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51 Abstract. Understanding the noise in gravitational-wave detectors is central to
52 detecting and interpreting gravitational-wave signals. Glitches are transient, non-
>3 Gaussian noise features that can have a range of environmental and instrumental
gg origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches
56 based upon their time—frequency morphology. The resulting set of classified glitches
57 can be used as input to detector-characterisation investigations of how to mitigate
58 glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here
59 we present the results of the Gravity Spy analysis of data up to the end of the third
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observing run of Advanced LIGO. We classify 233981 glitches from LIGO Hanfordrand
379805 glitches from LIGO Livingston into morphological classes. We find that the
distribution of glitches differs between the two LIGO sites. This highlights the potential
need for studies of data quality to be individually tailored to each gravitational-wave
observatory.

Submitted to: Class. Quantum Grav.

1. Introduction

Gravitational-wave astronomy provides unique information about our Universe. To
date, the Advanced Laser Interferometric Gravitational-Wave Observatory (LIGO) [1]
and Advanced Virgo [2] detectors have observed signals from coalescing binaries of
neutron stars and black holes [3H7], with the rate of diseovery increasing dramatically
as the sensitivity of the detector network improves. nAnalysis by the LIGO Scientific,
Virgo and KAGRA (LVK) Collaborationdidentified 3 candidates with a probability of
astrophysical origin greater than 50% in the first observing run (O1) of the advanced-
detector network [8], 8 in the second observing run (0©2) [4], and 79 in the third observing
run (03) [6,[7]. Such observations réquiremeasurements equivalent to fractional changes
in distance of < 1072' [9], and hencésthe detector must be carefully isolated from
instrumental and environmental sources of'noise. However, noise cannot be fully
eliminated, and to identify andsanalyse gravitational-wave signals it is necessary to
understand the properties of ngise inithe gravitational-wave detectors [10].

Transient, non-Gaussian bursts /of noise (typically less than a few seconds in
duration) in the gravitational-wave data stream are known as glitches.  Glitches
are particularly detrimental to fhe identification and analysis of gravitational-wave
signals [LOHI6]. There are many different glitch types, some with known environmental
or instrumental origins, ‘and others with uncertain or unknown sources [I7-H21].
Identifying the causes of glitches is key to improving gravitational-wave data quality.

A wide range of tools are used to monitor data quality and characterise the
behaviour of #he detectors [20-27]. In recent years, machine-learning methods have
been developed for/ a range of analyses connected to various aspects of detector
characterisation [e.g., 28-38]. The Gravity Spy project [39-42] aims to classify glitches
by combining human and machine-learning classification schemes: volunteers on the
Zooniverse €itizen-science platform (as well as LVK detector-characterisation experts)
inspect and classify individual glitches, which can then be used as input to a machine-
learningralgorithm that can classify large sets of datalfl Since its launch in October
2016, the Gravity Spy project has analysed almost 2 million individual glitches and has
accumulated over 5.7 million classifications by more than 27,000 registered Zooniverse

1 Gravity Spy Zooniverse project |gravityspy.org.
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usersft] Results of machine-learning and volunteer classifications have beensmade
available both internally within the LVK, and to the wider public [44-47].

Compiling a catalogue of classified glitches is useful for both identifyingsthe
physical causes of glitches (such that commissioning work could be done t@yremove
them), and evaluating the impact of glitches on data analysis (creating new analyses
to mitigate their effect where necessary). For example, Gravity Spy classifications
have been used for: selecting example glitches to evaluate their impact’ on data
analysis [48H51]; studying glitch morphology [52H55]; cross-referencing glitches with
environmental-noise or auxiliary-channel measurements [20, [56H58], and as a component
of training for gravitational-wave detection algorithms [59H65] ‘or glifch-classification
algorithms 32 66-69]. Additionally, identification of new elasses can indicate new
sources of noise and suggest areas for further commissioning, [42].

In this paper we describe the glitch classificationspfrom Gravity Spy’s machine-
learning analysis of data from the first three observing rungyof Advanced LIGO; this
analysis uses the Gravity Spy convolutional neutral network (CNN) models previously
developed for O1-02 [39] 40] and O3 [42]. In Section|2{;we describe the gravitational-
wave strain data, the machine-learning algerithm and the glitch classes; further details
of the different classes used for analysis of eaclhobserving run are given in [Appendix A.
In Section |3| we illustrate how results of classifications from across the observing runs
can be used for detector characterisation;rsummarising the rates of different glitches,
and highlighting results from times necar potential gravitational-wave candidates; we
also give an overview of the data release. In Section 4| we review the implications of our
results, before summarising in Seetion |5, The data release is available from Zenodo [46],
and the volunteer classifications [47] will be discussed in a companion paper.

2. Methods

2.1. Detector data € \detector-eharacterisation

The two LIGO detéetors in the USA (Hanford and Livingston) [I], the Virgo detector
in Italy [2] and the KAGRA detector in Japan [70], are highly sensitive instruments
designed and operatedifor the direct detection of gravitational waves. The primary data
output of thése/observatoriés is the strain measured by the interferometers [71], which
will contain gravitational-wave signals as well as various sources of noise; however, there
are additionally many auxiliary channels of data that record the internal state of the
detectorstand amonitor their environments [17], [72, [73]. Since the beginning of O1 in
September, 2015, three observing runs have been completed [74]. These are preceded
andtinterleaved with engineering runs that are used to test the performance of the
detectors, and potentially diagnose data-quality issues. Each successive observing run
1 characterised by detector improvements that lead to higher sensitivity [75H78] and,

¢ The European Gravitational Observatory run a similar project dedicated to understanding glitches
iyVirgo data: GWitchHunters [43] www.zooniverse.org/projects/reinforce/gwitchhunters.
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consequently, more detections [7], as well as revealing new sources of noise.

The data quality of these ground-based gravitational-wave detectors is impacted by
multiple sources of noise. Broadly, noise in the detectors consists of stationary Gaussian
noise sources (which include quantum noise, seismic noise and thermal noise); and non=
Gaussian noise sources [10] [72] [76] [78]. Non-Gaussian noise includes long-lived spectral
lines [79] and shorter-duration transient glitches [20] 22, 23]. Monitoringsthe status
of data quality, identification and mitigation of transient noise are some of the tasks
referred to as detector characterisation [17, 21]. Understanding and improving data
quality is central to extracting astrophysical information from detector data.

Potential glitches (as well as gravitational-wave signals) are identified by searching
for excess power in the data stream. All the noise transiéntsranalyzed in this paper
were detected by the Omicron algorithm [26] 27] analysing the gravitational-wave strain
channel (and not using auxiliary channels). Omicron identifies potential noise transients
by triggering on excess power in the data stream. The Omieron algorithm annotates
each identified transient with characteristics such as event,time, peak frequency, central
frequency and signal-to-noise ratio (SNR). The glitchunorphology of the trigger can be
visualized in a time—frequency spectrogramcommonly known as an Omega scan [25] [80].
These Omega scans are used frequently in data-quality studies to establish potential
noise correlations between different parts ofithe deétector [81], and the time—frequency
morphology can be used to categorise glitches [20 [40]. The morphology may contain
clues to the cause of the glitch [2], e.gs, arches are characteristic of light scattering,
with the frequency encoding jinformation about the relative motion of the scattering
source, and multiple stacked arches suggesting repeated reflections of stray light from
the scattering source [56, [82] 83]. Example Omega scans for common glitch classes are
shown in Figure|ll These time—frequency spectrograms are used as the input to Gravity

Spy.

2.2. Machine-learning algorithm €& glitch classes

Gravity Spy contributes to detector characterisation by classifying glitches. The
morphological classes used in Gravity Spy for LIGO data are detailed in
[Al Classifications arelinade based upon time-frequency spectrograms, using two
complementary/approaches: visual inspection by Zooniverse volunteers, and automated
analysis bypa machine-learning algorithm [39, [41] [42]. Both approaches use the same
input: QOmega scans of four different temporal resolutions (0.5 s, 1 s, 2 s and 4 s in
duration, eentred on the time of the transient). Here we concentrate on the machine-
learning classification as opposed to volunteer classification.

Gravity Spy uses a CNN, a deep-learning algorithm used primarily for image
classification, to analyse the Omega scans. For every image input to the CNN, the
probability (or confidence) p of belonging to each class is calculated, and the glitch is
assigned to the class with the highest associated confidence [39]. CNN architectures
include an input layer, an output layer, and various hidden layers in between that

Page 4 of 33
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Figure 1: Example time—frequency spectrograms [80] for a selection of LIGO glitch
classes. The glitch classes here are/relatively common and illustrate the range of
morphologies different gliteh elasses can have. The spectrograms in each row are shown
with a different time duration. / Top left: Tomte is a short-duration glitch with a
characteristic triangular, morphology. Top right: Blip is another short-duration glitch,
but covers a broader. frequency range than Tomte and has a tear-drop morphology.
Middle left: Whistles haye a characteristic V, U or W shape sweeping through higher
frequencies (2 128 Hz). Middle right: Fast Scattering (also known as Crown) appears
as one or motre arches; each ~ 0.2-0.3 s in duration. Bottom left: Scattered Light
(also known ag’Slow Scattering) appears as longer-duration (~ 2.0-2.5 s) arches, with
multiple arches often being stacked on top of each other. Bottom right: Extremely Loud
are high-SNR triggers that saturate the spectrogram. Exemplar spectrograms for each
Grayity Spy ¢lass are given in Figure
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transform the data and extract useful features. The CNN used by Gravity Spym[84]
has four convolutional layers to extract features, each followed by a max-pooling and a
rectified linear unit (ReLU) activation layer, and then a final fully conneeted layersand
a softmax layer. The weights from the last softmax layer are the confidence seores for
each of the classes. Confidence scores for each trigger, indicating the probability that it
is associated with various morphological classes, are provided in the data release. The
accuracy of the classification is tested during training of the CNN [39] [42] [84].

2.3. The training sets

The original LIGO data set used to train the Gravity Spy CNN/was created by
detector-characterisation experts and Gravity Spy volunteers. It initially contained 7718
glitch samples from 20 classes prevalent in the detector during ©O1 and the preceding
engineering runs [39]. These classes included No Glit¢h, for, when no significant excess
power is visible in the Gravity Spy spectrograms, andsNone of the Above, which was
intended to catch glitches that did not fit into thewether classes. The training set was
refined and updated to include the 1080 Adiinestand 1400 Ripples classes, which were
identified by volunteers [40]. This gave a training setathat included 7932 glitch samples
from 22 classes [45]. The resulting training accuracy was 98.2% [40]. This CNN model
has been used to classify data from/©d.and O2.

During O3, the presence of two new prevalent glitch morphologies motivated the
addition of the Fast Scattering (also knowsn_as Crown) and Blip Low Frequency (also
known as Low-frequency Blip)ielasses to the machine-learning model; in addition, the
None of the Above class was removed for the final analysis, as it was decided that it
was more effective for the CNN to lahel such triggers with low confidence than to try
to construct a class of manymmorphologically diverse glitches [42] [[ﬂ Adding in the new
classes, and more examples from existing classes, this current training data set contains
9631 glitch samples distributedsover 23 classes, of these 8427 were used for training and
1203 were used for validation. The resulting training and validation accuracies were
99.9% and 98.8%, (respectively [42]. This CNN model has been used to classify data
from O3.

The performance of the CNN model depends upon the quantity and quality of
examples from gach glitch class in the training set. Augmenting the training set with
additionaleglitches classified by volunteers [47] is expected to improve the results of
future CNN models.

|| Nonerof thetAbove remains an option for Zooniverse volunteers. We anticipate that reinstating the
None of the\Above class may be useful for identifying new classes in preliminary analysis of future
observing runs. Prior to the introduction of the Fast Scattering class, there were a large number of
None of the Above classifications for O3 data with the characteristic Fast Scattering morphology [42].

Page 6 of 33
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3. Results

The Gravity Spy glitch classifications can be used as inputs for a range ofianalyses; and
here we illustrate their use as the base for detector-characterisation studies congentrating
on O3. In Sec. we show how the distribution of glitches may be studied, and in
Sec. [3.2] we illustrate how data quality at specific times may be studied usinghe example
of times around gravitational-wave candidates. For use in further studies, the release of
the Gravity Spy machine-learning classification data set is describediin Seg.

3.1. Glitch classifications

For data from both LIGO detectors, we find that there are certaimglitch classes that are
more common than others. For example, Table [1| provides mumbers of glitches sorted
into the various classes from O3 data. In addition to the mumber of glitches in each class
with an SNR > 7.5, we also show those classified with.a confidence > 90% and > 95%.
Using a higher confidence level gives a higher purity, but smaller sample. Figure [2shows
the cumulative distribution of classifications asfa funétion of confidence; this gives an
indication of how the numbers change with a.different confidence thresholds. We mainly
use a fiducial 90% confidence threshold foriour quoted results.

The number of glitches and the split ‘between classes differs between the two
observatories. Figure [3| shows the Q3 distribution of glitches as a function of SNR
for the most common classes (classes that _haye a > 1% prevalence) in LIGO Hanford
data, and Fig. [4] shows the same for LIGO Livingston.

During O3, the most common classes of glitches to occur at Livingston was
due to scattered light [82] 83 85], specifically, Scattered Light (also known as Slow
Scattering) [56] and Fast Scattering<(also known as Crown) [42]. Approximately 27%
of all the glitches in O3 were/classified as Fast Scattering by the Gravity Spy machine-
learning analysis with a cenfidenice of > 90%. Scattered Light made up about 23%
of glitches with a Gravity Spy confidence of > 90%. The relative motion between
optical surfaces in LLIGO are strongly correlated with the presence of light scattering.
The rate of Scattered Light glitches decreased during the second half of O3 (O3b)
following the introduetion of reaction-chain tracking in January 2020 [7], which reduced
the relative motion hetween' the test-mass mirror and its counterpart used in control of
the suspension system [56].

Tomtes were another common glitch class for Livingston, making up approximately
19% of all the glitches with a Gravity Spy confidence of > 90%. The origins of
these are currently unknown, as no environmental or instrumental couplings have been
detérmined. They commonly appear with a frequency of 40 Hz, and repeat often over
the course of one day [20].

At 'Hanford, Scattered Light, Low-frequency Bursts, and Extremely Loud glitches
were the most common glitch classes. Reaction-chain tracking was also implemented at
Hanford to help mitigate Scattered Light. Low-frequency Bursts were common during
August 2019. Extremely Loud glitches are large disturbances to the detector and often
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Hanford Livingston
Gravity Spy class SNR>75 p>90% p>95% SNR>75 p>90% p>95%
1080 Lines 344 78 34 942 269 141
1400 Ripples 253 85 49 7634 2384 1479
Air Compressor 343 117 76 2901 1314 952
Blip 7438 6020 5582 5554 4264 3873
Blip Low Frequency 4042 2467 2059 21522 15614 14003
Chirp 41 8 5 29 12 8
Extremely Loud 13235 10938 10335 8994 7304 6835
Fast Scattering 2243 1286 1118 74120 55211 50782
Helix 91 15 9 229 37 16
Koi Fish 11242 8447 7536 11153 7016 5800
Light Modulation 146 45 29 753 191 133
Low-frequency Burst 21211 19410 18756 5771 3855 3448
Low-frequency Lines 3955 1536 1131 13749 3751 2125
No Glitch 7783 5247 3874 14050 6748 4773
Paired Doves 269 29 12 4079 277 130
Power Line 303 164 135 1985 1441 1314
Repeating Blips 1845 1078 902 1142 459 350
Scattered Light 63333 57118 53701 57400 47258 43009
Scratchy 643 367 311 444 287 263
Tomte 1892 1360 1242 46144 39299 37573
Wandering Line 30 10 b) 64 28 20
Whistle 6238 5371 5128 8623 6150 5721
Violin Mode 884 436 366 1709 300 190

Table 1: Number of Gravity sSpy classifications in O3 LIGO Hanford and Livingston
data. For each detector, the left eolumn gives the total number of triggers with SNR
> 7.5 classified, regardless of the confidence of the classification, while the middle and
right columns give the number ‘of classifications with confidence p > 90% (our fiducial
threshold) and p > 95%, réspectively.

cause big drops in the deteetot’s astrophysical range (the distance out to which a source
can be typically detected [86]). Scattered Light made up about 47% of O3 glitches
classified with >/90% confidence at Hanford, while Extremely Loud and Low-frequency
Bursts made uprabout 9% and 16%, respectively.

Figure [5| shows the 'hourly rate of four glitch classes (Scattered Light, Fast
ScatteringgiLow=frequency Burst and Tomte) across the weeks of the O3 run for both
Hanford and Livingston [5, [7]. The rate is calculated per unit observing time. The
glitcharatesmwere calculated using those classified with > 90% confidence. This shows
thelarge increase in Scattered Light glitches in the second part of the observing run and
the subsequent reduction after the introduction of reaction-chain tracking [7} 20} 56].

Figure [6] shows a different visualization of the variation in glitch prevalence with
time: how the glitch rate (for the same classes shown in Fig. |5) changes with the day of
the week[q] Fast Scattering shows a decline during the weekend at LIGO Livingston, as

9 Plotting the number of glitches (the glitch rate multiplied by the detector duty cycle) instead of

Page 8 of 33
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Figure 2: The cumulative distribution of O3 triggers across all classes as a function
of classification confidence. The herizontal axis is the confidence p, while the vertical
axis ®(p) is the fraction of glitches identified with confidence greater than p. Three
glitch classes are highlightedras examples: Paired Doves (an uncommon class, with few
training examples [39, [40]), Koi Fish (a more common class, which can be confused with
Blips when quiet, andyExtremely Loud when loud [40, 42]), and Scattered Light (one of
the most common glitch €ypes for both detectors [42]). The number of triggers in each
class with p > 0.9 and p> 0.95 are quoted in Table

at these timeg there is less anthropogenic noise around the detectors. A similar difference
is not visiblevat LIGO Hanford because of the much lower rate of Fast Scattering
transients at Hanford (0.22 per hour) compared to Livingston (9.05 per hour) during O3:
a relatively higher ground motion in the anthropogenic band around Livingston makes
Fast/Scattering a much bigger problem there [7, [42]. In contrast to Fast Scattering,
Tomte shows negligible variation, indicating a lack of correlation with human activities.

the glitch rate, would show a significant drop on Tuesdays, as this corresponds to the day of routine
maintenance.
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Figure 3: SNR distributions for LIGO Hamford glitches identified with a confidence
p > 90%. Only results for classes with a prevalence greater than 1% in Hanford data
are shown. The width of the digtributien is normalized to be uniform across the different
classes, and the classes are ordered in/decreasing order of prevalence from left to right.
Table[I]lists the numbers of triggers in each class for the full list of classes, and analogous
distributions for Livingston/data are shown in Fig. @

3.2. Data quality around. candidates

The data set includes sglitch classifications for data around the time of several
gravitational;waye candidates. This happens either when there is a glitch picked up
by Omicron,if a gravitational-wave signal is loud enough to trigger Omicron, or if
some combination of glitch and signal is identified. Here we review these Gravity
Spy classifications, and illustrate both how Gravity Spy may identify glitches around
candidates and how it may struggle in classifying a gravitational-wave signal.

Table [2] and Table [3| provide details of example candidates from the first and second
parts 0ffO3 (O3a and O3b), respectively, with associated Gravity Spy classifications.
This. list was compiled by cross-referencing the times associated with public alerts and
high-significance candidates from offline analyses (whether or not they are identified as
instrumental in origin) [5H7), 87-H92] with the Gravity Spy data set. For this analysis, a
time window of +5 s around each candidate time was used to search for entries in the
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40

41

fé Gravity Spy data get. The majority of candidates did not have a corresponding entry
44 in the data set classified by Gravity Spy.

45 First, we_eonsiderithe set of classifications around gravitational-wave candidates
46 . . 4 . ..

47 without an identified instrumental origin:

22 e From™ Livingston, there are 14 O3a candidates that have at least one trigger
50 identified by Gravity Spy, and 7 O3b candidates. Three of the O3b events had
51 two Livingston triggers during the time of the candidate. The most common class
g; of glitehes found were Chirps. Fast Scattering, Blip and Tomte were other common
54 classifications.

52 e At /Hanford, only 7 candidates from O3 are part of the Gravity Spy data set. One
27 of these candidates has three associated Hanford glitches, and another has two.
58 The most common class to occur at times associated with these candidates was
59 Scattered Light.
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Figure 5{ Hourly glitch rate (per unit observing time) for four glitch types (classified with
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ines show the times when reaction-chain tracking was implemented [7, 56]. The
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Superevent Time Gravity Spy classification Description
S190930ak  2019-09-30 23:46:50 H: Scattered Light Instrumental origin [7]

2019-09-30 23:46:53 H: Scattered Light
S5190930s 2019-09-30 13:35:37  L: Low Frequency Lines GW190930-133541 [5, 193]
S190928¢ 2019-09-28 02:11:45 L: Tomte Retracted [5] 94]
S190924am  2019-09-24 23:26:50 L: Fast Scattering Instrumental origin|87]

2019-09-24 23:26:52 L: Fast Scattering

2019-09-24 23:26:54 L: Fast Scattering
S190924h 2019-09-24 02:18:42 L: Tomte GW190924_021846 [5 195
S190910s 2019-09-10 11:28:07  L: Chirp GW190910.112807+(5]
S190904w  2019-09-04 17:49:10 L: Fast Scattering Instrumental erigin [90]
S5190829u 2019-08-29 21:05:56  L: Koi Fish Retracted |5, 196]
S190814bv ~ 2019-08-14 21:10:38  L: Scattered Light GWA190814_211038 [5, [97] [98]
S190808ae  2019-08-08 22:21:21 H: Low Frequency Burst  Retracted 5199
S5190804q 2019-08-04 08:35:43 L: Koi Fish Instrumental origin [7, [88]
S5190803e 2019-08-03 02:26:59 H: Low Frequency Burst /£ GW190803_022701 [5]
S190728q 2019-07-28 06:45:12  L: No Glitch GW190728_064510 |51 [100]
S190701ah  2019-07-01 20:33:02 L: Fast Scattering GW190701_203306 [5, [101]
S190630ag  2019-06-30 18:52:05 L: Chirp GW190630-18520 [5] [102]
S190524q 2019-05-24 04:52:01 L: No Glitch Retracted [5 [103]

2019-05-24 04:52:02 L: No Glitch

2019-05-24 04:52:04 L: No Glitch

2019-05-24 04:52:09 L: No Glitch
S190521r 2019-05-21 07:43:59 H: Blipyk: Chirp GW190521-074359 [5] [104]
S190521¢g 2019-05-21 03:02:29 L: BlipsLow Frequency GW190521 [5] 105} [106]
S190519bj  2019-05-19 15:35:44  L: Blip GW190519_153544 [5l [107]
S190512at  2019-05-12 18:07:184, L: Tomte GW190512_180714 [5] [108]
S190430af  2019-04-30 00:49:32 “H: Koi Fish Instrumental origin [88§]
S190421ar  2019-04-21 21:38:53 / L: Power,Line GW190421_213856 [5l [109]
S190413ac  2019-04-13 13:43:10 |\L: Fast| Scattering GW190413-134308 [5]
S190412m 2019-04-12 05:30:44,. T: Chirp GW190412 [5 110, 111]
S190408an  2019-04-08 18:18:06 H: Low Frequency Burst ~ GW190408_181802 [5] [112]

14

Table 2: Gravity Spy: ¢lassifiecations coincident with confident, marginal and retracted
O3a gravitational-wave candidates [5H7, 87H92]. Equivalent results for O3b are shown

in Table [3] The main Gravity Spy analysis uses data flagged by the Omicron pipeline

as an input, and soronly classifies a subset of candidates. Omicron may pick up the

candidate, a neéar-by gliteh, or some combination of the two. The first column gives the

corresponding ¢andidate identification used in the Gravitational-wave Candidate Event
Database”(as used for low-latency alerts); the second gives the Coordinated Universal

Time of the Omicron trigger (£5 s from the time of the candidate); the third column

givessthe Gravity Spy classification with H and L indicating whether data from Hanford

or Livingston, respectively, have been analysed; the fourth column gives details of the

final status of the candidate (and citations).
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g Superevent Time Gravity Spy classification Description

6 S200311bg  2020-03-11 11:58:53 L: Blip GW200311-115853 |7l [113]

7 S200224ca 2020-02-24 22:22:34 H: Blip, L: Chirp GW200224 222234 [7], [114]

8 S200214br  2020-02-14 22:45:26 L: Fast Scattering Instrumental origin [7THi87]

9 S200129m 2020-01-29 06:55:00 L: Fast Scattering GW200129.065458 47, [115]

10 2020-01-29 06:54:58 H + L: Chirp

11 S200121aa  2020-01-21 03:17:48  H: Blip Instrumental origin ||

12 S200116ah  2020-01-16 11:56:12 L: Tomte Retracted [116]

1 j $200114f  2020-01-14 02:08:18  L: Tomte Instrumental origin [87, 188, [117]
15 S200112r 2020-01-12 15:58:38  L: Chirp GW200112_155838¢]7, [118]

16 S200108v  2020-01-08 10:00:38 L: Extremely Loud Retracted [119]

17 S200106av ~ 2020-01-06 18:34:32 H + L: Scattered Light Retracted |7, [120]

18 S191225aq  2019-12-25 21:57:15 L: Tomte Retracted [S7121]

19 S5191223an  2019-12-23 01:41:59 L: Tomte Instrumental origin [87]

20 S191213g 2019-12-13 04:34:08  L: Scattered Light Unretracted, low significance [7], [122]
21 S191212¢q 2019-12-12 08:27:25 H: Scattered Light Retracted [123]

22 2019-12-12 08:27:28 H: Scattered Light

23 S191127p 2019-11-27 05:02:28 H: Scattered Light GW191127.050227 [7]

24 2019-11-27 05:02:24  H: Scattered Light

25 S191120aj  2019-11-20 16:23:24  L: Air Compfressor Retracted [124]

;? S191117j  2019-11-17 06:08:22  L: Extremély’Loud Retracted [125]

28 S191113¢q 2019-11-13 07:17:53  L: No Glitch GW191113.071753 [7]

29 2019-11-13 07:17:48  L: No Glitch

30 S191110x 2019-11-10 18:08:42 L: Koi Fish Retracted [126)

31 S5191109d 2019-11-09 01:07:17 H:"Scattered Light, L: Blip GW191109.010717 [7, [127]

32 2019-11-09 01:07:15 H: Scattered,Light

33 2019-11-09 01:07:13n, L: Scattered Light

34 2019-11-09 01:07:12 “HaScattered Light

35 S191103a 2019-11-03 01:25:52 (L: Tomte GW191103-012549 [7]

36

37 Table 3: Gravity Spy classifications:€oincident with confident, marginal and retracted
;g O3b gravitational-wave candidates [7, [87H90, 92]. This is equivalent to Table 2 but
40 for O3b. The first golumnygives the corresponding candidate identification used in
41 the Gravitational-wave Qandidate Event Database; the second gives the Coordinated
jé Universal Time of the Qmicron trigger (+5 s from the time of the candidate); the third
44 column gives the/Gravity Spy classification with H and L indicating whether data from
45 Hanford or Livingston,réspectively, have been analysed; the fourth column gives details
2? of the final status ofithe candidate (and citations).

48

49

50 e There were 4 candidates in which a glitch was found at both detectors:
51 GW190521_074359, GW191109_010717, GW200129_065458 and GW200224 222234.
o GW190521.074359, GW200129.065458 and GW200224.222234 are amongst
54 thevhighest SNR candidates from O3 [5 [7]. GW190521.074359 [5] and
55 GW200224 222234 [7] both have a Blip glitch identified at Hanford, and a Chirp
g? at Livingston; while GW200129_065458 has a Chirp at both, in addition to a Fast
58 Scattering glitch at Livingston [7]. For GW191109_010717 there are Scattered Light
59 glitches at both detectors, plus a Blip at Livingston [7].
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Figure 7: Gravity Spy classifications around O3 gravitational-wave candidates at LIGO
Hanford and Livingston. For each candidate, a window of 5 s used to identify entries
in the Gravity Spy data set. The machine-learning algorithm may be attempting to
classify a gravitational-wave signal, a nearby glitch, or some combination of the two;
it has not been trained to identify the full diyversity of astrophysical gravitational-wave
signals, nor how to classify data containing both a signal and a glitch.

The distribution of Gravity Spyiclassifications is shown in Fig.

The Chirp class was origimally ereated for hardware injections (simulated signals
used for testing) representing ¢ompact binary coalescences [128], and hence might be
expected to capture manysofithese candidates, as is the case. However, a chirp-like
time—frequency morphology/is only visible for the highest SNR signals; as Livingston
is the more sensitive detector; there are more high SNR signals in its data. Tomte
and Blip share a similar moerphology to Chirps, and so may be confused for lower-SNR
signals. Figure [§] illustrates an example (GW190521_074359 [5]) where a the higher-
SNR Livingston signal is classified as a Chirp, while the lower-SNR Hanford signal is
(mis)classifiedsagra Blip.

When a'candidate is present at the same time as a glitch, it may be that the
glitch is piecked up by the classification algorithm. Data-quality checks [129] indicated
that data mitigation was needed for many candidates from O3 where there was excess
noise.overlapping the gravitational-wave signal. GW190413_134308, GW190701_203306,
GW190814 and GW200129_065458 all required data mitigation for Livingston data,
whilexGW191109_010717 and GW191127_050227 required data mitigation for Hanford
data 5. [7]. These all correspond to cases where there is a Gravity Spy classification
of a glitch outside of the Chirp—Blip—Tomte family in the relevant detector. However,
there is not a perfect correlation between instances where data mitigation was required
and Gravity Spy glitch classifications, and there are both candidates where mitigation
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Figure 8: Gravitational-wave candidate GW190521_074359. [5].] “At Livingston, this
glitch was classified as a Chirp, and at Hanford it wasselassified as a Blip. The SNR
of the signal is higher in Livingston, which is why the chirp=like structure is easier to
identify.

was required, but there is no entry in the Gravity Spy data set, and candidates where
there is a Gravity Spy glitch classification but ne data mitigation was required. The
former could happen if the excess noise.was below the threshold for Omicron trigger, but
still identified by the careful data-quality checks performed to evaluate candidates. The
latter could happen if the noise is at a frequency that does not impact signal analysis
(e.g., < 20 Hz), or if the CNN, is confused by the combination of signal plus noise,
and makes a misclassification. Fhe Gravity Spy training set does not currently include
examples of signals plus glitches.

To summarise, Gravity=Spy ismot a detection algorithm, but a noise-classification
algorithm. As such, it is sot intended to discriminate between gravitational-wave
signals and glitches. WMost gravitational-wave signals are comparatively low in SNR,
making them more diffieult to be picked up by Gravity Spy. Even when analysed by
Gravity Spy, gravitational-wave signals will not all currently be put into the Chirp class.
Consequently, the glitch classifications are contaminated (at a low rate) by gravitational-
wave signals.

Along with/analyzing the O3 gravitational-wave candidates, we also looked at other
candidatessthatiwere determined to be false alarms. During these events at Hanford,
the most common glitch type seen was Scattered Light. At Livingston, there was more
of a variety.ranging from Tomtes, Koi Fish, Extremely Loud, Fast Scattering, and No
Glitich.

Of the candidates with an instrumental origin, the glitches classified as No Glitch
are of particular interest: for the retracted candidate S190524q, there were 4 glitches
classified as No Glitch. Figure [9] shows data around S190524q [B, 103], and despite the
No Glitch classification, there is excess power visible. These glitches appear like a high-
frequency analogue of Fast Scattering, which does not match any existing Gravity Spy



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-109704.R2

Gravity Spy O3 data set 18

25

20

15
100

10

5

0

Time [becondb

Frequency [Hz]
Normalized energy

Figure 9: Example of a Livingston trigger classified as No Glitch from a time
corresponding to the retracted candidate S190524q /{53 03].  Despite being labelled as
No Glitch, the time—frequency resembles a high-frequency Fast Scattering glitch. This
trigger was classified by the Gravity Spy CNN with a cenfidence of 94%.

class. This highlights how the existing set of\classes does not catch the full diversity of
noise in the detector, and that further refinements of the CNN are needed to properly
classify new types of glitches.

3.3. Data release

The data release of Gravity \Spy machine-learning classifications is available from
Zenodo [46]. This consists efiecomma-separated value (CSV) files for each detector and
observing run (O1, 02, O3a’and O3b). The CSV files consist of columns describing:
(i) metadata output frem thes@micron pipeline [26] 27] such as the time of the trigger,
trigger peak frequency, bandwidth and amplitude, as well as the data analysed (the
main gravitationalfwaveistrain channel); (i) the unique Gravity Spy identifier of the
glitch; (iii) the machine-learning confidence for each of the original 22 glitch categories;
(iv) the machinesleaning classification and the confidence of this, and (v) links to Omega
scans hosted by/Zooniverse. Times are given as Global Positioning System (GPS) times,
and can hewseditoridentify the relevant data from the Gravitational Wave Open Science
Center (GWOSC) [71][" Examples of how to use the data release are given in a Python
notebeok aeecompanying the release.

4. Discussion

The LIGO detectors in Livingston, Louisiana and Hanford, Washington nominally
share an identical design [I], and thus we might not expect their performance to

7 GWOSC |gw-openscience.org/
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differ much from each other. However, due to differences in their commissioning
progress [4] [77, [78], and in their surrounding environments, the two observagories do
differ in practice [4, [5, 7,20} [76]. For example, due to the presence of extralow-frequency
noise at Hanford during O3, its sensitivity is about a factor of 2 lower in the frequency
band 20-60 Hz, as compared to Livingston [78]. Additionally, the ameunt of ground
motion in the anthropogenic (1-6 Hz) and microseism (0.1-0.5 Hz) bandsyis usually
larger near Livingston than near Hanford. Consequently, there can be considerable
difference in the amount and nature of transient noise between the two.detectors: during
O3b, the rate of Omicron transients with SNR above 10 at Livingston was about 1.7

times higher than at Hanford.
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Figure 10: Time—frequency morphology of the glitch categories Tomte and Fast
Scatgering shown in the top plot. Both of these classes were more common at Livingston
than at Hanford during O3, as shown in plot on the bottom.

We see a difference in the number and distribution of glitches across the different
Gravity Spy classes (e.g., Table . For example, during O3, the glitch classes Tomte
and Fast Scattering were more common in Livingston, and this increased prevalence
hoosted the overall glitch rate [20] 42] [130]. Examples of these two glitches classes, and
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a comparison of their prevalence during O3 is shown in Fig.

Fast Scattering was first noticed as a significant source of noise during the
engineering runs preceding O3 [42}[131]. The prevalence of Fast Scattering wags a primary
motivation for updating the Gravity Spy model to include new classes for theranalysis
of O3 data [42]. Nearly all Fast Scattering during O3 is below ~ 60 Hz.,This transient
noise is linked to an increase in ground motion in the anthropogenic_and microseism
bands near the detector [132] [133]. These two bands are usually ngisier at Livingston
than at Hanford, and this (combined with the differences in the detectors’ low-frequency
sensitivity) meant that Fast Scattering was more common at Livingston (9.05 per hour)
than at Hanford (0.22 per hour) [20), [134].

Unlike Fast Scattering, we have not yet been able to idenmtify ‘an environmental
or instrumental coupling that can explain the origin of Fomte glitches. There are
ongoing detector characterisation efforts to understandshow this glitch may couple in
the detector [130]. While we do not know the origins of Tomge glitches, we do observe
a difference in their prevalence at the two observatories:iduring O3, the rate of Tomte
glitches at Livingston was 6.44 per hour, while at Hanford the rate was 0.23 per hour.
Tomte glitches have most of their power below ~[ 64 /Hz. The difference in the low-
frequency sensitivity between the two defectors may be partially responsible for the
difference in the rates during O3. Further study of wwhen Tomte glitches occur, and the
differences between Livingston and‘Hanford;ymay reveal the origins of these glitches.

A successful example of detector characterisation during O3 was the identification
of the source of Scattered ,Light (Slow Scattering) glitches, and its subsequent
mitigation [56]. Scattered Lightyglitches have a significant impact on data quality
because they occupy a large region time+frequency parameter space. As shown in Fig. [1]
Scattered Light transients appear.as long-duration arches in spectrograms. These arches
are characteristic of noise/caused by light scattering. While the frequency gives some
information on the motion/©f the component scattering the light, it is still difficult to
identify the troublesome,light path in the detectors. The Gravity Spy analysis played
a significant role insunderstanding the source of Scattered Light: the occurrence of
glitches classified, as Scattered Light was found to correlate with motion of the the
quad suspension [20,656],/which is captured by the optical shadow sensors and magnetic
actuators (OSEMS),[135,{136], indicating that the source of light scattering was part of
the suspension’ system. The motion was subsequently reduced by employing reaction-
chain tracking, which resulted in a considerable reduction in the rate of Scattered Light
for the same degree of ground motion near the observatories [56]. The resulting drop
in thé glitch rate is visible in Fig. [5] This decline in the glitch rate of Scattered Light
is sharper at Hanford than at Livingston due comparatively higher ground motion near
Livingston in the microseism band during February 2020 [7, 20].

The fourth observing run (O4) will see the use of new and improved
technologies [137]. Among them are frequency-dependent squeezing, new Faraday
isolators, new test mass mirrors at Livingston, and higher laser power. These
improvements will translate to a higher instrument sensitivity, thereby increasing our
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astrophysical reach for detecting gravitational-wave signals. However, a more sensitive
detector is not just more sensitive to gravitational waves, it is also more sensitive to
environmental and instrumental noise artifacts. Compared to O2, the rate of glitehes
during O3a was four times higher at Livingston [5]. Like O3, it is possible thatin O4 we
will witness one or more new types of noise transients, and that these will appear only
at one of the detectors. This could require using a site-specific Grayity Spy training
set and CNN model to properly characterise O4 data quality. The ¢urrent\plan for O4
is to sample the transients for any new glitch morphologies during the engineering run
preceding O4, and retrain Gravity Spy before observing starts.

5. Summary

Understanding data quality is a key aspect of gravitational-wave detector characterisa-
tion. The Gravity Spy machine-learning algorithm enables automated classification of
segments of LIGO data suspected to contain transient mneise. Gravity Spy is routinely
used in studies of data quality [20], has been integraliin the identification of new classes
of glitches [42], and has aided in the identification of the sources of glitches [56]. Here
we describe the data release of classifications for O1,702 and O3. Using CNN models
trained for O1-02 [39, 40] and for O3 [42], we haveranalysed Advanced LIGO data from
these first three observing runs; the results are publicly available from Zenodo [46].
These can be used for a range of studies, from investigating environmental and instru-
mental origins of glitches, to developing new’data-analysis pipelines; we have used the
Gravity Spy classifications to'illustrate some of the properties of data quality in O3 (as
well as highlighting some limitationsief the data set).

This release covers data from O1-03. O4 (and subsequent observing runs) [74]
will follow improvements to the detector that may lead to the appearance of new glitch
classes (and possibly the elitination of current glitch classes). Therefore, the Gravity
Spy machine-learning model may need to be updated to account for these changes. To
aid detector-characterisation‘experts in identifying new glitch classes and building a
training set of example glitches, we will draw upon the Zooniverse volunteers along with
machine-learning clustering approaches. Gravity Spy volunteers have previously rapidly
identified new" classes based upon their time—frequency morphologies [42], and for O4
we will support their investigations into the causes of glitches by providing them with
additional auxiliary channel data. Following the update of glitches classes, we anticipate
that theclassifications provided by the Gravity Spy project will enable further studies
of LIGO data quality and improvements to data-analysis pipelines.
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Appendix A. Glitch classes

The Gravity Spy projects classifies images into a range of classes. For LIGO data from
O1land 02, 22 classes are used in the CNN model [39] 40], and for data from O3 23
classesy(the older classes except None of the Above, plus Fast Scattering and Blip Low
Frequency) are used [42]. In alphabetical order, the set of classes are,:

(i) 1080 Lines: These appear as short-duration dots repeating every ~ 0.1 s at
~ 1080 Hz. They are also accompanied by noise below 64 Hz. These glitches were
prevalent in Hanford date early in O2, but were reduced following improvements in
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Figure Al: Time-frequency morphology for examples of the Gravity Spy classes in O3.
The classes areygrouped by the time duration (0.5 s, 1 s, 2 s or 4 s) that best illustrates

their features. (First row: Tomte, Blip, Blip Low Frequency and Low-frequency Burst
(0.5(s). Second row: Violin Mode, Power Line, Light Modulation and Scratchy (0.5 s).

Third_row: Chirp, Air Compressor, Koi Fish and 1400 Ripples (0.5 s). Fourth row: No

Glitch, Whistle, Fast Scattering and Repeating Blips (1 s). Fifth row: Wandering Line,
Scattered Light, Helix (1 s) and Extremely Loud (2 s). Sizth row: Low-frequency Lines,

1080 Lines and Paired Doves (4 s). The Blip Low Frequency and Fast Scattering classes

are not used for O1 and O2, but the O1 and O2 results do include an additional None
of the Above class.
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(i)
(iii)

(vii)

(viii)

the output mode cleaner [13§].
1400 Ripples: These glitches appear as short (< 0.05 s) wavy lines at ~ 1400 Hz.

Air Compressor: This class appears as thick flat line at ~ 50 Hz. In Hanford, these
were found to be related to air compressor motors at the end stations [139], and
were reduced following the replacement the vibration isolators.

Blip: Blip glitches are broadband with very short (~ 0.04 s) duration.” Due to
their teardrop morphology, Blips can adversely influence the search for high-mass
binary black hole signals. Despite being a common glitch class, the'cause of Blips
is currently unknown [19].

Blip Low Frequency: Otherwise known as Low-frequency Blips,;these glitches have
a similar morphology to Blip glitches, except they odeur at lower frequencies with
peak frequencies ~ 10-50 Hz [42]. This is a new glitch class‘added for O3.

Chirp: The characteristic sweep from low frequencies,to high of a coalescing
compact-object binary. The class originally contained.examples of simulated signals
created by hardware injections [128]. The Chirpytraining set was created early in
the era of gravitational-wave astronomy to accommodate hardware injections, and
is not representative of our current understanding of the population of coalescing
binaries [7, 140].

Extremely Loud: These broadband transients are characterised by very high SNR,
often leading to the spectrograms appearing saturated. These correspond to large
disturbances to the deteetors, and may often be accompanied by a drop in the
astrophysical range of the detector. High-SNR glitches from other classes (e.g., Koi
Fish) may be classified as Extremely Loud.

Fast Scattering: Otherwise known as Crown, these glitches appear as short-duration
(~ 0.2-0.3 s) arches [42]¢ These arches often appear in groups, each separated by
either 0.25 s or 0:5 8. They are correlated with ground motion in the anthropogenic
(1-6 Hz) band, which,is usually caused by bad weather or human activity. This is a
new glitch class'added for O3, and they were the most common glitch in Livingston
data.

Helix: These are broadband glitches, usually in the frequency region 16-512 Hz,
often occwrringin groups of two or three glitches separated from each other by
~ 0.1ss. They may be related to glitches in the auxiliary lasers used to calibrate
the detectors [139].

Koi Fish: These glitches are high-SNR broadband glitches. They typically occupy
the frequency band ~ 20-1000 Hz, and can resemble Blips, but with pectoral fins
aty~30 Hz.

Light Modulation: These transients are usually high SNR, with most of the noise
content at 16-128 Hz, but there may also be one or more broadband spikes. They
are caused by amplitude fluctuations in the control signal of the optical sidebands
used to regulate the length and alignment of optical cavities [17].
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(xii)

(xiii)

(xiv)

(xvi)

(xvii)

(xviii)

(xix)

(xxii)

Low-frequency Burst: These are usually short-duration (~ 0.25 s) transients
between ~ 10-20 Hz, often appearing as a hump at the bottom of the spectrogram.
They were common at Livingston data during O1 and Hanford data'in O3a.

Low-frequency Lines: These appear mostly as flat lines, extending o~ 1.5-2 s in
time and usually below ~ 20 Hz.

No Glitch: This category is used for Omicron triggers where there is not visible
excess power in the Gravity Spy spectrogram. These are usually low-SNR Omicron
triggers, but can include short-duration, high-frequency (Z.2000-Hz) transients
than are difficult to resolve because of the logarithmic frequeney'scale used for the
spectrograms.

None of the Above: This category is a catch-all forsglitchessthat do not fit into
the other categories. Accordingly, there is no typical merphology. This class is
primarily useful when Zooniverse volunteers are classifying images. This class was
not used for the final CNN classification of O3 data.

Paired Doves: These appear as a pair of ghort, duration transients, alternating
between increasing and decreasing in frequeney, with a separation of ~ 0.1 s. These
glitches are potentially related to periods of excess motion of the beamsplitter [141].

Power Line: These glitches appear as narrow, flat lines, usually ~ 0.2-0.5 s close to
60 Hz (or harmonics of this). Thisfrequency corresponds to the electric power-grid
frequency in United States, and glitches can be caused by a range of equipment
that runs of this power supply [142] 143

Repeating Blips: This class ¢ensists of multiple Blip-like glitches, often repeating
with a cadence of ~ 0.25-0.50 s.

Scattered Light: Otherwise knewn as Slow Scattering (to distinguish from Fast
Scattering), they appéars as long-duration (~ 2.0-2.5 s) arches in the spectrograms.
They are correlated with ground motion in the earthquake (0.03-0.1 Hz) or
microseism (0.1-0.5'Hz) frequency bands. In O3, it was found that Scattered Light
was caused by therelative motion between the optical suspension system’s end
test-mass chain and the reaction-mass chain [56].

Scratchy: sSSemetimes known as Blue Mountains, these appear as a series of sharp
peaks at] intermediate frequencies ~ 60-250 Hz. There may be ~ 10-30 peaks per
seconds, They-are related to light scattering from the Swiss cheese baffles [144] [145].

Tomte: These are short-duration glitches with a characteristic triangular shape.
They are'similar to Blip or Blip Low-frequency glitches, and typically occupy the
frequency band ~ 16-150 Hz. They can adversely influence the search for high-mass
binary black hole signals.

Violin Mode: These appear as disturbances at ~ 500 Hz and harmonics. These
frequencies correspond to the resonances of the glass fibres that are used to suspend
the mirrors.
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(xxiii) Wandering Line: These long-duration transients have an undulatingsline

morphology. They can cover a wide range of frequencies, with multiple lines
appearing at once at different frequencies, but are usually above ~ 256 Hz.

(xxiv) Whistle: Also known as Radio Frequency Beat Notes, these appear asU-, V= or, W=

shaped transients, typically above ~ 128 Hz with most of the noiséxcontent above
~ 500 Hz. They are caused when radio-frequency signals beat.with the voltage
controlled oscillators [146].

Examples for the 23 classes used for O3 classification are shown.in. Figure

In addition to the classes used in the CNN;, there are additional .IGO glitch classes
that have been proposed by Zooniverse volunteers during @3, that-have not yet been
incorporated into the machine-learning framework:

(i) 70 Hz Line: These appear as lines similar to Air Compressoror Power Line glitches,
but centred at ~ 70 Hz.
(ii) High-frequency Burst: These appear as very short-duration transients at frequencies

> 1000 Hz.

(iii) Pizzicato: These appear as a short (s, 0.05 s). transient that resembles a flying
saucer centered around ~ 500 Hz, ~ 1000"Hz, or both. The frequencies correspond
to violin modes of the suspension fibres,‘and the glitch may be related violin mode
damping mechanisms, but the exact cause.is yet to be identified.

These, and further classes, may be added to.the CNN for future studies.
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