Optimal Scheduling in the Multiserver-job Model under
Heavy Traffic

ISAAC GROSOF, Carnegie Mellon University, USA

ZIV SCULLY, Simons Institute, UC Berkeley & Carnegie Mellon University & Cornell University, USA
MOR HARCHOL-BALTER, Carnegie Mellon University, USA

ALAN SCHELLER-WOLF, Carnegie Mellon University, USA

Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice.
Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with
almost nothing known about mean response time. In simpler settings, such as various known-size single-
server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However,
for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers
are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while
simultaneously maximizing throughput. Our question is how to achieve these joint objectives.

We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response
time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we
present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads,
with improvements by orders of magnitude at higher loads.

Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy,
which is optimal when sizes are unknown or partially known.

CCS Concepts: « General and reference — Performance; - Mathematics of computing — Queueing
theory; - Theory of computation — Scheduling algorithms.

Additional Key Words and Phrases: scheduling; SRPT; Gittins; multiserver-job; response time; latency; sojurn
time; heavy traffic; asymptotic optimality

ACM Reference Format:

Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. Optimal Scheduling in the
Multiserver-job Model under Heavy Traffic. Proc. ACM Meas. Anal. Comput. Syst. 6, 3, Article 51 (Decem-
ber 2022), 32 pages. https://doi.org/10.1145/3570612

1 INTRODUCTION
1.1 The multiserver-job model

Traditional multiserver queueing theory focuses on models, such as the M/G/k, where every job
occupies exactly one server. For decades, these models remained popular because they captured
the behavior of computing systems, while being amenable to theoretical analysis. However, such
one-server-per-job models are no longer representative of many modern computing systems.

Authors’ addresses: Isaac Grosof, igrosof@cs.cmu.edu, Carnegie Mellon University, Computer Science Department, Pitts-
burgh, PA, USA; Ziv Scully, zscully@cs.cmu.edu, Simons Institute, UC Berkeley & Carnegie Mellon University & Cor-
nell University, Department of Electrical Engineering and Computer Sciences, Berkeley, CA, USA; Mor Harchol-Balter,
harchol@cs.cmu.edu, Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA; Alan Scheller-Wolf,
awolf@andrew.cmu.edu, Carnegie Mellon University, Tepper School of Business, Pittsburgh, PA, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2022/12-ART51

https://doi.org/10.1145/3570612

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

HTTPS://ORCID.ORG/0000-0001-6205-8652
HTTPS://ORCID.ORG/0000-0002-8547-1068
HTTPS://ORCID.ORG/0000-0003-1721-6759
HTTPS://ORCID.ORG/0000-0001-6871-2360
https://doi.org/10.1145/3570612
https://orcid.org/0000-0001-6205-8652
https://orcid.org/0000-0002-8547-1068
https://orcid.org/0000-0003-1721-6759
https://orcid.org/0000-0001-6871-2360
https://doi.org/10.1145/3570612

51:2 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

=
o
o

o
L

o
&

Fraction of jobs
H = = B
o
N

2
I

10° 10! 102 103 10* 10°
Normalized CPUs requested

Fig. 1. The distribution of number of CPUs requested by jobs in Google’s recently published Borg trace [38].
Number of CPUs is normalized so that the smallest job in the trace uses one normalized CPU.

Consider today’s large-scale computing centers, such as the those of Google, Amazon and
Microsoft. While the servers in these data centers still resemble the servers in traditional models
such as the M/G/k, the jobs have changed: Each job now requires many servers, which it holds
simultaneously. While some jobs require few servers, other jobs require many more servers. For
instance, in Fig. 1, we show the distribution of the number of CPUs requested by jobs in Google’s
recently published trace of its “Borg” computation cluster [14, 38]. The distribution is highly
variable, with jobs requesting anywhere from 1 to 100,000 normalized CPUs. Throughout this paper,
we will focus on this “multiserver-job model” (MSJ), by which we refer to the common situation in
modern systems where each job concurrently occupies a fixed number of servers (typically more
than one), throughout its time in service.

The multiserver-job model is fundamentally different from the one-server-per-job model. In
the one-server-per-job model, any work-conserving scheduling policy such as First-Come First-
Served (FCFS) can achieve full server utilization. In the multiserver-job model, a naive scheduling
policy such as FCFS will waste more servers than necessary. As a result, server utilization and
system stability are dependent on the scheduling policy in the multiserver-job model. While
finding throughput-optimal scheduling policies is a challenge, several such policies are known,
including MaxWeight [24], Randomized Timers [11, 25], and ServerFilling [14]. However, none of
these policies give consideration to optimizing mean response time; each policy solely focuses on
optimizing throughput. In fact, the empirical mean response time of such policies can be very poor
[11], motivating our goal of finding throughput-optimal policies which moreover minimize mean
response time.

1.2 The challenges of minimizing MSJ mean response time

In the M/G/k setting, where each job requires a single server, it was recently proven that the SRPT-k
(Shortest Remaining Processing Time-k) scheduling policy minimizes mean response time in the
heavy-traffic limit [15]. SRPT-k is a very simple policy: serve the k jobs of least remaining duration
(service time).

Unfortunately, in the multiserver-job system, trying to simply adapt the SRPT-k policy does not
result in an optimal policy for two reasons:

e Prioritizing by remaining job duration is not the right way to minimize mean response time.
We will show that an optimal policy must prioritize by remaining size, which we define to be
proportional to the product of a job’s duration and its server need, the number of servers the
job requires. We define these terms in more detail in Section 3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:3

e Even with this concept of size, a prerequisite for minimizing mean response time in the
heavy-traffic limit is throughput-optimality, which requires a policy to efficiently utilize all of
the servers whenever possible. Unfortunately, greedily prioritizing the job of least remaining
size, as in SRPT-k, is not throughput optimal. Our policy must be throughput-optimal, while
also prioritizing small jobs.

We therefore ask:

What scheduling policy for the multiserver-job model should we use to minimize mean
response time in the heavy-traffic limit?

By “heavy-traffic” we mean as load p — 1, while the number of servers, k, stays fixed. The
precise definition of load p and the heavy-traffic limit will be explained in detail in Section 3.

1.3 ServerFilling-SRPT and ServerFilling-Gittins

To answer this question, we introduce the ServerFilling-SRPT scheduling policy, the first scheduling
policy to minimize mean response time in the multiserver-job model in the heavy traffic limit.

ServerFilling-SRPT is defined in the setting where k is a power of 2, and all server needs are
powers of 2. This setting is commonly seen in practice in supercomputing and other highly-parallel
computing settings [5, 6].

To define ServerFilling-SRPT, imagine all jobs are ordered by their remaining size. Select the
smallest initial subset M of this sequence such that the jobs in M collectively require at least k
servers. Finally, place jobs from M into service in order of largest server need. This procedure is
performed preemptively, whenever a job arrives or completes. As we show in Section 3.2, whenever
jobs with total server need at least k are present in the system, this procedure will fill all k servers.
We use this property to prove in Section 4 that ServerFilling-SRPT minimizes mean response time
in the heavy-traffic limit.

ServerFilling-SRPT requires the scheduler to know job durations, and hence sizes, in advance.
Sometimes the scheduler does not have duration information. In the M/G/1 setting, when job sizes
are unknown, the Gittins policy [12] is known to achieve optimal mean response time. We therefore
introduce the ServerFilling-Gittins policy in Section 5. We prove similar heavy-traffic optimality
results for ServerFilling-Gittins.

1.4 A generalization: DivisorFilling-SRPT and DivisorFilling-Gittins

While ServerFilling-SRPT requires that the server needs are powers of 2, we have developed a
more general scheduling policy which requires only that the server needs all divide k. We call
this generalization DivisorFilling-SRPT. The DivisorFilling-SRPT policy is more complex than
ServerFilling-SRPT, and hence we defer its discussion to Appendix C. In Appendix C, we de-
fine both DivisorFilling-SRPT and DivisorFilling-Gittins. We then show that all of our results
about ServerFilling-SRPT and ServerFilling-Gittins hold for DivisorFilling-SRPT and DivisorFilling-
Gittins.

1.5 A Novel Proof Technique: MIAOW
In recent years, there have been a plethora of proof techniques developed to handle the analysis of

multiserver systems. These include:

e Multiserver tagged job analysis [15, 16, 32],

o Worst-case work gap [15, 16, 32],

e WINE (Work Integral Number Equality) [30, 31],
e Work Decomposition law [31].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:4 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

Maximize throughput | Minimize mean response time
Policies Attempted | Proven | Attempted Proven
MaxWeight [24] v v
Randomized Timers [11, 25] v v
ServerFilling [14] v v
FCFS [8, 22, 27]
Simple backfilling heuristics: First- v
Fit, BestFit, etc. [22, 41]
Size-aided backfilling: EASY, con- v
servative, dynamic, etc. [4, 22]
Size-based heuristics: GreedySRPT, NE
FirstFitSRPT, etc. [4]
Size & learning heuristics [17] v v
ServerFilling-SRPT (Section 4) & v v v v
DivisorFilling-SRPT (App. C)

Table 1. Comparison of multiserver-job scheduling policies

Unfortunately, none of these techniques suffice to handle the analysis of ServerFilling-SRPT and
DivisorFilling-SRPT. As we discuss in Section 4.2, the analysis of ServerFilling-SRPT requires
bounding the waste relative to a resource-pooled single-server SRPT system, where waste is the
expected product of work and unused system capacity. In order to analyze waste, we introduce a
new technique called MIAOW, Multiplicative Interval Analysis of Waste. MIAOW subdivides jobs
into multiplicative intervals based on their remaining sizes, and bounds the waste in each interval.

1.6 Comparison with other policies

In Table 1, we compare our ServerFilling-SRPT and DivisorFilling-SRPT policies and our asymptotic
optimality results with prior work in the multiserver-job setting. Prior work broadly falls into two
categories: theoretical results focusing on throughput-optimality, and good heuristic policies. Our
result is the first to theoretically study the problem of minimizing mean response time.

Fig. 2 compares the mean response time of ServerFilling-SRPT to that of prior throughput-optimal
policies, as well as naive size-based heuristic policies. These selected policies are representative of
the empirical behavior of a wide variety of prior policies: Some of the policies shown have SRPT-like
behavior, some policies are throughput-optimal, but only our ServerFilling-SRPT policy achieves
both. Correspondingly, in this simulation and others we have performed, ServerFilling-SRPT has
the best mean response time at all loads p, often by huge margins.

1.7 Summary of our contributions and outline

e In Section 3, we introduce the ServerFilling-SRPT scheduling policy.

o In Section 4, we bound the mean response time of ServerFilling-SRPT. We introduce MIAOW,
a new technique for bounding the total “relevant” work in the system. Using that bound, we
prove that ServerFilling-SRPT has asymptotically optimal mean response time as load p — 1.

Because these heuristics are not throughput optimal, they are only competitive for mean response time at low to moderate
load p.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:5

5
-—- GreedySRPT !
44 FirstFitSRPT !
— - MaxWeight 1
-=-=-- ServerkFilling i
o 31 — ServerFilling-SRPT i
o 'l
2]
- 'L
1 _ - ’/;’
0 - T
0.0 0.2 0.4 0.6 0.8 1.0
Load p

Fig. 2. Simulated mean response time E[T] as a function of load p in a multiserver-job setting with k = 8 total
servers. Server need is sampled uniformly from {1, 2, 4, 8}. Size is exponentially distributed, independent of
the number of servers required. Policies defined in Section 6. Simulations use 10 arrivals. Loads p € [0,0.999]
simulated.

e In Section 5, we introduce the ServerFilling-Gittins scheduling policy, in the setting of un-
known or partially-known job sizes and durations. We prove a similar bound and asymptotic
optimality result for ServerFilling-Gittins.

e In Section 6, we empirically evaluate ServerFilling-SRPT using simulation, showing that it
outperforms prior policies on realistic distributions over a variety of loads, not just the p — 1
limit.

All of our results for ServerFilling-SRPT and ServerFilling-Gittins also extend to DivisorFilling-SRPT
and DivisorFilling-Gittins.

2 PRIOR WORK

There are no prior optimality or asymptotic optimality results for mean response time in the
multiserver-job system. The most similar system where such results have been proven is the M/G/k,
a multiserver system with single-server jobs, and those results build off of classical results in the
M/G/1.

2.1 Single-server-job models (one server per job)

In the single-server setting, the Shortest Remaining Processing Time policy (SRPT), which prioritizes
the job of least remaining size, has been proven to minimize mean response time in the known-size
M/G/1, as well as the worst-case single-server system [28, 29]. Note that in the single-server setting,
a job’s size is simply its duration. In the unknown- and partially-known-size settings, the Gittins
policy is known to minimize mean response time in the M/G/1 [12, 33].

In the M/G/k, where jobs require a single server, [15] proves that the SRPT-k scheduling policy,
the natural analogue of SRPT in the M/G/k, asymptotically minimizes mean response time in
the known-size M/G/k in the heavy-traffic limit. There, as in this paper, load p is defined as the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:6 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

long-term average fraction of busy servers; p — 1 is the heavy-traffic limit. Specifically, the paper
shows that
E [TSRPT»k]
m——————=1.
p—1 E[TOPT—k]
This is proven despite the fact that the optimal policy OPT-k is unknown.

In the unknown job size setting, similar asymptotic optimality results for mean response time
have been proven for the Gittins-k policy [31] and a monotonic variant thereof [32]. Moreover,
for the Gittins-k policy, these results generalize to the partially-known job size setting, such as a
setting with imperfect job size estimates.

2.2 Multiserver-job model (many servers per job)

Theoretical results in the multiserver-job model are limited. The blocking model, where arriving
jobs either immediately receive service or are dropped, has received significant attention, with
many strong results [2, 37, 39, 43] such as the exact steady state distribution. However, without
any queue these models don’t fit most real computing systems well. In the queueing MS] model,
which we focus on, results are much more limited [19]. The best-studied scheduling policy is the
first-come first-served (FCES) policy. Stability region results for FCFS are known in several limited
settings [26, 27], and steady state results are only known in the case of two servers [3, 10, 23].

Recently, the Work Conserving Finite Skip (WCFS) framework has been used to analytically
characterize response time under the ServerFilling and DivisorFilling scheduling policies [14], both
of which serve jobs in near-FCFS order. We modify the ServerFilling and DivisorFilling policies
to prioritize jobs of shortest remaining size (SRPT). We then use a novel proof technique called
MIAOW to demonstrate that ServerFilling-SRPT and DivisorFilling-SRPT achieve asymptotically
similar mean response time to SRPT in an analogous M/G/1 setting.

There has also been work in the scaling multiserver-job model, where one analyzes a sequence
of multiserver-job systems with jointly increasing arrival rate, number of servers, and server needs
[20, 42]. The regimes investigated include multiserver-job analogues of the Halfin-Whitt regime.
Our results complement these, as we study a system with a fixed number of servers k in the
heavy-traffic limit.

2.3 Supercomputing

Supercomputing centers are one of the originators of the multiserver-job model: Supercomputing
jobs closely resemble the jobs in the multiserver-job model. Jobs commonly demand anywhere
from one core to thousands of concurrent cores [21, 40]. Unfortunately, all of the papers in this
area focus on simulation or empirical results, rather than analytical results [1, 7-9, 22, 35, 36].
These papers study a variety of scheduling policies, such as FCFS, various backfilling policies, and
other more novel policies. Backfilling policies considered include simpler, no-duration-information
policies such as FirstFit and BestFit [22, 41], as well as more complex, duration-information-based
policies such as EASY backfilling [34], conservative backfilling [34], Smallest Area® First-backfilling
[4], Dynamic Backfilling [22], and many more.

Often the primary goal of these papers is achieving high utilization, with secondary goals
including minimizing mean response time and ensuring fairness between different types of jobs.
However, their settings are sometimes more restrictive than our setting: preemption may be either
limited or impossible. When preemption is impossible, maximum utilization is lower, often around
p = 70%, and mean response times are often high near the utilization threshold.

2The term “area” used in [4] is equivalent to our “size”.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:7

Our scheduling policies, such as ServerFilling-SRPT, can only be defined for the subset of settings
where preemption is possible, and our policies leverage preemption to achieve much stronger
results in those settings.

2.4 Virtual Machine Scheduling

In the field of cloud computing, the Virtual Machine (VM) scheduling problem is essentially a
multi-resource generalization of the multiserver-job model. In this model, rather than a single
requirement like server need, each job requires concurrent utilization of several different limited
resources, such as RAM, CPU, GPU, network bandwidth, etc. Of course, any results in this more
general setting also apply to the multiserver-job setting. In the VM scheduling literature, papers
typically focus on finding a throughput-optimal policy. Two major categories of such policies
are the preemptive MaxWeight [24] and non-preemptive Randomized Timers [11, 25] scheduling
frameworks.

These papers focus entirely on achieving throughput optimality, and the mean response time
of the resulting policies can be poor, as several of the above papers note. Work on optimal mean
response time in the VM scheduling literature has been limited to heuristic policies and empirical
evaluation [17].

3 SETTING
3.1 Multiserver-job Model

The multiserver-job (MS]) model is a multiserver queueing model where each job requires a
fixed number of servers concurrently over its entire time in service. The jobs are therefore called
“multiserver jobs.”

A job j has two requirements: A server need k; and a service duration d;. These requirements
are sampled ii.d. from some joint distribution with random variables (K, D). Note that K and D
can be correlated. A job’s server need k; is at most the total number of servers, k. The total server
need of the jobs in service at any time must sum to at most k. The job j will complete after d; time
in service.

We assume Poisson arrivals with rate A, and we assume preemption is allowed with no loss of
progress.

Let a job j’s size s; be defined as k;d;/k, and likewise define the job size distribution S = KD/k.
Job j’s size can be viewed as the area of a rectangle with height equal to the job’s duration d; and
width equal to k;/k, the fraction of the total service capacity occupied by job j. Likewise, a job’s
remaining size r; is its remaining duration multiplied by k;/k. We define a job j’s service rate to be
k;/k, the rate at which the job’s remaining size decreases during service. We define a job’s age a;
to be s; — r;j, which increases at rate k;/k whenever the job is in service.

A resource-pooled M/G/1 is defined to be a system with a single server with the same capacity
as all k original servers pooled together, and the same arrival rate A and job size distribution S
as the original MS] system. We allow the resource-pooled M/G/1 to divide its capacity arbitrarily
among the jobs in the system. In particular, while jobs in the MSJ system have fixed service rates
depending on their server needs, in the resource-pooled system any combination of service rates is
allowed, decreasing remaining sizes accordingly. Note that the resource-pooled system is strictly
more flexible than the MSJ system, so the optimal policy in the resource-pooled system is superior
to the optimal policy in the MSJ system.

Let W(t) be the total work in the system at time ¢: The sum of the remaining sizes r; of all
job’s in the system at time t. Let B(t) be the “busyness” of the system at time ¢: The fraction of
servers that are occupied at time ¢. Note that B(t) is also the total service rate of all jobs in service

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:8 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

at time t, and so B(t) = —%W(t), outside of arrival moments. We also define W and B to be the
corresponding stationary random variables.

Let load p = AE[S] be the long-run average rate at which work arrives to the system. We assume
p < 1as anecessary condition for stability. We will focus on settings where p < 1 is also sufficient
for stability for some feasible scheduling policy. Note that p is a constant and that p = E[B], under
any scheduling policy for which the system is stable.

Next, let us define an r-relevant job, where r is a remaining size threshold. A job j is r-relevant if
rj < r. This terminology is in reference to the tagged job analysis used in studying SRPT in the
M/G/1 and M/G/k settings [15, 29]; in those settings, the service of a job with remaining size r is
only affected by the presence of r-relevant jobs in the system. The multiserver-job system is not as
simple, so we do not employ a tagged-job approach, but we reuse the terminology.

Correspondingly, let the r-relevant work W, (t) be the total remaining size of all r-relevant jobs
in the system at time ¢, and let B, () be the fraction of servers which are serving r-relevant jobs
at time ¢. Define B, and W, correspondingly. The core of our proof lies in bounding expectations
of random variables involving B, and W,, and combining these with a characterization of mean
response time E[T] in terms of B, and W,.

Next, let us define the r-relevant load p, to be the long-run average r-relevant busyness of the
system. A job with size s; receives min(s;, r) service while having remaining size < r. As a result,
pr = AE[min(S, r)] = E[B,]. We further divide the r-relevant load based on whether the job in
question has initial size < r. Let the arrival load p* = AE[S1{S < r}], and let the recycled load
pR = ArP(S > r). Note that p, = p2 + pX. Note also that p,, p2, and pX are all not dependent on
the policy 7.

Finally, let us define an r-recycling moment to be a moment when a job j with initial size s; > r
reaches remaining size r; = r. Let E,[] be an expectation taken over r-recycling moments, just
prior to the job recycling.

3.2 ServerFilling-SRPT
This paper considers two settings of server needs:

e The “power of two” setting: k is power of two, and all server needs k; are powers of two.
o The “divisible” setting: k is general, and all server needs k; are divisors of k.

Corresponding to these two settings, we have two policies of interest: ServerFilling-SRPT for the
power of two setting, and DivisorFilling-SRPT for the divisible setting. We define ServerFilling-SRPT
here, and DivisorFilling-SRPT in Appendix C. When writing equations throughout the paper, we
abbreviate ServerFilling-SRPT as SFS-k.

To implement SFS-k, start by ordering jobs in increasing order of remaining size r;, breaking ties
arbitrarily. Define jy, ja, . .. such that

rj <rj, < ...
Next, consider initial subsets of this ordering:

{nh U e bs s Jos j3d - oo

We are interested in the smallest initial subset M in which the total server need is at least k. In
other words, let i* be the smallest index such that

.
ki = k.
i=1

If there is no such index, then ServerFilling-SRPT serves all jobs in the system simultaneously.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:9

Otherwise, ServerFilling-SRPT will serve a subset of M = {ji, ja, ..., ji }. Among this subset,
ServerFilling-SRPT prioritizes jobs of largest server need, placing jobs into service in descending
order of server need, until no servers remain or the next job cannot fit, breaking ties by smallest
remaining size, and further ties arbitrarily.

In the power-of-two setting, ServerFilling-SRPT guarantees the following strong property: At all
times, either all servers are busy, or all jobs are in service. This was proven for the ServerFilling
policy [14, Lemma 1], which is identical to ServerFilling-SRPT, except that jobs are ordered in
arrival order, rather than SRPT order. For completeness, we reprove this result here:

LEmMMA 3.1. Under the ServerFilling-SRPT policy, in the power-of-two setting, if the total server need
of jobs in the system is at least k servers, all k servers are busy.

Proor. Recall that M is a set of jobs, each with server need a power of two, which have a total
server need of at least k. Label the jobs my, my, ... in decreasing order of server need, tiebroken by
least remaining size.

Ky = km, > ...

Let NEED(z) represent the total server need of the first z jobs in this ordering:

z
NEED(z) = Z km,.
i=1

The set of jobs served by ServerFilling-SRPT is an initial sequence of this server need ordering:
{m; | i < ¢} for some ¢. Specifically, the index ¢ up to which ServerFilling-SRPT serves jobs is the
largest index z such that NEED(z) < k. To prove Lemma 3.1, it suffices to show that NEED(¢) = k.

Note that NEED(0) = 0 and NEED(|M|) > k. As a result, NEED(z) must cross k at some point. To
prove that NEED(¥) = k, it suffices to prove that:

There exists no index ¢’ such that NEED(¢') < k and NEED(# + 1) > k. (1)

To prove (1), let us define REMAIN(z), the number of servers remaining after z jobs have been placed
into service:

REMAIN(z) = k — NEED(z).
Because all server needs k; are powers of two, we will show that REMAIN(Zz) carries an important
property:
REMAIN(Z) is divisible by k,_,, for all z. (2)

We will use (2) to prove (1). We write a|b to indicate that a divides b.

We will prove (2) by induction on z. For z = 0, REMAIN(0) = k. Because k is a power of two, and
km, is a power of two no greater than k, the base case holds. Next, assume that (2) holds for some
index z, meaning that ky,_,, |REMAIN(z). Note that REMAIN(z + 1) = REMAIN(2) — ky,_,,. As a result,
km,., |IREMAIN(z +1). Now, note that k,_,, |ks._,,, because both are powers of two, and kp,_,, < k.,
As aresult, ky,_,,|REMAIN(z + 1), completing the proof of (2).

Now, we are ready to prove (1). Assume for contradiction that such an ¢’ exists. Then REMAIN(¢’) >
0, and REMAIN(f’ + 1) < 0. Because REMAIN({’ + 1) = REMAIN({") — ky,,,,,, we therefore know that
km,,, > REMAIN(¢'). But from (2), we know that k,,,,, divides REMAIN(¢’), which is a contradic-
tion. O

Note that Lemma 3.1 remains true if the power-of-two setting is replaced by the power-of-x
setting, for any integer x. In fact, the only condition on the server needs necessary to prove
Lemma 3.1 is that all server needs divide k, and all server needs divide all larger server needs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:10 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

An important corollary of Lemma 3.1 is a property which we call “relevant work efficiency”:

COROLLARY 3.1 (RELEVANT WORK EFFICIENCY). Under the ServerFilling-SRPT policy, in the power-
of-two setting, if there are k or more r-relevant jobs in the system, all servers are occupied by r-relevant
jobs, meaning that B, = 1.

Proor. Note that |M| < k, because M is the smallest initial subset of the SRPT ordering with
total server need at least k, and all jobs have server need at least 1. Therefore, if there are k or
more r-relevant jobs in the system, then all jobs in M are r-relevant, so ServerFilling-SRPT fills all
k servers with r-relevant jobs, meaning that B, = 1. m]

Corollary 3.1 is the sole property of ServerFilling-SRPT that we will use to prove our main
theorems, Theorems 4.1 and 4.2.

DivisorFilling-SRPT in the divisible setting also satisfies the relevant work efficiency property: If
there are k or more r-relevant jobs in the system, then B, = 1, as we discuss in Appendix C. As a
result, our main theorems, Theorems 4.1 and 4.2, also hold for DivisorFilling-SRPT.

4 SERVERFILLING-SRPT: ASYMPTOTICALLY OPTIMAL MEAN RESPONSE TIME
4.1 Summary of Results and Proofs

To prove the optimality of ServerFilling-SRPT, we will compare ServerFilling-SRPT’s mean response
time against a resource-pooled M/G/1/SRPT system with the same size distribution S. Let “SRPT-1”
denote the M/G/1/SRPT system. Recall that SRPT-1 combines the power of all k servers into a
single server, which can work on any job or any mixture of jobs. This resource-pooled system is
strictly more flexible than the multiserver-job system, so the optimal policy in the resource-pooled
system forms a lower bound on the optimal policy in the MS] system. Because SRPT minimizes
mean response time in the M/G/1, SRPT-1 yields a lower bound on the optimal mean response time
in the MS]J system.

We will upper bound the gap in mean response time between ServerFilling-SRPT and SRPT-1 for
all loads p, and prove that the gap asymptotically grows slower than E[TSRFT-1]. By doing so, we
will show that ServerFilling-SRPT is asymptotically optimal in the multiserver-job system.

First, we prove a bound on the gap in mean response time between ServerFilling-SRPT and
SRPT-1:

THEOREM 4.1. For all loads p, in the power-of-two setting, the mean response time gap between
ServerFilling-SRPT and SRPT-1 is at most

A 1—p+1'

The same is true of DivisorFilling-SRPT in the divisible setting.

E[TSFS*] — E[TSRFT1] < (e+1)(k-1) In e

PROOF DEFERRED TO SECTION 4.3. [}

We use this bound to prove that ServerFilling-SRPT yields optimal mean response time in the
heavy-traffic limit:

THEOREM 4.2. IfE[S?(log S)*] < oo, then ServerFilling-SRPT is asymptotically optimal in the
multiserver-job system:

E[TSFS-k] E[TSFS-k]
pot E[TSRPT1] ~ 0% E[TOPT*] —

The same is true of DivisorFilling-SRPT in the divisible setting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:11

PROOF DEFERRED TO SECTION 4.3. O

The condition E[S?(log S)*] < oo is very slightly stronger than finite variance.
In Section 5, we generalize both results to the settings of unknown- and partially-known job
duration.

4.2 A Novel Proof Technique: MIAOW

4.2.1 Challenges of multiserver-job analysis. As mentioned in Section 1, mean response time
analysis in the multiserver-job system is a difficult problem, with no size- or age-based scheduling
policies having previously been analyzed. The difficulty arises from two sources: First, analyzing the
mean response time of any system with multiple servers under a size- or age-based scheduling policy
is already very difficult, even in a single-server-job setting such as the M/G/k. New techniques
based on relevant work have recently been developed to handle this challenge. The first such
analysis is as recent as 2018, when the SRPT-k policy was analyzed in the M/G/k [15], followed
by the analysis of the monotonic-Gittins-k and Gittins-k policies in the M/G/k in 2020 and 2021
[31, 32].

Unfortunately, the multiserver-job system presents a major additional challenge. We will show
in Sections 4.2.3 and 4.2.4 that these recent techniques for multiserver systems break when dealing
with our multiserver-job system. As a result, we need a new technique to analyze the multiserver-job
systems, which we introduce in Section 4.2.5.

4.2.2 Key idea of previous approaches: Relevant work similarity. The first step in applying relevant-
work-based techniques [15, 31, 32] is to prove a property which we call “relevant work similarity”:

DEFINITION 4.1. A policy m achieves relevant work similarity (RWS) if, for all remaining sizes
r (or ranks’ r), the policy m system and the optimal resource-pooled system OPT-1 (e.g. SRPT-1 or
Gittins-1) have similar expected r-relevant work:

E[W]] - E[W°"T] < O(r).

The RWS property holds for all three policies and systems analyzed previously [15, 31, 32], as
well as for ServerFilling-SRPT. Unfortunately, the RWS property is not sufficient on its own to
tightly bound mean response time, or to prove asymptotically optimal mean response time.

4.2.3 First attempt: Tagged job approach. One way to build on the RWS property to prove asymp-
totic optimality is to use the tagged job approach, employed by the SRPT-k [15] and monotonic-
Gittins-k [32] results. The tagged job approach combines the RWS property with an additional
property, which we call “relevant work implies response time”:

DEFINITION 4.2. A policy m achieves relevant work implies response time (RW—RT) if the
following holds: If a generic tagged job of size r sees some amount x of r-relevant work in each of the
policy m system and the optimal resource-pooled system OPT-1, then its expected response must be
similar (within O(r)) in the two systems.

If the RWS and RW—RT properties can both be proven for some policy r, it is relatively straight-
forward to tightly bound mean response time and prove that the policy 7 has asymptotically optimal
mean response time. Unfortunately, for our ServerFilling-SRPT policy, the RW—RT property fails,
meaning that the tagged-job approach cannot be used.

For a counterexample to the RW—RT property for ServerFilling-SRPT, consider a scenario where
the tagged job requires 1 server and has the smallest size of any job in the system, and where it sees

3Rank is the analogue of remaining size under the Gittins policy.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:12 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

many jobs on arrival, all of which require an even number of servers and have larger remaining
sizes. Furthermore, assume that arriving jobs rarely require 1 server. The resource-pooled SRPT-1
system will quickly complete the tagged job, as it has the smallest remaining size of any job in the
system.

In contrast, the ServerFilling-SRPT system will not quickly complete the tagged job, because
ServerFilling-SRPT prioritizes the jobs of largest server need among the initial subset M, as defined
in Section 3.2. The tagged job will need to wait until the system empties or additional 1-server jobs
arrive to be served. Clearly, similar relevant work does not imply similar response time.

This is an inherent difficulty of the multiserver-job system: Serving the tagged job any earlier
would require leaving at least one server empty, as the tagged job is the only job with an odd server
need, given the power-of-two setting. This could endanger throughput-optimality. As a result, the
tagged-job approach cannot be used to effectively analyze the multiserver-job system.

4.2.4 Second Attempt: Gittins-k. The analysis of the Gittins-k policy for the M/G/k [31] also relies
on the RWS property, which again is insufficient alone to prove asymptotically optimal mean
response time in their setting. As in our setting, for the Gittins-k system, the RW—RT property
fails, so the tagged-job approach cannot be employed.

The authors take a different approach: They introduce WINE [31, Theorem 6.3], our Lemma 4.3,
a new identity that relates response time and relevant work in all systems.* WINE implies

1 /‘DO E[Wrn-k] _ E[WrOPT-l]
AJo .

WINE is more general than the RW—RT property, because RW—RT only holds in certain systems.

We can see from (3) that the RWS property is almost enough to bound mean response time,
but the O(r) bound is too loose to show that the integral converges. The authors therefore prove
a stronger version of the RWS property at sufficiently low and high ranks r. Combining their
strengthened bounds with WINE, they prove that Gittins-k achieves asymptotically optimal mean
response time in the M/G/k.

However, their proof of a stronger version of RWS at low ranks r relies on the fact that under
Gittins-k in the M/G/k, the job of least rank is guaranteed to be served. This fails when applied to
ServerFilling-SRPT, because in our multiserver-job system the job of least rank is not guaranteed
to receive service. See the counterexample given in Section 4.2.3.

E[Tn'—k] _ E[TOPT-I] — (3)

r2

4.2.5 Our approach. Our key idea is to directly focus on the integrated relevant work difference
given in (3). This circumvents the need to strengthen the RWS property (like in Section 4.2.4) or
prove an RW—RT property (like in Section 4.2.3).

We start with a key property of the ServerFilling-SRPT system, which we call “relevant work
efficiency” (RWE). RWE states that if there are k or more r-relevant jobs in the system, then all
servers are occupied by r-relevant jobs. We prove in Section 3.2, specifically in Corollary 3.1, that
ServerFilling-SRPT satisfies the RWE property.

While one can show that RWE implies RWS, RWS alone is not enough, as discussed in Section 4.2.4.
Instead, we use the RWE property to directly bound the integrated relevant work difference given
in (3), thereby directly bounding the mean response time difference. We prove this result in
Theorem 4.6. This forms the core of our proof that ServerFilling-SRPT achieves asymptotically
optimal mean response time.

Theorem 4.6 is our key technical theorem; it provides a novel bound on the waste in any system
which satisfies RWE. By waste, we refer to the quantity E[W, (1 — B,)], the expected product of

4The name “WINE”, short for “work integral number equality” [30], is more recent than [31], but refers to their Theorem 6.3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:13

r-relevant work and the fraction of system capacity not working on r-relevant jobs. Note that the
SRPT-1 system never has any waste: If any r-relevant job is present the entire system capacity is
working on such a job.

To bound waste, we use a novel technique which we call MIAOW: Multiplicative Interval Analysis
of Waste. Intuitively, MIAOW makes use of the fact that both W, and B, change slowly as a function
of r. We use this fact to bound the integrated waste over a generic interval of remaining sizes [ry, rp].
This contrasts with the prior waste-based technique [31], which focused on bounding waste at
individual remaining sizes r, an approach which does not imply a useful bound in the MSJ setting.
We then carefully select a sequence of remaining size intervals with multiplicatively diminishing
spare capacity 1 — p2. Applying our bound to each interval completes Theorem 4.6.

We note that MIAOW is stronger than the techniques used to prove asymptotically optimality
in the M/G/k for SRPT-k and Gittins-k [15, 31]. In particular, one could use our technique to
reprove all of the asymptotic optimality results in those papers. This follows from the fact that the
multiserver-job model is a generalization of the M/G/k: A multiserver-job setting where all server
needs are 1 is simply an M/G/k.

4.3 Proof of Main Results

Our goal is to bound the mean response time of the ServerFilling-SRPT policy, relative to the
resource-pooled SRPT-1 policy.

To bound mean response time, we start by applying the “work integral number equality” (WINE)
technique [30, 31] to write mean response time E[T”] for a general policy r in terms of expected
relevant work E[W/]. This technique was introduced in [31, Theorem 6.3], but we reprove it here
for completeness.

LEMMA 4.3 (WINE IDENTITY [31]). For an arbitrary scheduling policy m, in an arbitrary system,

< E[WF
Birr) = e =3 [0

dr.

Proor. We will prove that at every moment in time,

NT(¢) = / : W’;(t) dr. (@)

Recall that r-relevant work W/ (t) is simply a sum over the r-relevant jobs in the system. As a
result, we can consider the integral in (4) as a sum over the jobs in the system.

Consider a general job j, with remaining size r;. The contribution of j to the r-relevant work
W (t) is rj, for thresholds r such that r; < r, and 0 otherwise.

Therefore, the contribution of job j to the integral in (4) is

Cr:l{r; <r © p ® q 1
/ Ll {]2 }dr=/ —;drzrj/ —dr=r;—=1
r=0 r r=r; r r=r; r rj

Because the contribution of an arbitrary job is 1, the integral in (4) simply counts the number of
jobs in the system at time ¢, giving N” (t) as desired.
Note that E[T"] = ZE[N”"], by Little’s Law [18]. o

Now that we have written mean response time in terms of relevant work, we need to understand
E[W7] — E[W>RPT-1] the difference in r-relevant work between a general policy 7 and the resource
pooled SRPT-1 system. To do so, we employ the work-decomposition law. This technique was
introduced in [31], and we specialize it here to the SRPT setting. For completeness, we give the
proof in Appendix A.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:14 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

LEMMA 4.4. [31, Theorem 7.2] For an arbitrary scheduling policy r, in an arbitrary known-size
system,

E[(1 - BOYWZ] + pRE, [W7]
1-pf '

E[Wrn'] _ E[MerRPT—l] —
PROVED IN APPENDIX A. O

Combining Lemma 4.3, and specifically its implication (3), with Lemma 4.4, we arrive at the
following characterization of the mean response time difference between a general policy 7 and
SRPT-1:

LEMMA 4.5. For any scheduling policy m, in any system,

E[T™] - E[T%"""] = % /0 i —E[S (_1 Iji’zr)/’”] dr ()
1 [pRE.[W7]
1 A —r2(1 — p*;‘) dr. (6)

Intuitively, (5) and (6) measure the inefficiency of the policy « relative to the ideal SRPT-1 system,
through the lens of W7, the r-relevant work under policy 7.

The first term (5) measures the extent to which r-relevant work is present, but not being worked
on. In the multiserver-job system, not all of the system can be devoted to a single job, so the waste
E[(1 — B)W7] will typically be nonzero.

The second term (6) measures the extent to which jobs r-recycle while r-relevant work is present
in the system. In the multiserver-job system, not all of the system can be devoted to a single job, so
jobs with remaining size above r will be worked on, and will r-recycle, while r-relevant work is
present, so E,[W7] will also typically be nonzero.

Our goal is to bound the magnitude of (5) and (6) under the ServerFilling-SRPT policy, in the
power-of-two setting. We do so by making use of the key property of ServerFilling-SRPT, relevant
work efficiency (Corollary 3.1): If there are k or more r-relevant jobs in the system, then B, = 1.

We bound (5) in Theorem 4.6 using our novel MIAOW technique, and we bound (6) in Theo-
rem 4.7.

THEOREM 4.6 (BOUND WASTE). Under the ServerFilling-SRPT policy, in the power-of-two setting,
/DC E[(l B Br)Wr]

=0 r3(1=pf)
The same is true of DivisorFilling-SRPT in the divisible setting.

dr < e(k - 1){ln ! }
I-p

Proor. First, we make use of the key fact about ServerFilling-SRPT (and DivisorFilling-SRPT),
relevant work efficiency: If there are at least k jobs with rank < r in the system, then B, = 1. This
is proven in Corollary 3.1 for ServerFilling-SRPT, and in Appendix C for DivisorFilling-SRPT.

Let us define W, to be the r-relevant work of the k — 1 jobs of least remaining size in the system.
Note that if B, < 1, then W, = W, for ServerFilling-SRPT and DivisorFilling-SRPT. As a result,

/mﬂﬂ—&mﬂm:/”HO—&Mﬂm

= r¥(1-pf) - r2(1-pf)
Next, we will break up the range of remaining sizes r € [0, c0) into a finite set of buckets. Let
{ro,r1,...,rm} be alist of m different remaining sizes, where ry = 0. We will specify the list {r;}

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:15

later. Implicitly, we will say that rp,+; = co. We can rewrite the above integral as:

E[(1-B)w* ret E[(1 - B,)W?]
fr:o TR Z/ o Y T g @)

Next, we replace r with either r; or r;;1, selectively, to simplify things. Note that B, is increasing
as a function of r, because as we increase the rank r, more servers are busy with r-relevant jobs.
Likewise, p’;\ is increasing as a function of r. Thus, for any r € [r;, ris1],

By, < By, J Pil-
Substituting into the integral from (7), we find that

ri1 E[(1 - B,)W,'] "#1 E[(1 = By,)W}]
/ — T dr< / ——ar
r=r; r(1 —Pf) r=r, T3(1 _p‘éﬂ)

Next, let us perform some algebraic manipulation:

rin E[(1 - B, W* i1 (1 — B, I/V'r* 1- B, s W*
/ [(1-B,)]dr:E[/ #dr}:]g[—‘ d] (®)

=ri ,.2(1 - pr,+1) =r; rz(l - pé-{.l) 1- pé+1 r=ri

Now, let us make use of the definition of W,". Recall that W," is the total remaining size of the k — 1
jobs of least remaining size in the system.

k=1
W' = Z ril{r; <r}
=

Substituting this into (8), we find it is equal to

/ ollnEn, l ©)
1-ph, £

Now, we will bound the integral in (9). As noted in Lemma 4.3, for an arbitrary remaining size r;,

®prl{r; <r * 1 1
/ Lz}drzrj/ —dr=rj—=1
r=0 r r=r; r rj

Ti+1 rA]l{rA < r}
J J =
S 7= - <
/ 2 dr <
r=r;

Substituting in this bound into (9), we find that

=E

As a result,

E / ol =n,, [P (k- 1)]

erl Jj=1 p"z+1

1- B, -
=(k—1)E[— —(k—l) —Pn (k—l) p".
1- Tit+1 rl+1 rH—l
Returning all the way back to the beginning, we find that
® E[(1-B)W,] & 1-pf
————dr<(k-1)) ———. (10)
[=O rZ(l - Pqu) IZ(; - £+1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:16 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

We are now ready to construct the list {r;}. Our goal in doing so is to minimize the sum

A
>
-
=0 1~ Prin
Our only constrains are that ry = 0 and ry,41 = 0. In particular,
A A A A
1_:07‘[]:1_:00:1’ 1_prm+1:1_poo:1_p~

All other r; thresholds are ours to choose.

We will set r; such that the values 1 — pfi form a geometric progression. In particular, define
r1,ra, ... to satisfy the following:

1 1 1
A A A .
l_pn:z’ 1—pr2=e—2, 1_Pr,-=; Vi< m. (11)

If the size distribution S is continuous, we choose r; to exactly satisfy (11). If S is discontinuous,
then p2 is discontinuous, so exact equality is not necessarily possible. However, it suffices to choose
r; such that

1 N A .
;e[l—pr:,l—pr;] Vi<m,

which is always possible. By * and ~, we refer to the one-sided limits.
We then set m = [In ﬁ‘l — 1. This choice of {r;} ensures that

1-p2
_/lee Vi<m (12)
1_pri+1
no1-pd 1
D —pA’l <e(m+1) = e{ln—w. (13)
i=0 l_pri+1 1_p

For i < m — 1, (12) follows immediately from (11). For i = m, (12) follows from the fact that
L= Pl =1-p.
Applying (10), we find that
/00 E[(l - Br)Wr]
r=0 rA(1- Pé)

Now, it remains to bound (6):

1
dr < e(k - 1){ln } O
I-p

THEOREM 4.7 (BOUND RECYCLED WORK). Under the ServerFilling-SRPT policy, in the power-of-two

setting,
o0 RE W,
/ p”—[;]dr <(k-1)ln
r=0 rz(l = Pr)
The same is true of DivisorFilling-SRPT in the divisible setting.

1-p

Proor. First, recall the key property of ServerFilling-SRPT and DivisorFilling-SRPT, relevant
work efficiency: If there are at least k jobs with remaining size < r in the system, then B, = 1. This
is proven in Corollary 3.1 for ServerFilling-SRPT, and in Appendix C for DivisorFilling-SRPT.

When a job r-recycles, it must have been in service despite having remaining size > r. As a result,
there are at most k — 1 other jobs with remaining size < r present in the system at an r-recycling
moment. Each such job contributes at most r work to W;.. As a result, E.[W,] < (k - 1)r.

o RE |4 © (k-1 R oo R 1
/ PrEd el al :1] dr < / —()’",Zr dr=(k-1) Pr —-dr.
r=0 rz(l_pr) r=0 rz(l_pr) r=0 1—pr T

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:17

To bound the integrand, we will expand the definitions of pX and pZ in the SRPT setting.
=ArP(S > r)
= AE[S1{S < r}].
We therefore bound as follows:

pr 1 AMP(S>1)
1-pdr 1-AE[SI{S <r}]

AP(S > 1)
1-AE[S1{S < r}]’

1.
r
Now, note that P(S > r) = %E[min(s, r)], and that E[min(S,r)] > E[SL{S < r}]. As a result,

APS>r) AP >7) ALE[min(S,r)] d 1

1-AE[S1{S <r}] = 1-AE[min(S,r)] 1-AE[min(S,r)] dr 1o AE[min(S,r)]’

Integrating over all r € [0, c0), we find that

© pRk 1 ® 1
Sdr<|-m—- | =In——. O
/,:0 = nl—AE[min(S,r)]]rZO "o

Now, we’re ready to put it all together. We derive a bound on mean response time:

THEOREM 4.1. In any multiserver-job system, the difference in mean response time between ServerFilling-
SRPT and SRPT-1 is at most

k . (e+1)(k-1) 1 e
E[TSFS] _E[TSRPT 1] < > In(l — p)

The same is true of DivisorFilling-SRPT in the divisible setting.
ProOF. From Lemma 4.5, we know that
E[TSFS-I(] _ E[TSRPT-I]

1) E[(l BSFS k)WSFS -k 0 E WSFS k]
= —/ / ——dr
A r3(1— "7 r2(1 -

We apply Theorem 4.6 and Theorem 4.7 to bound the two terms:

E[TSFS—k] _ E[TSRPT‘I] < le(k — 1)’711'1 1 + l(k - 1) In !
A 1-p| A 1-

We use the bound [x] < x + 1 to simplify the resulting expression. O

Now, we use this bound to prove asymptotic optimality:
TuEOREM 4.2. IfE[S?(logS)*] < o0

i E[TSFS—k] o E[TSFS-k] B
poi E[TSRPT-1] ~ 5% E[TOPT*] — L

The same is true of DivisorFilling-SRPT in the divisible setting.

PROOF. From Theorem 4.1, we know that the gap E[TSF5*] — E[TSRPT-1] grows as O(log ﬁ) in
the p — 1 limit. It is known that if E[S?(log S)*] < oo, then E[T*RPT!] = »(log ﬁ) inthep — 1
limit. This is proven in [31, Appendix B.2], and specifically in the proof of [31, Theorem 1.3]. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:18 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

5 SERVERFILLING-GITTINS: ASYMPTOTIC OPTIMALITY WITH UNKNOWN SIZES

We generalize our results to the setting of unknown sizes or of partially known sizes (e.g. size
estimates). To do so, we replace the SRPT job ordering with the Gittins job ordering, thus creating
the ServerFilling-Gittins (SFG-k) and DivisorFilling-Gittins policies.

5.1 Background

The Gittins policy is the optimal scheduling policy for minimizing mean response time in the M/G/1
in the unknown and partially-known size settings [12, 33], filling the same role as SRPT in the
known-size setting.

The Gittins policy is an age-based index policy, meaning that it assigns each job a rank according
to the job’s age and static characteristics (e.g. server need), as well as any other information the
scheduler may have, and serves the job of least rank. In the blind MS]J setting, the Gittins rank
function can be defined as follows: Let S; be the job size distribution of jobs with server need i.
Then a job with server need i and age a has rank:

E[min(S;,b) —a | S; > a]
in
b>a P[Sl < b|S, > a]
The definition of the Gittins rank in settings where the server has more information is similar, but
more complicated. For more details, see [31, 33].

We define the ServerFilling-Gittins policy by ordering jobs in increasing order of Gittins rank, and
then applying the same ServerFilling procedure as described in Section 3.2. We define DivisorFilling-
Gittins similarly, based on the DivisorFilling procedure given in Appendix C.

5.2 Notation

Our notation follows [31]. We start by defining a job state space X of all possible job states x. For
instance, in the unknown size setting, a job’s state is simply its age a. In the known-size setting,
a job’s state was its remaining size. Every state x is mapped to rank(x). We call a job in state x
r-relevant if rank(x) < r.

Next, we need to adjust the concept of “remaining size” slightly. We define S, (x), the r-relevant
remaining size of a job in state x, to be the random variable denoting the amount of service the job
needs in order to reach an r-irrelevant state or complete. In the known-size case, this amount of
service was deterministic, but here it is a random variable.

We can now define W,, the r-relevant work in the system, to be the total of all jobs’ r-relevant
remaining size in steady state. Likewise, B, is the fraction of servers occupied by r-relevant jobs.

We also define two state distributions: X4, the state of arriving jobs, and Xf, the state of jobs
recycling relative to rank r. In the known-size case, Xf is deterministic, and in the unknown size
case, X4 is deterministic, but in general both are random variables. We also define /15 to be the rate
at which jobs recycle relative to rank . This is equal to A times the expected number of r-recyclings
per job.

We can now define the two constituents of r-relevant load, p* and pX.

pit = AE[S,(XM)]
pf = AE S (X)]
Now, we are ready to state our main result for ServerFilling-Gittins.

5.3 Asymptotic Optimality for ServerFilling-Gittins

Our main result for ServerFilling-Gittins is an analogous bound on mean response time to Theo-
rem 4.1, our bound on mean response time for ServerFilling-SRPT:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:19

THEOREM 5.1. For all loads p, in the power-of-two setting, the mean response time gap between

ServerFilling-Gittins and Gittins-1 is at most
(e+1)(k—-1) 1 e
In -
A 1-p A
The same is true of DivisorFilling-Gittins in the divisible setting.

E[TSFG-]C] _ E[TGittinS-l] <

Note that this bound is in some ways stronger than the bound on Gittins-k given in [31]. Our
bound is the first uniform bound on multiserver Gittins, meaning that our bound doesn’t depend on
S except via E[S], unlike the bound on Gittins-k in [31]. Note also that the M/G/k is a special case of
the multiserver-job system when server needs are all 1, and that in this special case, ServerFilling-
Gittins specializes to Gittins-k. As a result, Theorem 5.1 is a strict improvement upon the bound
given in [31].

We use this bound to prove that ServerFilling-Gittins yields optimal mean response time in the
heavy-traffic limit:

TuEOREM 5.2. IfE[S?(log S)*] < oo, then ServerFilling-Gittins is asymptotically optimal in the
multiserver-job system:
E [TSFG-k] E [TSFG-k]

/l,i_,ml E[TCittins1] ~ /1,1_>ml E[TOPTK] 1

The same is true of DivisorFilling-Gittins in the divisible setting.

Theorem 5.2 follows from Theorem 5.1 just as Theorem 4.2 follows from Theorem 4.1.

To prove Theorem 5.1, an analogous proof to the proof of Theorem 4.1 given in Section 4.3
suffices. We simply must replace certain quantities used in Section 4.3 with the equivalent quantities
for the Gittins policy. Specifically, rather than thinking of a job as r-relevant if it has remaining size
< r, we instead think of a job as r-relevant if it has rank < r under the Gittins policy. We redefine
W7, BZ, and p;, pf‘, and pf accordingly, as described in Section 5.2. For full details, see Appendix B.

The recycling term of our key background lemma Lemma 5.3 is likewise slightly different:

LEMMA 5.3. For any scheduling policy 7,

E[T7] - BTGt 1) = 2 /) —[S (_1 ?ﬂ)m)ﬂ[] dr (14)
* ARE, [S,(XF)Yw7]
A/ ETTR T L dr. (15)

Here pLE,[W/"] from Lemma 4.5 becomes ARE,[S,(X?)W7]. Note that in the SRPT case, S, (X¥) =
r, because under SRPT, a job r-recycles when its remaining size is . Lemma 5.3 follows from [31,
Theorem 7.2].

Bounding the waste term involving E[(1 — BF)W/] proceeds completely analogously to The-
orem 4.6. Bounding the recycled work term involving ARE, [S,(XR)W/] is likewise completely
analogous to Theorem 4.7. For the full details, see Appendix B.

6 EMPIRICAL RESULTS

We have proven that ServerFilling-SRPT yields asymptotically optimal mean response time in
the heavy-traffic limit (as p — 1). To empirically validate our theoretical results and broaden our
comparison to general p, we use simulation to compare the mean response time of ServerFilling-
SRPT to that of several previously proposed policies:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:20

Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

10
— - MaxWeight _ - 7
-— N/
— g+ ServerfFilling -
E -—-= ServerFillingSRPT
b — -
T: . SRPT-1
=
£
~
o 47
e
I b
S i _
0 T T T T T T T
0.86 088 090 092 094 096 0.98 1.00
Load p

Fig. 3. Ratio of mean response time between several multiserver-job policies and SRPT-1. K uniformly sampled
from {1,2, 4, 8}. S exponentially distributed, independent of K. Each simulation consists of 107 arrivals. Loads

up to p = 0.999 simulated.

MaxWeight: A throughput optimal policy which considers all possible sets of jobs that can be
served at a time. Each job is given a weight equal the number of jobs in the system with the
same server need. The set of jobs with the maximum total weight is served [24]. Note that
this policy requires solving a NP-hard Bin Packing problem for each service.

ServerFilling: A policy which orders jobs in arrival order, then uses the same procedure to
place jobs onto servers as our ServerFilling-SRPT policy specified in Section 3.2. ServerFilling

is throughput-optimal in the power-of-two setting [14].

We also compare against resource-pooled SRPT-1, our lower bound on the optimal policy.

In Fig. 3, we show the ratio of mean response time between the multiserver-job policies and
SRPT-1. As proven in Theorem 4.2, for ServerFilling-SRPT, this ratio converges to 1, implying that
ServerFilling-SRPT yields asymptotically optimal mean response time. In contrast, for MaxWeight
and ServerFilling, the ratio is far from one, and appears to diverge. ServerFilling-SRPT has superior

mean response time at all p.

In Fig. 4, we show a setting with higher variance job sizes, where C?> = 10. In high-variance
settings, making effective use of job size information is at its most important. Here, the ratio for
ServerFilling-SRPT again converges smoothly to 1, while the ratios for MaxWeight and ServerFilling

diverge rapidly.

In Section 1, Fig. 2, we also compared ServerFilling-SRPT against two size-based heuristic policies:

GreedySRPT: Order jobs in increasing order of remaining size. As long as sufficient servers
are available, place jobs into service. When a job has higher server need than the remaining

number of servers available, stop.

FirstFitSRPT: Order jobs in increasing order of remaining size. As long as sufficient servers
are available, place jobs into service. If a job has higher server need than the remaining
number of servers available, skip that job. Continue through the list of jobs, placing jobs into

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:21

20.0 —
- — = MaxWeight
17.5 - g

- ServerfFilling
15.0 A -—-= ServerFillingSRPT
12.5 - —— SRPT-1

10.0 1
7.5 A
5.0 1

Ratio E[T™]/E[TSRPT1]

2 T e e e

0.0 T T T T T T T
0.86 088 090 092 094 0.96 098 1.00

Load p

Fig. 4. Ratio of mean response time between several multiserver-job policies and SRPT-1 under high variance.
K uniformly sampled from {1,2,4,8}. S hyperexponentially distributed, C? = 10, independent of K. Each
simulation consists of 107 arrivals. Loads up to p = 0.999 simulated.

service if sufficient servers are available, until all servers are full, or all jobs are exhausted.
This policy was studied under the name “Smallest Area First” [4].

GreedySRPT makes no effort to pack jobs efficiently onto servers, while FirstFitSRPT is unreliable
at doing so. For both of these policies, the stability region is significantly smaller than the optimal
stability region. This is why neither policy is depicted in Fig. 3 or Fig. 4, as both are unstable for all
loads p > 0.85, and hence have infinite mean response time on this domain.

We summarize our experiments as follows: In all experiments, at all p, ServerFilling-SRPT has
minimal mean response time.

7 CONCLUSION

We introduce the ServerFilling-SRPT scheduling policy for the multiserver-job system. We prove a
tight bound on the mean response time of ServerFilling-SRPT in the power-of-two setting, which
applies for all loads p. We use that bound to prove that ServerFilling-SRPT achieves asymptotically
optimal mean response time in heavy traffic. We also show that ServerFilling-SRPT empirically
achieves the best mean response time of any policy simulated, across all loads p. We also introduce
the DivisorFilling-SRPT policy, in the more general divisible setting, and the ServerFilling- and
DivisorFilling-Gittins policies, in the settings of unknown- and partially-known job sizes, proving
similar asymptotic optimality results for each.

One of the major insights of this paper is that achieving asymptotically optimal mean response
time requires prioritizing jobs of small remaining size without sacrificing the throughput of the
system. ServerFilling-SRPT is the first policy to achieve both goals simultaneously.

The MIAOW analysis technique introduced in this paper extends beyond ServerFilling-SRPT
and the multiserver-job setting. In fact, it allows the analysis of any system and any policy in which
the relevant work efficiency property (Corollary 3.1) can be proven.

One direction of future work is to study multiserver-job scheduling policies outside of the
divisible setting. No mean response time analysis is currently known for any scheduling policy in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:22 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

this more general setting, much less any optimality results, so new techniques will likely be needed.
In particular, no policy with the remaining work efficiency property can exist in this setting.

8 ACKNOWLEDGEMENTS

This research was supported by NSF-CMMI-1938909 and NSF-CSR-1763701. Isaac Grosof was
supported by a Siebel Scholar Award 2022-2023. Part of this work was done while Ziv Scully was
visiting the Simons Institute for the Theory of Computing, where he was supported by a VMware
research fellowship. We thank the reviewers for valuable feedback. We thank Katherine Kosaian
for aid in creating the DivisorFilling, DivisorFilling-SRPT, and DivisorFilling-Gittins policies.

REFERENCES

[1] Timothy G. Armstrong, Zhao Zhang, Daniel S. Katz, Michael Wilde, and Ian T. Foster. 2010. Scheduling many-task
workloads on supercomputers: Dealing with trailing tasks. In 2010 3rd Workshop on Many-Task Computing on Grids
and Supercomputers. 1-10.

[2] Edward Arthurs and Joseph S. Kaufman. 1979. Sizing a message store subject to blocking criteria. In Proceedings of the
third international symposium on modelling and performance evaluation of computer systems: Performance of computer
systems. 547-564.

[3] Percy H. Brill and Linda Green. 1984. Queues in Which Customers Receive Simultaneous Service from a Random
Number of Servers: A System Point Approach. Management Science 30, 1 (1984), 51-68.

[4] Danilo Carastan-Santos, Raphael Y. De Camargo, Denis Trystram, and Salah Zrigui. 2019. One Can Only Gain by
Replacing EASY Backfilling: A Simple Scheduling Policies Case Study. In 2019 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). 1-10.

[5] Walfredo Cirne and Francine Berman. 2001. A model for moldable supercomputer jobs. In Proceedings 15th International
Parallel and Distributed Processing Symposium. IPDPS 2001. 8 pp.

[6] Allen B. Downey. 1997. Using queue time predictions for processor allocation. In workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 35-57.

[7] Yoav Etsion and Dan Tsafrir. 2005. A short survey of commercial cluster batch schedulers. School of Computer Science
and Engineering, The Hebrew University of Jerusalem 44221 (2005), 2005-13.

[8] Dror G. Feitelson and Larry Rudolph. 1996. Toward convergence in job schedulers for parallel supercomputers. In Job
Scheduling Strategies for Parallel Processing, Dror G. Feitelson and Larry Rudolph (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1-26.

[9] Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. 2004. Parallel job scheduling-a status report. In Workshop
on Job Scheduling Strategies for Parallel Processing. Springer, 1-16.

[10] Dimitrios Filippopoulos and Helen Karatza. 2007. An M/M/2 parallel system model with pure space sharing among
rigid jobs. Mathematical and Computer Modelling 45, 5 (2007), 491 - 530.

[11] Javad Ghaderi. 2016. Randomized algorithms for scheduling VMs in the cloud. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications. 1-9.

[12] John Gittins, Kevin Glazebrook, and Richard Weber. 2011. Multi-armed bandit allocation indices. John Wiley & Sons.

[13] Isaac Grosof, Mor Harchol-Balter, and Alan Scheller-Wolf. 2021. WCFS: A new framework for analyzing multiserver
systems. arXiv preprint arXiv:2109.12663 (2021). Electronic companion (full version) of the paper by the same name in
Queueing Systems.

[14] Isaac Grosof, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. WCFS: A new framework for analyzing multiserver
systems. Queueing Systems (2022).

[15] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2018. SRPT for multiserver systems. Performance Evaluation 127-128
(2018), 154-175.

[16] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. Load Balancing Guardrails: Keeping Your Heavy Traffic on the
Road to Low Response Times. Proc. ACM Meas. Anal. Comput. Syst. 3, 2, Article 42 (jun 2019), 31 pages.

[17] Mian Guo, Quansheng Guan, and Wende Ke. 2018. Optimal Scheduling of VMs in Queueing Cloud Computing Systems
With a Heterogeneous Workload. IEEE Access 6 (2018), 15178-15191.

[18] Mor Harchol-Balter. 2013. Performance modeling and design of computer systems: queueing theory in action. Cambridge
University Press.

[19] Mor Harchol-Balter. 2022. The multiserver job queueing model. Queueing Systems 100, 3 (2022), 201-203.

[20] Yige Hong. 2022. Sharp Zero-Queueing Bounds for Multi-Server Jobs. SIGMETRICS Perform. Eval. Rev. 49, 2 (jan 2022),
66-68.

[21] Minnesota Supercomputing Institute. 2020. Queues. https://www.msi.umn.edu/queues

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

https://www.msi.umn.edu/queues

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:23

[22]

[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]
[37]

[38]

[39]
[40]
[41]

[42]

[43]

A

James Patton Jones and Bill Nitzberg. 1999. Scheduling for Parallel Supercomputing: A Historical Perspective of
Achievable Utilization. In Job Scheduling Strategies for Parallel Processing, Dror G. Feitelson and Larry Rudolph (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1-16.

Sung Shick Kim. 1979. M/M/s queueing system where customers demand multiple server use. Ph. D. Dissertation. Southern
Methodist University.

Siva Theja Maguluri, Rayadurgam Srikant, and Lei Ying. 2012. Stochastic models of load balancing and scheduling in
cloud computing clusters. In 2012 Proceedings IEEE Infocom. IEEE, 702-710.

Konstantinos Psychas and Javad Ghaderi. 2018. Randomized Algorithms for Scheduling Multi-Resource Jobs in the
Cloud. IEEE/ACM Transactions on Networking 26, 5 (2018), 2202-2215.

Alexander Rumyantsev, Robert Basmadjian, Sergey Astafiev, and Alexander Golovin. 2022. Three-level modeling of a
speed-scaling supercomputer. Annals of Operations Research (2022), 1-29.

Alexander Rumyantsev and Evsey Morozov. 2017. Stability criterion of a multiserver model with simultaneous service.
Annals of Operations Research 252, 1 (2017), 29-39.

Linus Schrage. 1968. A Proof of the Optimality of the Shortest Remaining Processing Time Discipline. Operations
Research 16, 3 (1968), 687-690.

Linus E. Schrage and Louis W. Miller. 1966. The Queue M/G/1 with the Shortest Remaining Processing Time Discipline.
Operations Research 14, 4 (1966), 670-684.

Ziv Scully. 2021. WINE: A New Queueing Identity for Analyzing Scheduling Policies in Multiserver Systems. https:
//ziv.codes/pdf/wine-talk.pdf INFORMS Annual Meeting.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2020. The Gittins Policy is Nearly Optimal in the M/G/k under
Extremely General Conditions. Proc. ACM Meas. Anal. Comput. Syst. 4, 3, Article 43 (Nov. 2020), 29 pages.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2021. Optimal multiserver scheduling with unknown job sizes in
heavy traffic. Performance Evaluation 145 (2021), 102150.

Ziv Scully and Mor Harchol-Balter. 2021. The Gittins Policy in the M/G/1 Queue. In 2021 19th International Symposium
on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt). 1-8.

Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and Ponnuswamy Sadayappan. 2002. Characterization
of backfilling strategies for parallel job scheduling. In Proceedings. International Conference on Parallel Processing
Workshop. 514-519.

Wei Tang, Zhiling Lan, Narayan Desai, Daniel Buettner, and Yongen Yu. 2011. Reducing Fragmentation on Torus-
Connected Supercomputers. In 2011 IEEE International Parallel Distributed Processing Symposium. 828-839.

Wei Tang, Dongxu Ren, Zhiling Lan, and Narayan Desai. 2012. Adaptive Metric-Aware Job Scheduling for Production
Supercomputers. In 2012 41st International Conference on Parallel Processing Workshops. 107-115.

Oleg M. Tikhonenko. 2005. Generalized Erlang problem for service systems with finite total capacity. Problems of
Information Transmission 41, 3 (2005), 243-253.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and
John Wilkes. 2020. Borg: The next Generation. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys °20). Association for Computing Machinery, New York, NY, USA, Article 30, 14 pages.
Nico M. van Dijk. 1989. Blocking of finite source inputs which require simultaneous servers with general think and
holding times. Operations Research Letters 8, 1 (1989), 45 — 52.

Chad Vizino, Nathan Stone, John Kochmar, and J. Ray Scott. 2005. Batch Scheduling on the Cray XT3. CUG 2005
(2005).

Juan Wang and Wenming Guo. 2009. The Application of Backfilling in Cluster Systems. In 2009 WRI International
Conference on Communications and Mobile Computing, Vol. 3. 55-59.

Weina Wang, Qiaomin Xie, and Mor Harchol-Balter. 2021. Zero Queueing for Multi-Server Jobs. In Abstract Proceedings
of the 2021 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems (Virtual
Event, China) (SSIGMETRICS °21). Association for Computing Machinery, New York, NY, USA, 13-14.

Ward Whitt. 1985. Blocking when service is required from several facilities simultaneously. AT&T Technical Journal
64, 8 (1985), 1807-1856.

PROOF OF LEMMA 4.4 (WORK DECOMPOSITION)

LEMMA 4.4. [31, Theorem 7.2] For an arbitrary scheduling policy &, in an arbitrary system,

E[(1 - BY)W/] + pfE,[W]]

E[W]] - E[w 1] = i
1-p;

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

https://ziv.codes/pdf/wine-talk.pdf
https://ziv.codes/pdf/wine-talk.pdf

51:24 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

Proor. We will employ the rate conservation law, applied to the random variable (W)?, the
square of the stationary distribution of r-relevant work in the system. The rate conservation law
states that, because (W)2isa stationary random variable, its expected rate of increase and decrease
must be equal. This argument can be formalized further using Palm Calculus.

To find these rates of increase and decrease, let us first examine W”. W, decreases continuously
as work completes, and increases by jumps whenever jobs arrive. W/ decreases at rate BY, the
fraction of servers that are occupied by r-relevant jobs. When a job arrives with size S, it contributes
[S1{S < r}] relevant work, increasing W/ by that amount. Such arrivals occur at rate A. Finally,
whenever a job recycles, by being served until its remaining size falls to r, it adds r relevant work
to W.

Using these rates, we can calculate the expected rates of increase and decrease of (W)?.

Increase due to arrivals: AE[(S1{S < r})?] + 2p2E[W”]
Increase due to recycling: ARr? + 2pRE, [W7]

Decrease due to service: 2E[Bf W]
Equating these rates, we find that

2E[B"W[| = AE[(S1{S < r})?] + 2p2E[WT™] + ARr? + 2pRE, [W7].
AR
EIBTW7] = SEL(STLS < r))?] + o EIW7] + 0 4 R (W]
T T T A 2 A T /15 2 R T
E[W] - E[(1 = BOW] = SE[(SI{S < r})] + pr E[W,"] + —-1% + pr B, [W].

E[W/] = E[(1 - B)W/] + %E[(sn{s <)+ plE[W]] + %2 + prE (W]

R
EIWZ1(1— pf) = ELCL~ BYWZ] + SELSLS < 7]+ 2002 4 pRE [,

E[W/1(1 - pf) = E[(1 - BYW] + pRE, [W/] + %E[(Sﬂ{s <)+ § (16)

Let us evaluate (16) in the case where the policy 7 is SRPT-1. The first two terms of the right-hand
side are nonnegative terms depending on the policy 7, while the second two terms are the same
for all policies.

Let us start with the first term on the right-hand side, E[(1 — B?)W/]. Note that under SRPT-1,
if W is nonzero, i.e. if a r-relevant job is present, then SRPT-1 will serve a r-relevant job on its
single server, and so BSRPT™! = 1. As a result, either W RFT1 or 1 — BSRPT1 myst always be zero, so
this term is equal to 0.

Next, consider the second term, pRE,[W7]. Recall that E, [-] is an expectation over system states
at times when r-relevant jobs recycle. In the SRPT-1 system, if a job is recycling by falling down to
remaining size r, there must be no jobs in the system with remaining size less than r. As a result,
E.[WF] =0.

We therefore conclude that

SRPT-1 A /1 2 Af 2
EIWSRT1) (1= pf) = ZELSI(S < rp*] + Trt, (17)

As an aside, note that this argument shows that SRPT-1 has the least value of E[W] for any policy
7. This fact, combined with Lemma 4.3, provides an alternative proof that SRPT-1 is the optimal

scheduling policy in the M/G/1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:25

Subtracting (17) from (16), we find that
E[W/1(1 - p/) = E[W R (1 - pf) = E[(1 = BYWS] + pfE, [W/]
E[(1 = BW/] + pRE [Wr]

E[Wrﬂ] _ E[mSRPT*l] —
1 _pr

B SERVERFILLING-GITTINS PROOFS

Our results for ServerFilling-Gittins follow near-identical proofs as given in Section 4.3 for ServerFilling-
SRPT. We give the proofs here for completeness.
Our starting point is the “work integral number equality” (WINE) identity [30, 31].

THEOREM B.1 (THEOREM 6.3, [31]). The mean number of jobs and mean response time in an
arbitrary system, under an arbitrary scheduling policy, is

E[N] = AE[T] = /000]va‘/’]dr.

r

Now, we can state the work-decomposition law in a Gittins system.

THEOREM B.2 (THEOREM 7.2, [31]). For all r > 0, the mean r-relevant work gap between an
arbitrary policy = and M/G/1/Gittins is

E[(1 - BX)W7] + ARE, [S, (XR)W”]
l_pr

We will handle the two numerator terms of (18) separately. Let us start by combining Theorem B.1
with Theorem B.2, and try to bound the resulting integral.
We must bound

E[‘/er”] _ E[M/erittins—l] (18)

00 _Rpr T o 1R R 4
E[Tn] _E[TGittinS»l] — l‘/o E[(l Br)M/r] + 1 ‘/0' /‘{rEr [Sr(Xr)Wr]

2 Pi-pf) A (1= p)
We bound the first term in Lemma B.3 and the second term in Lemma B.5.

LEMMA B.3.

* E[(1-B)W,] 1
./r:() —rZ(l ~h dr <e(k—1)[ln =

Proor. First, we make use of the key fact about ServerFilling-Gittins (and DivisorFilling-Gittins):
If there are at least k jobs with rank < r in the system, then B, = 1. Thus, we can replace W, by W/,
the work of the k — 1 jobs of least rank in the system:

SE[(1-B)W,] [E[(1-B)W/]
/r:o r2(1- pf) d“/r:o 2i—ph)

Next, we will break up the ranks r € [0, o) into a finite set of buckets. Let R = [ry,r5,...] be a
list of ranks, where r; = 0. We will specify the list R later. Implicitly, we will say that r|gj+; = co.
We can rewrite the above integral as:

1.
p

[R|

® E[(1-B)W/] B)W rit E[(1 - B)W/]
/r R TR Z/ r2(1 pos . (19)

=0 =

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:26 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

Next, we replace r with either r; or r;;1, selectively, to simplify things. Note that B, is increasing as
a function of r - as we increase the rank r, more servers are busy with r-relevant jobs. Likewise, p/A
is increasing as a function of r. Thus,

Br,- S Br
Pr S Priy
Substituting into the integral from (7), we find that

J 2Ly R AP
r=r; 72(1—/7;4) B r=ri rz(l pr:+1)

Next, let us perform some algebraic manipulation:
"1 E[(1 = By,) W/ it (1 — By,)W/ 1-B, [W/
[Ha s]dr:EU (1-B,) d]_E) zd]
rer; (1= Pr,+1) r=r; (1 Prm) L= Py Jr=rs T

Note that B,, and W/ are conditionally independent because given X, the current states of the jobs
in the system, the busyness B,, is deterministic. We can make this explicit:

1-B, / E[W, | X]

1-—- B . Ti+1 W’
E[—A/ Z]dr— - ——dr|. (20)
L= pripy Jr=ri T L= pris Jr=r; r
Next, let us recall the definition of W;:
Jj=1
k-1

E[W! | X] =ZE [, (X)) 1X;].
Jj=1

Following [31], let us define SERVICE(X, r) to be E[S,(X;)|X;], the expected r-relevant work of a
jOb XJ'.
Substituting this into (20), we find that

E dr

r2

1-B, / E[W, | X]
r

1_pri+1 =i

k- Tit1
1- Z/ SERVICF;()dr} ' (21)

l_er_l j=1 r= r

=E

Now, let us make use of the basic fact about SERVICE(X}, r) from [31] which underlies Theorem B.1:
For any job state X; which is not the empty job,

® SERVICE(X;, r
r=0 r

For the empty job, service is 0.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:27

This provides a loose bound on the integral in (9), which integrates over a smaller interval of
ranks. Substituting in this bound, we find that

Tir1 SERVICE(r) 1-B, .
E — A / [1_ —— min{N,k — 1}
riv1 j=1 Tit1
1-B, - pA — -
s(k—l)E[& :(k—l)u_(k—l) p’l.
1- [1- pr,+1 r1+1

Returning all the way back to the beginning, we find that
IR|

~ E[(1 - B)W,] 1=
/r:o TR dr < (k - 1)2 .

r1+1

To optimize this bound, we need to choose R to minimize this sum. To do so, we set |R| = [In ﬁ‘l,
and choose r; such that

1—pf_F
i <e
a1 =
l_prT

foralli < |R|. By * and ~, we refer to the left and right limits, thereby handling the possibility that
p2 is discontinuous as a function of r. We therefore find that
3l
-p

“ E[(1-B)W,
/ ELa = B)wr])A]d <e(k—1){ln
r=0 r2(1 -)
Now, it remains to bound the recyclings term in (18). Note that this term is identical to the one
n [31], so we can use essentially the same approach - we just disentangle it from the other term.
First, we use a basic theorem from [31]:

]

LEMMA B.4 (LEMMA 8.2, [31]).
ARE (S, (X)W,] < (k= Drpf.
Now, it remains to bound the recyclings-dependent term, plugged into Theorem B.1.
LEmMmA B.5.
© (k

-1 R
K= DrPr < (k= 1)In
r=0 rz(l—pr) 1-

Proor. First, let us simplify:
k-1 «© 1
/ wd_(k_l) pr L
r=o r*(1—) r=0 l_pr

To bound the integrand, we will exphcltly consider the Gittins game. Using the definitions of
UNDONE4(7), and GAME4 (r) given in Appendix B.2 of [31], we bound as follows:

pR 1 < ArUNDONE4 (1) 1

1-pAr = 1—A(GAMEA(r) — rUNDONEA(F)) 7

AUNDONEA(r) Adcamea(r) d 1
= =—In—7——
T 1-AGAME4(r) 1-AcAMEA(r) dr 1—AGAMEA(r)

Above, we make use of [31, Lemma 5.3].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:28 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

Integrating over all r € [0, o), we find that

) R o0
1 1
/ Pr ——dr < [ln—
r=0 1—pAr 1—AGAMEA(T) |,
1 1

=1 - .
o AGAME /4 (0) "o AGAME4 (0)

From the definition of the Gittins game, it is straightforward to prove that GAME4 (0) = 0, and that
GAME,4 (o0) = E[S].
As a result,

0 R
1 1
/ prA—drSln)
r:OI_Prr 1_10

Now, we’re ready to put it all together. We derive a bound on mean response time:

THEOREM 5.1. In any multiserver-job system in the power-of-two setting the difference in mean
response time between ServerFilling-Gittins and Gittins-1 (resource pooled) is at most

E[TSFG-]C] _ E[TGitlinS-l] < (e + 1)(k - 1) In 1 + E
A 1-p) A

The same is true of DivisorFilling-Gittins in the divisible setting.

Proor. Combine Theorem B.1 with Theorem B.2, using Lemma B.3 and Lemma B.5 to bound
the two terms. O

Note that this bound is in some ways stronger than the bound on Gittins-k given in [31]. Our
bound is the first uniform bound on multiserver Gittins, meaning that our bound doesn’t depend on
S except via E[S], unlike the bound on Gittins-k in [31]. Note also that the M/G/k is a special case of
the multiserver-job system when server needs are all 1, and that in this special case, ServerFilling-
Gittins specializes to Gittins-k. As a result, Theorem 5.1 is a strict improvement upon the bound
given in [31].

Analogous to Theorem 4.2, we use our bound to prove that ServerFilling-Gittins (and DivisorFilling-
Gittins) achieve asymptotically optimal mean response time.

TuEOREM 5.2. IfE[S?(log S)*] < oo,
E[TSFG—k]

})1_}1’111 E[TGittins—l] =1

Note that E[TSRPT-1] < E[TCi!ins1] by the optimality of SRPT, so E[TC#ins1] = a)(ﬁ)
whenever E[S?(log S)*] < oo, just as E[TSRPT-1] = w(ﬁ) in this case.

C DIVISORFILLING-SRPT

The DivisorFilling-SRPT policy is a scheduling policy for the divisible server needs setting of the
multiserver-job system, where all server needs k; perfectly divide the total number of servers k.
To implement DivisorFilling-SRPT, we order jobs in increasing order of remaining size r;, and
then apply a recursive procedure to select the jobs to serve, which we will specify in Appen-
dix C.1. DivisorFilling-Gittins is defined identically, replacing increasing remaining size order with
increasing rank order.
DivisorFilling-SRPT achieves two key guarantees:

(1) DivisorFilling-SRPT always serves a subset of the k jobs of least remaining size in the system.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:29

(2) If at least k jobs are present, DivisorFilling-SRPT serves jobs with total server need exactly k.

Item 1 is part of the definition of DivisorFilling-SRPT in Appendix C.1. We prove Item 2 as Theo-
rem C.1 in Appendix C.2.

DivisorFilling-SRPT is identical to the DivisorFilling policy defined in [13, Appendix A], except
that DivisorFilling orders jobs in the arrival ordering, while DivisorFilling-SRPT orders jobs in
SRPT order. Note that [13] is the electronic companion to [14], and that Appendix A only appears
in the electronic companion.

As a corollary of Items 1 and 2, we can prove the “relevant work efficiency” property for
DivisorFilling-SRPT:

CoroLLARY C.1 (RELEVANT WORK EFFICIENCY). Under the DivisorFilling-SRPT policy, in the divisi-
ble setting, if there are k or more r-relevant jobs in the system, all servers are occupied by r-relevant
Jjobs.

The same is true for DivisorFilling-Gittins.

From Corollary C.1, we can use the same techniques as were used for ServerFilling-SRPT to
prove Theorems 4.1 and 4.2.

C.1 DivisorFilling-SRPT Definition

Order all jobs in the system in order of least remaining size. Let M be the set of k jobs with least
remaining size, or all jobs if less than k are present.
We now split into three cases:

(1) M contains at least k/6 jobs with server need k; = 1.
(2) k = 293P for some integers a, b, and M contains < k/6 jobs with k=1
(3) k has largest prime factor p > 5, and M contains < k/6 jobs with k; = 1.

C.1.1 Case 1. If M contains at least k /6 jobs with server need 1, we initially parallel the ServerFilling-
SRPT policy: we order jobs in M by server need (tiebroken by least remaining size), and place jobs
into service in that order. However, because server needs are not powers of two, we may reach a
point where no more jobs fit into service, but servers are still unoccupied. In this case, we place
jobs from M with server need 1 into service, again tiebroken by least remaining size. We continue
doing so until all k servers are full or no more server need 1 jobs remain.

C.1.2 Case 2. Suppose that k is of the form 2%3, and that Case 1 does not apply.

We will recurse on one of two subsets of M: the set of jobs with even server need, or the set
of jobs of odd server need greater than 1. Note that all jobs in the latter subset have server needs
divisible by 3. We call the former subset M, and the latter subset Ms. To decide which subset to
recurse on, we compare the values 2|M;| and 3|Ms|, and recurse on the subset whose value is larger.
In the case of a tie, we arbitrarily select M,.

If 2| M| is larger, we will only serve jobs from among M,. To decide which jobs to serve, imagine
that we combine pairs of servers. Doing so reduces k by a factor of 2, and reduces the server
need of each job in M, by a factor of 2. We now recursively compute which jobs from M, the
DivisorFilling-SRPT policy would serve in this subproblem, and serve those same jobs. If 3| Ms]| is
larger, we combine triples of servers, and then perform the same recursion.

C.1.3 Case 3. Suppose that k has largest prime factor p > 5, and that Case 1 does not apply.

Let M, be the set of jobs in M with server need divisible by p. If p|M,| > k, we recurse as in
Case 2 by combining groups of p servers.

Otherwise, we will only serve jobs from M whose server need is not divisible by p, and also greater
than 1. Let M, be this subset of M. Note that all jobs in M, have server needs which are divisors of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:30 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

k/p. We therefore construct a set M’ consisting of the k/p jobs of M, with least remaining size. If
less than k/p jobs are in M,, M’ is all of M,.. We then apply the DivisorFilling-SRPT procedure to
M’, setting the total number of servers k’ = k/p in the subproblem. We extract the subset of jobs
that DivisorFilling-SRPT serves in the subproblem from M,. We repeat this process by extracting
subsets from the remaining jobs in M,, repeating until we have extracted p subsets from M,, or M,
contains no jobs. DivisorFilling-SRPT serves all jobs that were served in any of the p subproblems.

Note that this set of jobs served is valid to serve, with total server need at most k, because each
of the p subproblems have total server need at most k/p.

C.2 DivisorFilling-SRPT Fills All Servers

Our proof mirrors the proofin [13, Appendix A], which we reprove to make this paper self-contained.

TueEOREM C.1. If at least k jobs are present, DivisorFilling-SRPT serves a set of jobs with total server
need exactly k.
The same is true for DivisorFilling-Gittins.

Proor. We will prove that if M contains k jobs, DivisorFilling-SRPT serves all k jobs. Our proof
proceeds by strong induction on k. Specifically, assume that for all k” < k, if M’ consists of at least
k’ jobs whose server needs divide k’, then DivisorFilling-SRPT run on M’ serves a set of jobs with
total server need k’. We will show that this assumption implies the desired result for k servers.

Again, we split into three cases:

(1) M contains at least k/6 jobs with server need k;=1.
(2) k = 293" for some integers a, b, and M contains < k/6 jobs with k=1
(3) k has largest prime factor p > 5, and M contains < k/6 jobs with k; = 1.

C.2.1 Case 1. Suppose M contains at least k/6 jobs with server need 1.
Let us label the jobs in M as my, my, . .. in decreasing order of server need:

Ky > Ky > ...

Let i* be defined as
i
i* =arg maxz km, < k.
1
=1

In Case 1, DivisorFilling-SRPT serves jobs my, ... m;+, as well as any jobs with k; = 1 that fit in the
remaining servers. Let us write sum; := Y'5_, kp,,. Because M contains at least k/6 jobs with server
need 1, to prove Theorem C.1 in this case, it suffices to show that sum;» > 5k /6. The remaining
servers are filled by the jobs with server need 1.

First, note that sumy > k, because M contains k jobs, each with server need at least 1. Next, note
that k — suM;« < kp,.,,, by the definition of i*. Because the labels my, my, ... are in decreasing order
of server need, k — sum;+ < k..

We will now proceed by enumerating the possible sequences of the i* largest server needs in M.
To prove that k — sum;+ < k/6, we need only consider such sequences where all server needs are
greater than k/6. Such sequences consist only of the elements k, k/2,k/3, k/4, k/5. We enumerate
all possible such sequences in Table 2. Note that if k is not divisible by all of {2, 3,4, 5}, some entries
will not apply. This only tightens the resulting bound on k — sum;+ for such k.

As shown in Table 2, in all cases k — sum; < k/6. The remaining servers are filled with jobs with
server need 1. DivisorFilling-SRPT serves a set of jobs with total server need exactly k, as desired.
As a result, Theorem C.1 holds in this case.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:31

Sequence kp,,, ..., km,. | k —suM; | Sequence kp,,, ..., km,. | k —sum
k 0 k/2,k/2 0
k/2,k/3 k/6 k/2,k/4,k/4 0
k/2,k/4,k/5 k/20 k/2,k/5,k/5 k/10
k/3,k/3,k/3 0 k/3,k/3,k/4 k/12
k/3,k/3,k/5 2k/15 k/3,k/4,k/4 k/6
k/3,k/4,k/5,k/5 k/60 k/3,k/5k/5,k/5 k/15
k/4,k/4,k/4, k/4 0 k/4,k/4,k/4,k/5 k/20
k/4,k/4,k/5, k/5 k/10 k/4,k/5,k/5,k/5 3k /20
k/5,k/5k/5,k/5k/5 |0

Table 2. All possible sequences of the i* largest server needs in M in which all server needs exceed k/6.

C.2.2 Case 2. Suppose that k = 243 for integers a, b, and that Case 1 does not apply.

Recall that M, is the set of jobs in M with even server need, and that Mj is the set of jobs with
odd server need, with server need greater than 1. We recurse on one of these subsets, by comparing
2|M;| and 3|Ms|. Note that if M, is recursed on, the total number of servers in the subproblem is
k/2, and all server needs are divisors of k/2. For Mj, the same is true of k/3.

For Theorem C.1 to hold inductively, we must show that if M, is recursed on, then |M,| > k/2,
and that if Ms is recursed on, then |Ms| > k/3. Because we select a subset by comparing 2|M;| and
3|Ms], if either set is large enough, the set recursed on will be large enough.

Because there are < n/6 jobs with server need 1, |M,|+|Ms| > 5k/6. Therefore, either |M,| > k/2
or |M3| > k/3

Suppose that 2|M,| > 3|M;|. Call M; the set of jobs in My, but with all server needs reduced by a
factor of 2. M} is the subset that DivisorFilling recurses on. Because |M;| = [M,| > k/2 in this case,
by our inductive hypothesis the recursive call returns a subset of M, with total server need k/2.
The corresponding jobs in M, have total server need k, so DivisorFilling-SRPT serves a set of jobs
with total server need exactly k, completing the inductive step in this case. If 3|Ms| > 2|M;|, then
|Ms3| > k/3, and the same argument applies.

C.2.3 Case 3. Suppose that k has largest prime factor p > 5, and that Case 1 does not apply.

If p|M,| > k, Theorem C.1 holds inductively, by the same argument as in Case 2.

Let us therefore focus on the extraction procedure. We must show that the extraction procedure
always extracts p subsets with total server need exactly k/p, to ensure that the overall set served
has total server need k.

Note that [M,| < k/p < k/5, and that there are < k/6 jobs with server need 1. M, consists of the
remaining jobs. As a result,

19k
M| >k-k/6-k/5=—.
M| = k= k/6 - k/5 = =5

Note also that every job in |M,| has server need at least 2. The total server need extracted in
each step is at most k/p, so the number of jobs extracted is at most k/2p. To prove that p subsets
each with total server need k/p can be extracted, it suffices to show that at least k/p jobs remain
after the first p — 1 subsets have been extracted.

The number of jobs remaining at this point is at least:

9k (p-Dk 19 k _k 2k Kk

30 2p 30 2 2p 15 2p

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

51:32 Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

To prove that the number of jobs remaining is at least k/p, we just need to show that 2k/15 > k/2p.
But p > 5,50 2k/15 > k/10 > k/2p.

Therefore, by induction, each of the p subsets extracted from M, has total server need k/p.
Combining these subsets gives a total server need of k. Therefore, DivisorFilling-SRPT serves a set
of jobs with total server need exactly k, as desired. O

Received August 2022; revised October 2022; accepted November 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.

	Abstract
	1 Introduction
	1.1 The multiserver-job model
	1.2 The challenges of minimizing MSJ mean response time
	1.3 ServerFilling-SRPT and ServerFilling-Gittins
	1.4 A generalization: DivisorFilling-SRPT and DivisorFilling-Gittins
	1.5 A Novel Proof Technique: MIAOW
	1.6 Comparison with other policies
	1.7 Summary of our contributions and outline

	2 Prior work
	2.1 Single-server-job models (one server per job)
	2.2 Multiserver-job model (many servers per job)
	2.3 Supercomputing
	2.4 Virtual Machine Scheduling

	3 Setting
	3.1 Multiserver-job Model
	3.2 ServerFilling-SRPT

	4 ServerFilling-SRPT: Asymptotically Optimal Mean Response Time
	4.1 Summary of Results and Proofs
	4.2 A Novel Proof Technique: MIAOW
	4.3 Proof of Main Results

	5 ServerFilling-Gittins: Asymptotic Optimality with Unknown Sizes
	5.1 Background
	5.2 Notation
	5.3 Asymptotic Optimality for ServerFilling-Gittins

	6 Empirical Results
	7 Conclusion
	8 Acknowledgements
	References
	A Proof of Lemma 4.4 (Work decomposition)
	B ServerFilling-Gittins proofs
	C DivisorFilling-SRPT
	C.1 DivisorFilling-SRPT Definition
	C.2 DivisorFilling-SRPT Fills All Servers

