
NeuralCubes: Deep Representations for Visual Data
Exploration

Zhe Wang
Dept. of Computer Science

University of Arizona
Tucson, AZ. USA

zhew@email.arizona.edu

Dylan Cashman
Dept. of Computer Science

Tufts University
Medford, MA. USA

dylan.cashman@tufts.edu

Mingwei Li
Dept. of Computer Science

University of Arizona
Tucson, AZ. USA

mwli@email.arizona.edu

Jixian Li
Dept. of Computer Science

University of Arizona
Tucson, AZ. USA

jixianli@email.arizona.edu

Matthew Berger
Dept. of Computer Science

Vanderbilt University
Nashville, TN. USA

matthew.berger@vanderbilt.edu

Joshua A. Levine
Dept. of Computer Science

University of Arizona
Tucson, AZ. USA

josh@email.arizona.edu

Remco Chang
Dept. of Computer Science

Tufts University
Medford, MA. USA
remco@cs.tufts.edu

Carlos Scheidegger
Dept. of Computer Science

University of Arizona
Tucson, AZ. USA

cscheid@email.arizona.edu

Abstract—Visual exploration of large multi-dimensional
datasets has seen tremendous progress in recent years, allowing
users to express rich data queries that produce informative visual
summaries, all in real time. Techniques based on data cubes
are some of the most promising approaches. However, these
techniques usually require a large memory footprint for large
datasets. To tackle this problem, we present NeuralCubes: neural
networks that predict results for aggregate queries, similar to
data cubes. NeuralCubes learns a function that takes as input
a given query, for instance, a geographic region and temporal
interval, and outputs the result of the query. The learned function
serves as a real-time, low-memory approximator for aggregation
queries. Our models are small enough to be sent to the client
side (e.g. the web browser for a web-based application) for
evaluation, enabling data exploration of large datasets without
database/network connection. We demonstrate the effectiveness
of NeuralCubes through extensive experiments on a variety of
datasets and discuss how NeuralCubes opens up opportunities
for new types of visualization and interaction.

I. INTRODUCTION

Interactive visual exploration is becoming increasingly
essential for making sense of large multi-dimensional datasets.
It is common for datasets to have billions of data items that
contain a variety of attributes of geographic, temporal, and
categorical nature. Due to this size and complexity, issuing
data queries in real-time is often not feasible as it will result
in an unreasonable amount of latency. Instead, efficient data
structures are often designed for real-time exploration, in lieu
of making raw database queries. These data structures are pre-
computed and optimized around queries frequently used by the
visualization, such as performing data summaries [33], [45],
ranking [38], and applying multivariate statistics [57].

However, while these data structures are effective, they
can still be prohibitively large as data size increases. Worse,
when data complexity increases (i.e. in terms of the number
of dimensions in the data), the sizes of many of these data
structures grow exponentially. As a result, these data structures
are often stored on a server, and only sub-parts of the

Fig. 1. NeuralCubes frames approximate query processing over a database as
a neural network, one that takes a query as input, e.g. selection of a temporal
interval, and maps it to an aggregation result as output, e.g. a count of the
number of records, enabling real-time visual exploration for large-scale data.
In the figures above, the blue lines represent visualizations generated with
data from the database and the orange lines are generated using NeuralCubes.
Note that the two are nearly indistinguishable, but NeuralCubes uses only a
fraction of the memory footprint as the database.

data structures are fetched in real-time based on the user’s
exploration.

In this paper, we introduce NeuralCubes, a technique that
approximates queries on multi-dimensional datasets for the
support of interactive visual exploration. NeuralCubes is a deep
neural network that is compact in storage, can respond to data
queries in real time, and is sufficiently accurate for visualization
purposes. Thus, unlike existing systems that have high storage
requirements and require intricate data structures [33], [34],
NeuralCubes eliminates the need for a visualization system

to fetch data or sub-parts of a data structure from a server.
Instead, NeuralCubes can be stored in a client’s memory and
is easily accessible for use in visualization applications. In
particular, NeuralCubes supports Selection, Projection, and
Aggregation (SPA) queries – operations that are common to
visual data exploration systems that rely on query patterns to
achieve gains in performance and storage (e.g. imMens [34]
and Nanocubes [33]).

NeuralCubes frames the action of querying a database as a
learnable function, one that maps from a given input query to
an aggregation result. Assuming that there are latent patterns
in the data (i.e. that the data is not purely random), these
mappings can be effectively learned. In particular, we observe
that typical visualizations generate a limited number of query
templates and expect a fixed number of numeric values in
response. For example, in Fig. 1 the query to the database is
based on four sets of filters (geographic region, month of year,
day of week, and time of day). In response, the visualization
anticipates a set of numeric values to populate the geographic
heatmap and the three line charts.

To train NeuralCubes, we first need an application model and
a user model to generate a training set. An application model
can be seen as the “data schema” of an application. It contains
information on the number and the types of data attributes used
to generate the visualization. A user model derives from types
of queries and the frequency with which they are issued from
users. With these two models, we can generate query-result
pairs as a training set to optimize NeuralCubes. Once trained,
the learned neural network can answer any queries issued from
the same application.

We evaluate NeuralCubes on a variety of datasets including
BrightKite social network check-ins [7], Flights dataset [42],
YellowCab taxi dataset [53], and SPLOM dataset [25]. We
quantitatively analyze the accuracy of NeuralCubes and how
network size, training set size, raw data size, and attribute reso-
lution affect prediction. Across these datasets, we demonstrate
that we can achieve approximately 3% Relative Absolute Error
(RAE) with a model less than 1MB for datasets containing
millions of records. Since the model is very small, these
NeuralCubes models can be evaluated in real-time on thin
web browser clients and support interactive visualization and
exploration of large amounts of data with low latency.

Lastly, we observe that the trained neural network model
can be used to aid a user’s understanding of the patterns in
the data. Since the model learns the relationship between the
input vectors and the output query results, visualizing that
relationship can reveal the potential underlying structures in
the data. In section IV we present visualizations of the latent
layers of a NeuralCubes model and how the visualizations can
help a user better make sense of their data.

To summarize, the contribution of this work includes:
• We show that neural networks can learn to answer

aggregate queries efficiently and effectively, that they
generalize across heterogeneous attribute types (such as
geographic, temporal, and categorical data), and present
a method to convert the schemata needed to describe

visual exploration systems into an appropriate deep neural
network architecture;

• We use these neural networks that learn the structure of
aggregation queries to provide the user 2D projections
that enable the intuitive exploration of data queries; and

• We conduct extensive experiments on a variety of datasets
that proves the effectiveness of our approach.

II. RELATED WORK

Our work proceeds from recent work in two mostly disparate
fields; data management and neural networks. In data manage-
ment, we discuss architectures, data structures, and algorithms
that exploit access patterns to offer better performance. In
neural networks, we review some of the recent applications of
neural networks to novel domains, as well as relevant work on
the interpretability of deep networks.

A. Data management

The importance of data management technology in the con-
text of interactive data exploration has been recognized for over
30 years, with the work of MacKinlay, Stolte, and collaborators
in Polaris [35], APT [50], and Show Me [36] being central con-
tributions to the field. Since then, researchers in both data man-
agement and visualization have extended the capabilities of data
exploration systems (both visual and otherwise) in a number
of ways. General-purpose database systems now exist for fast
query processing of large amounts of data with approximate an-
swers. Commonly referred to as Approximate Query Processing
(AQP), AQP systems use a variety of techniques to achieve low
latency, including offline sampling (e.g. [1], [10], [32], [46]),
online aggregation (e.g. [9], [20], [23], [62]), and probabilistic
models (e.g. [5], [43], [59]). Specific to visualization, Wu et
al. proposed techniques to tailor databases for large-scale data
visualization [2], [58]. NeuralCubes, as we will later discuss,
provides evidence that machine learning techniques should also
be designed with visualization in mind, and that such design
enables novel visual data exploration tools.

While we developed NeuralCubes to leverage machine
learning (ML) for providing richer information during data
exploration itself, we are not the first to propose the use machine
learning in the context of data management. Notably, ML has
been recently used to enable predictive interaction: if a system
can accurately predict the future behavior of the user, there are
ample opportunities for performance gains (and specifically
for hiding latency) [3], [6].

Gray et al.’s breakthrough idea of organizing aggrega-
tion queries in the appropriate lattice—the now-ubiquitous
data cube—spawned an entire subfield of advances in al-
gorithms and data structures [18], [19], [49]. This work has
gained renewed interest in the context of interactive explo-
ration, where additional information (such as screen resolu-
tion, visualization encoding, and query prediction) can be
leveraged [24], [33], [34], [45]. Since every query in Neural-
Cubes is executed by a fixed-size network, it also provides
low latency in aggregation queries. But because NeuralCubes
models learn the interaction between query inputs and results,

Fig. 2. Comparison of systems using traditional database, Datacubes and
NeuralCubes.

the model can provide additional information about the dataset
that can further aid interactive exploration.

B. Deep Neural Networks

Our approach is inspired by the recent success of applying
deep neural networks to a variety of domains, including
image recognition [31], machine translation [51], and speech
recognition [21]. These techniques are solely focused on
prediction, and our method is similar, in that we are focused
on training deep networks for the purposes of query prediction.
Yet, we differ in that prediction is not the only goal, rather we
want to perform learning in a manner that provides the user a
fast and low-memory-cost way to visually explore data. The
query prediction task at hand can be viewed as a means to
realize these goals.

In this context, our method for learning 2D latent space
of queries can be viewed as a form of unsupervised learning,
where treating query prediction as pretext, the features that we
learn along the way can be used for other purposes – in our
case exploratory purposes. This is similar to recent techniques
in computer vision that learn features using different forms
of self supervision, for instance learning to predict spatial
context [11], [40], temporal context [56], and perhaps more
pertinent to our work, learning to count visual primitives
in a scene [41]. These techniques solve certain types of
relevant visual tasks that do not require human supervision,
but then extract the learned features for supervised learning.
Our approach is similar: our training data does not require
human intervention, since it is built from existing data cubes
techniques, yet the features that we learn from this task can
be used to help with visual data exploration.

Last, we note that there is some recent work that seeks to
combine databases with neural networks. Thirumuruganathan
et al. [54] use generative neural networks to perform data
sampling for approximate query processing. Kipf et al. [28]
and Ortiz et al. [44] use trained neural networks to estimate
query cardinalities. Kraska et al. [30] make the connection
between indexing, such as b-trees or hashes, and models,

and show that such indexing schemes can be learned using
neural networks. Mitzenmacher [39] consider similar learning
techniques for Bloom filters. These methods are concerned with
using neural networks to speed up computation and minimize
memory storage. Although we demonstrate that our method
can attain these benefits, the primary focus of our method is
in using a neural network as an integral component to visual
exploration, i.e. NeuralCubes is not trying to predict all queries
that a database can answer, but rather only the subset of queries
that are applicable to a given visualization.

III. NEURALCUBES: REPLACING A DATABASE WITH A
LEARNED NEURAL NETWORK

We introduce our approach by comparing it with visualization
systems that utilize traditional databases and those using
advanced preprocessing techniques. Fig. 2 shows an overview
of these different approaches.

First, we briefly discuss the data queries that are required
by interactive visualization systems. Suppose we are given a
set of records, each record contains a set of attributes, and
each attribute has a certain type (e.g. continuous, categorical,
geographic, temporal, etc.) that characterizes the set of values
it may take on. Database queries may return a single record,
or multiple records, and in the case of the latter it is often
of interest to summarize the set of records by performing an
aggregation, for instance count, average, or max, depending
on the attribute type. Within a visualization system, the set of
attributes, their types, and the class of aggregations determine
the sorts of queries one may issue that serve as the backbone
for visual interaction. For instance, if the attribute type is
categorical or temporal, then we can visualize this result as a
histogram, whereas if the attribute type is geographic, we may
plot the result as a heatmap over a spatial region.

Naı̈vely, a visualization system can directly issue SQL
queries to the database to get the needed information. Shown
as the top row in Fig. 3, the advantages to this approach are
that it supports “cold start” – where no additional data structure
and or pre-processing is required before the application can
retrieve data from the database. However, this approach does
not scale well when the dataset gets larger, resulting in long
latency in query processing which limits its practical use in
interactive visualization systems for large datasets.

To reduce latency, a common technique is to pre-compute
an auxiliary data structure such as a data cube (shown as
the second row in Fig. 3). During run-time, the visualization
application only interacts with this data structure without
directly querying the database. While this approach has been
effective in reducing query latency, the size of the data cube can
grow exponentially as the number of data attributes increases.
Not only does this result in a large memory footprint, the
preprocessing time can also become prohibitively high as the
dataset grows in size and attributes.

The basic idea behind NeuralCubes is the use of neural
networks to learn the process of performing database aggre-
gation queries. We treat a neural network as a function that
approximates a database aggregation query, where the input is

Fig. 3. Comparison of supported features of different approaches.

Fig. 4. The corresponding input-output pairs for one state of the UI. For a
given attribute, a query is encoded by forming a vector over attribute values,
assigning 1 to a value that is selected in the query, and 0 otherwise.

a data query in the form of a set of attribute ranges, and the
output is the aggregation of the data returned from the given
input query. Unlike existing techniques [33], [45], [57], it is
thus necessary for NeuralCubes to learn by example, rather than
precomputing data structures for query processing. Specifically,
in order to train our model we need to gather query inputs,
and their corresponding aggregation outputs. Although this can
lead to an exponentially-large number of possible examples,
we need only be concerned with queries that are reflective of
user behavior, e.g. actions that a user would perform within
a visualization. This visualization-first principle enables us to
drastically limit the number of examples necessary to train
our model for good generalization. Moreover, this enables
extremely compressive model sizes, relative to the datasets, and
as a consequence real-time querying that supports interactive
exploration.

On the other hand, the use of neural networks implies that
we cannot ensure strict error bounds. Yet in the context of AQP,
we believe neural networks are ideal for visual exploration, as
absolute errors are negligible so long as trends and patterns in
the visualization are faithfully preserved. We summarize the
trade-offs of different approaches discussed above in Fig. 3.

A. What’s the input of NeuralCubes?

We first define the concept of state of a data visualization
system. We assume that the underlying database schema has

a total of d attributes, where we denote each attribute by
ai,1≤ i≤ d, and we represent the range selection operation
for a given attribute ad by r(ad). For instance, if an attribute
was hour-of-day, then the range operation on this attribute
would return a set of hours. At any time, there must be a
range selected on each attribute – we treat the absence of
an attribute’s selection as all of its values being selected. We
call this set of ranges a state of the visualization system,
denoted as S = r(a1),r(a2), ...r(ad). The corresponding query
results are DB(S) ∈ R. Our objective is to train a neural
network f (S) ∈ R to best approximate DB, given training
data D = ((S1,DB(S1)),(S2,DB(S2)), ...(Sn,DB(Sn))), where
Si is a state, i.e. Si = (ri(a1),ri(a2), ...ri(ad)), and DB(Sn) is
the aggregation result from the database. For example, the state
shown in Fig. 4 is S = {[3,5], [1,5]}.

What remains is a method for representing the set of range
selections as input for the neural network. This is nontrivial due
to the different types of attributes, e.g. geographic, temporal,
categorical, as well as the types of selections that can be
performed on attributes, e.g. spatially contiguous selections in
geographic coordinates. To address these challenges in a unified
manner, we use many-hot encodings for attribute selections, as
shown in Fig. 4. Many-hot encodings are generalizations of one-
hot encodings, commonly used as a way to uniquely represent
words in neural language models [4], categorical inputs for
generative models [12], as well as geographic coordinates for
image recognition [52].

More specifically, for a given attribute ai we assume that
it may be discretized into m(ai) many values. For certain
attributes, this assumption is natural: categorical data, tem-
poral data such as hour-of-day or day-of-week, while for
continuously-valued data we uniformly discretize the data space
into bins. For the attribute’s selection r(ai), we then associate
a binary vector r(ai) ∈ {0,1}m(ai) such that r(ai) j = 1 if the
value at index j belongs to the selection, and 0 otherwise.
This permits arbitrary types of selections for categorical and
temporal data. Spatial data, specifically 2D geographic regions,
is slightly more complicated: one option is to represent each
discretized cell as a single dimension in r, but this would result
in a large number of inputs for even small spatial resolutions.
We simplify this problem by restricting selections on 2D regions
to be rectangular. Thus to represent such a region we associate
a pair of vectors rx(ai) and ry(ai) for the selected x and y
intervals, respectively, of the rectangle and then concatenate
these two vectors to form the input. In practice, non-rectangular
selections can be approximated by issuing multiple rectangular
selections.

B. Generating Training Data: Modeling Application and User
Interaction

The data used to train our model is intended to reflect com-
mon user actions within visual exploration. This is necessary
to ensure that our network will properly generalize. To this end,
we simulate user actions on a specific interface and use the
corresponding queries for training. Specifically, as discussed in
section III-A, we should randomly generate a state of the UI

...

aggregation prediction

input data
attribute embedding
2D projection
input reconstruction
hidden layers
aggregation prediction output
fully connected (FC) layers

decoderencoder

......

1
1

0

0

...
1
1

0

0

...
Jan.
Feb.
Mar.

Dec.

...

...

Fig. 5. We highlight the general structure of our neural network. For each
attribute we learn a feature embedding (orange), and then use the embeddings
for two purposes: we fuse the embeddings through a feature-wise concatenation,
which is fed into an MLP for aggregation prediction (red), as well as learn
attribute-specific autoencoders to derive a 2D latent space (brown).

and then turn it into actual queries. Thus, to generate training
samples, we first generate a range selection for each attribute,
e.g. contiguous ranges for temporal or spatial attributes. Then
we perform a group by query on one of the attributes with
the constrains (range selections) on other attributes, resulting
in a batch of query-result pairs for the current attribute. We
do the same for every attribute, thus giving us all query-result
pairs of a state.

Given this setting of query generation, we propose the
following strategy for simulating user queries. For a specified
attribute, we uniformly sample the length of its range from all
valid lengths and then uniformly choose a start and end position.
Using month as an example, the possible length of ranges we
can take are in the interval [1,12]. Suppose we randomly choose
a length, say 3. Given this length, the possible inclusive starting
points/lower bounds are [1,10]. A random selection from this
set, say 2, will result in a range selection of [2,5].

While it may seem artificial to carefully sample a training set
to make the network fit a certain kind of input, it is important
to remember that NeuralCubes is designed, first and foremost,
with visualization in mind. Thus, even if we are not necessarily
learning over the full data distribution of queries, so long as
our sampling resembles the manner in which users perform
selection, then a user’s interaction with the network should
remain meaningful.

C. A Neural Network Architecture for Data Queries

NeuralCubes is designed as a multi-layer perceptron, where
separate representations are learned for each attribute, and
finally combined to predict an aggregation query. The intuition
behind this architecture is to ensure attribute representations
are predictive of aggregation queries, providing us a more
informative representation than the input many-hot encodings,
and then to combine these features to learn their relationships
in predicting the aggregation. We use this general architecture

for all of the datasets in the paper, shown in Fig. 5, but tailor
the architectures based on the given dataset, which we defer
to Section 6. All networks, nonetheless, share the following
steps to form the network f :

1) Learning Attribute Embeddings. For a given set of
attribute selections represented as binary vectors, we first
transform each of them separately into their own feature
embedding. Namely, for attribute ai, let fi : Rm(ai)→Rdi

represent a series of layers that transforms the attribute
selection to a di-dimensional embedding space.

2) Attribute Embedding Concatenation. We then con-
catenate the embeddings into a single vector f̂ =

[f1(r(a1)), f2(r(a2)), ... fd(r(ad))], where f̂ ∈ Rd̂ , d̂ =

∑
d
i=1 di.

3) Aggregation Query Prediction. Given the concatenated
embedding f̂, we then feed it through a series of layers,
where the last layer outputs a single value, corresponding
to the aggregation query. Multiple fully connected layers
are used in order to learn the relationship between the
attributes, so as to make better predictions.

Prediction Loss. Given the neural network f , we can now
optimize over its set of parameters to best predict database
queries DB. For this purpose, we define a loss function for
prediction that combines an L1 loss and a mean-squared loss
for a given query Q:

Lpred = λ1| f (Q)−DB(Q)|+λ2(f (Q)−DB(Q))2, (1)

where λ1 and λ2 weight the contributions of the L1 and mean-
squared losses, respectively. The intuition behind this loss is to
learn the general trend in the data, captured by the L2 loss, but
in order for the training to not be overwhelmed by aggregations
that result in very large values, the L1 loss provides a form of
robustness.

1) Autoencoder: Reconstruction as Regularization: In order
to ensure NeuralCubes does not overfit to the training data, we
introduce a reconstruction-based regularization for individual
attributes. Reconstruction as regularization has been used in
many recent works [27], [47], [60]. We think this approach
aligns well with our main goal: we would like the model
to learn the underlying data distribution than memorize the
correlation between the noise in the input and the corresponding
output. Also, the reconstruction step can provide opportunities
for new types of visualization, which we will discuss more in
section IV-C.

We achieve this by defining an autoencoder [22] for each
attribute query ai. More specifically, we learn a projection to
a 2D latent space via an MLP, starting from the input layer,
going to 2D, denoted as an encoder by ei : Rdi → R2. We
also want to project back: reconstruct the original query (via
its binary representation) from its 2D position, or a decoder
di : R2→Rm(ai). Regularization is achieved by weight sharing:
the first few layers in the encoder will be shared with the
regressor, shown in Fig. 5. We want to emphasize that the
2D harsh-bottleneck layers are not used in making predictions.
They exist to autoencode the input query and provide us a

visual representation of the data. Only earlier wide layers are
connected with the regressor. The learned attribute embedding
is a sufficiently large subspace to regularize and improve the
predictions.

Autoencoder Loss. Since we represent attribute selections
as binary-valued, a suitable loss function for measuring the
quality of our autoencoder is the binary cross entropy loss:

Lae =−
m(ai)

∑
j=1

(r(ai) j log(di(ei(zi)) j)

+(1− r(ai) j) log(1−di(ei(zi)) j)),

(2)

where zi = fi(r(ai)) is the feature embedding of the query
selection. Note that this loss is defined for each attribute, in
order to learn attribute-specific autoencoders.

2) Combining Prediction Loss and AE Loss Together: We
combine the prediction loss and the autoencoder loss to learn
a function that can both predict queries as well as learn 2D
projections of attributes:

L = Lpred +λ3Lae, (3)

where λ3 is a weight giving importance to the autoencoder,
relative to the weights on the prediction loss. One can view
this objective as a type of multi-task autoencoder [17]: we
want to learn an embedding, and a 2D projection, that enables
self-reconstruction, while simultaneously learning to predict
query aggregations. Importantly, this permits us to contextualize
attribute selections with respect to the aggregation task. The
prediction task can be viewed as a form of supervision for
the 2D projection task, thus attribute selections that result in
similar predictions will have similar feature embeddings, as
well as similar 2D projections.

IV. USING NEURALCUBES FOR VISUAL EXPLORATION

In this section, we describe how NeuralCubes can be used
to build interactive data visualization systems.

A. Plotting Histograms and Heatmaps with NeuralCubes

In traditional data cubes techniques, queries are typically
made in order to plot histograms (for 1D attributes) and
heatmaps (for 2D attributes). This is typically realized through
group by queries, where selections are made for all but one
attribute, and then for the held-out attribute, a single query is
made to gather aggregations for each of its values, i.e.

SELECT COUNT(*) FROM BrightkiteTable

GROUP BY dayofweek

NeuralCubes can enable the same type of visual exploration.
More specifically, we perform a group by query through our
many-hot input encoding, placing a 1 on the attribute value that
we would like to query, and a 0 for all other attribute values.
Furthermore, we can take advantage of GPU data-parallelism
in neural network implementations, and perform this operation
in a single mini-batch, providing a significant speed-up through
GPU acceleration. Our interface allows the user to perform
arbitrary range selections for a given attribute, and enables

Fig. 6. NeuralCubes can be used in a similar fashion to traditional data
cubes techniques, allowing us to plot histograms and heatmaps with respect
to various attribute selections.

interactive updates of histograms/heatmaps over the remaining
attributes, see Fig. 6 for an illustration.

B. Evaluation at Client Side

Another advantage of NeuralCubes is that the trained model
is small enough to be sent to client side for evaluation. In
comparison, other OLAP datacubes based techniques require
network connections with a backend server for interaction.
This advantage of NeuralCubes can be beneficial to both
system users and service providers. First, users can expect
better experience when making queries. Being able to evaluate
at client side, NeuralCubes can eliminate network latency,
which is usually a bottleneck. Secondly, service providers can
expect much lower cost because the same server can provide
service to far more users since Queries Per Second (QPS) will
be significantly lower than other client-server systems.

C. Visualizing Attribute Latent Spaces

Although the network can replicate the types of queries
perform with data cubes techniques, we can also use different
structures that the network learned to enable new forms of
visual exploration. In particular, we allow the user to explore
the space of attribute selections through each attribute’s learned
2D projection, as discussed in Section III-C1. To enable this,
we first generate all possible ranges selections for a given
attribute, and use the autoencoder to create an overview of
their distribution in the 2D space, where we visually encode
attributes in a scatterplot. Each point in the latent space view
represents a selection of this attribute, where the radius of the
point is proportional to its aggregation value, and the color
of the point represents the range of the selection, namely
the number of values selected in the attribute. Importantly,
we ensure that the latent space and the histograms/heatmaps
discussed previously in Sec. IV-A are linked, so that interactions
in one view update the other view, see Fig. 7 for an example.

Fig. 7. We show how the user can jointly interact with traditional histogram
visualizations and latent space visualizations learned by NeuralCubes. On the
left we initially show an histogram of counts of social media check-ins dataset
of Austin for attribute Month. Upon selecting month March (1), the latent
space on the right updates, to reflect this selection (2) (colored by red circular
stroke with larger width) and also highlight (colored by red circular stroke with
smaller width) all possible selections with the same length of range (which is
1 in this case). By performing a selection in the latent space (3), the user can
explore the frequency of attribute selections (4) that belong to the selected
latent space subset.

V. IMPLEMENTATION DETAILS

Software NeuralCubes’s software is designed to dynamically
generate neural network architecture via specification of a
JSON configuration file. When changing a dataset or updating
the neural networks, users only need to provide a new JSON
configuration. For a given trained model, we utilize it in a
Flask http backend server, providing RESTful web services. To
test the functionality of evaluating at client side, we converted
the model from PyTorch format to TensorFlow format. Then
we use TensorFlow.js in client side for model evaluation. We
have implemented a web user interface, NeuralCubes Viewer,
for interaction, implemented in Javascript using React and
React-Vis.
Hardware All the models are trained on a machine with an 8
core Intel i7-7700K 4.20GHz CPU, 32GB main memory, and
a Nvidia GTX 1080 Ti GPU with 12GB video memory.
Datasets A summary of datasets and training/testing statistics
of all the case studies is provided in Table II. In general, each
training set contains about 104 states while the number of all
possible states in our experiments is in the order of 1010. We
evaluated our method on hold-out test datasets, generated in
the same manner as training data. Each testing set contains
1000 states. Testing error is computed as the average L1 norm
difference between the predictions and ground truth, scaled by
the inverse of the mean of the ground truth set, in order to be
commensurable across datasets.
Architectures Table I describes the architectures used in each
of the trained models we discuss in this paper.
Training Our loss function requires the specification of 3
hyperparameters, namely, the L1 loss (λ1), MSE loss (λ2),
and AE loss (λ3). In practice we found L1 loss to be of

TABLE I
ARCHITECTURES OF THE NEURAL NETWORKS USED IN THE EXPERIMENTS

Input Autoencoder Regressor
BrightKite
Month (12) [8, 4, 2, 4, 8]

[220]Day of Week (7) [8, 4, 2, 4, 8]
Hour (24) [12, 6, 2, 6, 12]
Geospatial (40) [400, 128, 2, 128, 400]
Flights (count)
Month (12) [120, 20, 2, 20, 120]

[256, 128]

Day of Week (7) [70, 20, 2, 20, 70]
Hour (24) [240, 20, 2, 20, 240]
Geospatial (40) [400, 128, 20, 2, 20, 128, 400]
Carrier (10) [100, 20, 2, 20, 100]
DelayBin (14) [140, 32, 2, 32, 140]
Flights (delay)
Month (12) [120, 20, 2, 20, 120]

[256, 128,
64]

Day of Week (7) [70, 20, 2, 20, 70]
Hour (24) [240, 20, 2, 20, 240]
Geospatial (40) [400, 128, 20, 2, 20, 128, 400]
Carrier (10) [100, 20, 2, 20, 100]
DelayBin (14) [140, 32, 2, 32, 140]
Yellow Cab
Month (12) [120, 20, 2, 20, 120]

[220]Day of Week (7) [70, 20, 2, 20, 70]
Hour (24) [240, 20, 2, 20, 240]
Geospatial (40) [400, 128, 20, 2, 20, 128, 400]
SPLOM
a0 (#bin) [16, 8, 2, 8, 16]

[120, 60]
a1 (#bin) [16, 8, 2, 8, 16]
a2 (#bin) [16, 8, 2, 8, 16]
a3 (#bin) [16, 8, 2, 8, 16]
a3 (#bin) [16, 8, 2, 8, 16]

Bold numbers represent the attribute embedding layers as described in Fig. 5.

highest importance, followed by the AE loss, while the
MSE loss needed to be quite small just to ensure stable
training - please see Sec. VI for dataset-specific hyperparameter
settings. For optimization, we use Adam [26] for the first 15
epochs, and switch to standard mini-batch stochastic gradient
descent afterwards. Furthermore, we ensure that minibatches
are comprised of a balanced distribution of attributes, in order
to not bias attributes that offer a large range of possible queries,
e.g. geographic queries (2D) vs. temporal queries (1D).
Testing To evaluate the accuracy of NeuralCubes, for each
dataset we generate a withheld test set consisting of randomly-
generated states of the user interface, and their corresponding
queries. In our experiments, we use 1000 states for testing.
Since the ultimate goal of NeuralCubes is to provide an
approximation view (e.g. a bar chart), we choose relative
absolute error (RAE) as our error metric. RAE is expressed as:
RAE = ∑i |ŷi−yi|

∑i |yi−ȳ| ×100%, where ŷi is the model’s prediction for
query i and yi is the ground truth for query i. We choose RAE
as it is more aligned with how humans perceive visualizations
than MSE. Specifically, humans are more sensitive to relative
differences in graphical marks [8], e.g. ratio assessments given
the heights of two bars in a bar chart.

VI. DATASETS

A. Brightkite Social Media Check-ins

We use the Brightkite [7] social media check-ins dataset
to assess the capability of NeuralCubes to learn the count
aggregation. The Brightkite [7] dataset contains social network
check-in time and location information. Fig. 8 shows examples

of how our NeuralCubes can be used as a data cubes system,
plotting histograms and heatmaps from aggregation queries.

Fig. 8. NeuralCubes learns more check-ins on University of Texas at Austin
campus are during daytime on weekdays (right) rather than weekends (left).

We choose two separate metropolitan areas and train separate
networks on each: New York City and Austin. We choose
month, day of week, hour, and geospatial information (longitude
and latitude) as input dimensions, following common practice
in the study of urban activity [33], [37]. The longitude and
latitude are encoded as 20+20= 40 bins, following the strategy
described in Fig. 4. The weights for L1 loss and L2 loss for
regressor and binary cross entropy (BCE) loss for autoencoder
are 20, 0.001, and 1 respectively. Each model is trained for
1000 epochs and each epoch takes 6 seconds to train.

B. Flight Dataset

We use a dataset collected by the Bureau of Transportation
Statistics consisting of flight delay information in 2008 [42]
that contains airplane arrival information. For this dataset, our
first experiment uses the total flight counts as the aggregation
operation. Since this dataset contains an attribute delay time,
which is also a meaningful attribute in which to aggregate, our
second experiment builds a model to predict the average delay
time. Our goal with this model is to check the extent to which
NeuralCubes can learn non-monotonic aggregations.
Count Predictions For the count aggregation we filter flights
to be within the contiguous United States, and restrict entries to
only the 10 most used airlines in the dataset, giving us a total
of 5,092,321 entries after removing entries containing missing
data. This dataset has more entries and attributes than the
Brightkite dataset, including a numeric variable (Delay Time).
To encode the numeric variable in our many-hot encoding, we
bin the delays in 15 minute increments. The weights for L1
loss, L2 loss and BCE loss are 1, 1e-7, and 1, respectively.
Each model is trained for 500 epochs and each epoch takes
160 seconds to train.
Average Predictions We follow a similar training setup to
count. Since generating training samples to predict average
delay time itself is very time consuming, we dropped longitude
and latitude columns in the raw data and discarded entries
whose delay time is smaller than −60 minutes or larger than
140 minutes. This yields the final dataset with 5,013,088 entries.
The weights for L1 loss, L2 loss and BCE loss are 10, 10, and
1, respectively. Each model is trained for 500 epochs and each
epoch takes 160 seconds.

TABLE II
SUMMARY OF TRAINING RESULTS

DataSet Raw Data Size # States M. Size RAE

B.K. NYC 79k (3.1MB) 10k 703KB 4.25%
B.K Austin 22k (0.8MB) 10k 703KB 3.88%
Flights Count 5m (204MB) 60k 1.2MB 3.11%
Flights Delay 5m (204MB) 60k 1.2MB 6.58%
Yellow Cab 12m (1.8GB) 30k 798KB 0.97%
SPLOM 100k (3.9MB) 10k 135KB 2.64%

(# States means the number of states used in the training set. M. Size
represents the saved file size of trained models.)

C. YellowCab Taxi Dataset

We use NYC YellowCab Taxi trip records of year 2015 from
NYC Taxi and Limousine Commission (TLC) [53] to study
the learning capacity of NeuralCubes in a series of controlled
settings. This dataset contains taxi pickup location and time
information in NYC.

We choose month, day of week, hour, and pickup location
(longitude and latitude) as input dimensions. The longitude
and latitude are encoded as 20+ 20 = 40 bins. We created
four different datasets under this same schema by sampling
1k records per month, 10k records per month, 100k records
per month and 1 million records per month respectively from
the original dataset. We refer to these four datasets as YC-
1K, YC-10K, YC-100K, and YC-1M respectively. (To avoid
unnecessary data processing, we performed data cleaning and
filtering after sampling resulting in a dataset with slightly fewer
records per month.) As described in Table I, we use the same
network configuration for the four datasets. The weights for
L1 loss, L2 loss and autoencoder loss are 100.0, 0.0 and 1.0
for YC-1K, YC-10K and YC-100K. For YC-1M, the weights
for L1 loss, L2 loss and autoencoder loss are 10.0, 0.0 and
1.0. Each model is trained for 1000 epochs and each epoch
takes 15 seconds.

D. SPLOM Dataset

Last, we use the synthetic SPLOM dataset of Kandel et
al. [25] to validate whether NeuralCubes can learn how to
predict aggregational values under a controlled setting. This
dataset contains five real-valued attributes. The attributes are
designed to be correlated. Since all the attributes of SPLOM
dataset are real values, it also provides us an opportunity to
study the behavior of NeuralCubes when bin size increases. We
generated 100,000 entries of five-attribute records, and divide
each attribute into a prescribed number of bins. We trained
five different NeuralCubes using 10, 20, 30, 40, and 50 bins
respectively. The weights for L1 loss, L2 loss and autoencoder
loss are 1.0, 0.0 and 1.0, respectively. Each model is trained
for 500 epochs and one epoch takes 7 seconds on average.

VII. EVALUATION RESULTS

A. Accuracy, Query Time, and Training Stability

We show the testing RAE for all the datasets in Table II.
Most of the prediction RAE are under 5%. The highest is
6.58% for the Flight dataset when predicting average delay

time, which is more complicated than count. This shows the
generalizability of NeuralCubes to different data modalities.

We also tested aggregation queries on two different attributes
on Flight dataset: count and average delay. Table II shows the
quantitative results for the two types of aggregation queries.
Overall, we find the errors to be comparative, showing that
our method is capable of handling different types of attributes
and different forms of aggregation.

We also measured the query time when using trained
models for approximation. To compared with Group By queries
supported by many data management systems, we do not simply
measure the query time for one many-hot input; but instead
measure the set of many-hot queries needed to answer a Group
By query. Specifically, we measure Group By queries for Day
of Week, Hour, and Month, for Brightkite NYC dataset and
Yellow Cab dataset. For the Brightkite NYC data, group by
queries take 0.051s, 0.065s, and 0.076s respectively for day,
hour, and month. For Yellow Cab, they follow a similar pattern
taking 0.014s, 0.020s, and 0.034s respectively.

We evaluate the training stability on BrightKite NYC dataset.
Specifically, we independently run 50 training on BrightKite
NYC dataset with exactly the same configurations. Then we
record the testing error for each model for each epoch. The
results are shown in Fig. 9. We can see that NeuralCubes
converges to local optima of similar performance.

Fig. 9. Testing error for 50 independent training on BrightKite NYC dataset
with the same configuration. Light green lines represent each individual training.
Solid green line represent the mean testing error. Darker green area represent
standard deviation from mean. We can notice some variance between different
runs, but all eventually converge to relatively the same optimal.

B. Raw Data, Model, Binning, and Training Set Size

We study the effect of raw data size on Yellow Cab dataset.
The training results for YC-1K, YC-10K, YC-100K and YC-1M
are in Table III. The testing error becomes smaller when the raw
data size increase. To make sure this trend is not a coincidence
in sampling, we first created five YC-1K datasets independently,
and trained models with the same neural network configuration.
The testing RAEs are 3.70%,3.92%,4.08%,4.05%, and 4.30%
respectively. This indicates the accuracy stays stable for a given
sized dataset and a specific NeuralCubes configuration.

To study this further, we plot histograms of RAEs (the blue
bar charts in Table III). The intuition of such histograms is that
the RAE of a model over a dataset can be seen as the mean
value of the prediction error for each testing query, computed

as errori =
n|ŷi−yi|

∑ j |y j−ȳ| , where n is the number of testing queries.
Now we can simply plot a histogram of errors. Note that the
y-axis in the histograms are in logarithmic scale. We can clearly
see that as the raw data size increase, the model has fewer
large errors. We hypothesize that testing error gets smaller as
raw data size increase because with more available data, there
will be less noise. Since we are using the same neural network
configuration, we can expect lower error on datasets that do
not require large learning capacity.

TABLE III
YELLOWCAB DATASET WITH DIFFERENT RAW DATA SIZE

Name Raw Data Size # States Model Size Testing RAE

YC-1K 12k (1.8MB) 30k 798KB 3.70%

YC-10K 120k (18MB) 30k 798KB 2.04%

YC-100K 1.2m (180MB) 30k 798KB 1.35%

YC-1M 12m (1.8GB) 30k 798KB 0.97%

To assess the impact on network capacity, we trained a series
of networks that increase in size – number of layers and layer
width – in order to see how how much prediction improves as
network capacity increases. This resulted in the testing four
different models with sizes 113KB, 220KB, 798KB, and 1.7MB.
The training RAE for these models was 5.06%, 3.93%, 3.59%,
and 2.98%, and the testing RAE followed a similar pattern at
5.18%, 4.03%, 3.70%, and 3.10%, respectively. Theses results
show that with larger neural networks, we have more capacity
in the model and (not surprisingly), the error reduces.

We used the SPLOM dataset to study the effect of binning.
When we increase the number of bins, the network requires
higher capacity to learn well. As number of bins increased, the
model size changed 109KB to 135KB. Testing RAE mainly
increased from 1.02% (10 bins), 1.85% (20), 2.25% (30), 2.09%
(40), to 2.64% (50). An increase in testing error is to be
expected, for several reasons. The first reason is that when the
bins are refined, few records fall into the same bin. So the
variance within each bin is larger, making it more difficult for
NeuralCubes to learn the underlying distribution. The second
reason is that when the number of bins increase, the space of
possible different queries grows exponentially.

We also tested the same model but with different number
of training samples (15k, 30k, and 60k). As we increased the
number of samples, the training RAE was 6.74%, 3.59%, and
3.39% and the testing RAE was 6.85%, 3.70%, and 3.47%.
We can see a significant accuracy improvement when using
30k training states than 15k training states. However, the
improvement from using 30k to 60k is very small, suggesting
a possible need to increase the capacity of this neural network.

C. Comparing Two Cities by Latent Space

The latent space plots may convey information that could not
be directly perceived on histograms of counts. Fig. 10 shows
an example. Firstly, the latent space for hour of both cities
forms a loop for ranges with same length. This suggests that
NeuralCubes learned the fact that hour indeed has a repeated

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

1,000

2,000

3,000

4,000

5,000

6,000
1 2 3 4

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

500

1,000

1,500

0

2 3 41

1

2

3
4

Fig. 10. We compare the diurnal patterns present in the latent space for “hour”
in Austin and NYC. The top half shows the queries and latent space for NYC,
while the bottom half shows them for Austin. We highlight the sequence of
queries in the latent space for sliding ranges throughout the day.

circular pattern. However, the “circle” in Austin’s latent space
has a large opening. We find this pattern always exists within
multiple independently trained models; though they may have
different views (e.g. rotated, stretched) of the latent space due
to randomness in the training. This could be caused by the
difference of lifestyles of the two cities: New York City never
sleeps, while Austin goes to bed at night.

D. Testing with User Queries

In this experiment, we collect queries from real users
for evaluation. The models are still trained using artificially
generated sample. However, for testing, we setup a web
based visualization for users to interact with the four datasets:
Brightkite NYC, Brightkite Austin, Yellow Cab and SPLOM
dataset. Then we asked two participants to interact with the
web UI and log the queries the made. At last, we test the
models on these collected queries, which contains more than
100 states (40,000+ queries) for each dataset. Compared with
testing results using generated queries (Table II), the RAE
for user queries are significantly lower, with RAEs of 1.39%
(Brightkite NYC), 1.72% (Brightkite Austin), 0.63% (Yellow
Cab), and 1.41% (SPLOM). . We hypothesize this improvement
happens because humans only selectively explore the query
space. However, a full investigation of human behavior in
queries is outside the scope of this work.

VIII. DISCUSSION AND LIMITATION

In this work we have presented NeuralCubes: a learning-
based approach for computing query aggregations in multi-
dimensional datasets. We have shown the accuracy of our
model in approximating queries over a wide range of scenarios,
and the qualitative benefits of NeuralCubes for downstream
use in visual exploration. Although we are encouraged by the
results, we recognize several limitations with NeuralCubes that
we plan to address in future work.

The main limitation with NeuralCubes is its inability to
generalize to novel datasets. The necessity to train a model from
scratch, given a new dataset, results in a high computational

burden relative to existing datacubes methods [33], [34].
Although generalization, e.g. responding to a query from an
arbitrary dataset, is extremely challenging, we believe there is
middle ground in reducing the time required for optimization.
We will consider efficient optimization schemes for when the
data schema is fixed, yet new data items arrive that expand the
range of attributes, e.g. check-ins at new points in time for a
fixed geographic area. We will further consider meta-learning
schemes [15] in order to utilize learned network initializations
that exhibit faster convergence, taking advantage of relatedness
in queries amongst homogeneous datasets. Additionally, we
will extend our architecture to learn over multiple types
of queries (e.g. sum, count), leveraging multi-task learning
techniques [61].

Another limitation with NeuralCubes is the network design,
and its sensitivity to hyperparameter settings for individual
datasets – this places an unnecessary burden on the user
to make decisions on hyperparameters. For future work, we
plan on considering alternative models that are more robust,
and lessen the need for hyperparameter tuning. In particular,
we plan on investigating attention-based models such as
Transformers [14], [55] that can reason over variable-length
data queries, e.g. queries over an arbitrary subset of attributes.
Whereas our current model simply concatenates attribute-
specific feature vectors for learning attribute relationships,
we believe self-attention amongst attributes is key for more
effective learning, and consequently, simpler network designs
with less hyperparameter tuning.

Another limitation with NeuralCubes is the lack of error
control. However, we think that it is possible to associate
uncertainty with our predictions, extending existing work
on approximate Bayesian inference within deep neural net-
works [16]. Coupled with the use case of visual exploration,
we think that this can help alleviate concerns regarding error,
by communicating both aggregation results, and confidence in
predictions.

One notable feature of NeuralCubes is that the query training
set is dependent on the affordances provided by the visual
exploration system. This is an advantage in terms of machine
learning, because the additional information available allows
us to simplify the problem of training a network capable
of answering any query. Here, NeuralCubes is taking direct
advantage of Vapnik’s principle, which is “never [...] solve a
problem which is more general than the one we actually need to
solve.” [48]. Nevertheless, we acknowledge that our heuristic
for generating queries might not accurately represent what
users would query, leading to poor generalization. However,
we think that including a small amount of human supervision
can provide us with additional information on how to generate
relevant queries for training. Active learning strategies [29]
should prove useful in such scenarios to minimize human
annotation time.

As a direct comparison to other data cubes based techniques,
we built Nanocubes [33] for Yellow Cab dataset (YC-1M)
using the same schema as used for NeuralCubes. The size of
Nanocubes for YC-1M dataset is 2MB. The size of Neural-

Cubes models for the same dataset under the same schema
is 798KB. This show how NeuralCubes is comparable with
Nanocubes in terms of memory usage, but does not provide a
detailed query comparison on the same benchmark. Traditional
database benchmarks are designed for ad-hoc queries, but the
workload of an interactive data exploration system are very
different. For example, IDEBench [13] argues that traditional
database benchmarks are not suitable for interactive data
analysis workload.

The main value of NeuralCubes lies in its speed and
extremely small memory footprint in answering queries of
a visual data exploration system. Finally, we remark that since
the learned model is a differentiable function, NeuralCubes
also opens up several opportunities, such as query sensitivity
analysis and queries discovery that lead to user-prescribed
aggregations.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation (NSF) under grant numbers IIS-1452977, IIS-
1513651 and IIS-1815238; and by the Defense Advanced
Research Projects Agency (DARPA) under agreement numbers
FA8750-17-2-0107 and FA8750-19-C-0002; and by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Award Number(s) DE-
SC-0019039.

REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on
very large data. In Proceedings of the 8th ACM European Conference
on Computer Systems, pp. 29–42. ACM, 2013.

[2] D. Alabi and E. Wu. Pfunk-h: Approximate query processing using
perceptual models. In Proceedings of the Workshop on Human-In-the-
Loop Data Analytics, pp. 1–6, 2016.

[3] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data
tiles for interactive visualization. In Proceedings of the 2016 International
Conference on Management of Data, pp. 1363–1375. ACM, 2016.

[4] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–
1155, 2003.

[5] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate
query processing using wavelets. The VLDB Journal, 10(2):199–223,
2001.

[6] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity
while exploring massive time series. In Visual Analytics Science and
Technology, 2008. VAST’08. IEEE Symposium on, pp. 59–66. IEEE, 2008.

[7] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user
movement in location-based social networks. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 1082–1090. ACM, 2011.

[8] W. S. Cleveland and R. McGill. Graphical perception: Theory, exper-
imentation, and application to the development of graphical methods.
Journal of the American statistical association, 79(387):531–554, 1984.

[9] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In Nsdi, vol. 10, p. 20, 2010.

[10] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang. Sample+
seek: Approximating aggregates with distribution precision guarantee.
In Proceedings of the 2016 International Conference on Management of
Data, pp. 679–694, 2016.

[11] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual repre-
sentation learning by context prediction. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

[12] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate
chairs with convolutional neural networks. In Computer Vision and
Pattern Recognition (CVPR), 2015 IEEE Conference on, pp. 1538–1546.
IEEE, 2015.

[13] P. Eichmann, C. Binnig, T. Kraska, and E. Zgraggen. Idebench: A bench-
mark for interactive data exploration. arXiv preprint arXiv:1804.02593,
2018.

[14] R. Fakoor, P. Chaudhari, J. Mueller, and A. J. Smola. Trade: Transformers
for density estimation. arXiv preprint arXiv:2004.02441, 2020.

[15] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine
Learning, pp. 1126–1135. PMLR, 2017.

[16] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international
conference on machine learning, pp. 1050–1059, 2016.

[17] M. Ghifary, W. Bastiaan Kleijn, M. Zhang, and D. Balduzzi. Domain
generalization for object recognition with multi-task autoencoders. In
Proceedings of the IEEE international conference on computer vision,
pp. 2551–2559, 2015.

[18] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data mining
and knowledge discovery, 1(1):29–53, 1997.

[19] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data
cubes efficiently. In Acm Sigmod Record, vol. 25, pp. 205–216. ACM,
1996.

[20] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,
T. Roth, and P. J. Haas. Interactive data analysis: The control project.
Computer, 32(8):51–59, 1999.

[21] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine, 29(6):82–97,
2012.

[22] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[23] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate
query processing with the dbo engine. ACM Transactions on Database
Systems (TODS), 33(4):1–54, 2008.

[24] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and
interactive cube exploration. In Data Engineering (ICDE), 2014 IEEE
30th International Conference on, pp. 472–483. IEEE, 2014.

[25] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer. Profiler:
Integrated statistical analysis and visualization for data quality assessment.
In Proceedings of the International Working Conference on Advanced
Visual Interfaces, pp. 547–554. ACM, 2012.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[27] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-
supervised learning with deep generative models. In Advances in neural
information processing systems, pp. 3581–3589, 2014.

[28] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. arXiv
preprint arXiv:1809.00677, 2018.

[29] A. Kirsch, J. Van Amersfoort, and Y. Gal. Batchbald: Efficient and
diverse batch acquisition for deep bayesian active learning. Advances in
neural information processing systems, 32:7026–7037, 2019.

[30] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case
for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data, pp. 489–504, 2018.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, eds., Advances in Neural Information
Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., 2012.

[32] K. Li, Y. Zhang, G. Li, W. Tao, and Y. Yan. Bounded approximate query
processing. IEEE Transactions on Knowledge and Data Engineering,
31(12):2262–2276, 2018.

[33] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-
time exploration of spatiotemporal datasets. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2456–2465, 2013.

[34] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. In Computer Graphics Forum, vol. 32, pp. 421–430. Wiley Online
Library, 2013.

[35] J. Mackinlay. Automating the design of graphical presentations of
relational information. ACM Transactions On Graphics, 5(2):110–141,
1986.

[36] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic
presentation for visual analysis. IEEE transactions on visualization
and computer graphics, 13(6), 2007.

[37] F. Miranda, H. Doraiswamy, M. Lage, K. Zhao, B. Gonçalves, L. Wilson,
M. Hsieh, and C. T. Silva. Urban pulse: Capturing the rhythm of cities.
IEEE transactions on visualization and computer graphics, 23(1):791–
800, 2017.

[38] F. Miranda, L. Lins, J. T. Klosowski, and C. T. Silva. Topkube: a rank-
aware data cube for real-time exploration of spatiotemporal data. IEEE
transactions on visualization and computer graphics, 24(3):1394–1407,
2018.

[39] M. Mitzenmacher. A model for learned bloom filters and related structures.
arXiv preprint arXiv:1802.00884, 2018.

[40] M. Noroozi and P. Favaro. Unsupervised learning of visual representations
by solving jigsaw puzzles. In European Conference on Computer Vision,
pp. 69–84. Springer, 2016.

[41] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by
learning to count. In The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[42] B. of Transportation Statistics. On-time performance.
http://www.transtats.bts.gov/Fields.asp?Table ID=236. Accessed:
2018-03-29.

[43] L. Orr, M. Balazinska, and D. Suciu. Entropydb: a probabilistic approach
to approximate query processing. The VLDB Journal, 29(1):539–567,
2020.

[44] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state
representations for query optimization with deep reinforcement learning.
In Proceedings of the Second Workshop on Data Management for End-
To-End Machine Learning, pp. 1–4, 2018.

[45] C. A. Pahins, S. A. Stephens, C. Scheidegger, and J. L. Comba.
Hashedcubes: Simple, low memory, real-time visual exploration of
big data. IEEE transactions on visualization and computer graphics,
23(1):671–680, 2017.

[46] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing
approximate query processing. In Proceedings of the 2018 International
Conference on Management of Data, pp. 1461–1476, 2018.

[47] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between
capsules. In Advances in neural information processing systems, pp.
3856–3866, 2017.

[48] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson. Estimating the support of a high-dimensional
distribution. Neural Comput., 13(7):1443–1471, July 2001. doi: 10.
1162/089976601750264965

[49] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf:
Shrinking the petacube. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pp. 464–475. ACM,
2002.

[50] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.

[51] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing
systems, pp. 3104–3112, 2014.

[52] K. Tang, M. Paluri, L. Fei-Fei, R. Fergus, and L. Bourdev. Improving
image classification with location context. In Proceedings of the IEEE
international conference on computer vision, pp. 1008–1016, 2015.

[53] N. Taxi and L. Commission. Yellowcab taxi trip records.
http://www.nyc.gov/html/tlc/html/about/trip record data.shtml. Accessed:
2018-09-14.

[54] S. Thirumuruganathan, S. Hasan, N. Koudas, and G. Das. Approximate
query processing for data exploration using deep generative models. In
2020 IEEE 36th International Conference on Data Engineering (ICDE),
pp. 1309–1320. IEEE, 2020.

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pp. 5998–6008, 2017.

[56] X. Wang and A. Gupta. Unsupervised learning of visual representations
using videos. In The IEEE International Conference on Computer Vision
(ICCV), December 2015.

[57] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and C. Scheidegger.
Gaussian cubes: Real-time modeling for visual exploration of large

multidimensional datasets. IEEE transactions on visualization and
computer graphics, 23(1):681–690, 2017.

[58] E. Wu, L. Battle, and S. R. Madden. The case for data visualization
management systems: vision paper. Proceedings of the VLDB Endowment,
7(10):903–906, 2014.

[59] M. Wu and C. Jermaine. A bayesian method for guessing the extreme
values in a data set? In Proceedings of the 33rd international conference
on Very large data bases, pp. 471–482, 2007.

[60] W. Xu, H. Sun, C. Deng, and Y. Tan. Variational autoencoder for
semi-supervised text classification. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[61] Y. Yang and T. M. Hospedales. Trace norm regularised deep multi-task
learning. arXiv preprint arXiv:1606.04038, 2016.

[62] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica. G-ola:
Generalized on-line aggregation for interactive analysis on big data. In
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 913–918, 2015.

