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Abstract. Understanding the noise in gravitational-wave detectors is central to
detecting and interpreting gravitational-wave signals. Glitches are transient, non-
Gaussian noise features that can have a range of environmental and instrumental
origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches
based upon their time–frequency morphology. The resulting set of classified glitches
can be used as input to detector-characterisation investigations of how to mitigate
glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here
we present the results of the Gravity Spy analysis of data up to the end of the third
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Gravity Spy O3 data set 2

observing run of Advanced LIGO. We classify 233981 glitches from LIGO Hanford and
379805 glitches from LIGO Livingston into morphological classes. We find that the
distribution of glitches di↵ers between the two LIGO sites. This highlights the potential
need for studies of data quality to be individually tailored to each gravitational-wave
observatory.

Submitted to: Class. Quantum Grav.

1. Introduction

Gravitational-wave astronomy provides unique information about our Universe. To

date, the Advanced Laser Interferometric Gravitational-Wave Observatory (LIGO) [1]

and Advanced Virgo [2] detectors have observed signals from coalescing binaries of

neutron stars and black holes [3–7], with the rate of discovery increasing dramatically

as the sensitivity of the detector network improves. Analysis by the LIGO Scientific,

Virgo and KAGRA (LVK) Collaboration identified 3 candidates with a probability of

astrophysical origin greater than 50% in the first observing run (O1) of the advanced-

detector network [8], 8 in the second observing run (O2) [4], and 79 in the third observing

run (O3) [6, 7]. Such observations require measurements equivalent to fractional changes

in distance of . 10�21 [9], and hence the detector must be carefully isolated from

instrumental and environmental sources of noise. However, noise cannot be fully

eliminated, and to identify and analyse gravitational-wave signals it is necessary to

understand the properties of noise in the gravitational-wave detectors [10].

Transient, non-Gaussian bursts of noise (typically less than a few seconds in

duration) in the gravitational-wave data stream are known as glitches. Glitches

are particularly detrimental to the identification and analysis of gravitational-wave

signals [10–16]. There are many di↵erent glitch types, some with known environmental

or instrumental origins, and others with uncertain or unknown sources [17–21].

Identifying the causes of glitches is key to improving gravitational-wave data quality.

A wide range of tools are used to monitor data quality and characterise the

behaviour of the detectors [20–27]. In recent years, machine-learning methods have

been developed for a range of analyses connected to various aspects of detector

characterisation [e.g., 28–38]. The Gravity Spy project [39–42] aims to classify glitches

by combining human and machine-learning classification schemes: volunteers on the

Zooniverse citizen-science platform (as well as LVK detector-characterisation experts)

inspect and classify individual glitches, which can then be used as input to a machine-

learning algorithm that can classify large sets of data.‡ Since its launch in October

2016, the Gravity Spy project has analysed almost 2 million individual glitches and has

accumulated over 5.7 million classifications by more than 27,000 registered Zooniverse

‡ Gravity Spy Zooniverse project gravityspy.org.
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users.§ Results of machine-learning and volunteer classifications have been made

available both internally within the LVK, and to the wider public [44–47].

Compiling a catalogue of classified glitches is useful for both identifying the

physical causes of glitches (such that commissioning work could be done to remove

them), and evaluating the impact of glitches on data analysis (creating new analyses

to mitigate their e↵ect where necessary). For example, Gravity Spy classifications

have been used for: selecting example glitches to evaluate their impact on data

analysis [48–51]; studying glitch morphology [52–55]; cross-referencing glitches with

environmental-noise or auxiliary-channel measurements [20, 56–58], and as a component

of training for gravitational-wave detection algorithms [59–65] or glitch-classification

algorithms [32, 66–69]. Additionally, identification of new classes can indicate new

sources of noise and suggest areas for further commissioning [42].

In this paper we describe the glitch classifications from Gravity Spy’s machine-

learning analysis of data from the first three observing runs of Advanced LIGO; this

analysis uses the Gravity Spy convolutional neutral network (CNN) models previously

developed for O1–O2 [39, 40] and O3 [42]. In Section 2 we describe the gravitational-

wave strain data, the machine-learning algorithm and the glitch classes; further details

of the di↵erent classes used for analysis of each observing run are given in Appendix A.

In Section 3 we illustrate how results of classifications from across the observing runs

can be used for detector characterisation, summarising the rates of di↵erent glitches,

and highlighting results from times near potential gravitational-wave candidates; we

also give an overview of the data release. In Section 4 we review the implications of our

results, before summarising in Section 5. The data release is available from Zenodo [46],

and the volunteer classifications [47] will be discussed in a companion paper.

2. Methods

2.1. Detector data & detector characterisation

The two LIGO detectors in the USA (Hanford and Livingston) [1], the Virgo detector

in Italy [2] and the KAGRA detector in Japan [70], are highly sensitive instruments

designed and operated for the direct detection of gravitational waves. The primary data

output of these observatories is the strain measured by the interferometers [71], which

will contain gravitational-wave signals as well as various sources of noise; however, there

are additionally many auxiliary channels of data that record the internal state of the

detectors and monitor their environments [17, 72, 73]. Since the beginning of O1 in

September 2015, three observing runs have been completed [74]. These are preceded

and interleaved with engineering runs that are used to test the performance of the

detectors, and potentially diagnose data-quality issues. Each successive observing run

is characterised by detector improvements that lead to higher sensitivity [75–78] and,

§ The European Gravitational Observatory run a similar project dedicated to understanding glitches
in Virgo data: GWitchHunters [43] www.zooniverse.org/projects/reinforce/gwitchhunters.
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consequently, more detections [7], as well as revealing new sources of noise.

The data quality of these ground-based gravitational-wave detectors is impacted by

multiple sources of noise. Broadly, noise in the detectors consists of stationary Gaussian

noise sources (which include quantum noise, seismic noise and thermal noise), and non-

Gaussian noise sources [10, 72, 76, 78]. Non-Gaussian noise includes long-lived spectral

lines [79] and shorter-duration transient glitches [20, 22, 23]. Monitoring the status

of data quality, identification and mitigation of transient noise are some of the tasks

referred to as detector characterisation [17, 21]. Understanding and improving data

quality is central to extracting astrophysical information from detector data.

Potential glitches (as well as gravitational-wave signals) are identified by searching

for excess power in the data stream. All the noise transients analyzed in this paper

were detected by the Omicron algorithm [26, 27] analysing the gravitational-wave strain

channel (and not using auxiliary channels). Omicron identifies potential noise transients

by triggering on excess power in the data stream. The Omicron algorithm annotates

each identified transient with characteristics such as event time, peak frequency, central

frequency and signal-to-noise ratio (SNR). The glitch morphology of the trigger can be

visualized in a time–frequency spectrogram commonly known as an Omega scan [25, 80].

These Omega scans are used frequently in data-quality studies to establish potential

noise correlations between di↵erent parts of the detector [81], and the time–frequency

morphology can be used to categorise glitches [20, 40]. The morphology may contain

clues to the cause of the glitch [21], e.g., arches are characteristic of light scattering,

with the frequency encoding information about the relative motion of the scattering

source, and multiple stacked arches suggesting repeated reflections of stray light from

the scattering source [56, 82, 83]. Example Omega scans for common glitch classes are

shown in Figure 1. These time–frequency spectrograms are used as the input to Gravity

Spy.

2.2. Machine-learning algorithm & glitch classes

Gravity Spy contributes to detector characterisation by classifying glitches. The

morphological classes used in Gravity Spy for LIGO data are detailed in Appendix

A. Classifications are made based upon time–frequency spectrograms, using two

complementary approaches: visual inspection by Zooniverse volunteers, and automated

analysis by a machine-learning algorithm [39, 41, 42]. Both approaches use the same

input: Omega scans of four di↵erent temporal resolutions (0.5 s, 1 s, 2 s and 4 s in

duration, centred on the time of the transient). Here we concentrate on the machine-

learning classification as opposed to volunteer classification.

Gravity Spy uses a CNN, a deep-learning algorithm used primarily for image

classification, to analyse the Omega scans. For every image input to the CNN, the

probability (or confidence) p of belonging to each class is calculated, and the glitch is

assigned to the class with the highest associated confidence [39]. CNN architectures

include an input layer, an output layer, and various hidden layers in between that
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Figure 1: Example time–frequency spectrograms [80] for a selection of LIGO glitch

classes. The glitch classes here are relatively common and illustrate the range of

morphologies di↵erent glitch classes can have. The spectrograms in each row are shown

with a di↵erent time duration. Top left: Tomte is a short-duration glitch with a

characteristic triangular morphology. Top right: Blip is another short-duration glitch,

but covers a broader frequency range than Tomte and has a tear-drop morphology.

Middle left: Whistles have a characteristic V, U or W shape sweeping through higher

frequencies (& 128 Hz). Middle right: Fast Scattering (also known as Crown) appears

as one or more arches, each ⇠ 0.2–0.3 s in duration. Bottom left: Scattered Light

(also known as Slow Scattering) appears as longer-duration (⇠ 2.0–2.5 s) arches, with

multiple arches often being stacked on top of each other. Bottom right: Extremely Loud

are high-SNR triggers that saturate the spectrogram. Exemplar spectrograms for each

Gravity Spy class are given in Figure A1.
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Gravity Spy O3 data set 6

transform the data and extract useful features. The CNN used by Gravity Spy [84]

has four convolutional layers to extract features, each followed by a max-pooling and a

rectified linear unit (ReLU) activation layer, and then a final fully connected layer and

a softmax layer. The weights from the last softmax layer are the confidence scores for

each of the classes. Confidence scores for each trigger, indicating the probability that it

is associated with various morphological classes, are provided in the data release. The

accuracy of the classification is tested during training of the CNN [39, 42, 84].

2.3. The training sets

The original LIGO data set used to train the Gravity Spy CNN was created by

detector-characterisation experts and Gravity Spy volunteers. It initially contained 7718

glitch samples from 20 classes prevalent in the detector during O1 and the preceding

engineering runs [39]. These classes included No Glitch, for when no significant excess

power is visible in the Gravity Spy spectrograms, and None of the Above, which was

intended to catch glitches that did not fit into the other classes. The training set was

refined and updated to include the 1080 Lines and 1400 Ripples classes, which were

identified by volunteers [40]. This gave a training set that included 7932 glitch samples

from 22 classes [45]. The resulting training accuracy was 98.2% [40]. This CNN model

has been used to classify data from O1 and O2.

During O3, the presence of two new prevalent glitch morphologies motivated the

addition of the Fast Scattering (also known as Crown) and Blip Low Frequency (also

known as Low-frequency Blip) classes to the machine-learning model; in addition, the

None of the Above class was removed for the final analysis, as it was decided that it

was more e↵ective for the CNN to label such triggers with low confidence than to try

to construct a class of many morphologically diverse glitches [42].k Adding in the new

classes, and more examples from existing classes, this current training data set contains

9631 glitch samples distributed over 23 classes, of these 8427 were used for training and

1203 were used for validation. The resulting training and validation accuracies were

99.9% and 98.8%, respectively [42]. This CNN model has been used to classify data

from O3.

The performance of the CNN model depends upon the quantity and quality of

examples from each glitch class in the training set. Augmenting the training set with

additional glitches classified by volunteers [47] is expected to improve the results of

future CNN models.

k None of the Above remains an option for Zooniverse volunteers. We anticipate that reinstating the
None of the Above class may be useful for identifying new classes in preliminary analysis of future
observing runs. Prior to the introduction of the Fast Scattering class, there were a large number of
None of the Above classifications for O3 data with the characteristic Fast Scattering morphology [42].
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3. Results

The Gravity Spy glitch classifications can be used as inputs for a range of analyses, and

here we illustrate their use as the base for detector-characterisation studies concentrating

on O3. In Sec. 3.1 we show how the distribution of glitches may be studied, and in

Sec. 3.2 we illustrate how data quality at specific times may be studied using the example

of times around gravitational-wave candidates. For use in further studies, the release of

the Gravity Spy machine-learning classification data set is described in Sec. 3.3.

3.1. Glitch classifications

For data from both LIGO detectors, we find that there are certain glitch classes that are

more common than others. For example, Table 1 provides numbers of glitches sorted

into the various classes from O3 data. In addition to the number of glitches in each class

with an SNR > 7.5, we also show those classified with a confidence > 90% and > 95%.

Using a higher confidence level gives a higher purity, but smaller sample. Figure 2 shows

the cumulative distribution of classifications as a function of confidence; this gives an

indication of how the numbers change with a di↵erent confidence thresholds. We mainly

use a fiducial 90% confidence threshold for our quoted results.

The number of glitches and the split between classes di↵ers between the two

observatories. Figure 3 shows the O3 distribution of glitches as a function of SNR

for the most common classes (classes that have a > 1% prevalence) in LIGO Hanford

data, and Fig. 4 shows the same for LIGO Livingston.

During O3, the most common classes of glitches to occur at Livingston was

due to scattered light [82, 83, 85], specifically, Scattered Light (also known as Slow

Scattering) [56] and Fast Scattering (also known as Crown) [42]. Approximately 27%

of all the glitches in O3 were classified as Fast Scattering by the Gravity Spy machine-

learning analysis with a confidence of > 90%. Scattered Light made up about 23%

of glitches with a Gravity Spy confidence of > 90%. The relative motion between

optical surfaces in LIGO are strongly correlated with the presence of light scattering.

The rate of Scattered Light glitches decreased during the second half of O3 (O3b)

following the introduction of reaction-chain tracking in January 2020 [7], which reduced

the relative motion between the test-mass mirror and its counterpart used in control of

the suspension system [56].

Tomtes were another common glitch class for Livingston, making up approximately

19% of all the glitches with a Gravity Spy confidence of > 90%. The origins of

these are currently unknown, as no environmental or instrumental couplings have been

determined. They commonly appear with a frequency of 40 Hz, and repeat often over

the course of one day [20].

At Hanford, Scattered Light, Low-frequency Bursts, and Extremely Loud glitches

were the most common glitch classes. Reaction-chain tracking was also implemented at

Hanford to help mitigate Scattered Light. Low-frequency Bursts were common during

August 2019. Extremely Loud glitches are large disturbances to the detector and often
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Hanford Livingston
Gravity Spy class SNR > 7.5 p > 90% p > 95% SNR > 7.5 p > 90% p > 95%

1080 Lines 344 78 34 942 269 141
1400 Ripples 253 85 49 7634 2384 1479
Air Compressor 343 117 76 2901 1314 952
Blip 7438 6020 5582 5554 4264 3873
Blip Low Frequency 4042 2467 2059 21522 15614 14003
Chirp 41 8 5 29 12 8
Extremely Loud 13235 10938 10335 8994 7304 6835
Fast Scattering 2243 1286 1118 74120 55211 50782
Helix 91 15 9 229 37 16
Koi Fish 11242 8447 7536 11153 7016 5800
Light Modulation 146 45 29 753 191 133
Low-frequency Burst 21211 19410 18756 5771 3855 3448
Low-frequency Lines 3955 1536 1131 13749 3751 2125
No Glitch 7783 5247 3874 14050 6748 4773
Paired Doves 269 29 12 4079 277 130
Power Line 303 164 135 1985 1441 1314
Repeating Blips 1845 1078 902 1142 459 350
Scattered Light 63333 57118 53701 57400 47258 43009
Scratchy 643 367 311 444 287 263
Tomte 1892 1360 1242 46144 39299 37573
Wandering Line 30 10 5 64 28 20
Whistle 6238 5371 5128 8623 6150 5721
Violin Mode 884 436 366 1709 300 190

Table 1: Number of Gravity Spy classifications in O3 LIGO Hanford and Livingston

data. For each detector, the left column gives the total number of triggers with SNR

> 7.5 classified, regardless of the confidence of the classification, while the middle and

right columns give the number of classifications with confidence p > 90% (our fiducial

threshold) and p > 95%, respectively.

cause big drops in the detector’s astrophysical range (the distance out to which a source

can be typically detected [86]). Scattered Light made up about 47% of O3 glitches

classified with > 90% confidence at Hanford, while Extremely Loud and Low-frequency

Bursts made up about 9% and 16%, respectively.

Figure 5 shows the hourly rate of four glitch classes (Scattered Light, Fast

Scattering, Low-frequency Burst and Tomte) across the weeks of the O3 run for both

Hanford and Livingston [5, 7]. The rate is calculated per unit observing time. The

glitch rates were calculated using those classified with > 90% confidence. This shows

the large increase in Scattered Light glitches in the second part of the observing run and

the subsequent reduction after the introduction of reaction-chain tracking [7, 20, 56].

Figure 6 shows a di↵erent visualization of the variation in glitch prevalence with

time: how the glitch rate (for the same classes shown in Fig. 5) changes with the day of

the week.¶ Fast Scattering shows a decline during the weekend at LIGO Livingston, as

¶ Plotting the number of glitches (the glitch rate multiplied by the detector duty cycle) instead of
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Figure 2: The cumulative distribution of O3 triggers across all classes as a function

of classification confidence. The horizontal axis is the confidence p, while the vertical

axis �(p) is the fraction of glitches identified with confidence greater than p. Three

glitch classes are highlighted as examples: Paired Doves (an uncommon class, with few

training examples [39, 40]), Koi Fish (a more common class, which can be confused with

Blips when quiet, and Extremely Loud when loud [40, 42]), and Scattered Light (one of

the most common glitch types for both detectors [42]). The number of triggers in each

class with p > 0.9 and p > 0.95 are quoted in Table 1.

at these times there is less anthropogenic noise around the detectors. A similar di↵erence

is not visible at LIGO Hanford because of the much lower rate of Fast Scattering

transients at Hanford (0.22 per hour) compared to Livingston (9.05 per hour) during O3:

a relatively higher ground motion in the anthropogenic band around Livingston makes

Fast Scattering a much bigger problem there [7, 42]. In contrast to Fast Scattering,

Tomte shows negligible variation, indicating a lack of correlation with human activities.

the glitch rate, would show a significant drop on Tuesdays, as this corresponds to the day of routine
maintenance.
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Figure 3: SNR distributions for LIGO Hanford glitches identified with a confidence

p > 90%. Only results for classes with a prevalence greater than 1% in Hanford data

are shown. The width of the distribution is normalized to be uniform across the di↵erent

classes, and the classes are ordered in decreasing order of prevalence from left to right.

Table 1 lists the numbers of triggers in each class for the full list of classes, and analogous

distributions for Livingston data are shown in Fig. 4.

3.2. Data quality around candidates

The data set includes glitch classifications for data around the time of several

gravitational-wave candidates. This happens either when there is a glitch picked up

by Omicron, if a gravitational-wave signal is loud enough to trigger Omicron, or if

some combination of glitch and signal is identified. Here we review these Gravity

Spy classifications, and illustrate both how Gravity Spy may identify glitches around

candidates and how it may struggle in classifying a gravitational-wave signal.

Table 2 and Table 3 provide details of example candidates from the first and second

parts of O3 (O3a and O3b), respectively, with associated Gravity Spy classifications.

This list was compiled by cross-referencing the times associated with public alerts and

high-significance candidates from o✏ine analyses (whether or not they are identified as

instrumental in origin) [5–7, 87–92] with the Gravity Spy data set. For this analysis, a

time window of ±5 s around each candidate time was used to search for entries in the
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Figure 4: SNR distributions for LIGO Livingston glitches identified with a confidence

p > 90%. Only results for classes with a prevalence greater than 1% in Livingston

data are shown. The width of the distribution is normalized to be uniform across the

di↵erent classes, and the classes are ordered in decreasing order of prevalence from left

to right. Table 1 lists the numbers of triggers in each class for the full list of classes,

and analogous distributions for Hanford data are shown in Fig. 4.

Gravity Spy data set. The majority of candidates did not have a corresponding entry

in the data set classified by Gravity Spy.

First, we consider the set of classifications around gravitational-wave candidates

without an identified instrumental origin:

• From Livingston, there are 14 O3a candidates that have at least one trigger

identified by Gravity Spy, and 7 O3b candidates. Three of the O3b events had

two Livingston triggers during the time of the candidate. The most common class

of glitches found were Chirps. Fast Scattering, Blip and Tomte were other common

classifications.

• At Hanford, only 7 candidates from O3 are part of the Gravity Spy data set. One

of these candidates has three associated Hanford glitches, and another has two.

The most common class to occur at times associated with these candidates was

Scattered Light.
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Figure 5: Hourly glitch rate (per unit observing time) for four glitch types (classified with

confidence > 90%) at LIGO Hanford and LIGO Livingston during O3 on di↵erent days

of the week. The rate is calculated as the number of glitches per unit observing time.

The solid traces show the rolling median of the daily average glitch rate across seven

day intervals, while the dots show the glitch rate for each calendar week. The dashed

vertical lines show the times when reaction-chain tracking was implemented [7, 56]. The

month of October was used for commissioning, and its data is not shown here.
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Figure 6: Hourly glitch rate for weekdays folded across the entire O3 run. The rate is

calculated as the number of glitches per unit observing time, and we plot the average

over each weekday. The month of October was used for commissioning and its data is

not shown here.
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Superevent Time Gravity Spy classification Description

S190930ak 2019-09-30 23:46:50 H: Scattered Light Instrumental origin [7]
2019-09-30 23:46:53 H: Scattered Light

S190930s 2019-09-30 13:35:37 L: Low Frequency Lines GW190930 133541 [5, 93]
S190928c 2019-09-28 02:11:45 L: Tomte Retracted [5, 94]
S190924am 2019-09-24 23:26:50 L: Fast Scattering Instrumental origin [87]

2019-09-24 23:26:52 L: Fast Scattering
2019-09-24 23:26:54 L: Fast Scattering

S190924h 2019-09-24 02:18:42 L: Tomte GW190924 021846 [5, 95]
S190910s 2019-09-10 11:28:07 L: Chirp GW190910 112807 [5]
S190904w 2019-09-04 17:49:10 L: Fast Scattering Instrumental origin [90]
S190829u 2019-08-29 21:05:56 L: Koi Fish Retracted [5, 96]
S190814bv 2019-08-14 21:10:38 L: Scattered Light GW190814 211038 [5, 97, 98]
S190808ae 2019-08-08 22:21:21 H: Low Frequency Burst Retracted [5, 99]
S190804q 2019-08-04 08:35:43 L: Koi Fish Instrumental origin [7, 88]
S190803e 2019-08-03 02:26:59 H: Low Frequency Burst GW190803 022701 [5]
S190728q 2019-07-28 06:45:12 L: No Glitch GW190728 064510 [5, 100]
S190701ah 2019-07-01 20:33:02 L: Fast Scattering GW190701 203306 [5, 101]
S190630ag 2019-06-30 18:52:05 L: Chirp GW190630 18520 [5, 102]
S190524q 2019-05-24 04:52:01 L: No Glitch Retracted [5, 103]

2019-05-24 04:52:02 L: No Glitch
2019-05-24 04:52:04 L: No Glitch
2019-05-24 04:52:09 L: No Glitch

S190521r 2019-05-21 07:43:59 H: Blip, L: Chirp GW190521 074359 [5, 104]
S190521g 2019-05-21 03:02:29 L: Blip Low Frequency GW190521 [5, 105, 106]
S190519bj 2019-05-19 15:35:44 L: Blip GW190519 153544 [5, 107]
S190512at 2019-05-12 18:07:18 L: Tomte GW190512 180714 [5, 108]
S190430af 2019-04-30 00:49:32 H: Koi Fish Instrumental origin [88]
S190421ar 2019-04-21 21:38:53 L: Power Line GW190421 213856 [5, 109]
S190413ac 2019-04-13 13:43:10 L: Fast Scattering GW190413 134308 [5]
S190412m 2019-04-12 05:30:44 L: Chirp GW190412 [5, 110, 111]
S190408an 2019-04-08 18:18:06 H: Low Frequency Burst GW190408 181802 [5, 112]

Table 2: Gravity Spy classifications coincident with confident, marginal and retracted

O3a gravitational-wave candidates [5–7, 87–92]. Equivalent results for O3b are shown

in Table 3. The main Gravity Spy analysis uses data flagged by the Omicron pipeline

as an input, and so only classifies a subset of candidates. Omicron may pick up the

candidate, a near-by glitch, or some combination of the two. The first column gives the

corresponding candidate identification used in the Gravitational-wave Candidate Event

Database (as used for low-latency alerts); the second gives the Coordinated Universal

Time of the Omicron trigger (±5 s from the time of the candidate); the third column

gives the Gravity Spy classification with H and L indicating whether data from Hanford

or Livingston, respectively, have been analysed; the fourth column gives details of the

final status of the candidate (and citations).
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Superevent Time Gravity Spy classification Description

S200311bg 2020-03-11 11:58:53 L: Blip GW200311 115853 [7, 113]
S200224ca 2020-02-24 22:22:34 H: Blip, L: Chirp GW200224 222234 [7, 114]
S200214br 2020-02-14 22:45:26 L: Fast Scattering Instrumental origin [7, 87]
S200129m 2020-01-29 06:55:00 L: Fast Scattering GW200129 065458 [7, 115]

2020-01-29 06:54:58 H + L: Chirp
S200121aa 2020-01-21 03:17:48 H: Blip Instrumental origin [7]
S200116ah 2020-01-16 11:56:12 L: Tomte Retracted [116]
S200114f 2020-01-14 02:08:18 L: Tomte Instrumental origin [87, 88, 117]
S200112r 2020-01-12 15:58:38 L: Chirp GW200112 155838 [7, 118]
S200108v 2020-01-08 10:00:38 L: Extremely Loud Retracted [119]
S200106av 2020-01-06 18:34:32 H + L: Scattered Light Retracted [7, 120]
S191225aq 2019-12-25 21:57:15 L: Tomte Retracted [87, 121]
S191223an 2019-12-23 01:41:59 L: Tomte Instrumental origin [87]
S191213g 2019-12-13 04:34:08 L: Scattered Light Unretracted, low significance [7, 122]
S191212q 2019-12-12 08:27:25 H: Scattered Light Retracted [123]

2019-12-12 08:27:28 H: Scattered Light
S191127p 2019-11-27 05:02:28 H: Scattered Light GW191127 050227 [7]

2019-11-27 05:02:24 H: Scattered Light
S191120aj 2019-11-20 16:23:24 L: Air Compressor Retracted [124]
S191117j 2019-11-17 06:08:22 L: Extremely Loud Retracted [125]
S191113q 2019-11-13 07:17:53 L: No Glitch GW191113 071753 [7]

2019-11-13 07:17:48 L: No Glitch
S191110x 2019-11-10 18:08:42 L: Koi Fish Retracted [126]
S191109d 2019-11-09 01:07:17 H: Scattered Light, L: Blip GW191109 010717 [7, 127]

2019-11-09 01:07:15 H: Scattered Light
2019-11-09 01:07:13 L: Scattered Light
2019-11-09 01:07:12 H: Scattered Light

S191103a 2019-11-03 01:25:52 L: Tomte GW191103 012549 [7]

Table 3: Gravity Spy classifications coincident with confident, marginal and retracted

O3b gravitational-wave candidates [7, 87–90, 92]. This is equivalent to Table 2 but

for O3b. The first column gives the corresponding candidate identification used in

the Gravitational-wave Candidate Event Database; the second gives the Coordinated

Universal Time of the Omicron trigger (±5 s from the time of the candidate); the third

column gives the Gravity Spy classification with H and L indicating whether data from

Hanford or Livingston, respectively, have been analysed; the fourth column gives details

of the final status of the candidate (and citations).

• There were 4 candidates in which a glitch was found at both detectors:

GW190521 074359, GW191109 010717, GW200129 065458 and GW200224 222234.

GW190521 074359, GW200129 065458 and GW200224 222234 are amongst

the highest SNR candidates from O3 [5, 7]. GW190521 074359 [5] and

GW200224 222234 [7] both have a Blip glitch identified at Hanford, and a Chirp

at Livingston; while GW200129 065458 has a Chirp at both, in addition to a Fast

Scattering glitch at Livingston [7]. For GW191109 010717 there are Scattered Light

glitches at both detectors, plus a Blip at Livingston [7].
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Figure 7: Gravity Spy classifications around O3 gravitational-wave candidates at LIGO

Hanford and Livingston. For each candidate, a window of ±5 s used to identify entries

in the Gravity Spy data set. The machine-learning algorithm may be attempting to

classify a gravitational-wave signal, a nearby glitch, or some combination of the two;

it has not been trained to identify the full diversity of astrophysical gravitational-wave

signals, nor how to classify data containing both a signal and a glitch.

The distribution of Gravity Spy classifications is shown in Fig. 7.

The Chirp class was originally created for hardware injections (simulated signals

used for testing) representing compact binary coalescences [128], and hence might be

expected to capture many of these candidates, as is the case. However, a chirp-like

time–frequency morphology is only visible for the highest SNR signals; as Livingston

is the more sensitive detector, there are more high SNR signals in its data. Tomte

and Blip share a similar morphology to Chirps, and so may be confused for lower-SNR

signals. Figure 8 illustrates an example (GW190521 074359 [5]) where a the higher-

SNR Livingston signal is classified as a Chirp, while the lower-SNR Hanford signal is

(mis)classified as a Blip.

When a candidate is present at the same time as a glitch, it may be that the

glitch is picked up by the classification algorithm. Data-quality checks [129] indicated

that data mitigation was needed for many candidates from O3 where there was excess

noise overlapping the gravitational-wave signal. GW190413 134308, GW190701 203306,

GW190814 and GW200129 065458 all required data mitigation for Livingston data,

while GW191109 010717 and GW191127 050227 required data mitigation for Hanford

data [5, 7]. These all correspond to cases where there is a Gravity Spy classification

of a glitch outside of the Chirp–Blip–Tomte family in the relevant detector. However,

there is not a perfect correlation between instances where data mitigation was required

and Gravity Spy glitch classifications, and there are both candidates where mitigation
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Figure 8: Gravitational-wave candidate GW190521 074359 [5]. At Livingston, this

glitch was classified as a Chirp, and at Hanford it was classified as a Blip. The SNR

of the signal is higher in Livingston, which is why the chirp-like structure is easier to

identify.

was required, but there is no entry in the Gravity Spy data set, and candidates where

there is a Gravity Spy glitch classification but no data mitigation was required. The

former could happen if the excess noise was below the threshold for Omicron trigger, but

still identified by the careful data-quality checks performed to evaluate candidates. The

latter could happen if the noise is at a frequency that does not impact signal analysis

(e.g., . 20 Hz), or if the CNN is confused by the combination of signal plus noise,

and makes a misclassification. The Gravity Spy training set does not currently include

examples of signals plus glitches.

To summarise, Gravity Spy is not a detection algorithm, but a noise-classification

algorithm. As such, it is not intended to discriminate between gravitational-wave

signals and glitches. Most gravitational-wave signals are comparatively low in SNR,

making them more di�cult to be picked up by Gravity Spy. Even when analysed by

Gravity Spy, gravitational-wave signals will not all currently be put into the Chirp class.

Consequently, the glitch classifications are contaminated (at a low rate) by gravitational-

wave signals.

Along with analyzing the O3 gravitational-wave candidates, we also looked at other

candidates that were determined to be false alarms. During these events at Hanford,

the most common glitch type seen was Scattered Light. At Livingston, there was more

of a variety ranging from Tomtes, Koi Fish, Extremely Loud, Fast Scattering, and No

Glitch.

Of the candidates with an instrumental origin, the glitches classified as No Glitch

are of particular interest: for the retracted candidate S190524q, there were 4 glitches

classified as No Glitch. Figure 9 shows data around S190524q [5, 103], and despite the

No Glitch classification, there is excess power visible. These glitches appear like a high-

frequency analogue of Fast Scattering, which does not match any existing Gravity Spy
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Figure 9: Example of a Livingston trigger classified as No Glitch from a time

corresponding to the retracted candidate S190524q [5, 103]. Despite being labelled as

No Glitch, the time–frequency resembles a high-frequency Fast Scattering glitch. This

trigger was classified by the Gravity Spy CNN with a confidence of 94%.

class. This highlights how the existing set of classes does not catch the full diversity of

noise in the detector, and that further refinements of the CNN are needed to properly

classify new types of glitches.

3.3. Data release

The data release of Gravity Spy machine-learning classifications is available from

Zenodo [46]. This consists of comma-separated value (CSV) files for each detector and

observing run (O1, O2, O3a and O3b). The CSV files consist of columns describing:

(i) metadata output from the Omicron pipeline [26, 27] such as the time of the trigger,

trigger peak frequency, bandwidth and amplitude, as well as the data analysed (the

main gravitational-wave strain channel); (ii) the unique Gravity Spy identifier of the

glitch; (iii) the machine-learning confidence for each of the original 22 glitch categories;

(iv) the machine-leaning classification and the confidence of this, and (v) links to Omega

scans hosted by Zooniverse. Times are given as Global Positioning System (GPS) times,

and can be used to identify the relevant data from the Gravitational Wave Open Science

Center (GWOSC) [71].+ Examples of how to use the data release are given in a Python

notebook accompanying the release.

4. Discussion

The LIGO detectors in Livingston, Louisiana and Hanford, Washington nominally

share an identical design [1], and thus we might not expect their performance to

+ GWOSC gw-openscience.org/
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di↵er much from each other. However, due to di↵erences in their commissioning

progress [74, 77, 78], and in their surrounding environments, the two observatories do

di↵er in practice [4, 5, 7, 20, 76]. For example, due to the presence of extra low-frequency

noise at Hanford during O3, its sensitivity is about a factor of 2 lower in the frequency

band 20–60 Hz, as compared to Livingston [78]. Additionally, the amount of ground

motion in the anthropogenic (1–6 Hz) and microseism (0.1–0.5 Hz) bands is usually

larger near Livingston than near Hanford. Consequently, there can be considerable

di↵erence in the amount and nature of transient noise between the two detectors: during

O3b, the rate of Omicron transients with SNR above 10 at Livingston was about 1.7

times higher than at Hanford.
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Figure 10: Time–frequency morphology of the glitch categories Tomte and Fast

Scattering shown in the top plot. Both of these classes were more common at Livingston

than at Hanford during O3, as shown in plot on the bottom.

We see a di↵erence in the number and distribution of glitches across the di↵erent

Gravity Spy classes (e.g., Table 1). For example, during O3, the glitch classes Tomte

and Fast Scattering were more common in Livingston, and this increased prevalence

boosted the overall glitch rate [20, 42, 130]. Examples of these two glitches classes, and
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a comparison of their prevalence during O3 is shown in Fig. 10.

Fast Scattering was first noticed as a significant source of noise during the

engineering runs preceding O3 [42, 131]. The prevalence of Fast Scattering was a primary

motivation for updating the Gravity Spy model to include new classes for the analysis

of O3 data [42]. Nearly all Fast Scattering during O3 is below ⇠ 60 Hz. This transient

noise is linked to an increase in ground motion in the anthropogenic and microseism

bands near the detector [132, 133]. These two bands are usually noisier at Livingston

than at Hanford, and this (combined with the di↵erences in the detectors’ low-frequency

sensitivity) meant that Fast Scattering was more common at Livingston (9.05 per hour)

than at Hanford (0.22 per hour) [20, 134].

Unlike Fast Scattering, we have not yet been able to identify an environmental

or instrumental coupling that can explain the origin of Tomte glitches. There are

ongoing detector characterisation e↵orts to understand how this glitch may couple in

the detector [130]. While we do not know the origins of Tomte glitches, we do observe

a di↵erence in their prevalence at the two observatories: during O3, the rate of Tomte

glitches at Livingston was 6.44 per hour, while at Hanford the rate was 0.23 per hour.

Tomte glitches have most of their power below ⇠ 64 Hz. The di↵erence in the low-

frequency sensitivity between the two detectors may be partially responsible for the

di↵erence in the rates during O3. Further study of when Tomte glitches occur, and the

di↵erences between Livingston and Hanford, may reveal the origins of these glitches.

A successful example of detector characterisation during O3 was the identification

of the source of Scattered Light (Slow Scattering) glitches, and its subsequent

mitigation [56]. Scattered Light glitches have a significant impact on data quality

because they occupy a large region time–frequency parameter space. As shown in Fig. 1,

Scattered Light transients appear as long-duration arches in spectrograms. These arches

are characteristic of noise caused by light scattering. While the frequency gives some

information on the motion of the component scattering the light, it is still di�cult to

identify the troublesome light path in the detectors. The Gravity Spy analysis played

a significant role in understanding the source of Scattered Light: the occurrence of

glitches classified as Scattered Light was found to correlate with motion of the the

quad suspension [20, 56], which is captured by the optical shadow sensors and magnetic

actuators (OSEMS) [135, 136], indicating that the source of light scattering was part of

the suspension system. The motion was subsequently reduced by employing reaction-

chain tracking, which resulted in a considerable reduction in the rate of Scattered Light

for the same degree of ground motion near the observatories [56]. The resulting drop

in the glitch rate is visible in Fig. 5. This decline in the glitch rate of Scattered Light

is sharper at Hanford than at Livingston due comparatively higher ground motion near

Livingston in the microseism band during February 2020 [7, 20].

The fourth observing run (O4) will see the use of new and improved

technologies [137]. Among them are frequency-dependent squeezing, new Faraday

isolators, new test mass mirrors at Livingston, and higher laser power. These

improvements will translate to a higher instrument sensitivity, thereby increasing our
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astrophysical reach for detecting gravitational-wave signals. However, a more sensitive

detector is not just more sensitive to gravitational waves, it is also more sensitive to

environmental and instrumental noise artifacts. Compared to O2, the rate of glitches

during O3a was four times higher at Livingston [5]. Like O3, it is possible that in O4 we

will witness one or more new types of noise transients, and that these will appear only

at one of the detectors. This could require using a site-specific Gravity Spy training

set and CNN model to properly characterise O4 data quality. The current plan for O4

is to sample the transients for any new glitch morphologies during the engineering run

preceding O4, and retrain Gravity Spy before observing starts.

5. Summary

Understanding data quality is a key aspect of gravitational-wave detector characterisa-

tion. The Gravity Spy machine-learning algorithm enables automated classification of

segments of LIGO data suspected to contain transient noise. Gravity Spy is routinely

used in studies of data quality [20], has been integral in the identification of new classes

of glitches [42], and has aided in the identification of the sources of glitches [56]. Here

we describe the data release of classifications for O1, O2 and O3. Using CNN models

trained for O1–O2 [39, 40] and for O3 [42], we have analysed Advanced LIGO data from

these first three observing runs; the results are publicly available from Zenodo [46].

These can be used for a range of studies, from investigating environmental and instru-

mental origins of glitches, to developing new data-analysis pipelines; we have used the

Gravity Spy classifications to illustrate some of the properties of data quality in O3 (as

well as highlighting some limitations of the data set).

This release covers data from O1–O3. O4 (and subsequent observing runs) [74]

will follow improvements to the detector that may lead to the appearance of new glitch

classes (and possibly the elimination of current glitch classes). Therefore, the Gravity

Spy machine-learning model may need to be updated to account for these changes. To

aid detector-characterisation experts in identifying new glitch classes and building a

training set of example glitches, we will draw upon the Zooniverse volunteers along with

machine-learning clustering approaches. Gravity Spy volunteers have previously rapidly

identified new classes based upon their time–frequency morphologies [42], and for O4

we will support their investigations into the causes of glitches by providing them with

additional auxiliary channel data. Following the update of glitches classes, we anticipate

that the classifications provided by the Gravity Spy project will enable further studies

of LIGO data quality and improvements to data-analysis pipelines.
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Appendix A. Glitch classes

The Gravity Spy projects classifies images into a range of classes. For LIGO data from

O1 and O2, 22 classes are used in the CNN model [39, 40], and for data from O3 23

classes (the older classes except None of the Above, plus Fast Scattering and Blip Low

Frequency) are used [42]. In alphabetical order, the set of classes are,:

(i) 1080 Lines : These appear as short-duration dots repeating every ⇠ 0.1 s at

⇠ 1080 Hz. They are also accompanied by noise below 64 Hz. These glitches were

prevalent in Hanford date early in O2, but were reduced following improvements in

Page 22 of 33AUTHOR SUBMITTED MANUSCRIPT - CQG-109704.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt

http://www.gw-openscience.org/
https://dcc.ligo.org/LIGO-P2200238/public
https://dcc.ligo.org/LIGO-P2200238/public


Gravity Spy O3 data set 23

Figure A1: Time–frequency morphology for examples of the Gravity Spy classes in O3.

The classes are grouped by the time duration (0.5 s, 1 s, 2 s or 4 s) that best illustrates

their features. First row : Tomte, Blip, Blip Low Frequency and Low-frequency Burst

(0.5 s). Second row : Violin Mode, Power Line, Light Modulation and Scratchy (0.5 s).

Third row : Chirp, Air Compressor, Koi Fish and 1400 Ripples (0.5 s). Fourth row : No

Glitch, Whistle, Fast Scattering and Repeating Blips (1 s). Fifth row : Wandering Line,

Scattered Light, Helix (1 s) and Extremely Loud (2 s). Sixth row : Low-frequency Lines,

1080 Lines and Paired Doves (4 s). The Blip Low Frequency and Fast Scattering classes

are not used for O1 and O2, but the O1 and O2 results do include an additional None

of the Above class.
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the output mode cleaner [138].

(ii) 1400 Ripples : These glitches appear as short (. 0.05 s) wavy lines at ⇠ 1400 Hz.

(iii) Air Compressor : This class appears as thick flat line at ⇠ 50 Hz. In Hanford, these

were found to be related to air compressor motors at the end stations [139], and

were reduced following the replacement the vibration isolators.

(iv) Blip: Blip glitches are broadband with very short (⇠ 0.04 s) duration. Due to

their teardrop morphology, Blips can adversely influence the search for high-mass

binary black hole signals. Despite being a common glitch class, the cause of Blips

is currently unknown [19].

(v) Blip Low Frequency : Otherwise known as Low-frequency Blips, these glitches have

a similar morphology to Blip glitches, except they occur at lower frequencies with

peak frequencies ⇠ 10–50 Hz [42]. This is a new glitch class added for O3.

(vi) Chirp: The characteristic sweep from low frequencies to high of a coalescing

compact-object binary. The class originally contained examples of simulated signals

created by hardware injections [128]. The Chirp training set was created early in

the era of gravitational-wave astronomy to accommodate hardware injections, and

is not representative of our current understanding of the population of coalescing

binaries [7, 140].

(vii) Extremely Loud : These broadband transients are characterised by very high SNR,

often leading to the spectrograms appearing saturated. These correspond to large

disturbances to the detectors, and may often be accompanied by a drop in the

astrophysical range of the detector. High-SNR glitches from other classes (e.g., Koi

Fish) may be classified as Extremely Loud.

(viii) Fast Scattering : Otherwise known as Crown, these glitches appear as short-duration

(⇠ 0.2–0.3 s) arches [42]. These arches often appear in groups, each separated by

either 0.25 s or 0.5 s. They are correlated with ground motion in the anthropogenic

(1–6 Hz) band, which is usually caused by bad weather or human activity. This is a

new glitch class added for O3, and they were the most common glitch in Livingston

data.

(ix) Helix : These are broadband glitches, usually in the frequency region 16–512 Hz,

often occurring in groups of two or three glitches separated from each other by

⇠ 0.1 s. They may be related to glitches in the auxiliary lasers used to calibrate

the detectors [139].

(x) Koi Fish: These glitches are high-SNR broadband glitches. They typically occupy

the frequency band ⇠ 20–1000 Hz, and can resemble Blips, but with pectoral fins

at ⇠ 30 Hz.

(xi) Light Modulation: These transients are usually high SNR, with most of the noise

content at 16–128 Hz, but there may also be one or more broadband spikes. They

are caused by amplitude fluctuations in the control signal of the optical sidebands

used to regulate the length and alignment of optical cavities [17].
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(xii) Low-frequency Burst : These are usually short-duration (⇠ 0.25 s) transients

between ⇠ 10–20 Hz, often appearing as a hump at the bottom of the spectrogram.

They were common at Livingston data during O1 and Hanford data in O3a.

(xiii) Low-frequency Lines : These appear mostly as flat lines, extending ⇠ 1.5–2 s in

time and usually below ⇠ 20 Hz.

(xiv) No Glitch: This category is used for Omicron triggers where there is not visible

excess power in the Gravity Spy spectrogram. These are usually low-SNR Omicron

triggers, but can include short-duration, high-frequency (& 2000 Hz) transients

than are di�cult to resolve because of the logarithmic frequency scale used for the

spectrograms.

(xv) None of the Above: This category is a catch-all for glitches that do not fit into

the other categories. Accordingly, there is no typical morphology. This class is

primarily useful when Zooniverse volunteers are classifying images. This class was

not used for the final CNN classification of O3 data.

(xvi) Paired Doves : These appear as a pair of short duration transients, alternating

between increasing and decreasing in frequency, with a separation of ⇠ 0.1 s. These

glitches are potentially related to periods of excess motion of the beamsplitter [141].

(xvii) Power Line: These glitches appear as narrow, flat lines, usually ⇠ 0.2–0.5 s close to

60 Hz (or harmonics of this). This frequency corresponds to the electric power-grid

frequency in United States, and glitches can be caused by a range of equipment

that runs of this power supply [142, 143].

(xviii) Repeating Blips : This class consists of multiple Blip-like glitches, often repeating

with a cadence of ⇠ 0.25–0.50 s.

(xix) Scattered Light : Otherwise known as Slow Scattering (to distinguish from Fast

Scattering), they appears as long-duration (⇠ 2.0–2.5 s) arches in the spectrograms.

They are correlated with ground motion in the earthquake (0.03–0.1 Hz) or

microseism (0.1–0.5 Hz) frequency bands. In O3, it was found that Scattered Light

was caused by the relative motion between the optical suspension system’s end

test-mass chain and the reaction-mass chain [56].

(xx) Scratchy : Sometimes known as Blue Mountains, these appear as a series of sharp

peaks at intermediate frequencies ⇠ 60–250 Hz. There may be ⇠ 10–30 peaks per

second. They are related to light scattering from the Swiss cheese ba✏es [144, 145].

(xxi) Tomte: These are short-duration glitches with a characteristic triangular shape.

They are similar to Blip or Blip Low-frequency glitches, and typically occupy the

frequency band ⇠ 16–150 Hz. They can adversely influence the search for high-mass

binary black hole signals.

(xxii) Violin Mode: These appear as disturbances at ⇠ 500 Hz and harmonics. These

frequencies correspond to the resonances of the glass fibres that are used to suspend

the mirrors.
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(xxiii) Wandering Line: These long-duration transients have an undulating line

morphology. They can cover a wide range of frequencies, with multiple lines

appearing at once at di↵erent frequencies, but are usually above ⇠ 256 Hz.

(xxiv) Whistle: Also known as Radio Frequency Beat Notes, these appear as U-, V- or W-

shaped transients, typically above ⇠ 128 Hz with most of the noise content above

⇠ 500 Hz. They are caused when radio-frequency signals beat with the voltage

controlled oscillators [146].

Examples for the 23 classes used for O3 classification are shown in Figure A1.

In addition to the classes used in the CNN, there are additional LIGO glitch classes

that have been proposed by Zooniverse volunteers during O3 that have not yet been

incorporated into the machine-learning framework:

(i) 70 Hz Line: These appear as lines similar to Air Compressor or Power Line glitches,

but centred at ⇠ 70 Hz.

(ii) High-frequency Burst : These appear as very short-duration transients at frequencies

& 1000 Hz.

(iii) Pizzicato: These appear as a short (⇠ 0.05 s) transient that resembles a flying

saucer centered around ⇠ 500 Hz, ⇠ 1000 Hz, or both. The frequencies correspond

to violin modes of the suspension fibres, and the glitch may be related violin mode

damping mechanisms, but the exact cause is yet to be identified.

These, and further classes, may be added to the CNN for future studies.
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