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Jasmine and Iris: population-scale structural 
variant comparison and analysis

Melanie Kirsche    1, Gautam Prabhu    1,2, Rachel Sherman    1, Bohan Ni1, 

Alexis Battle    3, Sergey Aganezov    1  & Michael C. Schatz    1,2 

The availability of long reads is revolutionizing studies of structural variants 

(SVs). However, because SVs vary across individuals and are discovered 

through imprecise read technologies and methods, they can be difficult to 

compare. Addressing this, we present Jasmine and Iris (https://github.com/

mkirsche/Jasmine/), for fast and accurate SV refinement, comparison and 

population analysis. Using an SV proximity graph, Jasmine outperforms six 

widely used comparison methods, including reducing the rate of Mendelian 

discordance in trio datasets by more than fivefold, and reveals a set of 

high-confidence de novo SVs confirmed by multiple technologies. We also 

present a unified callset of 122,813 SVs and 82,379 indels from 31 samples of 

diverse ancestry sequenced with long reads. We genotype these variants 

in 1,317 samples from the 1000 Genomes Project and the Genotype-Tissue 

Expression project with DNA and RNA-sequencing data and assess their 

widespread impact on gene expression, including within medically  

relevant genes.

SVs are defined as large-scale genomic mutations affecting more than 

50 base pairs (bp), and include insertions, deletions, duplications, 

inversions and translocations1,2. Such variants are responsible for more 

divergent base pairs across human genomes than any other class of 

variation3, and have been associated with many major diseases and 

phenotypes, including cancer4,5 and autism6. They have also been shown 

to have phenotypic effects in other species, such as altered growth 

under stress in yeast7. However, much of the impact of SVs remains 

unknown because of the inability of SVs in complex regions to be 

accurately identified by short reads, which make up the majority of 

existing genomic sequencing data8,9. In a similar manner, indels larger 

than 30 bp in length, while not typically considered to be SVs under 

the 50-bp threshold, have been shown to be similarly associated with 

changes in phenotypes1 and also suffer from an inability to be mapped 

and resolved in short-read genomic data10–12. Therefore, while the main 

focus of our analysis is on SV calling, we also demonstrate how our 

methods can be applied to indels, which affect at least 30 bp as well. 

Throughout this paper, we use ‘SVs’ to refer to variants affecting at 

least 50 bp, but use ‘SVs and indels’ to refer collectively to all variants 

affecting 30 or more base pairs.

In recent years, the emergence of long-read genomic sequencing 

technologies13–16 and the development of specialized software for 

alignment17–19 and variant calling18,20 have enabled the characterization 

of complex SVs, which were difficult or impossible to study from short 

reads alone8. For this reason, many population variant inference studies 

include long-read sequencing data for multiple individuals instead of 

or in addition to short-read data21–23.

Because there are multiple sequencing technologies, align-

ers and SV callers that could be used, SV-processing pipelines for 

population-scale studies are frequently optimized for the particular 

dataset being analyzed7,23, making it difficult to compare SVs called in 

different studies or to accurately screen newly sequenced samples for 

known variants. In addition, existing tools for comparing SV callsets 

from different samples have issues such as collapsing multiple vari-

ants in the same individual, including variants of different types, and 

producing callsets that vary substantially when the order of the input 

samples is changed. As the cost of long-read sequencing continues to 

fall and the number of population-scale SV studies continues to rise, 

there is an increasingly apparent need for methods that can accurately 

compare variants across a range of datasets.
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The first method, Iris, refines variant calls by using Racon26 to polish 

the variant sequence from reads supporting the alternate allele and rea-

ligning this polished sequence to the reference with minimap2 (ref. 19).  

The second method, Jasmine, compares and merges calls in different 

individuals corresponding to the same variant. Jasmine represents 

variants as points in space based on their breakpoints and lengths, and 

constructs a graph of SV proximity, where edges represent pairs of SVs 

with a small Euclidean distance between them. Jasmine then treats the 

comparison/merging problem as one of finding a minimal-weight acy-

clic subgraph of the proximity graph, which satisfies constraints such 

as user-specified distance thresholds and the avoidance of intra-sample 

merging. Jasmine solves this problem with a constrained version of 

Kruskal’s algorithm for minimum spanning trees27, and avoids the 

high time and memory overhead of computing and storing the entire 

graph by using a KD-tree28 to dynamically locate nearby variant pairs 

and implicitly detect low-weight edges. This optimization is key to 

Jasmine’s performance, as it enables it to implicitly consider the entire 

SV proximity graph and prioritize merges that encompass edges of 

globally minimal weight. This is in contrast to prior methods, which 

often perform suboptimal merging because they utilize heuristics 

to consider smaller subgraphs of the variant proximity graph and 

potentially disregard minimum-weight edges, which would be included  

in the optimal merging. Both Iris and Jasmine are available as 

stand-alone software packages and are available within Bioconda as 

well as within Galaxy29.

Reduced Mendelian discordance in an Ashkenazim trio
A common application of SV and other variant inference methods is 

the identification of de novo variants, or variants that are present in 

an individual but neither of their parents. Such variants have been 

associated with autism30 and cancer31, and de novo variant analysis is 

frequently used as a starting point for identifying the cause of genetic 

diseases or other phenotypes of interest32. However, because of short-

comings in SV inference and comparison methods, identifying de novo 

SVs and indels remains a difficult problem. For example, one widely 

To address this need, we introduce an optimized software pipeline 

for accurately detecting SVs and comparing these variant calls across 

large numbers of individuals (Fig. 1). This pipeline enhances existing 

methods for alignment17 and variant calling18 with new methods for refin-

ing the sequences and breakpoints of SV calls, and for comparing variant 

calls between different individuals to achieve a unified callset. Using a 

combination of simulated and real datasets, we show that this pipeline 

produces more accurate SV calls than several widely used methods across 

a variety of metrics. First, by applying our methods to a HiFi dataset from 

the HG002 Genome-In-A-Bottle (GIAB) Ashkenazim trio, we illustrate that 

our approach achieves a fivefold reduction in the number of Mendelian 

discordant variants, while identifying multiple high-confidence de novo 

variants in the child supported by three independent sequencing plat-

forms. We also analyze this trio to identify signatures of variants specifi-

cally derived from each particular technology. This enables us to establish 

recommended variant calling parameters for different sequencing tech-

nologies that minimize Mendelian discordance as well as false merges. We 

next show that Jasmine improves SV merging and addresses the major 

issues that other methods encounter when scaling up to large cohorts. We 

call variants with our pipeline from publicly available long-read data for 31 

samples, and generate a panel of long-read SV and indel calls, which can 

be used for screening further samples. Finally, we genotype this variant 

panel in 444 high-coverage short-read samples from the 1000 Genomes 

Project (1KGP)24 along with 873 samples from the Genotype-Tissue Expres-

sion (GTEx) project25 and discover thousands of previously undetected  

SV associations with gene expression. Many of these SVs have CAVIAR  

posterior probabilities of causality that exceed those of previously 

reported single-nucleotide polymorphisms (SNPs), indicating likely 

functional relevance, including within medically relevant genes.

Results
Optimized structural variant refinement, comparison and 
population analysis with Iris and Jasmine
Addressing the need for accurate SV refinement, comparison  

and population analysis, we introduce two methods, Iris and Jasmine. 
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Fig. 1 | Structural variant inference pipeline. This pipeline produces 

population-level SV calls from FASTQ files using a number of existing methods 

as well as two new methods, Iris and Jasmine. Iris uses consensus methods to 

improve the accuracy of the breakpoints and sequence of insertion SVs. Jasmine 

uses a graph of SV proximity and a constrained minimum spanning forest 

algorithm to compare and combine variants across multiple individuals.
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used pipeline consisting of ngmlr, sniffles18 and SURVIVOR7 gives thou-

sands of candidate de novo SVs when applied to high-accuracy HiFi 

sequencing data from the HG002 Ashkenazim trio (Fig. 2a). Because 

the number of de novo SVs is typically estimated to be less than ten per 

generation on average33, almost all of these variant calls are either false 

positives in the child, false negatives in one or both parents, or errors 

in merging the callsets. Collectively, we refer to these false outcomes 

as Mendelian discordant variants.

To address the large number of discordant variants, our opti-

mized pipeline offers a number of improvements that reduce the 

rate of Mendelian discordance by more than a factor of five with <1% 

(279/32,215 = 0.009) of merged SVs being discordant (Fig. 2b). At the 

same time, our pipeline enabled the discovery of 10–20% more SVs than 

existing methods, with a size distribution and indel balance similar to 

prior work (Fig. 2c and Supplementary Fig. 1). The methodological 

improvements include double thresholding (‘Double thresholding’), 

which mitigated threshold effects in variant detection (Supplemen-

tary Fig. 2) and improved variant calling parameters (Supplementary 

Fig. 3), and using Jasmine for SV merging. Furthermore, we compared 

Jasmine to six existing methods for SV comparison between samples 
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Fig. 2 | Mendelian discordance in the HG002 Ashkenazim trio. We called SVs 

from HiFi data for the Ashkenazim trio consisting of HG002 (son; 46,XY) and 

parents HG003 (46,XY) and HG004 (46,XX) using several prior methods as well as 

our pipeline. a, The number of SVs called in each subset of individuals when using 

prior methods: ngmlr for alignment, Sniffles for SV calling and SURVIVOR for 

consolidating SVs between samples. b, The number of SVs called in each subset 

of individuals when using our optimized pipeline. c, The distribution of variant 

types and lengths in the HG002 trio with our pipeline. d, The rate of discordance 

when comparing SVs between individuals with Jasmine as well as six existing 

methods for population inference. Jasmine reduces the discordance rate, while 

at the same time addressing issues present in other methods such as merging 

variants of different types, variants with the same type but corresponding to 

unique breakpoint adjacencies (mixed strand), or variants within the same 

sample.
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(Fig. 2d and Supplementary Fig. 4): dbsvmerge34, SURVIVOR7, svpop35, 

svtools36, sv-merger23 and svimmer37. For each software, we merged the 

unfiltered callset from each of the three samples, and after merging, we 

filtered the variants based on the read support, length and breakpoint 

precision of the corresponding input SV calls. We found that Jasmine 

achieves the lowest rate of discordance and correctly avoids merging 

variants of different types or variants from the same sample. This is 

largely due to its ability to detect and merge the closest pair of vari-

ants among all variant pairs, which is in contrast to other methods that 

use heuristics to reduce the number of mergeable pairs beforehand, 

leading to suboptimal merging. In addition, Jasmine avoids merging 

mismatched variants corresponding to partial inversions or transloca-

tions, which is particularly important when resolving complex nested 

SVs (Supplementary Fig. 5). The resulting reduction in Mendelian dis-

cordant variants is an important step toward the rapid identification 

of de novo variants, as it is typically necessary to screen all discordant 

variants manually when searching for true de novo variants.

We also evaluated the discordance rate among SVs overlapping 

tandem repeats (TRs), and found that the discordance of SVs overlap-

ping TRs was similar to the overall rate (195/22,626 = 0.0086 overlap-

ping TRs; 84/9,589 = 0.0088 outside TRs). However, manual inspection 

revealed a large number of discordant variants where the true SV was 

within a TR, but disrupted alignment and variant calling resulted in 

an SV call just outside the repeat region. We investigated discordance 

among SVs near TRs and found that there was a higher discordance 

rate for SVs within 500 bp of TRs (252/26,300 = 0.0096 within 500 bp 

of TRs; 27/5,915 = 0.0046 at least 500 bp outside TRs). Because the 

discordance is so much lower in regions at least 500 bp away from TRs 

(<0.5%), we refer to these regions as non-TR regions.

Structural variant analysis across sequencing technologies
Improved methods for comparing multiple SV callsets also enable the 

comparison of variants identified in a single individual from different 

sequencing technologies. We evaluated three different technologies 

applied to HG002: Pacific Biosciences continuous long reads (CLR), 

Pacific Biosciences high-fidelity (HiFi) circular consensus sequencing 

(CCS) and Oxford Nanopore long reads (ONT) basecalled with Guppy 

4.2.2. variants were called separately from each technology, and the 

resulting callsets were merged with Jasmine. The three callsets were 

largely in agreement, with 18,778 of 28,348 SVs being supported by 

all three technologies (Fig. 3a,b and Supplementary Fig. 6). The set of 

technology-concordant variants (Fig. 3c), shows that insertion and 

deletion calls are largely balanced, with a slight enrichment of inser-

tions, shown in previous studies to be caused by missing sequence in 

the human reference genome22, as well as a tendency for deletions to 

be more deleterious38. There is also an increased number of variants 

around sizes of 300 bp and 6–7 kbp (Supplementary Fig. 7), corre-

sponding to SINE and LINE elements respectively.

We also examined variants that were identified only by a single 

technology, as these may reveal systematic biases in variant calling 

caused by each technology’s error model, particularly in CLR and ONT, 

which have higher rates of sequencing error. Of the 499 variants identi-

fied exclusively in CLR data (Fig. 3d), there were 244 insertions and 155 

deletions, with an excess of insertions in the size range of 750 to 1,000, 

corresponding to a known error characteristic of CLR sequencing18. Of 

the 3,329 ONT-only variant calls (Fig. 3e), there were 539 insertions and 

2,652 deletions, with an enrichment of small deletions less than 50 bp 

in length. In addition, we found that many of the variants, particularly 

deletions, unique to ONT or HiFi are in centromeric regions or satellite 

repeats (Supplementary Figs. 8 and 9). We also called and merged SVs 

separately for each technology across the HG002 trio and measured 

the discordance among the SVs discovered by the individual technolo-

gies. We found that ONT and HiFi data result in similar discordance 

rates (279/32,215 = 0.0087 in HiFi; 295/34,062 = 0.0087 in ONT), while 

CLR-derived calls have a higher rate of discordance (310/19,206 = 0.0161).

De novo variant discovery
We next leveraged our methods, as well as data from all three technolo-

gies listed above, to screen the HG002 trio for de novo SVs and indels. 

We called variants from each of the three technologies in HG002 as well 

as both parents, for a total of nine callsets. We merged these nine call 

sets with Jasmine and filtered out any variants that were present in 

one or more of the six parent callsets. Of the remaining variants, we 

stratified them by which technologies supported their presence in 

the child and found that there were 16 that were supported by all three 

technologies (Fig. 4a), with an additional 35 that were supported by HiFi 

and at least one other technology, a 43-fold reduction in candidates 

compared to evaluating HiFi data alone with prior methods (Supple-

mentary Fig. 10).

Upon manual inspection, six of these were high-confidence 

de novo variants (Fig. 4b), while the remaining candidates were in 

noisy regions that displayed split-read alignments, but we could not be 

certain whether the alignments were correct (Supplementary Fig. 11).  

One of the high-confidence candidates, a 107-bp deletion at chr17: 

53,340,465 (Fig. 4c), was previously identified as a de novo SV in an 

effort to characterize the variants in HG002 (ref. 39). Another example,  

a 537-bp insertion at chr14: 23,280,711, consists of a microsat 

ellite repeat expansion on the paternal haplotype, a known class of 

mutations often caused by replication slippage40 (Fig. 4d). These  

and other examples (Supplementary Figs. 11–13) show that  

our approach can correctly identify known de novo SVs as well as  

identify previously undiscovered potential de novo variants, and  

that these variants are supported by multiple independent sequenc-

ing technologies. This ability coupled with the reduced rate of dis-

cordance demonstrates a major step toward automated de novo  

variant detection.

Population structural variant inference
As the cost of long-read sequencing has continued to decrease in recent 

years, long-read studies including large cohorts have become more 

prevalent23,34. As this trend is expected to continue41, it is particularly 

important for SV inference methods to be able to scale to many samples. 

To compare Jasmine to existing approaches, we called SVs and indels in 

31 publicly available long-read samples (Supplementary Table 2) and 

observed the results of merging these callsets with each method. We 

attempted to run all six prior methods, although sv-merger did not 

terminate after 72 h, and so was excluded from this analysis. All other 

methods produced a population-level callset within a few hours with 24 

threads on a modern 4-GHz server with 192 GB of RAM, but the callsets 

produced by existing approaches suffer from a number of issues. In 

addition to the invalid merges mentioned above (Fig. 2d), several of the 

existing methods use algorithms that give different merging results, 

and consequently different numbers of total variant calls, based on the 

input order of the sample callsets (Fig. 5a). This problem only worsens 

as the number of samples grows and the number of possible sample 

orderings increases exponentially. Conversely, Jasmine’s algorithm, 

which merges variant pairs in increasing order of their breakpoint dis-

tances irrespective of the input order, produces identical results after 

any permutation of input files. Jasmine additionally offers the lowest 

median breakpoint range within merged variants (Fig. 5b and Supple-

mentary Fig. 14) and avoids merging variants from the same sample. 

Finally, there is an abundance of low-confidence likely false-positive 

variant calls in samples sequenced with CLR (Supplementary Figs. 15 

and 16), and methods that use a constant breakpoint distance thresh-

old incorrectly merge these calls with high-confidence variant calls 

in other samples to obtain an unreasonable trimodal allele frequency 

distribution (Supplementary Figs. 17 and 18).

Using our SV inference pipeline, we created a panel of long-read 

122,813 SVs and 82,379 indels from these 31 samples. The datasets we 

used include individuals from a wide range of ancestral backgrounds, 

as well as sequencing data from multiple technologies. Variants were 
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called in each sample separately and merged with Jasmine to create 

a unified callset. The allele frequency distribution is monotonically 

decreasing as expected, except an excess of variants at 100% corre-

sponding to errors and/or minor alleles in the reference22. (Fig. 5d). The 

cumulative number of variants increases with the number of samples, 

but at a decreasing rate (Fig. 5e). The indels are approximately balanced 

(Fig. 5f), with a slight bias toward insertions, and there are spikes in 

the size distribution around 300 bp and 6–7kbp for SINE and LINE 

elements (Supplementary Fig. 19). There is also an enrichment of SVs 

in the centromeres and telomeres (Fig. 5g and Supplementary Fig. 20), 

likely due to a combination of missing reference sequence, repetitive 

sequence, which is difficult to align to, and greater recombination 

rates22. We also filtered our callset by the non-TR regions defined above 

(>500 bp away from TRs), and found that 22,132 SVs and 13,615 indels 

are contained in these regions.

Measuring effects of structural variants on gene expression
Previous expression quantitative trait loci (eQTL) studies have shown 

that SVs often have large effects on gene expression and that they are 

causal at 3.5–6.8% of eQTLs3,42. To investigate this with our enhanced 

catalog of SVs, we first used Paragraph43 to genotype each SV in 444 

individuals from 1KGP for which gene expression data are publicly 

available44, after removing SVs that were inconsistent with popula-

tion genetics expectations based on the Hardy–Weinberg equilibrium 

(HWE; Supplementary Fig. 21a). Following the prior studies, we mapped 

SV-eQTLs by pairing common (minor allele frequency (MAF) ≥ 0.05) SVs 

to genes within 1 Mbp using gene expression data in lymphoblastic cell 

lines from the GEUVADIS consortium44. Each SV–gene pair was consid-

ered independently. We then fit a linear model to measure the effect 

sizes of these SVs on gene expression, and found that 5,456 pairs passed 

a significance threshold with 10% false discovery rate (FDR; matching 
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Fig. 3 | Structural variant inference across sequencing technologies in 

HG002. We called SVs in HG002 separately from PacBio CLR data, Oxford 

Nanopore data and PacBio HiFi CCS data, and used Jasmine to compare the 

variants discovered by each of them. a, The number of SVs discovered by 
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previous studies of this dataset44), which is substantially higher than the 

478 pairs that we observed among short-read SVs using the same FDR. 

These associations occur for both deletions and insertions, and both 

have approximately the same effect size distribution (Supplementary 

Fig. 21b). These data suggest that many of the SVs that are only visible 

through genotyping long-read-based variant calls have large effects on 

gene expression and thus are potentially functionally relevant.

To evaluate which SVs are likely to have causal effects on their 

associated genes, we used the fine-mapping tool CAVIAR45 to measure 

the posterior probability that any given SV is causal compared to nearby 

SNPs within a 1-Mbp window, taking into account possible linkage 

disequilibrium (LD) between variants. We found that SVs had high 

posterior scores (>0.1) at 68 genes of 1,863 genes examined (3.65%). 

Additionally, when compared to existing databases of SNP-eQTLs from 

the GTEx project3,25, SVs had a higher CAVIAR posterior than reported 

SNPs for 53.5% of genes with an SV-eQTL (Supplementary Fig. 21c). 

This shows that previously undetected SVs are likely causal at a large 

number of sites where the effects on gene expression were reported 

as SNP-eQTLs instead. Inspecting all SV–gene pairs with a CAVIAR pos-

terior greater than that of any previously reported SNP-eQTL for that 

gene (and greater than 0.2 overall), we identified several potentially 

functional SVs in high LD with reported SNPs (Supplementary Figs. 

22 and 23). Several of our top candidates have been reported by other 

studies as SV-eQTLs, which serves to validate our overall approach and 

increase confidence in our discoveries.

To further demonstrate the application of merging variants with 

Jasmine for SV-eQTL discovery, we next genotyped and analyzed the 

long-read reference SV set in the GTEx dataset3,25. The GTEx dataset 

contains short-read whole-genome sequencing data from over 800 

individuals with matched RNA-sequencing (RNA-seq) data in up to 49 

non-diseased tissues. We first genotyped 26,377 common SVs detected 

in the reference SV set with Paragraph43 within the NHGRI AnVIL Terra 
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platform46 in 873 GTEx individuals. Here we focused on common SVs 

with MAF of at least 0.05 that passed conservative Hardy–Weinberg 

filtering at genome-wide significant P values. Using this approach, we 

discovered over twofold more variants per individual than previous 

efforts by the GTEx consortium3 in identifying SVs exclusively using 

the short-read data (Fig. 6a).

We subsequently obtained gene expression measurements and 

technical covariates from GTEx for these individuals from 48 tissues 

(those with at least 70 individuals) and computed eQTLs using the same 

cis-eQTL calling framework as previously described in GTEx (v8)25. As 

GTEx contains more individuals than GEUVADIS and provides gene 

expression measurements across dozens of tissue types, we used a 5% 

FDR rate, which is even more conservative than previous studies47. At 5% 

FDR, we identified 111,291 significant eGenes across 48 tissues, includ-

ing 11,046 SVs affecting the same genes in multiple tissues (Fig. 6b).  

Among the eGenes, we intersected the SV-only eGenes with previously 

reported SNP-based eGenes, and conservatively estimated the new 

number of cases where an SV-eQTL is the top variant to be 10,436, which 

is over 2,000 more examples than previously reported even when using 

the stricter threshold47. We next repeated the CAVIAR analysis on gene 

expression as with the 1000 Genomes dataset but scaled the analysis 

to all tissues. Overall, we find 5,580 SV-eQTLs where an SV has the high-

est CAVIAR score for the eGene, including 750 SVs affecting genes in 

two or more tissues (Fig. 6b). The median proportion of significant 

eGenes with an SV as lead causal variant within each tissue is 5.7%, and 

across all tissues, an SV is the top CAVIAR predicted causal variant in 

approximately 5% of the cases, consistent with our estimate from the 

1000 Genome-Geuvadis SV-QTL dataset of 3.5–6.8%. We evaluated 

the SV eGenes with SV length < 100,000 bp across all tissues available 

for enrichment and found a highly significant 9.5-fold enrichment  

(P value = 8.5 × 10−10, Fisher exact test) for coding SVs to have high 

CAVIAR posteriors.

One notable example of an SV-eQTL identified using our 

Jasmine-Paragrah pipeline in GTEx is a deletion of 168 bp within chro-

mosome 3 in an intron of HACL1 (encoding 2-hydroxyacyl-CoA lyase 1), 

a gene associated with multiple metabolic diseases48. The deletion is 

not previously reported by GTEx or other major databases of variants 

but is strongly supported by the long-read sequencing and genotyping 

results. Based on the GTEx expression data, we identified it as an eQTL 

in testis tissues with a log2 allelic fold change of 1.11 (Fig. 6c). We also 

computed the t-statistic as the beta effect size divided by the variance 

of beta and found that both the P value and t-statistic values are sub-

stantially stronger for the deletion than any flanking SNPs (Fig. 6d and 

Supplementary Fig. 24). The deletion is more common in the popula-

tion than a non-deletion, indicating the reference genome itself carries 

a minor allele insertion variant. Consequently, the direction of effect for 

the deletion is opposite the top SNP, as they are in LD with an r2 value of 

−0.6. Overall, the stronger CAVIAR score, P value and t-statistic suggests 

the SV is more likely than the flanking SNPs to be causal and the top SNP 

is effectively a marker for the SV. Another example of an SV-eQTL we 

discovered using our approach is a 37-kbp deletion on chromosome 

22 near the gene DDTL (encoding d-dopachrome tautomerase like), a 

paralog of the gene DDT, which has been associated with the chronic 

autoimmune disease discoid lupus erythematosus49. The deletion was 
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detected per sample for genotyped SVs and indels ( Jasmine) versus SVs reported 

in the GTEx SV dataset after HWE filtering. Note short-read-based SV calls are 

not available for all samples, thus some samples only display the counts using 

Jasmine. b, Distribution of the number of tissues and SV–gene pair is found as 

a significant eQTL (FDR correction at 5%). We further plotted the distribution 

for SV–gene pairs with significant eQTLs where the SV has the maximum 

CAVIAR score compared to all flanking SNPs. c, Genotype and gene expression 

distribution in GTEx samples with expression in testis for the HACL1-associated 

deletion (n = 318). d, Manhattan plot for SNPs and the novel SV near HACL1, with 

the log10 P value measured by a generalized linear model accounting for GTEx 

covariates. The annotated variant is the top variant, 1_0_16114_del, and points 

are colored by LD to this variant. For c and d, we used 318 individuals with both 

SV calls and RNA-seq data in testis tissue. e, Genotype and gene expression 

distribution in GTEx samples with expression in whole blood for DDTL-associated 

deletion (n = 666). f, Manhattan plot for SNPs and the novel SV near DDTL, with 

the log10 P value measured by a generalized linear model accounting for GTEx 
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interquartile range (IQR) and the 3rd quartile plus 1.5 times the IQR centered  

on the mean expression value of each genotype group.
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previously reported by the 1000 Genomes Consortium, although previ-

ous studies did not report it as an SV-eQTL. Within whole blood, a log2 

allelic fold change of 1.46 is observed, and as with HACL1, the P value, 

t-statistic and CAVIAR posterior are strongest for the SV compared to 

flanking SNPs (Fig. 6e,f and Supplementary Fig. 25). Interestingly, we 

find the SV-eQTL is putatively causal with CAVIAR posterior >0.9 for 36 

tissues, and the tissue log P-value distribution is significantly higher 

(P value = 1.1 × 10−8, one-sided Wilcoxon rank-sum test) than the top 

SNP associations in the same tissues (Supplementary Fig. 26). A third 

significant SV-eQTL is a 60-bp insertion on chromosome X that is an 

SV-eQTL of ASMTL (encoding acetylserotonin O-methyltransferase 

like), a gene associated with melanotic neurilemmoma and other rare 

tumor types50, in GTEx left-ventricle heart tissue (Supplementary Fig. 

27). Overall, our eQTL and causal SV-QTL analysis broadly agrees with 

our analysis with 1000 Genome Project and previous GTEx analysis3,47, 

although the Jasmine-Paragraph workflow enabled us to genotype 

and analyze more SVs than previous approaches. Consequently, with 

our more accurate and complete SV catalog, we were able to discover 

substantially more significant and putatively causal eQTLs than in any 

previous analysis.

Discussion
Here we introduced Iris and Jasmine. Iris improves the sequence fidel-

ity of SVs by computing the consensus of the reads that span each SV.  

Jasmine is a fast and accurate method for population-level SV compari-

son and analysis. It improves upon existing methods and achieves highly 

accurate results by merging pairs of variants in increasing order of their 

breakpoint distance, while maintaining favorable scaling qualities (Sup-

plementary Fig. 28) through the use of a KD-tree to efficiently locate 

nearby variant pairs. Jasmine also separately processes the SV calls by 

chromosome and SV type and strand to enable built-in parallelization, 

while many alternative methods incorrectly combine SVs of different 

types. By combining Jasmine with additional new methods and care-

fully optimizing existing methods, we produced an SV-calling pipeline 

that reduces the rate of Mendelian discordance by more than a factor 

of five over prior pipelines, while at the same time being applicable 

to large cross-technology cohorts and resolving a number of issues 

encountered when using other methods. Finally, by calling SVs and 

indels in 31 publicly available long-read samples with our pipeline, we 

developed and released a database of human SVs. By genotyping these 

variants in 444 short-read samples from the 1KGP and 873 samples 

from GTEx, we cataloged thousands of novel eQTLs across the human 

genome, including in medically relevant genes, and including 750 vari-

ants affecting multiple tissues.

While Jasmine offers highly accurate population SV analysis, we 

remain limited by the sequencing data that are available. A major chal-

lenge we faced when applying our methods to a cohort consisting of 

samples from multiple sequencing technologies was the additional 

noise in the samples sequenced with high-error CLR reads (Sup-

plementary Figs. 16 and 29). While we mitigated this noise through 

computational means, we expect that even more accurate SV calls 

could be obtained by using HiFi or ONT sequencing for all samples. 

We also found that the rate of discordance among SVs within 500 bp 

of TRs, while less than 1%, was more than double the discordance rate 

of SVs outside these regions. Other methods have mitigated this by 

separately processing and normalizing the breakpoints of these vari-

ants23, and integrating these or similar modules with Jasmine’s merging 

algorithm could further improve SV analysis. In addition, there were 

systematic anomalies in the SV calls in highly repetitive regions such 

as the centromere and satellite repeats (Supplementary Figs. 30–32) 

and an overall excess of variants that are found in all samples. There 

has recently been work to improve the reference genome to more 

accurately reflect these regions51, and this reference has been shown 

to substantially improve long-read alignment and SV calling including 

improved indel balance, a reduction in uniform SVs, and SV calls in 

previously inaccessible regions of the genome52. As tools for aligning to 

and calling variants in these regions continue to mature, we expect the 

accuracy of these calls to even further improve. Finally, while we have 

detected a large number of SVs in the 31 samples we studied, there is still 

much to be discovered. As the costs of long-read genome sequencing 

continue to decrease, we expect to apply these methods to even larger 

populations, as well as to other species, to deepen our understanding 

of the role of SVs in disease, development and evolution.
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Methods
Refined variant breakpoints and sequences with Iris
Many existing long-read SV callers identify variants from read align-

ments based on signatures such as an extended gap in the alignment or 

a segment of the read that aligns to a distant region of the genome18,20. In 

the widely used variant caller sniffles18, a variant is called when multiple 

reads show similar signatures that cluster together based on their type, 

span and location. However, when reporting the variant’s breakpoints 

and sequence, the alignment from a single representative read (cho-

sen arbitrarily) is used to infer this information. This is particularly 

problematic for insertions, where the novel sequence being inserted 

is taken directly from the single read. Because some read technologies 

such as CLR and ONT have error rates of 5% or higher, it is expected that 

the sequence reported will have a sequence with a similar or higher 

rate of divergence from the true insertion sequence (Supplementary 

Fig. 33). When comparing across samples, especially those sequenced 

using different technologies with different error models, this may 

cause the same variant in both individuals to be falsely identified as 

two separate variants.

Addressing this, we introduce Iris, a method for refining the break-

points and novel sequence of SV calls by aggregating information from 

multiple reads that support each variant call (Fig. 1). Iris refines each 

variant call separately, but supports the processing of multiple vari-

ants in parallel. For an insertion variant call, Iris starts with an initial 

sequence consisting of the variant sequence plus flanking sequence 

from the reference genome (default 1 kb on each side of the variant). 

Then, it gathers all of the reads which support the variant’s presence—

indicated by the RNAMES field in the output of sniffles—and aligns 

those reads to the initial sequence with minimap2 (ref. 19). These align-

ments are used as input to the polishing software Racon26, which pol-

ishes the initial sequence. Finally, the polished sequence is aligned to 

the reference with minimap2 and the CIGAR string is parsed to extract 

the insertion in the polished sequence relative to the reference that 

most closely resembles the original insertion call. If such an insertion 

is found, the variant call is refined to reflect the updated sequence and 

breakpoints. Iris also supports the refinement of deletion breakpoints, 

which is of particular interest when the sequencing technology being 

used has a biased error model in favor of either insertions and deletions. 

These are handled similarly to insertions, with the initial sequence 

instead consisting of the concatenation of the reference sequences 

immediately before and after the deleted region. Iris is available as a 

stand-alone tool at https://github.com/mkirsche/Iris/.

Simulation results. To test the performance of Iris on simulated data, 

we simulated 400 indels with uniformly random lengths—200 with 

length [50, 200] and 200 with length [900, 1,100]—in a 5-Mbp segment 

of chr1 (20,000,000–24,999,999). Then, we used SURVIVOR7 with a read 

error and length model trained on HG002 Oxford Nanopore reads to 

simulate 30× coverage of long reads. We aligned these reads back to the 

unmodified segment of chromosome 1 with winnowmap2 (ref. 17) and 

called SVs with sniffles18. From the insertion SV calls, we measured the 

similarity scores of the reported sequences to the ground truth using 

the formula: Similarity(S, T) = (1 − EditDistance(S, T) / max(length(S), 

length(T)). We also refined these variant calls with Iris and measured the 

similarity score of the updated insertion sequences (Supplementary 

Fig. 34a). The average sequence similarity score increased from 94.7% 

to 98.6%, demonstrating that Iris refinement substantially improves 

insertion sequence accuracy.

Real results in HG002. While this simulated experiment demon-

strated that Iris can improve sequence accuracy in simulation condi-

tions, we wanted to ensure that it also improves the novel sequences 

of true genomic variants, where the novel sequences are typically 

more repetitive and the alignments noisier than when the insertions 

are random base pairs. To do this, we used the cell line HG002, which 

was sequenced with multiple technologies, notably including both 

ONT and HiFi. While the ONT reads have a high error rate of around 

8%, the HiFi reads have approximately 99.5% accuracy15, so even novel 

insertion sequences taken from only a single HiFi read are expected 

to be highly accurate. Therefore, we used winnowmap and sniffles for 

variant calling as in the simulated experiment, but used the HiFi SV calls’ 

sequences in place of a ground truth. For each ONT SV call, we matched 

it with the nearest HiFi call if it was within 1 kbp, they shared at least 50% 

sequence identity, and no other ONT call had already matched with 

it. This resulted in 13,467 matched ONT calls before and 14,401 after 

refinement, with 12,978 having a matching HiFi call both before and 

after refinement. Among these, 9,522 (73.37%) had been changed by Iris. 

The average sequence identity among these 9,522 SVs increased from 

91.6% before Iris to 96.2% after Iris, and the distributions of sequence 

accuracy scores are shown in Supplementary Fig. 34b.

We also investigated the impact of Iris refinement on Mendelian 

discordance in the HiFi-derived SV and indel calls for the HG002 trio. 

To measure this effect, we called and merged variants in this trio with 

our SV-calling pipeline but with Iris refinement disabled and compared 

the discordance to the results from the full pipeline (Supplementary 

Fig. 35). Without refinement the discordance was 484/47,561 = 1.02%, 

while the discordance with our full pipeline was 404/47,326 = 0.85%.

Comparing variant calls at population scale with Jasmine
To perform SV inference at population scale and identify variants 

associated with diseases or phenotypes, it is important to identify 

when multiple individuals share the same (or functionally identical) 

variants. However, the same variant call can manifest differently in 

unique samples because of sequencing error or samples being pro-

cessed with different sequencing technologies, levels of coverage, or 

upstream alignment and variant calling software. These differences, 

along with the increasing availability of long-read sequencing data for 

many individuals, highlight the need for careful variant comparison 

when analyzing SVs in multiple samples.

We refer to the problem of consolidating multiple variant callsets 

into a single set of variants as the ‘SV merging problem’. This is because 

the problem consists of identifying variant calls in separate samples 

corresponding to the same variant and merging them into a single call, 

which is annotated with the samples in which it is present. A number 

of methods already exist for SV merging, but each has major issues 

such as invalid merges, results which vary substantially based on the 

order of input samples, or high levels of Mendelian discordance when 

evaluated on trio datasets.

Jasmine methods. We introduce Jasmine, a new method that solves the 

SV merging problem. Jasmine takes as input a list of VCF files consisting 

of the variant callsets for each individual, and produces a single VCF 

file in which each variant is annotated with a list of samples in which 

it is present (as well as the IDs of the input calls corresponding to that 

variant).

Jasmine first separates the variants by their chromosome (or chro-

mosome pair in the case of translocations), variant type and strand. 

Each of these groups is processed independently with an option for 

parallelization because no two variants in different groups could be 

representations of the same variant. When processing a group of vari-

ants, Jasmine represents each variant as a two-dimensional (2D) point 

in space representing the start position and length of the variant. 

When represented this way, variants that are closer together along the 

genome (and are therefore more likely to represent the same variant) 

have a smaller Euclidean distance between them. Consequently, each 

pair of variants can be assigned a quantitative distance which reflects 

how dissimilar they are.

After projecting these variants into 2D Euclidean space, Jasmine 

implicitly builds a variant proximity graph, or a graph in which nodes 

are individual variants and each pair of variants has an edge between 
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them with a weight corresponding to the Euclidean distance between 

them. Then, the SV merging can be framed as selecting a set of edges 

(merges) making up a forest, which is a subgraph of the variant proxim-

ity graph, and which minimizes the sum of edge weights chosen subject 

to a few constraints:

 1. No intra-sample merging: No connected component of the for-

est contains multiple variants from the same individual because 

they have already been identified as different variants. Note that 

Jasmine enables this constraint to be disabled with the com-

mand line flag–allow_intrasample, which is useful if a single VCF 

file has callsets from multiple SV discovery methods within a 

single individual.

 2. Distance threshold: No chosen edge has a weight greater than 

the user-chosen distance threshold (default maximum (100 bp, 

50% of variant length))

 3. Maximality: To prevent the trivial solution of no edges, we 

require that, given a set of chosen edges, no additional edges 

can be added to the solution while still satisfying the other 

constraints.

Jasmine seeks to solve this optimization problem with a greedy 

algorithm similar in design to Kruskal’s algorithm for finding a mini-

mum spanning tree. In this algorithm, the set of chosen edges is initially 

empty, and each edge is considered in order of non-decreasing edge 

weight. If adding the edge to the solution would violate any of the above 

constraints given the previously added edges, it is ignored; otherwise, 

it is added to the solution. When the edges being considered start to 

exceed the distance threshold, the algorithm terminates.

One issue with this algorithm is that in order to sort the edges by 

weight, they may need to be loaded into memory. This is problematic 

because some population datasets, with tens to hundreds of thousands 

of SVs per sample, include millions of variants, with the number of 

edges potentially scaling quadratically with the variant count. This 

is prohibitive even with existing datasets, and will only be more of a 

problem as even larger datasets are produced. Therefore, Jasmine 

instead stores the edges implicitly, making use of a KD-tree to quickly 

find the next smallest edge in the variant proximity graph.

To avoid storing the entire graph in memory, Jasmine maintains a 

list of a small number of nearest neighbors (initially 4) for each node, 

which are computed by forming a KD-tree with all of the variant points, 

a data structure that supports k-nearest-neighbor queries with a loga-

rithmic runtime with respect to the number of variants. Then, the edge 

to the single nearest neighbor of each variant is stored in a minimum 

heap, and it is guaranteed that the first entry removed from this heap 

will be the edge with the smallest weight in the entire graph. When 

an edge is processed, the node for which it was the minimum-weight 

incident edge has its next nearest neighbor added to the heap based on 

the next entry in its nearest neighbor list. If the list of nearest neighbors 

for a node becomes empty, the KD-tree is queried for a set of twice as 

many nearest neighbors, and the list is refilled. In this manner, the 

next smallest edge in the graph will always be the edge removed from 

the heap, and the data structures that Jasmine uses help to maintain 

this property without requiring a prohibitively large amount of time 

or memory. The pseudocode for this algorithm can be found in Sup-

plementary Note 1.

Jasmine distance threshold. When merging variants, it is important 

to determine for a given variant pair whether or not the two variants are 

sufficiently close together in terms of their breakpoints to be consid-

ered the same variant. In Jasmine, this is based on a distance threshold—

if the distance between them (according to the chosen distance metric) 

is above the threshold, they will be considered two different variants, 

while if their distance is less than or equal to the threshold, they will be 

a candidate for merging. Jasmine offers a number of classes of distance 

thresholds, including constant thresholds, thresholds that vary based 

on a fixed proportion of each variant’s size, or even per-variant distance 

thresholds. By default, the distance threshold for Jasmine is a maximum 

of 100 bp (50% of variant length). We measured the difference in merg-

ing when using different values for the ‘min_dist’ parameter, which is 

100 by default (Supplementary Fig. 36), and found that while larger 

values for this parameter offer lower Mendelian discordance, these 

more lenient thresholds perform poorly in a cross-technology cohort 

setting because of false merges, and 100 bp offers a good balance in 

performance across use cases.

Building a structural variant inference pipeline
Our SV inference pipeline is implemented in Snakemake, and supports 

multi-threaded as well as multi-node execution. It takes as input a 

list of FASTQ files for each sample being studied as well as a refer-

ence genome, and produces as its final output a VCF file containing 

population-level SV calls. It is highly customizable, supporting unique 

configurations for alignment and variant calling on a per-sample or 

per-sequencing-technology level. It also enables the user to specify 

the alignment software to use—ngmlr, winnowmap and minimap2—and 

separately sets the recommended default parameters for samples 

sequenced with each specific technology. On each sample we pro-

cessed, the pipeline took about a day to run on a single Intel Cascade 

Lake 6248R compute node with 48 cores and 192 GB RAM at 3.0 GHz. 

The Snakemake files to run the pipeline are included in the Jasmine 

repository available at https://github.com/mkirsche/Jasmine/tree/

master/pipeline/.

Evaluating Mendelian discordance
When performing de novo variant analysis, we are particularly inter-

ested in Mendelian discordant variants, or variants which are called as 

present in the child of a trio but neither parent. This includes genuine 

de novo variants, but in practice most of these calls are actually false 

de novo variants caused by errors in variant calling or merging. Accord-

ingly, one major goal of trio SV inference is to reduce the number of 

discordant variants while retaining any true de novo variants in that set.

To measure Mendelian discordance, we called variants in the Ash-

kenazim individual HG002 as well as their parents HG003 (46,XY) and 

HG004 (46,XX). We merged these three callsets with Jasmine (or other 

merging software when comparing them to Jasmine), and counted the 

number of variants identified in HG002 but not merged with any vari-

ants from either parent. We then filtered these variants by confidence 

by requiring that they be supported by a minimum of 10 (25% of average 

coverage) of the reads and have a length of at least 30. In addition, we 

filtered out any variants not marked with the PRECISE INFO field by 

the sniffles variant calling. The discordance rate was calculated as the 

quotient of the number of discordant variants over the total number 

of variants in the merged and filtered trio callset.

Optimized Sniffles variant calling parameters
As shown in Supplementary Fig. 3, we used Mendelian discordance to 

measure the effects of different variant calling parameters in HiFi data 

for HG002. We varied the ‘max_dist’ parameter when running Sniffles 

for variant calling and measured the number of variants and discord-

ance for each trio callset; based on these results, we used max_dist = 50 

for calling variants from HiFi data.

Similar to the HiFi analysis, we used Mendelian discordance to 

measure the effects of different variant calling parameters in CLR data 

for HG002. We varied the max_dist parameter when running Sniffles 

for variant calling and measured the number of variants and discord-

ance for each trio callset. Supplementary Fig. 37 shows the effect of 

this parameter on these metrics, and, based on these results, we used 

max_dist = 50 for calling variants from CLR data.

Next, to optimize variant calling parameters in ONT data from 

HG002, we repeated the experiment used for HiFi and CLR data, vary-

ing the max_dist variant calling parameter in Sniffles and measuring 
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the number of variants and discordance for each trio callset. These 

results are shown in Supplementary Fig. 38, and based on them we used 

max_dist = 50 for calling variants from ONT data. While this doesn’t give 

the lowest discordance rate, all settings examined yielded less than 1% 

discordance, so we used a value of 50 to enable a high degree of variant 

discovery and consistency across technologies.

Double thresholding
To reduce the impact of threshold effects on variant calling, our pipe-

line uses two different variant calling thresholds: a highly specific, 

strict high-confidence threshold and a highly sensitive, more lenient 

low-confidence threshold. To be a high-confident call, a variant must 

be at least 30-bp long supported by a number of reads greater than or 

equal to a minimum of 10 (25% of average coverage over that sample); 

otherwise, a variant is called with low confidence if it is at least 20-bp 

long and supported by at least two reads. All of the variants that meet 

either threshold are used as input to Jasmine’s cross-sample merg-

ing, and any low-confidence variants that do not get merged with any 

high-confidence variants are discarded. This allows variants which are 

close to the strict threshold to be properly detected in all of the samples 

in which they are present (Supplementary Figs. 39–41).

When evaluating the impact of double thresholding, we consider 

the SV and indel calls in the HG002 trio which were identified as being 

present in HG002 and group them into one of four categories:

•	 Discordant: Variants present only in HG002, regardless of 

whether we used double thresholding or only a single stricter 

threshold.

•	 Not discordant: Variants present in HG002 as well as one or both 

parents, regardless of whether we used double thresholding or 

only a single stricter threshold.

•	 Rescued from absence: Variants present in HG002 as well as one 

or both parents, but the call in HG002 had low enough length 

or read support that it would have been missed in that sample if 

just the stricter threshold was used.

•	 Rescued from discordance: Variants present in HG002 as well as 

one or both parents, but the call in the parents had low enough 

length or read support that it would have been called only in 

HG002, and therefore discordant, if just the stricter threshold 

were used.

Associating structural variants to genes
To obtain genotypes for SV–gene association, we called SVs in 31 

long-read samples with our inference pipeline and merged them into 

a unified cohort-level callset with Jasmine. We then genotyped these 

SVs in the 1000 Genomes Collection with Paragraph after filtering out 

translocations and other variants that Paragraph cannot genotype, 

for a total of 189,581 genotyped variants across 444 individuals (Sup-

plementary Fig. 42). Following previous studies43, we then used the 

HWE test to filter out variants not consistent with population genetic 

expectations, removing variants found to be significant with P < 0.0001 

using an exact test of HWE53. After filtering with HWE and additionally 

removing any variants that were left uncalled in 50% or more of the 

samples, we were left with 138,715 variants across the 444 individuals 

(Supplementary Fig. 43).

We examined common cis-SV-eQTLs by associating our SV geno-

types to gene expression data in the same cell lines collected by the 

GEUVADIS consortium44. We first paired each gene with every SV that 

had a MAF ≥ 0.05 and resided within a window of 1 Mbp from the gene’s 

transcription start site. We then tested whether the distribution of 

normalized (zero-mean, unit variance) gene expression was different 

for those individuals with or without the variant by using a Wilcoxon 

rank-sum test for each variant–gene pair with a P-value cutoff reflect-

ing a Benjamini–Hochberg multiple testing correction with an FDR of 

0.1. For genes with multiple SVs tested, each individual SV–gene pair 

was considered independently. After identifying a set of significantly 

associated SV-eQTLs, we fit a linear model between each variant geno-

type (where reference was encoded as 0 and the alternate allele was 

encoded as 1 if heterozygous and 2 if homozygous) and gene expres-

sion to determine the effect size (β) and the R2 value of the association. 

We then analyzed the relationship between the effect size and various 

features of the SV or gene.

Comparing structural variants and SNP-eQTLs with fine mapping. 

We used the dataset of SNP-eQTLs from the GTEx project for all tis-

sues3 as a set of known SNP-eQTLs which we could use as a benchmark 

to compare the effects of SVs to SNPs on genes for which both may be 

associated. We examined the set of genes for which there were both 

associated SNP-eQTLs in GTEx (which were also significantly associated 

in our data) and significantly associated SVs from our callset within a 

1-Mb window. We then collected a set of 1,000 most-closely associated 

variants (SNP or SV) to each gene within the 1-Mb window and computed 

the z-score from a linear regression as well as the LD between each pair 

of variants. We used these values as input to the fine-mapping program 

CAVIAR45 to predict which variants within the set are causal. We used 

CAVIAR’s posterior probability as a measure of how likely a particular 

variant was to be causal.

Measuring enrichment of structural variants based on CAVIAR 

scores. We examined the relationship between CAVIAR’s posterior 

probability for each SV’s most highly associated gene and various 

variant features, such as the distance to various regulatory elements 

(Supplementary Fig. 44). We used the bedtools closest function 

to compute the distance between each SV and the nearest ENCODE 

candidate cis-regulatory element from the UCSC Genome Browser 

database54 (Supplementary Fig. 44a). Using the Ensembl regulatory 

build55, we performed a similar distance calculation to measure the 

distance between each variant and the nearest Ensembl Regulatory 

Element (Supplementary Fig. 44b). We also found that higher CAVIAR 

posteriors are associated with other regulatory elements, distance 

to the associated gene (as previously reported in ref. 3), as well as to 

FunSeq high occupancy of transcription factor (HOT) regions56 (Sup-

plementary Figs. 44 and 45).

We also examined the relationship between CAVIAR posterior 

probability and various conservation scores, as well as other sequence 

features such as GC content. To compute conservation scores, inspired 

by previous works57, we used pyBigWig to extract regions covered by 

the SV and computed the mean of the top ten scores of individual bases 

within that region. For insertion variants, we extracted the flanking 

reference sequence—75 bp in each direction—to assess the conserved-

ness of the affected context. We calculated CADD scores58, LINSIGHT 

scores59 and PhastCons60 in a similar fashion. Based on these prediction 

scores, we do not observe signs of enrichment of extreme pathogenic-

ity or conservation among SVs with high CAVIAR posteriors (Supple-

mentary Figs. 46 and 47). We also did not observe a pattern among the 

GC percentage for SVs with high CAVIAR posteriors (Supplementary 

Fig. 47a). However, larger-scale studies are needed to make definitive 

conclusions, as the number of SVs we observed with high CAVIAR 

posterior are limited.

Validating 1000 Genomes eQTL calls in GTEx lymphocyte tissue. 

We implemented a workflow description language (WDL) workflow in 

AnVIL Terra platform46 to rapidly genotype the previously mentioned 

novel variants using Paragraph. The environment is based off of the 

original docker containers provided by https://github.com/Illumina/

paragraph/blob/master/doc/Installation.md/. The latest version (2.4a) 

can be found on a docker image in ‘bni1/paragraph:2.4a’. The workflow 

is available at https://portal.firecloud.org/?return=terra#methods/

run_paragraph/run_paragraph/23. eQTL calling was performed using 

the OLS module in statsmodel with GTEx expression and covariates 

http://www.nature.com/naturemethods
https://github.com/Illumina/paragraph/blob/master/doc/Installation.md
https://github.com/Illumina/paragraph/blob/master/doc/Installation.md
https://portal.firecloud.org/?return=terra#methods/run_paragraph/run_paragraph/23
https://portal.firecloud.org/?return=terra#methods/run_paragraph/run_paragraph/23
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publicly available on the GTEx portal. We also performed fine mapping 

using CAVIAR with default parameters. Preprocessing of the data was 

performed using the aforementioned scripts.

Among the SV-eQTLs in the 1000 Genomes data is an intronic 

3,143-bp insertion in NCF4, upstream of the associated gene 

CSF2RB (Supplementary Fig. 21e). These two genes have previously  

been shown to be linked to Crohn’s disease61. We found that a SNP 

which was reported in the GTEx SNP-eQTL dataset to be associated 

with CSF2RB expression was in high LD with the insertion (r2 = 0.75), 

but the insertion was more strongly associated with gene expression  

than the reported SNP (Supplementary Fig. 21f). To ensure that our 

finding is replicable, we proceeded to genotype this variant in 873 

GTEx individuals using Paragraph43 within the NHGRI AnVIL Terra 

platform, and found a similar alternate allele frequency of 0.796 in 

GTEx compared to 0.814 in 1KGP. We then analyzed GTEx publicly 

available expression measurements and expression covariates of 

the matched tissue, EBV-transformed lymphocytes, to evaluate the 

candidate SV-eQTL, and found the SV was an eQTL with P value of 

3.95 × 10−8, which is even more significant than in 1KGP. The SV-eQTL 

measured in GTEx is in high LD (r2 = 0.79) with the reported SNP-eQTL, 

and has a more significant P value than the reported top SNP asso-

ciation (P = 1.6 × 10−6). We similarly validated using GTEx data two 

additional strongly supported SV-eQTLs in LRGUK and CAMKMT that 

were detected using our cohort-level Jasmine SV calls. We found both 

SV-eQTLs were more significant than the SNP-eQTLs reported by GTEx 

(Supplementary Figs. 22 and 23).

GTEx SV-eQTL analysis. We used the WDL-based Paragraph work-

flow described above in the AnVIL Terra platform to rapidly genotype 

the SV variants in the GTEx v8 dataset. For this analysis, we cloned 

the GTEx data within AnVIL (https://anvil.terra.bio/#workspaces/

anvil-datastorage/AnVIL_GTEx_V8_hg38/). To reduce the effect  

of genotyping error, we filtered the variants by whether they signifi-

cantly deviated from HWE at a genome-wide significance threshold. 

For eQTL analysis, we filtered for common variants with MAF > 0.05. 

eQTL calling was performed using the OLS module in statsmodel  

with GTEx expression and covariates publicly available on GTEx por-

tal. Gene-level eQTL P values were obtained by Bonferroni correcting  

the minimal eQTL P value associated with a gene by a factor of the  

number of eQTLs for that gene. Subsequently, the gene-level P values 

were corrected for multiple testing using the Benjamini–Hochberg 

method at an FDR rate of <5%, yielding 111,291 significant eGenes 

across 48 tissues. We performed fine mapping with CAVIAR, using the  

top SV-eQTL signal with the 1,000 strongest SNP-eQTLs for a gene. 

Preprocessing of the data was performed using the aforementioned 

scripts.

Reporting summary
Further information on research design is available in the Nature  

Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data used in this study are available from the publica-

tions listed in Supplementary Table 1 and Supplementary Table 2. All 

variant calls and associations are available at http://data.schatz-lab.

org/jasmine/.

Code availability
The Jasmine and Iris code and documentation are available open source 

at https://github.com/mkirsche/Jasmine/ and https://github.com/

mkirsche/Iris/. The versions used in the paper are archived in Zenodo 

for Jasmine62 and Iris63. These methods are also available in Bioconda 

and Galaxy to simplify use on the command line or within the Galaxy 

graphical user interface. The versions of all software packages used in 

the manuscript are described in Supplementary Table 3.
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