<input type="checkbox"/> Palaeontology and archaeology
<input checked="" type="checkbox"/>	<input type="checkbox"/> Animals and other organisms
<input checked="" type="checkbox"/>	<input type="checkbox"/> Human research participants
<input checked="" type="checkbox"/>	<input type="checkbox"/> Clinical data
<input checked="" type="checkbox"/>	<input type="checkbox"/> Dual use research of concern

Methods

n/a	Involved in the study
<input checked="" type="checkbox"/>	<input type="checkbox"/> ChIP-seq
<input checked="" type="checkbox"/>	<input type="checkbox"/> Flow cytometry
<input checked="" type="checkbox"/>	<input type="checkbox"/> MRI-based neuroimaging