Technical Session 1

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

Redfish-Nagios: A Scalable Out-of-Band Data Center Monitoring

Framework Based on Redfish Telemetry Model

Ghazanfar Ali
Texas Tech University
Lubbock, USA
ghazanfar.ali@ttu.edu

Elham Hojati
Texas Tech University
Lubbock, USA
elham hojati@ttu.edu

Jon Hass
Dell Technologies
Austin, USA
jon.hass@dell.com

Tommy Dang
Texas Tech University
Lubbock, USA
tommy.dang@ttu.edu

Alan Sill
Texas Tech University
Lubbock, USA
alan.sill@ttu.edu

Yong Chen
Texas Tech University
Lubbock, USA
yong.chen@ttu.edu

ABSTRACT

Current monitoring tools for high-performance computing (HPC)
systems are often inefficient in terms of scalability and interfacing
with modern data center management APIs. This inefficiency leads
to a lack of effective management of infrastructure of modern data
centers. Nagios is one of the widely used industry-standard tools for
data center infrastructure monitoring, which mainly include moni-
toring of nodes and associated hardware and software components.
However, current Nagios monitoring has special requirements that
introduce several limitations. First, a significant human effort is
needed for the configuration of monitored nodes in the Nagios
server. Second, the Nagios Remote Plugin Executor and the Na-
gios Service Check Acceptor are required on the Nagios server and
each monitored node for active and passive monitoring, respec-
tively. Third, Nagios monitoring also requires monitoring-specific
agents on each monitored node. These shortcomings are inherently
due to Nagios’ in-band implementation nature. To overcome these
limitations, we introduced Redfish-Nagios, a scalable out-of-band
monitoring tool for modern HPC systems. It integrates the Nagios
server with the out-of-band Distributed Management Task Force’s
Redfish telemetry model, which is implemented in the baseboard
management controller of the nodes. This integration eliminates
the requirements of any agent, plugin, hardware component, or
configuration on the monitored nodes. It is potentially a paradigm
shift in Nagios-based monitoring for two reasons. First, it simplifies
communication between the Nagios server and monitored nodes.
Second, it saves the computational cost by removing the require-
ments of running complex Nagios-native protocols and agents on
the monitored nodes. The Redfish-Nagios integration methodol-
ogy enables monitoring of next-generation HPC systems using the
scalable and modern Redfish telemetry model and interface.

CCS CONCEPTS

« General and reference — Metrics; Measurement; Evaluation;
Empirical studies.

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

SNTA °22, June 30, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9315-7/22/06.
https://doi.org/10.1145/3526064.3534108

KEYWORDS

DMTF Redfish Telemetry, Nagios, In-Band Monitoring, Out-of-Band
Monitoring, Automation, High-Performance Computing, Data Cen-
ter, Agent-less Monitoring

ACM Reference Format:

Ghazanfar Ali, Jon Hass, Alan Sill, Elham Hojati, Tommy Dang, and Yong
Chen. 2022. Redfish-Nagios: A Scalable Out-of-Band Data Center Monitoring
Framework Based on Redfish Telemetry Model. In Proceedings of the Fifth
Int’l Workshop on Systems and Network Telemetry and Analytics (SNTA °22),
June 30, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3526064.3534108

1 INTRODUCTION

As data center technologies expand, the need to improve the data
center monitoring and managing technology becomes more critical.
Modern data centers need more scalable monitoring tools to be
able to control and manage high-performance computing (HPC)
environments efficiently. Nagios [18] [17] [25] [23] is one of many
widely used monitoring tools for HPC systems, and it is included
as the default HPC monitoring service in some HPC stacks, such
as OpenHPC stack [19]. However, there are several limitations and
caveats in the current Nagios-based monitoring paradigm. First, Na-
gios involves significant human intervention for the definition and
maintenance of remote node configurations in the Nagios Core. Sec-
ond, it requires Nagios Remote Plugin Executor (NRPE) and Nagios
Service Check Acceptor (NSCA) on the Nagios server and on each
monitored remote node. Third, it needs monitoring-specific agents
and plugins on each monitored remote node. In order to overcome
these in-band limitations of Nagios, we propose and implement the
integration of the Nagios Core with the state-of-the-art out-of-band
(OOB) Redfish telemetry model and interface [8] [9] [16] [10]. Red-
fish is an open and scalable industry standard, which is designed to
enable data center operators to manage, monitor, and control data
center resources. The key motivations and contributions related to
integration of Redfish with Nagios are described below.

1.1 Motivations and Contributions

To our knowledge, this research is the first study that investigates
and integrates Redfish with the Nagios Core. Redfish integration

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3526064.3534108
https://doi.org/10.1145/3526064.3534108

Technical Session 1

with Nagios is potentially a paradigm shift for Nagios-based moni-
toring. The key contributions of this study include enabling agent-
less monitoring, automating configuration, and eliminating Nagios
in-band components.

1.1.1 Enabling Agent-less Monitoring. Due to the in-band nature of
the Nagios framework, Nagios requires a monitoring-specific agent
(e.g., thermal monitoring) on each node. As most of the monitoring-
related functions are already implemented in the baseboard manage-
ment controller (BMC) and are accessible using an OOB protocol
(e.g., Redfish), the integration of an OOB protocol with Nagios
provides numerous benefits. First, it saves a node’s computational
resources considerably by offloading monitoring processing from
the on-node agent to the BMC. Second, it simplifies and quickens
Nagios-based monitoring significantly due to no requirement for
development, installation, and maintenance of an agent on remotely
monitored nodes. Third, it minimizes the node failure risks, which
can potentially happen due to in-band agent software.

1.1.2 Automating Configuration. Nagios requires the configura-
tion of remotely monitored nodes and monitoring services. It needs
tremendous human effort to perform Nagios-related configuration.
Therefore, automating the configuration process is an important
capability for the monitoring of large-scale modern data centers.
Our method automates the generation of monitoring-related config-
uration information for the monitored nodes with minimum human
effort.

1.1.3 Eliminating Nagios In-band Protocols. To monitor a node,
Nagios requires Nagios-specific protocols i.e., NRPE, NSCA on the
Nagios server and each monitored node. The implemented inte-
gration eliminates NRPE and NSCA by providing the monitoring
functions through the BMC via the standardized Redfish application
programming interface (API). This integrated monitoring service
requires only the Nagios Core.

1.2 Organization

The rest of the study is organized as follows. Section 2 provides an
overview of in-band, out-of-band, and Redfish standard. Section 3
explains the integration design, and Section 4 describes implemen-
tation aspects. Section 5 provides experimental evaluation of the
implemented method in a real HPC cluster. Section 6 explains the
previous studies and we summarize this study in Section 7.

2 BACKGROUND
2.1 Overview

Fig. 1 shows the overview of a typical HPC data center monitor-
ing framework. The framework includes data center infrastructure,
monitoring services, and analytics. The data center infrastructure
consists of monitored hardware and software resources. The hard-
ware resources typically constitute compute nodes, storage nodes,
networking devices, and cooling and power systems. The software
resources include system services and HPC applications. An ex-
ample of a system service is a Slurm [31] or Univa grid engine
(UGE) [30] workload manager. The HPC monitoring service ac-
quires myriads of HPC metrics in real-time using supported HPC
data center management API. The HPC metrics include thermal,

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

power, performance, health, and job status. The health metrics pro-
vide an instant status of the HPC resources in terms of normal,
warning, or critical conditions. For instance, the monitoring service
can identify the health status of the node and its constituent com-
ponents (i.e., CPU, memory, network port, fan). The metrics related
to resource consumption include CPU temperature, ambient tem-
perature, fan speed, power consumption, CPU load, and memory
usage. These consumption related metrics are translated to normal,
warning, or critical based on predefined thresholds. Furthermore,
these metrics are stored in a time series database for analytic and
prediction purposes. The stored metrics are exposed to analytic
applications via API. The analytic applications including intelligent
visual analytics and explainable machine learning are not covered
in this study. The HPC metrics can be acquired via in-band and/or
out-of-band protocols. These protocols are discussed below.

Ve

\ 72\)
Vi P

Intelligent i\ -E’xp,laihablé R,

Visual Analytics | “Machine I€arning, .

a{‘] ‘i(‘ /

API

A

Monitoring E Time Series
Service ww Database

Data Center Management API
@ engine

Figure 1: Overview of HPC data center monitoring frame-
work

cx
oz
1

HPC Data Center

(oo N---]
(- X---]
o oo

2.2 In-band Monitoring and Related Overheads

In-band monitoring requires an operating system to access the tar-
get service and perform monitoring functions. The Nagios frame-
work involves components, including NRPE and NSCA, and a
plethora of monitoring check agents to perform monitoring. These
components essentially communicate with the remote monitored
nodes via the operating system to acquire telemetry data. This
mechanism not only complicates monitoring of remote nodes, but
also causes the consumption of precious regular computational
resources of the node for the processing of monitoring functions.
Moreover, Nagios components and agents can potentially risk mal-
functioning of the OS. Fig. 2 shows the overhead in terms of regular
CPU and memory resources consumption involved in the execu-
tion of an in-band monitoring agent. This agent was developed in
Golang [2] and leveraged the LIKWID HPC performance tool [29].
LIKWID used the Intel running average power limit (RAPL) inter-
face to access power and energy consumption metrics. The agent
acquires power and energy consumption at a frequency interval

Technical Session 1

of one-second and exposes these metrics to a monitoring service
via an in-band RESTful API. The in-band monitoring agent con-
sumes CPU up to 2%, and memory usage is approximately 17.5 MB.
The consumption of these computational resources in processing
monitoring functions can interfere and slow down the performance
of the regular workloads running on the node. Therefore, it is de-
sired to investigate and leverage out-of-band (OOB) monitoring
mechanisms to save useful HPC computational resources.

L 20.0
2.0 4 1 [0 — I F17.5
_J 15.0
)
1.5
12,5 2
2 g
S g
3 1005
Y 10 =
L g
75 2
5.0
0.5 1
- 2.5
0.0 L 0.0
0 1000 2000 3000 4000 5000
time (s)

Figure 2: Computational resources overhead of in-band mon-
itoring

2.3 Out-of-band Monitoring and Benefits

OOB monitoring refers to a mechanism where monitoring data is
acquired from a remote node via a baseboard management con-
troller (BMC). A BMC is a specialized controller embedded in a
node and often comes in the form of a system-on-chip (SoC), with
its own CPU, memory, storage, and network interface card (NIC) to
perform different monitoring and management functions. A BMC
connects to various sensors and counters on the node to read mon-
itoring data. It also provides other system management functions,
including remote power control and interaction with the basic
input/output system (BIOS). Study[7] showed that offloading moni-
toring tasks from the node’s operating system to the BMC reduced
the power consumption by a factor of 2.6. Significant progress has
been made in the arena of BMC hardware and software, including
Redfish and the Redfish telemetry model [8-10, 16]. There is an
increasing trend to perform system monitoring using OOB mecha-
nisms [20, 26]. The following subsections describe OOB protocols
relevant to this study.

2.3.1 Intelligent Platform Management Interface (IPMI). IPMLis one
of the most prominent initial OOB interfaces and has been widely
adopted in HPC systems. It is extensively used for remote monitor-
ing and management of the HPC, cloud [13, 21], and telecommuni-
cation infrastructure. IPMI is broadly used to perform remote node
power control and acquires telemetry data, such as node power con-
sumption and thermal condition[32]. While IPMI has been widely

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

adopted in the initial data center for remote system management
and monitoring, it has notable disadvantages that include secu-
rity issues[3], scalability, and complexity due to being a bit-wise
protocol.

2.3.2 Redfish. Redfish [5] [8] [9] [16] [10] is a state-of-the-art
OOB standard, which is implemented in the BMC of a node. It is
designed to deliver simple and secure management for data cen-
ter infrastructure. Redfish leverages common Internet and web
service standards to expose information directly to the modern
data center management and monitoring toolchain. Redfish con-
sists of an interface protocol and a data model. The data model is
expressed in terms of a standardized, machine-readable schema,
with the payload of the messages being expressed in JavaScript
Object Notation (JSON). It is a hypermedia API, which implies that
subordinate resources are discoverable from the uniform resource
identifiers (URI) of top resources. The root URI for the Redfish API
is http://address/redfish/v1/, where the address can be a name or
IP address of the Redfish-enabled endpoint, and redfish/v1/ refers
to the Redfish resource. Every resource corresponds to a specific
Redfish URIL

Since Redfish is based on RESTful principles, it supports Create,
Read, Update, and Delete operations. To perform these operations,
Redfish supports POST to create resources, GET to read data, PATCH
to change one or more properties on a resource, and DELETE to
remove a resource permanently. The major objects involved in
Redfish include systems, managers, and chassis. Systems represent
the logical view of the server and consist of CPU and memory.
Managers are essentially a BMC, an enclosure manager, or another
component that manages the infrastructure. A chassis provides
the physical view and includes racks, enclosures, and the blades
within them. Chassis also can include other chassis and consists of a
variety of sensors and fans. Grouping of similar resources is defined
as a collection. For example, a group of systems, a group of BMCs,
and a group of chassis can be represented as SystemCollection,
ManagersCollection, and ChasissCollection, respectively. A
collection returns the number of resources in the field Members@
odata.count and URIs of those resources are listed in the Members
field. We acquired the node metrics, including power usage, CPU
temperature, fan speeds, power status, OS status, and health of
BMC, node, CPU, memory, and fan. Redfish as a successor of IPMI,
supports rich data center management and control capabilities.
Table 1 summarizes key differences between Redfish and IPML

3 INTEGRATION METHODOLOGY

This section describes the proposed Redfish-Nagios tool, a Nagios
monitoring tool based on DMTF Redfish telemetry model and stan-
dard. As explained in the background section, in-band based moni-
toring (Fig.3) introduces several limitations. For example, it needs (1)
a significant portion of system resources such as CPU and memory
to process the in-band based monitoring functions, (2) enormous
human effort in performing manual configuration, and (3) imple-
mentation, deployment, and maintenance of protocols and agents
used in in-band based monitoring. Currently, Nagios suffers from
these limitations.

In this paper, we present the Redfish-Nagios integrated tool. This
tool leverages the capabilities of OOB communication (Fig.4) to

http://address/redfish/v1/
redfish/v1/
Members@odata.count
Members@odata.count
Members

Technical Session 1

Table 1: Comparison Between Redfish and IPMI

Redfish

IPMI

Hypertext transfer protocol
(HTTP) over transmission
control protocol (TCP)

Remote control and manage-
ment protocol (RCMP) over
user datagram protocol (UDP)

RESTful Architecture

No RESTful support

Scalable due to RESTful na-
ture

Limited scaleability

Supports for IT and non-IT
equipment

Support limited to IT equip-
ment

Human-readable format (i.e.,

JSON)

Bit-wise protocol

Reliable (due to TCP)

Unreliable (due to UDP)

Secure (HTTPS, session)

No credible security mecha-

nisms

No support for telemetry
model

Supports telemetry model

overcome the limitations of the current Nagios framework and
improves the performance and the scalability of the monitoring
tool for modern, scalable data centers. Different communication
methods (i.e., in-band and out-of-band), Nagios-Redfish integrated
tool architecture, and interworking between Nagios and Redfish
are described below.

3.1 In-band Communication

In-band communication refers to a communication paradigm that
requires a regular operating system to access the target service.
The in-band communication mechanism is shown in Fig.3. As de-

HPC Node

In-Band Protocol Endpoint].—.[Monitoring Agent] ‘

Operating System (OS)

Monitoring
Server

In-band
Protocol

Baseboard Management Controller (BMC) ‘

Figure 3: In-band communication mechanism

picted in Fig.3, the protocol-specific in-band endpoint and mon-
itored entity-specific monitoring agent are implemented and de-
ployed on each monitored node. This process involves enormous
human efforts in terms of implementation, deployment, and main-
tenance. In this arrangement, the monitoring server initiates the
acquisition of monitoring data from the monitored node. The in-
band protocol endpoint implements the protocol functions (e.g.,
SNMP). The in-band agent is responsible for implementing a par-
ticular monitoring function such as temperature data acquisition
from a thermal sensor. Nagios framework is a typical example of
in-band monitoring. It collects metrics from the remote monitored
node using NRPE, which is installed on each monitored node.

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

3.2 0O0B Communications

OOB communication does not require an OS for its interaction with
the target service. The OOB communication mechanism is shown
in Fig.4. As depicted in Fig.4, the monitoring server bypasses the

HPC Node

Monitoring
Server Operating System (OS)

Baseboard Management Controller (BMC) ‘

Out-of-band Protocol

Figure 4: OOB communication mechanism

node OS and directly communicates with the node’s BMC. The
BMC enables communication via OOB protocols, such as IPMI and
Redfish. As explained in Section 1, the overall goals of this study are
to enable agent-less monitoring, automating configuration, elimi-
nating Nagios in-band components, and leveraging cloud tools and
technologies to monitor and manage modern data centers. Redfish
API, a state-of-the-art OOB-based model and standard, is used to
achieve these objectives.

3.3 Redfish-Nagios Tool Architecture
Fig. 5 depicts the proposed Redfish-Nagios tool architecture. The

‘ Nagios Core

Internal lnterface¢

‘ Redfish Plugins for Nagios

Redfish API
\/
Redfish APT Redfish API Redfish API

IUd)) BlR(

B

Figure 5: Redfish-Nagios Tool Architecture

Redfish-Nagios tool consists of three layers: 1) a Nagios Core, a con-
figurable monitoring framework, which performs check scheduling,
check execution, check processing, event handling, and alert man-
agement; 2) an abstraction layer between the Nagios Core and the
HPC infrastructure, which includes plugins, executables, or scripts;
and 3) the HPC infrastructure, consisting of the Redfish-enabled
nodes, node hardware components (e.g., BMC, CPU, memory, stor-
age), and services. The Redfish-enabled node implies that the BMC

Technical Session 1

of the node supports Redfish. The Nagios Core communicates to
Redfish plugins via an internal interface. In turn, the plugins com-
municate with the monitored nodes via Redfish. This integrated
architecture does not require any Nagios protocols, such as NRPE,
NSCA, or any additional agent running on the Nagios server and
monitored nodes. The integration of the Nagios Core with the open
industry standard Redfish aims to enable a standardized, efficient,
generic, and automated Nagios-based data center monitoring. The
Redfish-Nagios tool supports six Redfish-based plugins for Nagios
as listed in Table 2. The above plugins use the following Redfish

Table 2: Redfish Plugins for Nagios

Plugin Name Description

check_BMC Acquires BMC health
check_host Acquires node health
check_CPU Acquires CPU health

check_memory
check_fans
check_temperature

Acquires CPU temperature
Acquires fan health and speed
Acquires CPU temperature

URIs to acquire different metrics, as shown in Table 3.

Table 3: Redfish URIs

Redfish URI
https://{bmc_ip}/redfish/v1/Systems
https://{bmc_ip}/redfish/v1/Chassis/

Metrics
Node health status

Node thermal

Thermal

https://{bmc_ip}/redfish/v1/Systems/ | Node power con-
Power sumption
https://{bmc_ip}/redfish/vl/Managers | BMC health status

3.4 Inter-working Between the Nagios Core and
Redfish States

The Redfish-Nagios tool performs monitoring functions using Redfish-
based plugins. The plugins can return monitoring data as a health
status or numeric data. When the monitoring data denotes a health
status of a resource, the state is determined according to the health
status property received in Redfish. Note that there is a one-to-
one mapping between Redfish and Nagios health status properties.
Therefore, there is no need to apply threshold-based calculations to
determine resource health status and the resource health statuses
are directly translated as shown in Table 4.

When the monitoring data is a numeric value, the value is trans-
lated to one of three possible Nagios states as shown in Table 4
based on a predefined threshold. The conversion of numeric moni-
toring data to a status based on a threshold is an extremely useful
practice to change monitoring data into a useful insight related to
the operational status of a HPC resource. In this way, the admin-
istrator is provided with visual analytics via a Nagios dashboard
that can provide a better status overview of the cluster rather than
reading and trying to understand all metrics quantitatively. For
example, a HPC administrator might unintentionally miss a high

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

Table 4: Redfish and Nagios Monitoring Status

Redfish | Nagios Description

Status Status P

Ok OK Working correctly

Warning | WARNING | Working, but needs attention

Critical CRITICAL Not wprkmg correctly or requires
attention

Unknown | UNKNOWN ftl:tilzl was unable to determine the

Table 5: Host Hardware Specifications

CPU: 2 x 4 cores Intel Xeon(R) E5540 @ 2.53GHz
RAM: 23 GB DDR3

STORAGE: 2TB HDD

NETWORK: 1Gbit/s, Broadcom NetXtreme II

CPU temperature, even when the CPU temperature reaches or goes
beyond a critical point. Having a threshold-based categorization
of the resource health status is more useful, because the tool will
be able to detect and show whether a resource is changing from a
normal condition to a warning or a critical status.

The detailed source code for the Redfish plugins is available on
GitHub [1].

4 IMPLEMENTATION

This section provides the implementation details of the Redfish-
Nagios tool. First, it explains the testbed used to evaluate the
Redfish-Nagios tool. Then, it describes the hardware and software
configurations of the Redfish-Nagios server. After that, it demon-
strates the internal working of the Redfish-Nagios server.

4.1 Testbed for Redfish-Nagios Tool

We used the Quanah cluster [14] as a testbed for the evaluation
of the Redfish-Nagios tool. The cluster consists of 467 nodes, and
each node is based on the Intel XEON processor architecture and
consists of 36 cores. The BMC uses the integrated Dell Remote
Access Controller 8 (iDRACS) [27], which implements the Redfish
API [5] to deliver remote management and monitoring capabilities.
The operating system of the compute nodes in the cluster is Linux
CentOS 7.6.

4.2 Redfish-Nagios Server Configuration

The Redfish-Nagios integrated monitoring service requires Nagios
Core 4.4.0, Nagios configurations, and Redfish plugins for the Na-
gios Core. This setup does not require NRPE, NSCA, or any agent as
required in the current Nagios framework setup. Table 5 provides
hardware specifications of the host running Nagios monitoring
service integrated with Redfish APL

4.3 Redfish-Nagios Tool Deployment

The integrated monitoring service is deployed on the CentOS 7.6
Linux server, and Redfish plugins are implemented using Bash.
Nagios Core operational behavior is configurable by editing the

https://{bmc_ip}/redfish/v1/Systems
https://{bmc_ip}/redfish/v1/Chassis/Thermal
https://{bmc_ip}/redfish/v1/Chassis/Thermal
https://{bmc_ip}/redfish/v1/Systems/Power
https://{bmc_ip}/redfish/v1/Systems/Power
https://{bmc_ip}/redfish/v1/Managers

Technical Session 1

configuration parameters in nagios.cfg. To monitor a node and
the components attached to the node, Nagios requires configuration
information (e.g., IP address) of the BMC of the monitored node. The
acquisition of the IP addresses of BMCs and the related configura-
tion information into the Nagios Core are performed automatically.
This setup consists of 467 nodes with Redfish-enabled BMCs and
nine services or monitoring checks per node. These services are de-
fined as commands in the Nagios Core (i.e., commands . cfg), which
can be directly invoked by the Nagios Core.

Historically, the Nagios Core requires configuration information
for each monitored node and service. These configurations are per-
formed manually, making Nagios-based monitoring deployment
difficult and error prone, especially on a large scale. The imple-
mented Redfish-Nagios tool automates these configurations. This
process consists of two steps. First, the lists of node names and IP
addresses of BMCs are acquired. We obtained these IP addresses
and node names from the management node and stored them in
the nagios_node_config. conf file. The nodes, which need to be
configured for Nagios monitoring, are listed in the [NodesInfo]
section. Each entry corresponds to a node name and IP address of
the BMC, which are separated by a colon.

After acquiring the list of node names and BMC IP addresses, the
script nagnodeconfig.py reads that list from the nagios_node_
config. conf file and defines node information and related services
in hosts. cfg file. The example configuration outcome of a node
and service are shown in listing 1 and listing 2, respectively.
define host{

use linux -server
host_name Computel

alias localhost

address 10.9.1.1

}
Listing 1: Node configuration information

define service{
use local -service
host_name
service_description check temperature
check_command check-temperature

}

Listing 2: Node’s service configuration information

Computel

4.4 Internal Working of the Redfish-Nagios Tool

In order to make monitoring efficient and fully utilize the system
computing capability of a multi-core HPC node [15], the monitoring
workload is distributed evenly among the available cores [24]. To
monitor a metric using Redfish API across 467 nodes in the Quanah
cluster, the Redfish-Nagios server initiated 467 Redfish requests and
parallelized them among 8 CPU cores of the server. Fig. 6 shows
parallelization of Redfish requests for monitoring power usage for
467 nodes in the Quanah cluster. The seven cores handle 58 requests
each and 8!" core handles remaining (58 + 3 = 61) requests.

5 EVALUATION WITH REAL HPC CLUSTER

We evaluated the integration methodology of Redfish-Nagios using
the Quanah cluster at the High-Performance Computing Center
(HPCC) of Texas Tech University [14]. The results presented in this

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

. (\
Redfish-Nagios Server\ (_~{G}o1
Cores //) 02
e
\»@}58 gb.
59 .
L~ 5
Monitoring 2{@}60 jas}
Power Usage i g
Across 467 \»{@}1 16
Nodes g
w2
/,{@:}407 §
__,,{@}408
Y
_ N
N——

Figure 6: Parallelization of Redfish requests in Redfish-
Nagios Server, in monitoring power usage across 467 nodes
in the Quanah cluster.

section contain the performance of the Redfish-Nagios server and
monitoring visualization using the Redfish-Nagios tool.

5.1 Redfish-Nagios Server Performance

Our Redfish-Nagios server ran 2,802 monitoring checks (467 nodes
X 6 checks) at a rate of two-minute monitoring intervals. With
this monitoring workload on the Redfish-Nagios server, the aver-
age CPU load was ~69%, the memory usage was 3.04 GB, and the
network bandwidth was 2.13 Mbps.

5.2 Monitoring Visualization Using the
Redfish-Nagios Tool

The monitoring information acquired via the Redfish-Nagios tool
is visualized at component, node, and cluster level.

5.2.1 Component Level: Fig. 7 shows the monitoring information
of 9 components (e.g., hardware resources, software services) as-
sociated with an HPC node. Redfish collects metrics for seven
components, including cpu_temperature, system_power_usage,
fan_health, fan_speed, memory_health, cpu_health, and bmc_health.
Nagios defines four statuses for the components: Ok, Warning, Criti-
cal, and Unknown. Ok, Warning, and Critical match with the Redfish
health statuses, so Unknown is not taken into consideration. Some
services also return quantitative data, such as CPU temperature,
fan speed, and node power usage. The numeric data is translated
into a status such as Ok, Warning, or Critical based on a threshold.

5.2.2 Node Level: Fig. 8 shows the monitoring information of
nodes including node name, last check, duration, and status in-
formation. Redfish provides node status as Ok, Warning, or Critical.
On the other hand, Nagios shows node status as UP or DOWN.
Redfish Ok and Warning are translated as Nagios UP, and Redfish
Critical is translated as Nagios DOWN. A row in green color indi-
cates the node is UP and running correctly, while a row in red color
shows the node is DOWN due to a malfunction in one or more of
its components.

Technical Session 1

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

2|(|3(|4||5||61[7||8||9][10]|11||12||13||14||15|/16|[17||18||19||20||21||22||23|| 24 ||25| 26 ||27||28|/29(/30||31||32||33||34|/35||36||37||38(/39|(40||41|[42|/43

Results 0 - 100 of 4203 Matching Services

Host *¥ Service * ¥ Status * ¥ Last Check *# Duration #% Attempt ## Status Information
compute-1-1 (:1) bme_health ? 03-08-2019 11:44:15 14d 18h 34m 125 1/4 OK - BMC is OK!

cpu_health 2 [ox 03-08-2019 11:44:03 14d 18h 34m 24s 1/4 OK - CPU is OK!
'CPU2 Temp: 54, 'Inlet Temp': 21, 'CPU1 Temp": 69,

cpu_temperature 2 |ok 03-08-2019 11:43:39 9d 14h28m 11s 1/4 { omp: 9%, met lemp emp

: 'GET_processing_time": 4.77, 'retry": 0}

cpu_usage ? [ox 02-21-2019 22:30:41 14d 14h 22m 6s 1/4 CPU usage is: 0.500139
{FAN_3': 'OK', 'FAN_2": 'OK,

fan_health ? |ok 03.08-2019 11:43:30 9d 14h 28m 11s 1/4 'GET_processing_time": 4.77, 'retry": 0, 'FAN_1"
‘0K, 'FAN_4": 'OK’}
{FAN_3': 9380, 'FAN_2': 9450,

fan_speed 7 OK 03-08-2019 11:43:39 9d 14h28m 11s 1/4 'GET_processing_time": 4.77, 'retry": 0, 'FAN_1"
9380, 'FAN_4'; 9450}

memory_health ? 03-08-2019 11:44:03 21d 13h 39m 255 1/4 OK - Memory is OK!
Total Memory: 191.908G Used Memory: 31908.0

K 02-21-2019 22:30:41 21d 11h 52m 30s 1/4
memory_tsage T B m 908 Avaiable Memory: 160.000G

system_power_usage 9 _ oK | 03-08-2019 11:43:51

9d 14h 54m 16s 1/4 Power usage (Watts): 301

Figure 7: Node’s Component Level Monitoring Visualization

2)3||4|5
Results 0 - 100 of 467 Matching Hosts

Limit Results: 100 |

Host * % Status *# Last Check *% Duration ## Status Information
compute-1-1 ?2 8 w 03-06-201923:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-10 1 B uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-11 2 SR uP 03-06-201923:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-12 ') S uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-13 7 B uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-14 P SR up 03-06-201923:20:14 13d 5h 6m 435 OK - Host is UP!
compute-1-15 7 B DOWN 03-06-2019 23:20:14 20d 1h Om 32s CRITICAL - Host needs immediate attention!
compute-1-16 7 3 uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-17 9 R up 03-06-201923:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-18 1 B uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-19 2 SR uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-2 ') S uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-20 7 B uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-121 2 SR uP 03-06-2019 23:20:14 13d 5h 6m 435 OK - Host is UP!
compute-1-22 7 B uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-23 7 3 uP 03-06-2019 23:20:14 13d 5h 6m 43s OK - Host is UP!
compute-124 9 A up 03-06-201923:20:14 13d 5h 6m 43s OK - Host is UP!
compute-1-25 7 Q uP 03-06-201923:20:14 8d 1h41m2s OK - Hostis UP!

Figure 8: Node Level Monitoring Visualization.

5.2.3 Cluster Level: Node-level visualization is not sufficient to
provide a high-level summary of the large-scale cluster. Fig. 9 pro-
vides a comprehensive view of the HPC cluster in terms of nodes’
status (Ok, Warning, or Critical). Each HPC node is shown by a
small circle, labeled with its configured name. The node labels are
shown in black, yellow, or red. A node with a black label reflects
that the node and its related components are working appropriately,
while a node with a yellow label indicates that one or more compo-
nents of the node are not working properly and need attention to
resolve the underlying problem. A node with a red label shows that
the node is in a critical condition, which means it is not functioning
and needs immediate attention for problem rectification.

6 RELATED WORK

In this section, we compare the Redfish-Nagios tool with other
studies from the following perspectives: scalability of the solution,
configuration of the tool, need of an agent on the monitored node,

o
. .mm ute-10-38 w
09§ 0¢- ».alq

o~ ot wzas (@ e s =Pt
LN i iU AREPSA, 4

) .mp o) e 19 .,,.v'g,w e

| (7T, J:&WW"

e
0 ® ' R T PR - »5‘;1;
Mﬂ 2 @i _b
. ‘Mfw. A ’m.gwm .“';MEM
NQ o ».W:« S
W‘WM .N et
o é Ew”:;’unwr 38

o 9@
® QMO%.S "“.‘sﬁm
".‘ix.a, w233 .
@ em L A haaatd
S @@= :Y:.
g ,.m
...
O B0-0-0-05 00"
@@ oo-g.: g:.v;w)
3 0-0e TP g

@il

) Qg m‘.y.wo N, .‘. creues
oaw;:g;m - !som e—w;m .
009"

[m.: =] w',m, wieaze

OK Node

ooz

Figure 9: Cluster Level Monitoring Visualization.

communication mode (in-band or out-of-band), protocol to access
BMC monitoring functions, and target monitoring scope. These
comparisons are shown in Table 6.

Redfish is also used in some other recent studies to benchmark
data centers. The study [11] compared different hardware monitor-
ing mechanisms for data centers and showed that DMTF Redfish
has a better scalability property than IPMI. The work [12] used
Redfish to automate Green500 methodology. However, there is no
research on utilizing and merging the DMTF Redfish technology
with the main HPC monitoring tools, such as Nagios.

Technical Session 1

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

Table 6: General comparison against other studies related to Nagios

- . Agentless Communication
Study Scalability Configuration Monitoring | Mode BMC Protocol | Target
Nagios [6] Limited Manual No In-band Not supported Systems, networ.ks, .and -
frastructure monitoring
Renita et . -
al. [22] Limited Manual No In-band Not supported | Network server monitoring
. Cloud and network function
Luchian et | _. . . o .
al. [17] Limited Manual No In-band Not supported | virtualization (NFV) monitor-
' ing
Borghesi et Limited Manual No In-band Not supported Anomaly detection in HPC
al. [4] systems
IPMI plugin .
for Na- | Limited Manual No Out-of-band IPMI Systems, networ.ks, .and m
. frastructure monitoring
gios [28]
Hojati et | Improved (us- .
al. [12] ing Redfish) Automated Yes Out-of-band Redfish Energy efficiency
Redfish- .
Nagios glnpg;‘é%ih)(us- Automated Yes Out-of-band Redfish ?r}z;sstti?cstll:ee:r\::)c:ilt(z’riind m
(Our Work) & &

As described in Table 6, the Redfish-Nagios tool is the first study
that enables Nagios to access BMC functions using Redfish APIL In
contrast to other studies, owing to Redfish technological enhance-
ments, Redfish-Nagios provides improved scalability, automated
configuration, agentless monitoring, and support for state-of-the-
art out-of-band API to access BMC monitoring functions.

7 CONCLUSION AND FUTURE WORK

The current Nagios monitoring tool is not efficient for modern data
centers due to shortcomings originating from its in-band nature.
These inadequacies arise from Nagios protocols including the re-
quirement of monitoring specific in-band agents and plugins on
the monitored nodes; the consumption of computational resources
of the monitored node in executing the plugins, agents, or proto-
cols; and the cumbersome manual configuration of the monitored
nodes. We developed the Redfish-Nagios integration method, which
enables Nagios to monitor HPC nodes and their components via
BMC using state-of-the-art out-of-band Redfish API. The imple-
mented method removes the requirement of setting up any Nagios
protocol, plugin, or agent. This integration saves important nodes’
computational costs by shifting monitoring functions from the OS
to the BMC. We also developed a Nagios configuration feature that
automates configuration for monitoring the nodes and associated
components and services on a large scale. In the future, we want
to incorporate this capability into mainstream HPC management
stacks (e.g., OpenHPC) so that the HPC community can benefit
from the integration of Redfish with Nagios.

ACKNOWLEDGMENT

This research is supported in part by Dell Technologies and the
National Science Foundation under grant CNS-1939140 (A U.S.

10

National Science Foundation Industry-University Cooperative Re-
search Center on Cloud and Autonomic Computing) and OAC-
1835892. We are also very grateful to the High Performance Com-
puting Center of Texas Tech University for providing HPC resources
for this project.

REFERENCES

[1] Ghazanfar Ali. 2020. Nagios Redfish API Integration: Out-of-band (BMC) based
Monitoring. Retrieved May, 2022 from https://github.com/nsfcac/Nagios-Redfish-
API-Integration

[2] Mina Andrawos and Martin Helmich. 2017. Cloud Native Programming with
Golang: Develop microservice-based high performance web apps for the cloud with
Go. Packt Publishing Ltd.

[3] Anthony Bonkoski et al. 2013. Illuminating the Security Issues Surrounding
Lights-Out Server Management. In Presented as part of the 7th USENIX Workshop
on Offensive Technologies. USENIX, Washington, D.C. https://www.usenix.org/
conference/woot13/workshop-program/presentation/Bonkoski

[4] A.Borghesi etal. 2022. Anomaly Detection and Anticipation in High Performance
Computing Systems. IEEE Transactions on Parallel and Distributed Systems 33, 4
(2022), 739-750. https://doi.org/10.1109/TPDS.2021.3082802

[5] DMTF. 2020. DMTF’s Redfish®. Retrieved May, 2020 from https://www.dmtf.
org/standards/redfish

[6] Nagios Enterprises. 2017. Nagios.

[7] Sabyasachi Ghosh, Mark Redekopp, et al. 2012. KnightShift: Shifting the I/O Bur-
den in Datacenters to Management Processor for Energy Efficiency. In Computer
Architecture. Springer Berlin Heidelberg, Berlin, Heidelberg, 183-197.

[8] Glauco Goncalves et al. 2019. A standard to rule them all: Redfish. IEEE Commu-
nications Standards Magazine 3, 2 (2019), 36-43.

[9] Jon R Hass. 2017. Redfish Facilities Equipment Management Overview. In Com-

panion Proceedings of the10th International Conference on Utility and Cloud Com-

puting. 121-121.

Jeff Hilland. 2017. Redfish Overview. In Companion Proceedings of the10th Inter-

national Conference on Utility and Cloud Computing. 119-119.

Elham Hojati et al. 2017. Benchmarking automated hardware management

technologies for modern data centers and cloud environments. In Proceedings of

the10th International Conference on Utility and Cloud Computing. 195-196.

E. Hojati et al. 2020. Redfish Green500 Benchmarker (RGB): Towards Automation

of the Green500 Process for Data Centers. In 2020 IEEE Green Technologies Confer-

ence(GreenTech). 47-52. https://doi.org/10.1109/GreenTech46478.2020.9289729

C. Hongsong and W. Xiaomei. 2015. Design and Implementation of Cloud Server

Remote Management System Based on IMPI Protocol. In 2015 IEEE 12th Intl

Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf

on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable

Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom).

[10]

(1]

[12

[13]

https://github.com/nsfcac/Nagios-Redfish-API-Integration
https://github.com/nsfcac/Nagios-Redfish-API-Integration
https://www.usenix.org/conference/woot13/workshop-program/presentation/Bonkoski
https://www.usenix.org/conference/woot13/workshop-program/presentation/Bonkoski
https://doi.org/10.1109/TPDS.2021.3082802
https://www.dmtf.org/standards/redfish
https://www.dmtf.org/standards/redfish
https://doi.org/10.1109/GreenTech46478.2020.9289729

Technical Session 1

[14]

[15]

[16]

[17]

(18

[19]

[20]

[21]

1475-1478. https://doi.org/10.1109/UIC- ATC-ScalCom-CBDCom-IoP.2015.266
HPCC. 2022. High Performance Computing Center. Retrieved February, 2022
from http:www.depts.ttu.edu/hpce/

J. Kim et al. 2016. Performance Evaluation of Multithreaded Computations for
CPU Bounded Task. In 2016 International Conference on Platform Technology and
Service (PlatCon). 1-5. https://doi.org/10.1109/PlatCon.2016.7456816

Jie Li, Ghazanfar Ali, Ngan Nguyen, Jon Hass, Alan Sill, Tommy Dang, and Yang
Chen. 2020. MonSTer: An Out-of-the-Box Monitoring Tool for High Performance
Computing Systems. In 2020 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 119-129.

Eduard Luchian, Paul Docolin, and Virgil Dobrota. 2016. Advanced monitoring
of the OpenStack NFV infrastructure: A Nagios approach using SNMP. 2016
12th IEEE International Symposium on Electronics and Telecommunications (ISETC)
(2016). https://doi.org/10.1109/isetc.2016.7781055

Nagios. 2020. Nagios-The Industry Standard In IT Infrastructure Monitoring. Re-
trieved May, 2020 from https://www.nagios.org/

OpenHPC. 2020. OpenHPC Software Stack. Retrieved December, 2020 from
https://openhpc.community/development/source-repository/

Chanyoung Park, Yoonsue Joe, Myounghwan Yoo, Dongeun Lee, and Kyungtae
Kang. 2020. Poster: Prototype of Configurable Redfish Query Proxy Module. In
2020 IEEE 28th International Conference on Network Protocols (ICNP). IEEE, 1-2.
R. Rajachandrasekar, X. Besseron, and D. K. Panda. 2012. Monitoring and Pre-
dicting Hardware Failures in HPC Clusters with FTB-IPMI. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops PhD Forum.
1136-1143. https://doi.org/10.1109/IPDPSW.2012.139

[22] J. Renita et al. 2017. Network’s server monitoring and analysis using Nagios.

In 2017 International Conference on Wireless Communications, Signal Processing
and Networking (WiSPNET). 1904-1909. https://doi.org/10.1109/WiSPNET.2017.

1

[23

[24

[28

[29

]

]

]
]

SNTA ’22, June 30, 2022, Minneapolis, MN, USA

8300092

J Renita and N Edna Elizabeth. 2017. Network’s server monitoring and analysis
using Nagios. In 2017 International Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET). IEEE, 1904-1909.

D. R. Rinku and M. Asha Rani. 2017. Analysis of multi-threading time metric on
single and multi-core CPUs with Matrix Multiplication. In 2017 Third International
Conference on Advances in Electrical, Electronics, Information, Communication and
Bio-Informatics (AEEICB). 152-155. https://doi.org/10.1109/AEEICB.2017.7972402
Tom Ryder. 2016. Nagios core administration cookbook. Packt Publishing Ltd.
Sahil Suneja et al. 2014. Non-intrusive, Out-of-band and Out-of-the-box Systems
Monitoring in the Cloud. In The 2014 ACM International Conference on Measure-
ment and Modeling of Computer Systems (Austin, Texas, USA) (SIGMETRICS ’14).
ACM, New York, NY, USA, 249-261. https://doi.org/10.1145/2591971.2592009
DELL Technologies. 2020. Integrated Dell Remote Access Controller (iDRAC).
Retrieved May, 2020 from https://www.delltechnologies.com/en-us/solutions/
openmanage/idrac.htm

Thomas-Krenn.AG. 2020. IPMI Sensor Monitoring Plugin. https://www.thomas-
krenn.com/en/wiki/IPMI_Sensor_Monitoring_Plugin_setup

Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In 2010 39th
International Conference on Parallel Processing Workshops. IEEE, 207-216.

UGE. 2020. Univa Grid Engine. Retrieved May, 2020 from https://www.univa.com/
Andy B. Yoo et al. 2003. SLURM: Simple Linux Utility for Resource Management.
In Job Scheduling Strategies for Parallel Processing. Springer Berlin Heidelberg,
Berlin, Heidelberg, 44-60.

Shu Zhang et al. 2014. Real time thermal management controller for data center. In
Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems (ITherm). IEEE, 1346-1353.

https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.266
http:www.depts.ttu.edu/hpcc/
https://doi.org/10.1109/PlatCon.2016.7456816
https://doi.org/10.1109/isetc.2016.7781055
https://www.nagios.org/
https://openhpc.community/development/source-repository/
https://doi.org/10.1109/IPDPSW.2012.139
https://doi.org/10.1109/WiSPNET.2017.8300092
https://doi.org/10.1109/WiSPNET.2017.8300092
https://doi.org/10.1109/AEEICB.2017.7972402
https://doi.org/10.1145/2591971.2592009
https://www.delltechnologies.com/en-us/solutions/openmanage/idrac.htm
https://www.delltechnologies.com/en-us/solutions/openmanage/idrac.htm
https://www.thomas-krenn.com/en/wiki/IPMI_Sensor_Monitoring_Plugin_setup
https://www.thomas-krenn.com/en/wiki/IPMI_Sensor_Monitoring_Plugin_setup
https://www.univa.com/

	Abstract
	1 Introduction
	1.1 Motivations and Contributions
	1.2 Organization

	2 Background
	2.1 Overview
	2.2 In-band Monitoring and Related Overheads
	2.3 Out-of-band Monitoring and Benefits

	3 Integration Methodology
	3.1 In-band Communication
	3.2 OOB Communications
	3.3 Redfish-Nagios Tool Architecture
	3.4 Inter-working Between the Nagios Core and Redfish States

	4 Implementation
	4.1 Testbed for Redfish-Nagios Tool
	4.2 Redfish-Nagios Server Configuration
	4.3 Redfish-Nagios Tool Deployment
	4.4 Internal Working of the Redfish-Nagios Tool

	5 Evaluation with Real HPC Cluster
	5.1 Redfish-Nagios Server Performance
	5.2 Monitoring Visualization Using the Redfish-Nagios Tool

	6 Related Work
	7 Conclusion and Future Work
	References

