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The availability of long reads is revolutionizing studies of structural variants
(SVs). However, because SVs vary across individuals and are discovered
throughimprecise read technologies and methods, they can be difficult to
compare. Addressing this, we present Jasmine and Iris (https://github.com/
mkirsche/Jasmine/), for fast and accurate SV refinement, comparison and
population analysis. Using an SV proximity graph, Jasmine outperforms six
widely used comparison methods, including reducing the rate of Mendelian

discordanceintrio datasets by more than fivefold, and reveals a set of
high-confidence de novo SVs confirmed by multiple technologies. We also
present a unified callset 0f 122,813 SVs and 82,379 indels from 31 samples of
diverse ancestry sequenced with long reads. We genotype these variants
in1,317 samples from the 1000 Genomes Project and the Genotype-Tissue
Expression project with DNA and RNA-sequencing data and assess their
widespread impact on gene expression, including within medically

relevant genes.

SVsare defined as large-scale genomic mutations affecting more than
50 base pairs (bp), and include insertions, deletions, duplications,
inversions and translocations". Such variants are responsible for more
divergent base pairs across human genomes than any other class of
variation®, and have been associated with many major diseases and
phenotypes, including cancer*’ and autism®. They have also been shown
to have phenotypic effects in other species, such as altered growth
under stress in yeast”. However, much of the impact of SVs remains
unknown because of the inability of SVs in complex regions to be
accurately identified by short reads, which make up the majority of
existing genomic sequencing data®’. Inasimilar manner, indels larger
than 30 bp in length, while not typically considered to be SVs under
the 50-bp threshold, have been shown to be similarly associated with
changesinphenotypes' and also suffer froman inability to be mapped
andresolvedinshort-read genomic data'® . Therefore, while the main
focus of our analysis is on SV calling, we also demonstrate how our
methods can be applied to indels, which affect at least 30 bp as well.
Throughout this paper, we use ‘SVs’ to refer to variants affecting at
least 50 bp, but use ‘SVs and indels’ to refer collectively to all variants
affecting 30 or more base pairs.

Inrecent years, the emergence of long-read genomic sequencing
technologies” ™ and the development of specialized software for
alignment” " and variant calling'®*° have enabled the characterization
of complex SVs, which were difficult orimpossible to study from short
reads alone®. For thisreason, many population variantinference studies
include long-read sequencing data for multiple individuals instead of
orinaddition to short-read data* .

Because there are multiple sequencing technologies, align-
ers and SV callers that could be used, SV-processing pipelines for
population-scale studies are frequently optimized for the particular
dataset being analyzed’**, making it difficult to compare SVs called in
different studies or to accurately screen newly sequenced samples for
known variants. In addition, existing tools for comparing SV callsets
from different samples have issues such as collapsing multiple vari-
ants in the same individual, including variants of different types, and
producing callsets that vary substantially when the order of the input
samplesis changed. As the cost of long-read sequencing continues to
fall and the number of population-scale SV studies continues to rise,
thereisanincreasingly apparent need for methods that canaccurately
compare variants across a range of datasets.
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Fig.1|Structural variant inference pipeline. This pipeline produces
population-level SV calls from FASTQ files using anumber of existing methods
as well as two new methods, Iris and Jasmine. Iris uses consensus methods to

BN population SV calls

improve the accuracy of the breakpoints and sequence of insertion SVs. Jasmine
uses agraph of SV proximity and a constrained minimum spanning forest
algorithm to compare and combine variants across multiple individuals.

component

To address this need, we introduce an optimized software pipeline
for accurately detecting SVs and comparing these variant calls across
large numbers of individuals (Fig. 1). This pipeline enhances existing
methods for alignment” and variant calling™® with new methods for refin-
ingthesequences and breakpoints of SV calls, and for comparing variant
calls between different individuals to achieve a unified callset. Using a
combination of simulated and real datasets, we show that this pipeline
produces moreaccurate SV calls than several widely used methods across
avariety of metrics. First, by applying our methods to aHiFidataset from
theHG002 Genome-In-A-Bottle (GIAB) Ashkenazim trio, weillustrate that
our approach achieves a fivefold reduction in the number of Mendelian
discordant variants, while identifying multiple high-confidence de novo
variants in the child supported by three independent sequencing plat-
forms. We also analyze this trio to identify signatures of variants specifi-
cally derived fromeach particular technology. This enables us to establish
recommended variant calling parameters for different sequencing tech-
nologies that minimize Mendelian discordance as well as false merges. We
next show that Jasmine improves SV merging and addresses the major
issuesthatother methods encounter when scaling up to large cohorts. We
callvariants with our pipeline from publicly available long-read datafor 31
samples, and generate a panel of long-read SV and indel calls, which can
be used for screening further samples. Finally, we genotype this variant
panelin444 high-coverage short-read samples fromthe 1000 Genomes
Project (IKGP)** along with 873 samples from the Genotype-Tissue Expres-
sion (GTEX) project” and discover thousands of previously undetected
SV associations with gene expression. Many of these SVs have CAVIAR
posterior probabilities of causality that exceed those of previously
reported single-nucleotide polymorphisms (SNPs), indicating likely
functional relevance, including within medically relevant genes.

Results

Optimized structural variant refinement, comparison and
population analysis with Iris and Jasmine

Addressing the need for accurate SV refinement, comparison
and population analysis, we introduce two methods, Iris and Jasmine.

The first method, Iris, refines variant calls by using Racon® to polish
the variant sequence fromreads supporting the alternate allele and rea-
ligning this polished sequence to the reference with minimap2 (ref. ).
The second method, Jasmine, compares and merges calls in different
individuals corresponding to the same variant. Jasmine represents
variants as pointsin space based on their breakpoints and lengths, and
constructs agraph of SV proximity, where edges represent pairs of SVs
withasmallEuclidean distance between them.Jasmine then treats the
comparison/merging problem as one of finding aminimal-weightacy-
clicsubgraph of the proximity graph, which satisfies constraints such
asuser-specified distance thresholds and the avoidance of intra-sample
merging. Jasmine solves this problem with a constrained version of
Kruskal’s algorithm for minimum spanning trees?, and avoids the
high time and memory overhead of computing and storing the entire
graph by using a KD-tree”® to dynamically locate nearby variant pairs
and implicitly detect low-weight edges. This optimization is key to
Jasmine’s performance, as it enables it toimplicitly consider the entire
SV proximity graph and prioritize merges that encompass edges of
globally minimal weight. This is in contrast to prior methods, which
often perform suboptimal merging because they utilize heuristics
to consider smaller subgraphs of the variant proximity graph and
potentially disregard minimum-weight edges, which would beincluded
in the optimal merging. Both Iris and Jasmine are available as
stand-alone software packages and are available within Bioconda as
well as within Galaxy”.

Reduced Mendelian discordance in an Ashkenazim trio

A common application of SV and other variant inference methods is
the identification of de novo variants, or variants that are present in
an individual but neither of their parents. Such variants have been
associated with autism®° and cancer®, and de novo variant analysis is
frequently used as astarting point for identifying the cause of genetic
diseases or other phenotypes of interest™. However, because of short-
comingsinSVinference and comparison methods, identifying de novo
SVs and indels remains a difficult problem. For example, one widely
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Fig.2|Mendelian discordance in the HGO02 Ashkenazim trio. We called SVs
from HiFi data for the Ashkenazim trio consisting of HGOO02 (son; 46,XY) and
parents HGOO3 (46,XY) and HG004 (46,XX) using several prior methods as well as
our pipeline. a, The number of SVs called in each subset of individuals when using
prior methods: ngmir for alignment, Sniffles for SV calling and SURVIVOR for
consolidating SVs between samples. b, The number of SVs called in each subset
ofindividuals when using our optimized pipeline. ¢, The distribution of variant
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types and lengths in the HGOO2 trio with our pipeline. d, The rate of discordance
when comparing SVs between individuals with Jasmine as well as six existing
methods for populationinference. Jasmine reduces the discordance rate, while
atthe same time addressing issues present in other methods such as merging
variants of different types, variants with the same type but corresponding to
unique breakpoint adjacencies (mixed strand), or variants within the same
sample.

used pipeline consisting of ngmlr, sniffles'® and SURVIVOR’ gives thou-
sands of candidate de novo SVs when applied to high-accuracy HiFi
sequencing data from the HGOO2 Ashkenazim trio (Fig. 2a). Because
the number of de novo SVsis typically estimated to be less than ten per
generationonaverage®, almost all of these variant calls are either false
positives in the child, false negatives in one or both parents, or errors
in merging the callsets. Collectively, we refer to these false outcomes
as Mendelian discordant variants.

To address the large number of discordant variants, our opti-
mized pipeline offers a number of improvements that reduce the

rate of Mendelian discordance by more than a factor of five with <1%
(279/32,215=0.009) of merged SVs being discordant (Fig. 2b). At the
sametime, our pipeline enabled the discovery of 10-20% more SVs than
existing methods, with a size distribution and indel balance similar to
prior work (Fig. 2c and Supplementary Fig. 1). The methodological
improvements include double thresholding (‘Double thresholding’),
which mitigated threshold effects in variant detection (Supplemen-
tary Fig. 2) and improved variant calling parameters (Supplementary
Fig.3), and usingJasmine for SV merging. Furthermore, we compared
Jasmine to six existing methods for SV comparison between samples
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(Fig.2d and Supplementary Fig. 4): dbsvmerge**, SURVIVOR’, svpop®,
svtools®, sv-merger** and svimmer”. For each software, we merged the
unfiltered callset from each of the three samples, and after merging, we
filtered the variants based on the read support, length and breakpoint
precision of the corresponding input SV calls. We found that Jasmine
achieves the lowest rate of discordance and correctly avoids merging
variants of different types or variants from the same sample. This is
largely due to its ability to detect and merge the closest pair of vari-
antsamong all variant pairs, whichisin contrast to other methods that
use heuristics to reduce the number of mergeable pairs beforehand,
leading to suboptimal merging. In addition, Jasmine avoids merging
mismatched variants corresponding to partial inversions or transloca-
tions, whichis particularlyimportant whenresolving complex nested
SVs (Supplementary Fig. 5). The resulting reduction in Mendelian dis-
cordant variants is animportant step toward the rapid identification
of de novo variants, asit is typically necessary to screen all discordant
variants manually when searching for true de novo variants.

We also evaluated the discordance rate among SVs overlapping
tandemrepeats (TRs), and found that the discordance of SVs overlap-
ping TRs was similar to the overall rate (195/22,626 = 0.0086 overlap-
ping TRs; 84/9,589 = 0.0088 outside TRs). However, manual inspection
revealed a large number of discordant variants where the true SV was
within a TR, but disrupted alignment and variant calling resulted in
anSV calljust outside the repeat region. We investigated discordance
among SVs near TRs and found that there was a higher discordance
rate for SVs within 500 bp of TRs (252/26,300 = 0.0096 within 500 bp
of TRs; 27/5,915 = 0.0046 at least 500 bp outside TRs). Because the
discordanceis somuchlowerinregionsatleast 500 bp away from TRs
(<0.5%), we refer to these regions as non-TRregions.

Structural variant analysis across sequencing technologies
Improved methods for comparing multiple SV callsets also enable the
comparison of variants identified in asingle individual from different
sequencing technologies. We evaluated three different technologies
applied to HG0O02: Pacific Biosciences continuous long reads (CLR),
Pacific Biosciences high-fidelity (HiFi) circular consensus sequencing
(CCS) and Oxford Nanopore long reads (ONT) basecalled with Guppy
4.2.2. variants were called separately from each technology, and the
resulting callsets were merged with Jasmine. The three callsets were
largely in agreement, with 18,778 of 28,348 SVs being supported by
allthree technologies (Fig. 3a,b and Supplementary Fig. 6). The set of
technology-concordant variants (Fig. 3c), shows that insertion and
deletion calls are largely balanced, with a slight enrichment of inser-
tions, shown in previous studies to be caused by missing sequence in
the human reference genome?, as well as a tendency for deletions to
be more deleterious’®. There is also an increased number of variants
around sizes of 300 bp and 6-7 kbp (Supplementary Fig. 7), corre-
sponding to SINE and LINE elements respectively.

We also examined variants that were identified only by a single
technology, as these may reveal systematic biases in variant calling
caused by eachtechnology’s error model, particularlyin CLR and ONT,
which have higher rates of sequencing error. Of the 499 variants identi-
fied exclusively in CLR data (Fig. 3d), there were 244 insertions and 155
deletions, with an excess of insertions in the size range of 750 to 1,000,
corresponding toaknown error characteristic of CLR sequencing'®. Of
the 3,329 ONT-only variant calls (Fig. 3e), there were 539 insertions and
2,652 deletions, with an enrichment of small deletions less than 50 bp
inlength. In addition, we found that many of the variants, particularly
deletions, unique to ONT or HiFi are in centromeric regions or satellite
repeats (Supplementary Figs. 8 and 9). We also called and merged SVs
separately for each technology across the HGO02 trio and measured
the discordance among the SVs discovered by the individual technolo-
gies. We found that ONT and HiFi data result in similar discordance
rates (279/32,215=0.0087 in HiFi; 295/34,062 = 0.0087 in ONT), while
CLR-derived callshave ahigher rate of discordance (310/19,206 = 0.0161).

De novo variant discovery

We next leveraged our methods, aswell as datafromall three technolo-
gies listed above, to screenthe HG0OO2 trio for de novo SVs and indels.
We called variants from each of the three technologiesin HG002 as well
as both parents, for a total of nine callsets. We merged these nine call
sets with Jasmine and filtered out any variants that were present in
one or more of the six parent callsets. Of the remaining variants, we
stratified them by which technologies supported their presence in
the child and found that there were 16 that were supported by all three
technologies (Fig.4a), with anadditional 35 that were supported by HiFi
and at least one other technology, a 43-fold reduction in candidates
compared to evaluating HiFi data alone with prior methods (Supple-
mentary Fig.10).

Upon manual inspection, six of these were high-confidence
de novo variants (Fig. 4b), while the remaining candidates were in
noisy regions that displayed split-read alignments, but we could not be
certain whether the alignments were correct (Supplementary Fig. 11).
One of the high-confidence candidates, a 107-bp deletion at chr17:
53,340,465 (Fig. 4c), was previously identified as a de novo SV in an
effortto characterize the variants in HGOO2 (ref. *°). Another example,
a 537-bp insertion at chrl4: 23,280,711, consists of a microsat
ellite repeat expansion on the paternal haplotype, a known class of
mutations often caused by replication slippage*® (Fig. 4d). These
and other examples (Supplementary Figs. 11-13) show that
our approach can correctly identify known de novo SVs as well as
identify previously undiscovered potential de novo variants, and
that these variants are supported by multiple independent sequenc-
ing technologies. This ability coupled with the reduced rate of dis-
cordance demonstrates a major step toward automated de novo
variant detection.

Population structural variantinference

Asthe cost of long-read sequencing has continued to decreaseinrecent
years, long-read studies including large cohorts have become more
prevalent™**, As this trend is expected to continue®, it is particularly
important for SVinference methodstobe able to scale to many samples.
To compareJasmine to existing approaches, we called SVsandindelsin
31 publicly available long-read samples (Supplementary Table 2) and
observed the results of merging these callsets with each method. We
attempted to run all six prior methods, although sv-merger did not
terminate after 72 h, and so was excluded from this analysis. All other
methods produced a population-level callset within afew hours with 24
threads onamodern4-GHz server with192 GB of RAM, but the callsets
produced by existing approaches suffer from a number of issues. In
addition to theinvalid merges mentioned above (Fig. 2d), several of the
existing methods use algorithms that give different merging results,
and consequently different numbers of total variant calls, based on the
input order of the sample callsets (Fig. 5a). This problem only worsens
as the number of samples grows and the number of possible sample
orderings increases exponentially. Conversely, Jasmine’s algorithm,
which merges variant pairsinincreasing order of their breakpoint dis-
tancesirrespective of theinput order, producesidentical results after
any permutation of input files. Jasmine additionally offers the lowest
median breakpoint range within merged variants (Fig. 5b and Supple-
mentary Fig. 14) and avoids merging variants from the same sample.
Finally, there is an abundance of low-confidence likely false-positive
variant calls in samples sequenced with CLR (Supplementary Figs. 15
and16), and methods that use a constant breakpoint distance thresh-
oldincorrectly merge these calls with high-confidence variant calls
inother samplesto obtain an unreasonable trimodal allele frequency
distribution (Supplementary Figs.17 and 18).

Using our SV inference pipeline, we created a panel of long-read
122,813 SVs and 82,379 indels from these 31 samples. The datasets we
used includeindividuals from a wide range of ancestral backgrounds,
as well as sequencing data from multiple technologies. Variants were
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Fig.3|Structural variant inference across sequencing technologiesin
HGO002. We called SVs in HGO02 separately from PacBio CLR data, Oxford
Nanopore data and PacBio HiFi CCS data, and used Jasmine to compare the
variants discovered by each of them. a, The number of SVs discovered by

Length

each subset of technologies. b, The SV type distribution within each subset of
technologies. ¢, The distribution of types and lengths among variants for which
all of the technologies agree. d-f, The type and length distributions for variants
unique to CLR, ONT and HiFi, respectively.

called in each sample separately and merged with Jasmine to create
a unified callset. The allele frequency distribution is monotonically
decreasing as expected, except an excess of variants at 100% corre-
spondingto errorsand/or minor alleles in the reference®. (Fig. 5d). The
cumulative number of variantsincreases with the number of samples,
butatadecreasing rate (Fig. 5e). Theindels are approximately balanced
(Fig. 5f), with a slight bias toward insertions, and there are spikes in
the size distribution around 300 bp and 6-7kbp for SINE and LINE
elements (Supplementary Fig.19). There is also an enrichment of SVs
inthe centromeres and telomeres (Fig. 5g and Supplementary Fig. 20),
likely due to acombination of missing reference sequence, repetitive
sequence, which is difficult to align to, and greater recombination
rates”. Wealso filtered our callset by the non-TR regions defined above
(>500 bp away from TRs), and found that 22,132 SVs and 13,615 indels
are contained in these regions.

Measuring effects of structural variants on gene expression

Previous expression quantitative trait loci (eQTL) studies have shown
that SVs often have large effects on gene expression and that they are
causal at 3.5-6.8% of eQTLs>*%. To investigate this with our enhanced
catalog of SVs, we first used Paragraph* to genotype each SV in 444
individuals from 1KGP for which gene expression data are publicly
available**, after removing SVs that were inconsistent with popula-
tion genetics expectations based on the Hardy-Weinberg equilibrium
(HWE; Supplementary Fig. 21a). Following the prior studies, we mapped
SV-eQTLs by pairing common (minor allele frequency (MAF) > 0.05) SVs
togeneswithin1 Mbp using gene expression datainlymphoblastic cell
lines from the GEUVADIS consortium**. Each SV-gene pair was consid-
ered independently. We then fit a linear model to measure the effect
sizes of these SVs on gene expression, and found that 5,456 pairs passed
asignificance threshold with10% false discovery rate (FDR; matching
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Fig.4 | De novo variant discovery in HG002. We called variants in each of
HG002,HG003 and HGO04 from three different sequencing technologies—CLR,
ONT and HiFi—to identify potential de novo variants that were called in none of
the six parent callsets but one or more of the HGOO2 callsets. a, The number of
SVsandindels which are absent in all six parent callsets whose presencein HG002
issupported by each subset of technologies. While we manually inspected all
SVssupported by HiFi and at least one other technology, both of the examples
incand d were supported by all three technologies. b, All variants supported

HOMEZ

by HiFiand at least one other technology in HGOO02 that are absent in all parent
callsets. The identified potential de novo variants are highlighted in green, with
the microsatellite repeat expansion denoted by an arrow. While filters based on
length, read support and breakpoint standard deviation could be used to filter
out many false de novo candidates, the microsatellite repeat expansionis an
example of a higher-confidence de novo SV that would be incorrectly filtered
out. ¢, A potential de novo 107-bp deletion in HG002 at chr17: 53,340,465.d, A
potential de novo microsatellite repeat expansionin HGOO02 at chr14:23,280,711.

previous studies of this dataset**), whichis substantially higher than the
478 pairsthat we observed among short-read SVs using the same FDR.
These associations occur for both deletions and insertions, and both
have approximately the same effect size distribution (Supplementary
Fig.21b). These data suggest that many of the SVs that are only visible
through genotyping long-read-based variant calls have large effects on
gene expression and thus are potentially functionally relevant.

To evaluate which SVs are likely to have causal effects on their
associated genes, we used the fine-mapping tool CAVIAR* to measure
the posterior probability that any given SVis causal compared to nearby
SNPs within a 1-Mbp window, taking into account possible linkage
disequilibrium (LD) between variants. We found that SVs had high
posterior scores (>0.1) at 68 genes of 1,863 genes examined (3.65%).
Additionally, when compared to existing databases of SNP-eQTLs from
the GTEx project®”, SVs had a higher CAVIAR posterior than reported
SNPs for 53.5% of genes with an SV-eQTL (Supplementary Fig. 21c).

This shows that previously undetected SVs are likely causal at a large
number of sites where the effects on gene expression were reported
as SNP-eQTLsinstead. Inspecting all SV-gene pairs with a CAVIAR pos-
terior greater than that of any previously reported SNP-eQTL for that
gene (and greater than 0.2 overall), we identified several potentially
functional SVs in high LD with reported SNPs (Supplementary Figs.
22 and 23). Several of our top candidates have been reported by other
studies as SV-eQTLs, which servesto validate our overall approach and
increase confidence in our discoveries.

To further demonstrate the application of merging variants with
Jasmine for SV-eQTL discovery, we next genotyped and analyzed the
long-read reference SV set in the GTEx dataset>”. The GTEx dataset
contains short-read whole-genome sequencing data from over 800
individuals with matched RNA-sequencing (RNA-seq) datain up to 49
non-diseased tissues. We first genotyped 26,377 common SVs detected
in thereference SV set with Paragraph* within the NHGRIAnVIL Terra
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Fig. 5| Population-scale inference from public datasets. We called SVs and
indels with our pipelinein a cohort of 31 samples from diverse ancestries and
sequencing technologies and used Jasmine as well as five prior methods to
combine the individual samples’ SVs into a population-scale callset. a, The
number of variants obtained with each merging software across 100 runs with
thelist of input VCF files randomly shuffled each time. b, The distribution of the
range of breakpoints of variant calls merged into single variants by each software,

@ Deletions
Inversions
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excluding unmerged variants. ¢, The number of intra-sample merges within
single merged variants, defined as the number of variants minus the number

of unique samples, for each software. d, The allele frequency distribution of
variants merged by Jasmine. e, The number of variants discovered by Jasmine as
the number of samples increases. f, The distribution of variant types and lengths
inthe cohort when usingJasmine. g, The number of SVsin the cohortin1-Mbp
bins across the human genome.

log, (no. of variants)

platform*¢ in 873 GTEx individuals. Here we focused on common SVs
with MAF of at least 0.05 that passed conservative Hardy-Weinberg
filtering at genome-wide significant Pvalues. Using this approach, we
discovered over twofold more variants per individual than previous
efforts by the GTEx consortium?® in identifying SVs exclusively using
the short-read data (Fig. 6a).

We subsequently obtained gene expression measurements and
technical covariates from GTEx for these individuals from 48 tissues
(those with atleast 70 individuals) and computed eQTLs using the same
cis-eQTL calling framework as previously described in GTEx (v8)*. As
GTEx contains more individuals than GEUVADIS and provides gene
expression measurements across dozens of tissue types, we used a 5%
FDRrate, whichis even more conservative than previous studies*. At 5%
FDR, weidentified 111,291 significant eGenes across 48 tissues, includ-
ing 11,046 SVs affecting the same genes in multiple tissues (Fig. 6b).
Amongthe eGenes, we intersected the SV-only eGenes with previously
reported SNP-based eGenes, and conservatively estimated the new
number of cases where an SV-eQTL is the top variant to be 10,436, which
isover 2,000 more examples than previously reported even whenusing
thestricter threshold”. We next repeated the CAVIAR analysis on gene
expression as with the 1000 Genomes dataset but scaled the analysis
toalltissues. Overall, we find 5,580 SV-eQTLs where an SV has the high-
est CAVIAR score for the eGene, including 750 SVs affecting genes in
two or more tissues (Fig. 6b). The median proportion of significant
eGeneswithan SV aslead causal variant withineach tissueis 5.7%, and
across all tissues, an SV is the top CAVIAR predicted causal variant in
approximately 5% of the cases, consistent with our estimate from the

1000 Genome-Geuvadis SV-QTL dataset of 3.5-6.8%. We evaluated
the SVeGenes with SVIength <100,000 bp across all tissues available
for enrichment and found a highly significant 9.5-fold enrichment
(Pvalue =8.5x107', Fisher exact test) for coding SVs to have high
CAVIAR posteriors.

One notable example of an SV-eQTL identified using our
Jasmine-Paragrah pipeline in GTEx is a deletion of 168 bp within chro-
mosome 3inanintron of HACLI (encoding2-hydroxyacyl-CoAlyasel),
a gene associated with multiple metabolic diseases*®. The deletion is
not previously reported by GTEx or other major databases of variants
butisstrongly supported by the long-read sequencing and genotyping
results. Based onthe GTEx expression data, we identified itasaneQTL
in testis tissues with a log, allelic fold change of 1.11 (Fig. 6c). We also
computed the t-statistic as the beta effect size divided by the variance
of beta and found that both the P value and ¢-statistic values are sub-
stantially stronger for the deletion than any flanking SNPs (Fig. 6d and
Supplementary Fig. 24). The deletion is more common in the popula-
tionthananon-deletion, indicating the reference genomeitself carries
aminoralleleinsertion variant. Consequently, the direction of effect for
thedeletion is opposite the top SNP, as they are in LD with an r* value of
-0.6.Overall, the stronger CAVIAR score, Pvalue and ¢-statistic suggests
the SVis more likely than the flanking SNPs to be causaland the top SNP
is effectively a marker for the SV. Another example of an SV-eQTL we
discovered using our approach is a 37-kbp deletion on chromosome
22 near the gene DDTL (encoding D-dopachrome tautomerase like), a
paralog of the gene DDT, which has been associated with the chronic
autoimmune disease discoid lupus erythematosus®. The deletion was
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Fig. 6 | Functional impact of structural variants from Jasmine. We used
Paragraph to genotype SVs and indels from the cohort of 31samples in 873
samples from the GTEx Consortium that have RNA-seq data in multiple tissues.
We used 48 tissues in our analysis with sufficient samples. a, Number of variants
detected per sample for genotyped SVs and indels (Jasmine) versus SVs reported
inthe GTEx SV dataset after HWE filtering. Note short-read-based SV calls are
not available for all samples, thus some samples only display the counts using
Jasmine. b, Distribution of the number of tissues and SV-gene pair is found as
asignificanteQTL (FDR correction at 5%). We further plotted the distribution
for SV-gene pairs with significant eQTLs where the SV has the maximum
CAVIAR score compared to all flanking SNPs. ¢, Genotype and gene expression
distributionin GTEx samples with expression in testis for the HACLI-associated
deletion (n =318).d, Manhattan plot for SNPs and the novel SV near HACLI1, with
the log,, Pvalue measured by a generalized linear model accounting for GTEx
covariates. The annotated variant is the top variant,1_.0_16114_del, and points

are colored by LD to this variant. For cand d, we used 318 individuals with both

SV calls and RNA-seq data in testis tissue. €, Genotype and gene expression
distributionin GTEx samples with expression in whole blood for DDTL-associated
deletion (n = 666). f, Manhattan plot for SNPs and the novel SV near DDTL, with
the log,;, Pvalue measured by a generalized linear model accounting for GTEx
covariates. The annotated variant is the top variant, 0_0_078802_del, and points
are colored by LD to this variant. For e and f, we used 666 individuals with both SV
callsand RNA-seq datain whole-blood samples. Examples ¢ and e were selected
based onatwo-sided t-test to assess the nominal Pvalue of a variant-gene pair
after gene-level multiple hypothesis testing using Bonferroni correction at an
FDR of 5%. Box plots describes the first to third quartiles of the expression z-score
distribution and the whiskers describe the first quartile minus 1.5 times the
interquartile range (IQR) and the 3rd quartile plus 1.5 times the IQR centered

on the mean expression value of each genotype group.

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-022-01753-3

previously reported by the 1000 Genomes Consortium, although previ-
ous studies did not reportit as an SV-eQTL. Within whole blood, alog,
allelic fold change of 1.46 is observed, and as with HACL1, the Pvalue,
t-statisticand CAVIAR posterior are strongest for the SV compared to
flanking SNPs (Fig. 6e,f and Supplementary Fig. 25). Interestingly, we
find the SV-eQTL s putatively causal with CAVIAR posterior >0.9 for 36
tissues, and the tissue log P-value distribution is significantly higher
(Pvalue =1.1x1078, one-sided Wilcoxon rank-sum test) than the top
SNP associations in the same tissues (Supplementary Fig. 26). A third
significant SV-eQTL is a 60-bp insertion on chromosome X that is an
SV-eQTL of ASMTL (encoding acetylserotonin O-methyltransferase
like), agene associated with melanotic neurilemmomaand other rare
tumor types*’,in GTEx left-ventricle heart tissue (Supplementary Fig.
27).Overall, our eQTL and causal SV-QTL analysis broadly agrees with
our analysis with1000 Genome Project and previous GTEx analysis>,
although the Jasmine-Paragraph workflow enabled us to genotype
and analyze more SVs than previous approaches. Consequently, with
our more accurate and complete SV catalog, we were able to discover
substantially more significant and putatively causal eQTLs thaninany
previous analysis.

Discussion

Here weintroduced Iris andJasmine. Irisimproves the sequence fidel-
ity of SVs by computing the consensus of the reads that span each SV.
Jasmineisafastandaccurate method for population-level SV compari-
sonand analysis. It improves upon existing methods and achieves highly
accurate results by merging pairs of variants inincreasing order of their
breakpoint distance, while maintaining favorable scaling qualities (Sup-
plementary Fig. 28) through the use of a KD-tree to efficiently locate
nearby variant pairs.Jasmine also separately processes the SV calls by
chromosome and SV type and strand to enable built-in parallelization,
while many alternative methods incorrectly combine SVs of different
types. By combining Jasmine with additional new methods and care-
fully optimizing existing methods, we produced an SV-calling pipeline
thatreduces the rate of Mendelian discordance by more thana factor
of five over prior pipelines, while at the same time being applicable
to large cross-technology cohorts and resolving a number of issues
encountered when using other methods. Finally, by calling SVs and
indelsin31publicly available long-read samples with our pipeline, we
developed andreleased adatabase of human SVs. By genotyping these
variants in 444 short-read samples from the 1IKGP and 873 samples
from GTEx, we cataloged thousands of novel eQTLs across the human
genome, including inmedically relevant genes, and including 750 vari-
ants affecting multiple tissues.

While Jasmine offers highly accurate population SV analysis, we
remain limited by the sequencing data that are available. A major chal-
lenge we faced when applying our methods to a cohort consisting of
samples from multiple sequencing technologies was the additional
noise in the samples sequenced with high-error CLR reads (Sup-
plementary Figs. 16 and 29). While we mitigated this noise through
computational means, we expect that even more accurate SV calls
could be obtained by using HiFi or ONT sequencing for all samples.
We also found that the rate of discordance among SVs within 500 bp
of TRs, while less than 1%, was more than double the discordance rate
of SVs outside these regions. Other methods have mitigated this by
separately processing and normalizing the breakpoints of these vari-
ants”, and integrating these or similar modules with Jasmine’s merging
algorithm could further improve SV analysis. In addition, there were
systematic anomalies in the SV calls in highly repetitive regions such
as the centromere and satellite repeats (Supplementary Figs. 30-32)
and an overall excess of variants that are found in all samples. There
has recently been work to improve the reference genome to more
accurately reflect these regions®, and this reference has been shown
tosubstantiallyimprove long-read alignment and SV calling including
improved indel balance, a reduction in uniform SVs, and SV calls in

previously inaccessible regions of the genome™. As tools for aligning to
and calling variantsin these regions continue to mature, we expect the
accuracy of these calls to even further improve. Finally, while we have
detected alarge number of SVsin the 31samples we studied, thereis still
much tobe discovered. As the costs of long-read genome sequencing
continue to decrease, we expect to apply these methods to even larger
populations, as well asto other species, to deepen our understanding
of therole of SVsin disease, development and evolution.
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Methods

Refined variant breakpoints and sequences with Iris

Many existing long-read SV callers identify variants from read align-
ments based onsignatures such as an extended gap inthe alignment or
asegment of the read that aligns toa distant region of the genome'®*°.In
thewidely used variant caller sniffles’, avariant is called when multiple
reads show similar signatures that cluster together based ontheir type,
spanand location. However, when reporting the variant’s breakpoints
and sequence, the alignment from a single representative read (cho-
sen arbitrarily) is used to infer this information. This is particularly
problematic for insertions, where the novel sequence being inserted
istakendirectly fromthesingle read. Because some read technologies
suchas CLRand ONT have error rates of 5% or higher, it is expected that
the sequence reported will have a sequence with a similar or higher
rate of divergence from the true insertion sequence (Supplementary
Fig.33). When comparing across samples, especially those sequenced
using different technologies with different error models, this may
cause the same variant in both individuals to be falsely identified as
two separate variants.

Addressing this, we introduce Iris, amethod for refining the break-
points and novel sequence of SV calls by aggregating information from
multiple reads that support each variant call (Fig. 1). Iris refines each
variant call separately, but supports the processing of multiple vari-
ants in parallel. For an insertion variant call, Iris starts with an initial
sequence consisting of the variant sequence plus flanking sequence
from the reference genome (default 1 kb on each side of the variant).
Then, it gathersall of the reads which support the variant’s presence—
indicated by the RNAMES field in the output of sniffles—and aligns
those reads to the initial sequence with minimap2 (ref.'’). These align-
ments are used as input to the polishing software Racon®®, which pol-
ishes the initial sequence. Finally, the polished sequence is aligned to
thereference with minimap2 and the CIGAR string is parsed to extract
the insertion in the polished sequence relative to the reference that
most closely resembles the original insertion call. If such aninsertion
isfound, the variant call is refined to reflect the updated sequence and
breakpoints. Iris also supports the refinement of deletion breakpoints,
whichis of particularinterest when the sequencing technology being
used hasabiased errormodel in favor of eitherinsertions and deletions.
These are handled similarly to insertions, with the initial sequence
instead consisting of the concatenation of the reference sequences
immediately before and after the deleted region. Iris is available as a
stand-alone tool at https://github.com/mkirsche/Iris/.

Simulation results. To test the performance of Iris on simulated data,
we simulated 400 indels with uniformly random lengths—200 with
length[50,200] and 200 with length [900,1,100]—in a 5-Mbp segment
of chr1(20,000,000-24,999,999). Then, we used SURVIVOR with aread
error and length model trained on HGO02 Oxford Nanopore reads to
simulate 30x coverage of long reads. We aligned these reads back to the
unmodified segment of chromosome 1 with winnowmap2 (ref. ") and
called SVs with sniffles’. From the insertion SV calls, we measured the
similarity scores of the reported sequences to the ground truth using
the formula: Similarity(S, T) = (1 - EditDistance(S, 7) / max(length(S),
length(7)). We alsorefined these variant calls with Irisand measured the
similarity score of the updated insertion sequences (Supplementary
Fig.34a). The average sequence similarity score increased from 94.7%
to 98.6%, demonstrating that Iris refinement substantially improves
insertion sequence accuracy.

Real results in HG002. While this simulated experiment demon-
strated that Iris can improve sequence accuracy in simulation condi-
tions, we wanted to ensure that it also improves the novel sequences
of true genomic variants, where the novel sequences are typically
more repetitive and the alignments noisier than when the insertions
are random base pairs. To do this, we used the cell line HGO02, which

was sequenced with multiple technologies, notably including both
ONT and HiFi. While the ONT reads have a high error rate of around
8%, the HiFireads have approximately 99.5% accuracy®, so even novel
insertion sequences taken from only a single HiFi read are expected
tobehighly accurate. Therefore, we used winnowmap and sniffles for
variant calling asin the simulated experiment, but used the HiFi SV calls’
sequencesinplace of aground truth. For each ONT SV call, we matched
itwith the nearest HiFi callif it was within1 kbp, they shared at least 50%
sequence identity, and no other ONT call had already matched with
it. This resulted in 13,467 matched ONT calls before and 14,401 after
refinement, with 12,978 having a matching HiFi call both before and
after refinement. Amongthese, 9,522 (73.37%) had been changed by Iris.
The average sequence identity among these 9,522 SVsincreased from
91.6% before Iris to 96.2% after Iris, and the distributions of sequence
accuracy scores are shown in Supplementary Fig. 34b.

We also investigated the impact of Iris refinement on Mendelian
discordance in the HiFi-derived SV and indel calls for the HGOO2 trio.
To measure this effect, we called and merged variants in this trio with
our SV-calling pipeline but with Iris refinement disabled and compared
the discordance to the results from the full pipeline (Supplementary
Fig.35). Without refinement the discordance was 484/47,561 = 1.02%,
while the discordance with our full pipeline was 404/47,326 = 0.85%.

Comparing variant calls at population scale with Jasmine

To perform SV inference at population scale and identify variants
associated with diseases or phenotypes, it is important to identify
when multiple individuals share the same (or functionally identical)
variants. However, the same variant call can manifest differently in
unique samples because of sequencing error or samples being pro-
cessed with different sequencing technologies, levels of coverage, or
upstream alignment and variant calling software. These differences,
along withtheincreasingavailability of long-read sequencing data for
many individuals, highlight the need for careful variant comparison
when analyzing SVs in multiple samples.

We refer to the problem of consolidating multiple variant callsets
into asingle set of variants as the ‘SV merging problem’. This is because
the problem consists of identifying variant calls in separate samples
correspondingto the same variant and merging theminto asingle call,
which is annotated with the samples in which it is present. A number
of methods already exist for SV merging, but each has major issues
such as invalid merges, results which vary substantially based on the
orderofinputsamples, or high levels of Mendelian discordance when
evaluated on trio datasets.

Jasmine methods. We introduce Jasmine, anew method thatsolves the
SVmerging problem.Jasmine takes asinput alist of VCF files consisting
of the variant callsets for each individual, and produces a single VCF
file in which each variant is annotated with a list of samples in which
itis present (as well as the IDs of the input calls corresponding to that
variant).

Jasminefirst separates the variants by their chromosome (or chro-
mosome pair in the case of translocations), variant type and strand.
Each of these groups is processed independently with an option for
parallelization because no two variants in different groups could be
representations of the same variant. When processing a group of vari-
ants, Jasmine represents each variant as atwo-dimensional (2D) point
in space representing the start position and length of the variant.
Whenrepresented this way, variants that are closer together along the
genome (and are therefore more likely to represent the same variant)
have asmaller Euclidean distance between them. Consequently, each
pair of variants can be assigned a quantitative distance which reflects
how dissimilar they are.

After projecting these variants into 2D Euclidean space, Jasmine
implicitly builds a variant proximity graph, or agraph in which nodes
are individual variants and each pair of variants has an edge between
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them with aweight correspondingto the Euclidean distance between
them. Then, the SV merging can be framed as selecting a set of edges
(merges) making up aforest, whichis asubgraph of the variant proxim-
ity graph, and which minimizes the sum of edge weights chosen subject
to afew constraints:

1. Nointra-sample merging: No connected component of the for-
est contains multiple variants from the same individual because
they have already been identified as different variants. Note that
Jasmine enables this constraint to be disabled with the com-
mand line flag-allow_intrasample, which is useful if a single VCF
file has callsets from multiple SV discovery methods within a
single individual.

2. Distance threshold: No chosen edge has a weight greater than
the user-chosen distance threshold (default maximum (100 bp,
50% of variant length))

3. Maximality: To prevent the trivial solution of no edges, we
require that, given a set of chosen edges, no additional edges
can be added to the solution while still satisfying the other
constraints.

Jasmine seeks to solve this optimization problem with a greedy
algorithm similar in design to Kruskal’s algorithm for finding a mini-
mum spanningtree. Inthis algorithm, the set of chosen edgesisinitially
empty, and each edge is considered in order of non-decreasing edge
weight.Ifadding the edge to the solution would violate any of the above
constraints given the previously added edges, itisignored; otherwise,
itis added to the solution. When the edges being considered start to
exceed the distance threshold, the algorithm terminates.

One issue with this algorithm is thatin order to sort the edges by
weight, they may need to be loaded into memory. This is problematic
because some population datasets, with tens to hundreds of thousands
of SVs per sample, include millions of variants, with the number of
edges potentially scaling quadratically with the variant count. This
is prohibitive even with existing datasets, and will only be more of a
problem as even larger datasets are produced. Therefore, Jasmine
instead stores the edges implicitly, making use of aKD-tree to quickly
find the next smallest edge in the variant proximity graph.

Toavoid storing the entire graphin memory, Jasmine maintains a
list of a small number of nearest neighbors (initially 4) for each node,
which are computed by forming aKD-tree with all of the variant points,
adatastructure that supports k-nearest-neighbor queries with aloga-
rithmic runtime withrespect to the number of variants. Then, the edge
to the single nearest neighbor of each variant is stored in a minimum
heap, and itis guaranteed that the first entry removed from this heap
will be the edge with the smallest weight in the entire graph. When
an edge is processed, the node for which it was the minimum-weight
incident edge hasits next nearest neighbor added to the heap based on
thenextentryinitsnearest neighbor list. If the list of nearest neighbors
for anode becomes empty, the KD-tree is queried for a set of twice as
many nearest neighbors, and the list is refilled. In this manner, the
next smallest edge in the graph will always be the edge removed from
the heap, and the data structures that Jasmine uses help to maintain
this property without requiring a prohibitively large amount of time
or memory. The pseudocode for this algorithm can be found in Sup-
plementary Note 1.

Jasmine distance threshold. When merging variants, itisimportant
todetermine foragiven variant pair whether or not the two variants are
sufficiently close together in terms of their breakpoints to be consid-
ered the same variant.InJasmine, thisis based onadistance threshold—
ifthe distance betweenthem (according to the chosen distance metric)
isabove the threshold, they will be considered two different variants,
whileiftheir distanceisless than or equal to the threshold, they will be
acandidate for merging. Jasmine offers anumber of classes of distance
thresholds, including constant thresholds, thresholds that vary based

onafixed proportionofeach variant’s size, or even per-variant distance
thresholds. By default, the distance threshold forJasmine isamaximum
of100 bp (50% of variant length). We measured the differencein merg-
ing when using different values for the ‘min_dist’ parameter, which is
100 by default (Supplementary Fig. 36), and found that while larger
values for this parameter offer lower Mendelian discordance, these
morelenient thresholds perform poorly inacross-technology cohort
setting because of false merges, and 100 bp offers a good balance in
performance across use cases.

Building a structural variant inference pipeline

Our SVinference pipelineisimplemented in Snakemake, and supports
multi-threaded as well as multi-node execution. It takes as input a
list of FASTQ files for each sample being studied as well as a refer-
ence genome, and produces as its final output a VCF file containing
population-level SV calls. Itis highly customizable, supporting unique
configurations for alignment and variant calling on a per-sample or
per-sequencing-technology level. It also enables the user to specify
the alignment software to use—ngmir, winnowmap and minimap2—and
separately sets the recommended default parameters for samples
sequenced with each specific technology. On each sample we pro-
cessed, the pipeline took about a day to run on a single Intel Cascade
Lake 6248R compute node with 48 cores and 192 GB RAM at 3.0 GHz.
The Snakemake files to run the pipeline are included in the Jasmine
repository available at https://github.com/mkirsche/Jasmine/tree/
master/pipeline/.

Evaluating Mendelian discordance
When performing de novo variant analysis, we are particularly inter-
ested in Mendelian discordant variants, or variants which are called as
presentinthechild of atrio but neither parent. This includes genuine
de novo variants, but in practice most of these calls are actually false
denovovariants caused by errorsin variant calling or merging. Accord-
ingly, one major goal of trio SV inference is to reduce the number of
discordant variants while retaining any true de novo variantsin that set.
Tomeasure Mendeliandiscordance, we called variants in the Ash-
kenazimindividual HGO02 as well as their parents HGO03 (46,XY) and
HGO004 (46,XX). We merged these three callsets with Jasmine (or other
merging software when comparing them toJasmine), and counted the
number of variants identified in HGOO02 but not merged with any vari-
ants from either parent. We then filtered these variants by confidence
by requiring that they be supported by aminimum of10 (25% of average
coverage) of the reads and have alength of at least 30. In addition, we
filtered out any variants not marked with the PRECISE INFO field by
the sniffles variant calling. The discordance rate was calculated as the
quotient of the number of discordant variants over the total number
of variants in the merged and filtered trio callset.

Optimized Sniffles variant calling parameters

Asshownin Supplementary Fig. 3, we used Mendelian discordance to
measure the effects of different variant calling parametersin HiFi data
for HGO02. We varied the ‘max_dist’ parameter when running Sniffles
for variant calling and measured the number of variants and discord-
ance for eachtrio callset; based on these results, we used max_dist = 50
for calling variants from HiFi data.

Similar to the HiFi analysis, we used Mendelian discordance to
measure the effects of different variant calling parametersin CLR data
for HGO02. We varied the max_dist parameter when running Sniffles
for variant calling and measured the number of variants and discord-
ance for each trio callset. Supplementary Fig. 37 shows the effect of
this parameter on these metrics, and, based on these results, we used
max_dist = 50 for calling variants from CLR data.

Next, to optimize variant calling parameters in ONT data from
HGO0O02, werepeated the experiment used for HiFiand CLR data, vary-
ing the max_dist variant calling parameter in Sniffles and measuring
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the number of variants and discordance for each trio callset. These
results are shown in Supplementary Fig. 38, and based on them we used
max_dist = 50 for calling variants from ONT data. While this doesn’t give
thelowest discordance rate, all settings examined yielded less than 1%
discordance, sowe used a value of 50 to enable a high degree of variant
discovery and consistency across technologies.

Double thresholding
Toreduce theimpact of threshold effects on variant calling, our pipe-
line uses two different variant calling thresholds: a highly specific,
strict high-confidence threshold and a highly sensitive, more lenient
low-confidence threshold. To be a high-confident call, a variant must
beatleast 30-bp long supported by anumber of reads greater than or
equal toaminimum of 10 (25% of average coverage over that sample);
otherwise, a variant is called with low confidence if it is at least 20-bp
long and supported by at least two reads. All of the variants that meet
either threshold are used as input to Jasmine’s cross-sample merg-
ing, and any low-confidence variants that do not get merged with any
high-confidence variants are discarded. This allows variants which are
closetothestrict threshold to be properly detected in all of the samples
inwhich they are present (Supplementary Figs. 39-41).

When evaluating theimpact of double thresholding, we consider
theSVandindel callsinthe HGOO2 trio which were identified asbeing
presentin HGOO02 and group them into one of four categories:

- Discordant: Variants present only in HGO02, regardless of
whether we used double thresholding or only a single stricter
threshold.

« Notdiscordant: Variants present in HGO02 as well as one or both
parents, regardless of whether we used double thresholding or
only a single stricter threshold.

« Rescued from absence: Variants present in HG002 as well as one
or both parents, but the callin HGO02 had low enough length
or read support that it would have been missed in that sample if
just the stricter threshold was used.

* Rescued fromdiscordance: Variants present in HGOO02 as well as
one or both parents, but the call in the parents had low enough
length or read support that it would have been called only in
HGO002, and therefore discordant, if just the stricter threshold
were used.

Associating structural variants to genes

To obtain genotypes for SV-gene association, we called SVs in 31
long-read samples with our inference pipeline and merged theminto
aunified cohort-level callset with Jasmine. We then genotyped these
SVsinthe1000 Genomes Collection with Paragraph after filtering out
translocations and other variants that Paragraph cannot genotype,
for atotal of 189,581 genotyped variants across 444 individuals (Sup-
plementary Fig. 42). Following previous studies*’, we then used the
HWE test to filter out variants not consistent with population genetic
expectations, removing variants found to be significant with P< 0.0001
using an exact test of HWE®, After filtering with HWE and additionally
removing any variants that were left uncalled in 50% or more of the
samples, we were left with 138,715 variants across the 444 individuals
(Supplementary Fig. 43).

We examined common cis-SV-eQTLs by associating our SV geno-
types to gene expression data in the same cell lines collected by the
GEUVADIS consortium*‘. We first paired each gene with every SV that
had aMAF > 0.05 and resided withinawindow of 1 Mbp from the gene’s
transcription start site. We then tested whether the distribution of
normalized (zero-mean, unit variance) gene expression was different
for those individuals with or without the variant by using a Wilcoxon
rank-sum test for each variant-gene pair with a P-value cutoff reflect-
ing aBenjamini-Hochberg multiple testing correction with an FDR of
0.1. For genes with multiple SVs tested, each individual SV-gene pair

was considered independently. After identifying a set of significantly
associated SV-eQTLs, we fitalinear model between each variant geno-
type (where reference was encoded as 0 and the alternate allele was
encoded as 1if heterozygous and 2 if homozygous) and gene expres-
sion to determine the effect size (8) and the R?value of the association.
We then analyzed therelationship between the effect size and various
features of the SV or gene.

Comparing structural variants and SNP-eQTLs with fine mapping.
We used the dataset of SNP-eQTLs from the GTEXx project for all tis-
sues®as aset of known SNP-eQTLs which we could use as abenchmark
to compare the effects of SVs to SNPs on genes for which both may be
associated. We examined the set of genes for which there were both
associated SNP-eQTLs in GTEx (which were also significantly associated
in our data) and significantly associated SVs from our callset within a
1-Mbwindow. We then collected aset of 1,000 most-closely associated
variants (SNP or SV) to each gene within the 1-Mb window and computed
thez-scorefromalinear regression as well as the LD between each pair
ofvariants. We used these values asinput to the fine-mapping program
CAVIAR® to predict which variants within the set are causal. We used
CAVIAR’s posterior probability as a measure of how likely a particular
variant was to be causal.

Measuring enrichment of structural variants based on CAVIAR
scores. We examined the relationship between CAVIAR’s posterior
probability for each SV’s most highly associated gene and various
variant features, such as the distance to various regulatory elements
(Supplementary Fig. 44). We used the bedtools closest function
to compute the distance between each SV and the nearest ENCODE
candidate cis-regulatory element from the UCSC Genome Browser
database®* (Supplementary Fig. 44a). Using the Ensembl regulatory
build>, we performed a similar distance calculation to measure the
distance between each variant and the nearest Ensembl Regulatory
Element (Supplementary Fig.44b). We also found that higher CAVIAR
posteriors are associated with other regulatory elements, distance
to the associated gene (as previously reported in ref. %), as well as to
FunSeq high occupancy of transcription factor (HOT) regions®® (Sup-
plementary Figs. 44 and 45).

We also examined the relationship between CAVIAR posterior
probability and various conservation scores, as well as other sequence
features suchas GC content. To compute conservationscores, inspired
by previous works”, we used pyBigWig to extract regions covered by
the SVand computed the mean of the top tenscores of individual bases
within that region. For insertion variants, we extracted the flanking
reference sequence—75 bpineach direction—to assess the conserved-
ness of the affected context. We calculated CADD scores®®, LINSIGHT
scores* and PhastCons®’inasimilar fashion. Based on these prediction
scores, we do not observe signs of enrichment of extreme pathogenic-
ity or conservation among SVs with high CAVIAR posteriors (Supple-
mentary Figs.46 and 47). We also did not observe a pattern among the
GC percentage for SVs with high CAVIAR posteriors (Supplementary
Fig.47a). However, larger-scale studies are needed to make definitive
conclusions, as the number of SVs we observed with high CAVIAR
posterior are limited.

Validating 1000 Genomes eQTL calls in GTEx lymphocyte tissue.
Weimplemented aworkflow descriptionlanguage (WDL) workflowin
AnVIL Terra platform*® to rapidly genotype the previously mentioned
novel variants using Paragraph. The environment is based off of the
original docker containers provided by https://github.com/Illumina/
paragraph/blob/master/doc/Installation.md/. The latest version (2.4a)
canbefoundonadockerimagein ‘bnil/paragraph:2.4a’. The workflow
is available at https://portal.firecloud.org/?return=terra#methods/
run_paragraph/run_paragraph/23. eQTL calling was performed using
the OLS module in statsmodel with GTEx expression and covariates
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publicly available on the GTEx portal. We also performed fine mapping
using CAVIAR with default parameters. Preprocessing of the data was
performed using the aforementioned scripts.

Among the SV-eQTLs in the 1000 Genomes data is an intronic
3,143-bp insertion in NCF4, upstream of the associated gene
CSF2RB (Supplementary Fig. 21e). These two genes have previously
been shown to be linked to Crohn’s disease®. We found that a SNP
which was reported in the GTEx SNP-eQTL dataset to be associated
with CSF2RB expression was in high LD with the insertion (r* = 0.75),
but the insertion was more strongly associated with gene expression
than the reported SNP (Supplementary Fig. 21f). To ensure that our
finding is replicable, we proceeded to genotype this variant in 873
GTEx individuals using Paragraph* within the NHGRI AnVIL Terra
platform, and found a similar alternate allele frequency of 0.796 in
GTEx compared to 0.814 in 1IKGP. We then analyzed GTEx publicly
available expression measurements and expression covariates of
the matched tissue, EBV-transformed lymphocytes, to evaluate the
candidate SV-eQTL, and found the SV was an eQTL with P value of
3.95 %1078, which is even more significant than in 1IKGP. The SV-eQTL
measuredin GTExisin highLD (= 0.79) with the reported SNP-eQTL,
and has a more significant P value than the reported top SNP asso-
ciation (P=1.6 x107°). We similarly validated using GTEx data two
additional strongly supported SV-eQTLs in LRGUK and CAMKMT that
were detected using our cohort-level Jasmine SV calls. We found both
SV-eQTLswere more significant than the SNP-eQTLs reported by GTEx
(Supplementary Figs.22 and 23).

GTEx SV-eQTL analysis. We used the WDL-based Paragraph work-
flow described above in the AnVIL Terra platform to rapidly genotype
the SV variants in the GTEx v8 dataset. For this analysis, we cloned
the GTEx data within AnVIL (https://anvil.terra.bio/#workspaces/
anvil-datastorage/AnVIL_GTEx_V8_hg38/). To reduce the effect
of genotyping error, we filtered the variants by whether they signifi-
cantly deviated from HWE at a genome-wide significance threshold.
For eQTL analysis, we filtered for common variants with MAF > 0.05.
eQTL calling was performed using the OLS module in statsmodel
with GTEx expression and covariates publicly available on GTEX por-
tal. Gene-level eQTL Pvalues were obtained by Bonferroni correcting
the minimal eQTL P value associated with a gene by a factor of the
number of eQTLs for that gene. Subsequently, the gene-level Pvalues
were corrected for multiple testing using the Benjamini-Hochberg
method at an FDR rate of <5%, yielding 111,291 significant eGenes
across 48 tissues. We performed fine mapping with CAVIAR, using the
top SV-eQTL signal with the 1,000 strongest SNP-eQTLs for a gene.
Preprocessing of the data was performed using the aforementioned
scripts.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The sequencing datausedin this study are available from the publica-
tions listed in Supplementary Table 1and Supplementary Table 2. All
variant calls and associations are available at http://data.schatz-lab.
org/jasmine/.

Code availability

TheJasmine and Iris code and documentation are available open source
at https://github.com/mkirsche/Jasmine/ and https://github.com/
mkirsche/Iris/. The versions used in the paper are archived in Zenodo
for Jasmine® and Iris®’. These methods are also available in Bioconda
and Galaxy to simplify use on the command line or within the Galaxy
graphical userinterface. The versions of all software packages used in
the manuscript are described in Supplementary Table 3.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Oxford Nanopore basecalling performed with Guppy 4.2.2

Data analysis Jasmine 1.1.0, Iris 1.0.4 sniffles 1.0.11, winnowmap 2.0, racon 1.4.10, minimap2 2.17, samtools 1.9, SURVIVOR 1.0.7, svtools 0.5.1, svimmer
0.1, dbsvmerge commit 85b3687a54ce21ba25862c58707daa212b9fbchd, svpop commit 8be50c55f8e81f8c701077bb9c00ee5bea3e0d2b,
Paragraph 2.4, CAVIAR commit 135b58baffac92b5e9b45f8db78315a9b4d713bc, plink 1.90b6.4, snphwe 1.0.2.

Jasmine and Iris are novel and are on Github at: https://github.com/mkirsche/Jasmine and https://github.com/mkirsche/Iris

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability
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The sequencing data used in this study is available from the publications listed in Supplemental Table 1 and Supplemental Table 2. All variant calls are available at
http://data.schatz-lab.org/jasmine/.




Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Long-read data was collected from several large publicly-available resources. Short-read analysis considered all 444 of the 1000 Genomes
samples and all 873 GTEx samples with appropriate datatypes available.
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Data exclusions  No data excluded

Replication Some of the SV-eQTLs identified in 1000 Genomes had been replicated in other studies, although since we used new methods for SV
discovery not all SV-eQTLs were replicated, as expected

Randomization  N/A; All available samples with appropriate data were used

Blinding N/A; All available samples with appropriate data were used

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z| D ChlIP-seq
Eukaryotic cell lines |Z| D Flow cytometry
Palaeontology and archaeology |Z| D MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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