
Computational Design of Knit Templates

BENJAMIN JONES, YUXUAN MEI, HAISEN ZHAO, TAYLOR GOTFRID, JENNIFER MANKOFF, and
ADRIANA SCHULZ, University of Washington

Fig. 1. Our interactive design system helps users explore key design axes for kniting to generate highly customized paterns from input shape templates;

e.g., a seamless yoke dress with princess-cut apparent seams (a), and drop shoulder dresses with textures on the arms and skirt (b–d). The output of our

system is a knit patern template that lets users vary the shape while preserving the design, for example, creating a child’s dress with short sleeves (d) that

matches an adult dress (b), or varying skirt texture and angle, and sleeve kniting direction (c). The system guarantees that all results and variations are

machine knitable.

We present an interactive design system for knitting that allows users to

create template patterns that can be fabricated using an industrial knit-

ting machine. Our interactive design tool is novel in that it allows direct

control of key knitting design axes we have identifed in our formative

study and does so consistently across the variations of an input paramet-

ric template geometry. This is achieved with two key technical advances.

First, we present an interactive meshing tool that lets users build a coarse

quadrilateral mesh that adheres to their knit design guidelines. This solu-

tion ensures consistency across the parameter space for further customiza-

tion over shape variations and avoids helices, promoting knittability. Sec-

ond, we lift and formalize low-level machine knitting constraints to the

level of this coarse quad mesh. This enables us to not only guarantee

hand- and machine-knittability, but also provides automatic design assis-

tance through auto-completion and suggestions. We show the capabilities

Authors’ address: H. Zhao, Am Campus 1/31/3, AT-3400 Klosterneuburg, Vienna, 3400,
Austria; email: haisen@cs.washington.edu; T. Gotfrid, Paul G. Allen School of Com-
puter Science & Engineering, University of Washington, Box 352355, Seattle, WA
98195-2355; email: gotfrid7@cs.washington.edu; J. Mankof, Paul G. Allen School of
Computer Science & Engineering, University of Washington, Box 352355, Seattle, WA
98195-2355; email: jmankof@cs.washington.edu; A. Schulz, Paul G. Allen School of
Computer Science & Engineering, University of Washington, Box 352355, Seattle, WA,
98195-2355; email: adriana@cs.washington.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full cita-
tion on the frst page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/12-ART16 $15.00
https://doi.org/10.1145/3488006

through a set of fabricated examples that illustrate the efectiveness of our

approach in creating a wide variety of objects and interactively exploring

the space of design variations.

CCS Concepts: • Computing methodologies → Parametric curve and

surface models; Mesh geometry models; • Applied computing →
Computer-aided manufacturing;

Additional Key Words and Phrases: Knitting, quad-meshing

ACM Reference format:

Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer

Mankof, and Adriana Schulz. 2021. Computational Design of Knit Tem-

plates. ACM Trans. Graph. 41, 2, Article 16 (December 2021), 16 pages.

https://doi.org/10.1145/3488006

1 INTRODUCTION

Knitting is a versatile craft with rich aesthetic and functional de-

sign spaces. Its scope ranges from garments and toys to architec-

tural structures and medical implants. The ubiquity of knit textiles

in our lives is driven by programmable knitting machines. Machine

knitting has the potential to become the next 3D printing: knit tex-

tiles are pervasive, customization of knit objects like clothing is val-

ued, and machine prices have fallen within reach of maker spaces,

small shops, and hobbyists.

However, makers lack design tools that provide needed con-

trol over familiar design axes, enable customization of existing

designs, and encourage exploration of the design space. Consider

the variety of dress shapes in Figure 1. There are several options

for knitting patterns that can construct these shapes. The knit-

ting designer must choose from patterns like these to achieve

16

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3488006
https://doi.org/10.1145/3488006
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488006&domain=pdf&date_stamp=2021-12-06
mailto:adriana@cs.washington.edu
mailto:jmankoff@cs.washington.edu
mailto:gotfrid7@cs.washington.edu
mailto:haisen@cs.washington.edu

16:2 • B. Jones et al.

functional and aesthetic efects. Based on interviews we conducted

with knitting designers, we identifed seven design axes that are

typically present in knitting patterns.

Shape Variability. Specifc aspects (or geometry parameters) of

a knit object’s shape and size can vary without requiring a

wholly new pattern. For example, a pattern designer might

vary the length of a skirt and sleeves and the height of the

waist to change an adult’s dress to a child’s dress (b vs d).

Composition. The basic building blocks of knit objects are sheets

and tubes, which are composed to form a shape. For example,

shoulder design in garments may be composed as smoothly

merging or abutting tubes (a vs b).

Seaming. Related to composition, seams are used to connect

building blocks (e.g., the shoulders in b) but also within a

building block (e.g., the sleeve in c).

Orientation. Knitting looks diferent, and stretches diferently,

in the horizontal and vertical directions. As the sleeve of

c shows, changing orientation can change the locations of

seams. Thus, the orientation, or alignment of stitches along

the surface, is an important design choice.

Surface Layout. Knitted objects are typically comprised concep-

tually meaningful regions. Layout includes the axes of sym-

metry, a line of increases or decreases, and the boundaries of

a texture region, such as textures on the dress skirts, and the

apparent seams in (a and c).

Curvature Shaping. Sheets and tubes are fat grids of stitches un-

til shaping stitches are added, creating non-grid formations

that add intrinsic curvature. Curvature is distributed around

the bodice in (c) and concentrated towards the front in (d).

Surface Texture. Texture is achieved by varying stitches on the

surface of a sheet or tube without varying curvature. Com-

plex surface patterning of stitch variants gives knitting its aes-

thetic versatility, as shown in the dress skirts (a–d).

Customization and exploration of designs require interactive

control of these seven design axes. There are two challenges to in-

teractive design. First, knitting patterns must meet several discrete

local and global constraints in order to be fabricable. Stitches must

cover the surface with a small number of yarns while avoiding heli-

cal structures that cause cyclic dependencies in the fabrication pro-

cess. Shaping stitches must be placed to capture mesh curvature,

but also respect limitations on their type and relative alignment.

Second, the seven axes are strongly intertwined at the stitch level,

so making a decision along one axis can undo decisions made along

other axes. For example, changing the orientation of stitches in the

sleeve of the dress between (b) and (c) requires diferent curvature

shaping stitches, changes the composition of the sleeve from a tube

to a sheet, requiring a seam down the length of the arm, and rotates

the surface texture by 90 degrees. Ideally, a design tool should en-

force the constraints without overly limiting the designers’ ability

to explore, which is hampered if design decisions undo each other.

Prior work addressed several of these design axes. For exam-

ple, Yuksel et al. [2012] demonstrate that a coarse quad-dominant

mesh modeling of geometry enables the representation of impor-

tant design axes of knitting, such as orientation and surface texture,

and supports iterative modifcations to these axes. However, with-

out a design tool that can automatically generate the quad mesh

from high-level design input, this representation cannot support it-

eration on axes such as composition and shape variability. Simi-

larly, without a strong theoretical connection between knittability

constraints and the algorithm that generates a pattern from a quad

mesh, it is impossible to guarantee knittability. As a result, a de-

sign tool cannot suggest design solutions or warn users when they

make changes that will break their design.

To address these limitations, we introduce two theoretically-

grounded advances. First, we present a novel meshing tool

that expresses the theoretical relationship between the singularity

structure of quad meshes and the knitting design axes. This lets

users of all knitting design skill levels generate coarse meshes that

satisfy their design goals and avoid helical structures that lead to

undesirable patterns. Furthermore, our algorithm takes as input a

parametric template geometry that can vary over a specifed pa-

rameter space, for example, a dress whose sleeves can vary from

short to long or whose skirt can be elongated, allowing a design to

be customized for a user.

Second, we introduce formal knittability criteria over the

coarse mesh to ensure knittability without over-constraining the

design space. By knittability in this work, we mean a valid ma-

chine knitting patterns in conjunction with constraints to account

for physical limits of knitting machines and yarn that improve

design robustness. Our validation and accompanying algorithms

enable not only notifcations about knittability problems, but pro-

mote interactive design across multiple design axes supported by

auto-completion and automated design suggestions.

Based on these theoretical insights, we contribute a practical

knitting design framework that supports

—requirements for design axes drawn from real-world knitting

design experts;

—variable template patterns that correctly propagate design de-

cisions as parameters of the geometry are modifed;

—direct manipulation by users of multiple, interdependent de-

sign axes;

—automatic knittability checking and auto-complete assisted

design;

—generation of knitting machine instructions.

2 UNDERSTANDING KNITTING DESIGN AND ITS
RELATION TO QUAD MESHES

Knitting builds on a long craft, design, and artistic history [Spencer

2001]. Knitters can refer to books (e.g., Budd [2002]) or websites

(e.g., Ravelry [2019]) that include a wealth of knitting patterns

and design strategies. To discuss pattern design strategies, we frst

briefy review how knit objects are constructed (see McCann et al.

[2016] and Underwood [2009] for a more thorough review). We

then present the results of our study with knitting pattern design-

ers, which drove our technical innovations. We will also explain

how knitting relates to quad meshing to facilitate with understand-

ing later sections.

Constructing Knit Objects . Knit objects consist of a grid-like fab-

ric of interconnected stitches. A grid of stitches can be a sheet of

fabric, or the ends can be joined to form tubes, called knitting in the

round (Figure 2). Knit objects are composed of joining and cutting

these elements in various ways and orientations.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

Computational Design of Knit Templates • 16:3

Fig. 2. Knit object construction. (lef) A segment of knit fabric showing

the basic stitch types and curvature shaping. (right). The two basic knit-

ting primitives: sheets and tubes. Grid cells represent stitches, and arrows

denote order of fabrication.

Stitches in the grid are formed sequentially by pulling a yarn

loop through a “parent” loop in the row below it. To create a

stitch, the loop it is pulled through must have been knitted already.

This means that knitting inherently constrains the order in which

stitches can be constructed. The central constraint of knitting is

that the graph of stitch dependencies must be non-cyclic. The frst

row of stitches have no parent stitches, so they must be created

with a special type of stitch called a cast-on. Similarly, the fnal

row of stitches is closed with a stitch called a bind-of, which acts

to stabilize the knit object. This is important because a non-bind-

of stitch with no children can unravel.

The grid can be locally distorted by adding and removing loops

to add curvature to the fabric. This is done along columns us-

ing special increase and decrease stitches and along rows using

“short rows” (Figure 2). Also, by varying the direction, each loop

is pulled through (knit and purl)—as well as other loop properties

that create twists, holes, and overlayed loops—it is possible to cre-

ate surface texture, such as cables, lace, and ribbing. As an example,

varying the order that loops are stacked or pulled in an increase

or decrease can create leaning increases or decreases, which ap-

pear to tilt left or right. Aligning several leaning stitches in a line

can create the appearance of a seam in the fabric, as visible in

Figure 11(b). Throughout the article, we will use “apparent seam”

to distinguish these seam-like stylistic choices from true seams,

which occur when separately knitted edges are sewn together as a

post-process.

Knitting machines do not change the important axes of knit

design, but they do add fabrication constraints not found in hand

knitting. A V-bed knitting machine contains two beds of small

needles at fxed spacing. A piece of yarn is shuttled back and forth

between the beds by a carrier, and the needles are programmed

to interact with the yarn (e.g., grabbing a loop), or each other

(e.g., passing loops) as the yarn passes. Each needle holds one

or more active loops at a time, and only these loops can be built

upon. Once a machine drops a loop, it cannot pick it back up, so

all stitches needed in the future must be held on needles. While

loops can move between needles to create gaps for increases and

overlaps for decreases, the physical dimensions of needle size

and spacing limit how large a gap can be without snapping the

yarn (overstretching the yarn), and how many loops can overlap

before dropping of the small needles (overstacking a needle).

These impose an upper bound on the number of loops each stitch

can increase or decrease, which we conservatively cap at two,

and make short-rows preferable for shaping (for hand knitters,

increases and decreases are preferred).

Designing Knitting Patterns: A Research Survey and Study.

To understand how designers construct knitting patterns, we

surveyed popular keywords used with over 200,000 free knitting

patterns available on Ravelry.com and conducted a contextual

inquiry [Beyer and Holtzblatt 1999] with fve knitters, focusing

on the design process, motivations behind design decisions, and

the use of patterns and other artifacts or tools. We describe the

details of this study in our supplemental material and discuss here

the key results.

Our survey of patterns showed that the most popular search key-

words specifed composition (129 K patterns mentioned seaming;

160 K mentioned seamless; almost all specifed sheets (fat, 227 K

patterns) or tubes (in the round, 181 K patterns)). Next in frequency

came orientation (163 K patterns) and shaping (32 K patterns use

short rows, which could underestimate the importance of shaping

since almost all patterns use increases and decreases). The use of

such keywords suggests that the identifed design axes are of in-

terest not only to pattern designers but also to knitters.

Regarding study results, participants tended to enter initial

planning stages based on some inspiration (e.g., a picture) or an

internal image of the fnal object they wanted to create. They drew

this out as a sketch of the objects’ composition or directly trans-

lated it onto a grid (a stitch-level representation) using (something

like) perler beads or graph paper. They also determined knitting

orientation, texturing, added symmetry, and created an assembly

plan, as needed, at this phase of the project. More complex objects

were broken down into diferent components to be designed

individually.

Participants also discussed the challenges of modifying an exist-

ing pattern by re-sizing, coloring, texturing, and modifying design

elements. Of these, resizing was by far the most common since

small changes (like the specifc knitter, yarn, and needles) could

alter the number of stitches needed to achieve their goal. They did

not have automated methods to do this. Instead, they used arith-

metic, visual inspection, trying things on, or comparing theirs to

a to-scale pattern. Because many knitters preferred to knit in the

round, a second common change was to the composition of a pat-

tern of sewn sheets (such as a sweater) into a tube. Thus, a knitting

design tool could be of value not only to designers but also to the

much larger group of knitters who simply want to make things

that ft. This also demonstrates that stitch level decisions can be

deferred until fabrication time while still respecting a design in-

tent, indicating that the design is actually captured by a higher

level structure.

Our survey and study provide evidence that an ideal tool for

knitting pattern design should support changes in the target

shape (especially size), composition, orientation, seaming, curva-

ture shaping, texture, and surface layout features such as symme-

try. However, simply supporting these design axes is insufcient.

Knitters want to modify them, which is currently time-consuming

and difcult. They struggle to ensure that the resulting pattern will

be knittable and to preserve one design decision when modifying

others.

Quad Meshing and Knit Design. Quad meshes are meshes with

only quadrilateral faces, and the mesh vertices typically have four

adjacent edges (or three if on boundary). Such vertices are called

regular, while others are called irregular or singular. The surplus

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

Ravelry.com

3 RELATED WORK

16:4 • B. Jones et al.

or defcit of adjacent edges is the index of a singularity (a singular

vertex). A typical knit stitch, like a quad in a quad mesh, has exactly

four neighboring stitches, a compelling parallel that motivates the

most popular stitch-level representation: Stitch Meshes [Yuksel

et al. 2012]. In addition to this low-level correspondence, we found

two higher level correspondences.

First, based on our study with knitters, we see that they think

and lay out knitting designs in sheets and tubes. When they com-

bine the sheets and tubes, these structures may come together

in greater or fewer than four edges, creating singularities. We

found connections between several common knitting patterns and

groups of singularities with particular indices, which we compiled

into a set of composition rules that can be applied to a surface to

control how the surface is broken down into sheets and tubes.

Second, knitting has two orthogonal directions formed by rows

and columns of stitches (course and wale, respectively). In quad

meshing, locally orthogonal axes are represented by a cross feld

—a pair of vector felds over a surface that are always locally

orthogonal. Several methods for converting a triangle mesh to a

quad mesh (remeshing) use cross felds to guide the orientation

of quads. The orientation of rows and columns in knitting is an

important design decision, so we employ a cross feld to capture

the designer’s intent.

Quad meshes have rows and columns found by following neigh-

boring quads on opposite edges. If two diferent quads in the same

row are also in the same column—meaning there is a cycle, the row

is a helix. While knitting in the round is technically knitting one

helix, in our representation (and also in standard knitting patterns)

this helix is not explicitly represented. Instead, it is broken into in-

dividual rows, and the overall helix is constructed only at knitting

time when transitioning between these rows. This view of knitting

makes it easier for us to reason about stitch construction depen-

dencies; specifcally that all of the stitches in a row must be con-

structed before any stitches in later rows. A quad mesh helix cre-

ates a cyclic dependency between stitches, which is not knittable.

Knitting design research can be segmented into three domains

of inquiry: representation, which is typically stitch, primitive or

mesh-based; pattern knittability, which includes both generation

and verifcation of hand and machine knit patterns; and interactiv-

ity, which includes support for the seven design axes identifed in

our survey and study. In addition to these topics, we will discuss

prior works on quad meshing for knitting, an important step in

our system.

Representation of Knit Patterns. Representations fall into three

categories. Stitch-based representations specify individual knit-

ting operations and can be written as language, charts, or

annotated meshes. Primitive-based ones address tubes and sheets

directly, while patch-based ones extend mesh representations to

multiple stitches per element.

Traditionally, knitting patterns are conveyed as stitch-based

fabrication instructions, typically in a language called knitspeak

[Hofmann et al. 2019] or visually in a chart (e.g., Briar [2019],

SHIMA SEIKI [2019], and STOLL [2019]). Several systems use quad-

dominant meshes rather than a chart or language to represent

Table 1. Desirable Features of a Kniting Design Tool Supported

by Literature

Unflled stars show partial satisfaction of the goal; either users have direct, but
incomplete control, or complete but indirect control. For example, Yuksel et al.
[2012] gives direct, but incomplete control over orientation since orientations
may only align with coarse input mesh edges, and Narayanan et al. [2019] gives
complete but indirect control over surface layout since symmetries and feature
placement can be specifed exactly by moving stitches one by one. If properties
are assumed from the input, or are both indirect and incomplete, they are not
considered controlled. An unflled star for mesh input indicates that
pre-processing outside the system is required.

objects at the stitch level [Igarashi et al. 2008; Wu et al. 2018, 2019;

Yuksel et al. 2012]. In these systems, quad faces represent regular

stitches, triangles the ends of short rows, and pentagons increases

and decreases. Additional data are embedded to indicate orien-

tation and to diferentiate stitch types, such as knits from purls.

While stitches directly correspond to the fabrication process, knit-

tability is a primary issue here, which we discuss in the following

section.

Since knitting is composed of tubes and sheets, an intuitive al-

ternative is to specify a knit object as a composition of parametric

sheet and tube primitives (e.g., Kaspar et al. [2019] and McCann

et al. [2016]). This approach has the advantage of supporting pa-

rameterization of these primitives, enabling a single pattern to act

as a template for customization. It is also possible to provide knit-

tability guarantees over this representation, though matching an

arbitrary input target shape is not straightforward.

If we generalize meshing to represent multiple stitches per quad,

we gain many of the benefts of primitive-based approaches, while

still being able to match an input target shape [Yuksel et al. 2012].

However, this approach has not been extended to include pattern

generation and ensure knittability, and depends on a high-quality

patch input that aligns with the desired design.

Knittability. Knitting an object requires the generation of a

valid sequence of stitches. Because stitches are created by pulling

loops through other stitches, such an ordering is not guaranteed

to exist. Thus, stitch-based representations typically lack inherent

guarantees of knittability (though commercial systems warn

about potential failures). When representing the dual graph of a

stitch-level mesh, dependency errors in a pattern can be found

by cycle checking. Popescu et al. [2017] pioneered the graph

approach with a hybrid representation, and Narayanan et al.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

Computational Design of Knit Templates • 16:5

[2018] extended it by directly constructing a graph over an input

model and identifying a sufcient set of constraints on the graph

to guarantee machine knittability. However, these checks must be

done for every iteration to a pattern.

Using a primitive-based representation, McCann et al. [2016] de-

veloped a provably correct transfer planning algorithm that sched-

ules a pattern on a machine knitting machine. Kaspar et al. [2019]

extended this work with more primitives, more composition op-

tions, and a more robust texturing system.

Knittability guarantees have not been demonstrated for patch-

based representations. This would require imposing constraints

that ensure knittability. If it were possible to guarantee knittability,

a patch-based representation would be preferable to stitch-based

approaches because of its generality, and to primitive-based ap-

proaches because of its fexibility in easily representing a wide va-

riety of input shapes.

Interactive Knit Design Tools. Stitch-level mesh-based ap-

proaches are intuitive for representing underlying geometry,

can automatically generate a knittable solution for a specifc

geometry, and support low-level control over specifc stitches.

For example, Nayaranan et al. [2019] support direct stitch mesh

editing while ensuring machine knittability. However, concepts

such as composition, orientation, and surface layout are not

directly represented in a stitch-based mesh; rather, they are

expressed through the stitches that are specifed. Thus, the

design tool cannot know when they are violated. Furthermore, all

these modifcations are lost if the original object’s geometry is

changed.

In contrast, primitive-based methods guarantee machine knitta-

bility and allow shape to be varied parametrically since primitives

can be parameterized [Kaspar et al. 2019; McCann et al. 2016]. Such

methods defer stitch-level decisions until instruction generation,

which allows interactive editing of composition and other design

goals, such as curvature and texture (see Table 1). However, this

approach has two key disadvantages. First, it requires expertise

to model a desired shape, making it particularly challenging for

applications involving more complex geometry. Second, while it

is possible to control composition and shape variations, editing

is indirect, requiring expertise to achieve even simple variations

that can depend on multiple parameters in a complex way—a

classic problem in parametric computer-aided-design (CAD)

systems [Yares 2013].

Supporting direct editing of design goals requires a representa-

tion that relates stitches to shapes. Patch-based approaches have

this potential. Prior work demonstrated the power of patches to

allow control over curvature shaping and surface texture, and

to allow movement and changing of stitch types [Yuksel et al.

2012]. However, several key limitations remain, which our work

addresses. First, Yuksel et al. [2012] use a coarse polygonal mesh

as input, which requires a high level of user expertise to gener-

ate, and limits interactive control over composition and orienta-

tion. Our frst key contribution shows that by developing meshes

that correspond to a knitter’s conceptual breakdown of a knit ob-

ject, we can enable control over multiple important design axes. In

particular, we prove that by controlling singularities in the mesh,

knitters can intuitively and directly specify and iterate on these

design axes and generate helix-free quad meshes that are neces-

sary for knittability.

Furthermore, Yuksel et al. [2012] are not concerned with knitta-

bility, generating patterns only suitable for simulation and render-

ing. While rules have been developed to ensure machine knittabil-

ity on stitch-level meshes, where constraints come directly from

analyzing the fabrication process [Narayanan et al. 2018], it is not

trivial to extend this to patches. This is the second key contribu-

tion of our work. We design a lightweight set of high-level patch

constraints that do not over-constrain the design space but enable

us to create and formally prove the correctness of, an algorithm for

translating them into knittable patterns. This allows novel system-

level contributions: constraints can be directly encoded in solvers,

enabling interactive verifcation and completion during labeling,

automatic seam placement, and geometric optimization, while re-

specting machine constraints and shaping preferences.

Quad Meshing. Our method works at the patch level, which is

defned as a coarse quad mesh on the input surface. Quad meshing

is an active research area and we refer readers to Bommes et al.

[2013] for a survey. The fundamental challenge in applying exist-

ing quad-meshing techniques to patch-level knitting design is al-

lowing users to control the composition and surface patch layout.

Extensive work on quad meshing [Bommes et al. 2013] has shown

that feld-guided methods best enable user control. In feld-guided

methods, orthogonal vector “cross”-felds on the surface are op-

timized for a given smoothness energy and to meet user specif-

cations (e.g., direction strokes). A quad mesh is then created by

fnding a parameterization whose gradients are optimally aligned

with the feld. For a review of concepts in feld design, we refer in-

terested readers to Section 3.2 of a state-of-the-art report [Vaxman

et al. 2016].

Despite great advances in this area, directional control while

avoiding helices remains challenging, particularly for coarse

meshes. Solutions to directly remove helices [Bommes et al.

2011a] would change composition guidelines in unpredictable

ways. Polyvector felds with curl reduction [Diamanti et al. 2015;

Panozzo et al. 2014] can minimize, but fail to completely avoid, he-

lices. Directly partitioning the mesh into quad layouts [Campen

and Kobbelt 2014] could avoid helices but at the expense of a man-

ual strategy that does not map well to how knitters make patterns.

Diferent quad and quad-dominant meshing techniques have

been proposed for knitting. For example, Wu et al. [2018] use

a feld-guided method to generate a stitch-level quad-dominant

mesh but cannot ensure knittability because cycles cannot be

fully avoided. [Narayanan et al. 2018] ensure knittability using a

harmonic scalar feld meshing technique that takes as input level

set constraints of a scalar function approximating knitting rows.

However, this method works at the stitch level and does not allow

for composition or surface layout control.

In this work, we propose a new strategy to enable design

control while avoiding helices in a coarse quad mesh. This is

achieved by utilizing a key insight on the relationship between

common knitting compositions and quad mesh singularities. In

our system, composition guidelines selected by users are directly

translated to singularity constraints on the mesh, which, in turn,

can be used to drive a cross-feld design algorithm based on trivial

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

4 SYSTEM OVERVIEW

16:6 • B. Jones et al.

Fig. 3. Overview of our framework. (a) Triangle meshes from a parametric template (the system deals with a single mesh at a time). (b) Input triangle mesh

with user annotations of composition, layout, and direction guidelines. (c) Generated quad mesh patches, which are consistent across template variations.

(d) Qad mesh annotated for kniting the body tube in the round using short rows to curve the tube. Blue lines indicate seams. The same design applies to

all template variations (two shown here). (e) Duck knit with short rows. (f) Qad mesh annotated with diferent textures and orientations; the body is knit

as seamed sheets with decreases. (g) Duck knit with textures and a large head from template (f).

connections [Crane et al. 2010]. We choose to use pure quad

meshes rather than quad-dominant meshes in order to exploit this

singularity structure. Achieving knittability with quad-dominant

meshes would require extra constraints aligning singular faces.

We defer to Section 5 to introduce the details of our method.

Figure 3 illustrates our system with an example of designing a toy

duck. The system takes as input one variation from a parametric

template of a duck mesh (a); if the geometry is not already a trian-

gle mesh, the system will tessellate it into one. A parametric tem-

plate is defned by parameters that describe degrees of freedom

q ∈ A, where A defnes the ranges of parameter variations that

map to continuous geometric deformations. For our examples, we

created the input parametric templates semi-manually by frst cre-

ating cuboid cages in Blender and then computing the coefcients

for interpolation [Schulz et al. 2017a]. Parametric templates can

also be created with a variety of geometric editing methods [Gal

et al. 2009; Jacobson et al. 2011] or parametric CAD tools. Our sys-

tem allows users to create knit templates by enabling consistent

control of design axes across the space of geometric variations.

The user starts by directly annotating knitting composition, lay-

out, and orientation guidelines for how to break the duck into

patches by indicating (blue dots in (b)) that the top of the head

should be knit as a sheet to create a fap, that the head should be

a tube abutting the body (yellow dots in (b)), and that the layout

should be symmetric across the body. These composition guide-

lines are selected from an illustrated menu (Figure 4) and placed by

clicking a position on the input mesh. They can also draw desired

stitch orientation directly on the mesh, as well as explicitly spec-

ify layout boundaries as feature lines (not needed for this example).

Our system maps these knitting directives to orientation, edge, and

singularity constraints to create a novel coarse quad re-meshing al-

gorithm that jointly re-meshes the entire parameter space of the

input template to create a single parametric patch layout that satis-

fes the guidelines for all parameter values, (two shown, (c)). Users

can choose to enable any available symmetries for their annota-

tions, which encourages, but does not guarantee that the resulting

quad layout generation will be symmetric.

This patch layout becomes the canvas on which the user

designs their template. By clicking and dragging, they specify

per-quad orientations, surface textures, and curvature shaping

guidelines, as well as specifying seams. Users may also enforce

exact symmetries by placing “equal stitch count” constraints on

specifc patch edges, which will be taken into account during the

stitch generation step. Our interface is backed by a patch-level

knittability solver that not only validates the user’s design but

also assists in the design process by automatically fnishing

partial designs with knittable completions. In (d), the user has

specifed seaming-of the neck and knitting the inner tube with

short rows, as well as a simple stockinette texture, while in (f),

the user has rotated the orientation on the body, and our solver

has assisted by fnding an alternative seaming strategy that works

with that orientation. At any point during design, the user can

vary the template parameters to preview diferent customizations

of their design. Finally, the user selects two variations to generate

machine instructions for and fabricate (e and g).

5 INTERACTIVE SURFACE PATCH SPECIFICATION

After loading a parametric template of a triangle mesh, the user

seeks to automatically generate a coarse quad mesh that adheres

to the composition, orientation, and surface layout guidelines. Our

key insight here is that there exists a direct relationship between the

singularity structure of cross felds and knitting composition guide-

lines. By identifying this correspondence, we created a quad mesh-

ing algorithm that is both theoretically grounded and able to repre-

sent important and commonly used knit pattern design techniques.

Importantly, the method ensures the resulting mesh is helix free,

a fabrication requirement of knitting, by providing feedback on

knitting composition requirements, as well as a helix visualization

tool to help users tune the grid size parameter toward a helix-free

design.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

� �

Fig. 4. Kniting composition rules shown as quad singularities on

remeshed quad meshes. The corresponding triangle mesh versions are

shown on the right-hand side. Kniting directions are in orange and seams

in blue. Expansion rules correspond to negative singularities (top two

rows): joining tubes with no change of kniting direction can be done with-

out seams with one −1 singularity (E1) or with a seam connecting two

− 1 singularities (E2); joining tubes with direction change requires closed 2

seams, which can be done with two − 1 singularities (E3) or four − 1 singu-2 4
larities (E4); adding a hole without changing the kniting direction can be

done with two − 1 or four 2 − 1 singularities (E5, E6). Contraction rules cor-4
respond to positive singularities (botom row): kniting in the round and

joining at a line seam corresponds to two + 1 singularities (C1); kniting 2
in the round and closing with a flap that is knited as a sheet and seamed

along its boundary corresponds to four 1+ singularities (C2); and kniting 4

a flat patch corresponds to four + 1 singularities at the boundary (C3). 4

Computational Design of Knit Templates • 16:7

Singularities and Composition Guidelines. The key composition

guidelines used in knitting to assemble tubes and sheets map di-

rectly to singularities in the quad mesh. This is not surprising given

their mutual correlation with the shape topology. We identifed

nine knitting-relevant composition rules (see Figure 4), each defn-

ing a set of singularities and seams whose indices either add up

to −1 or +1. Expansion rules (−1 singularity sum) compose tubes

together (E1—E4) or create a hole (E5—E6). Contraction rules (+1

singularity sum) close tubes with a slit seam (C1) or fap (C2), or

bound sheets (C3). Contracting to a point is omitted as a +1 point

singularity is not possible on a quad mesh.

This approach has several advantages.

First, composition rules describe common knitting patterns; for

example, E1 splits a glove into fngers, and E2 is common in the

armpits of sweaters. Therefore, knitters can work in terms they

already understand rather than in singularities—they select com-

position rules from a menu and then click on the mesh to specify

where they should be placed (see pilot study in Section 8).

Second, because which composition rules to use is associated

with the template’s topology, we can validate a composition and

provide feedback on whether more expansion or contraction rules

are needed: the sum of all singularity indices must be equal to �
the Euler characteristic, χ : v ∈V index (v) = χ = 2 − 2д − b,
where V is the set of vertices, д the genus number, and b the num-

ber of boundary loops. Importantly, giving control over composi-

tion allows the same shape to have multiple valid compositions.

For example, in the inset fgure, the

arm of the teddy bear model could

be created by adding curvature to the

body tube (left), which is more likely

to fail on a machine, or knit by doing

a merge and then a fap at the hand

(right), which is a more natural design for knitters to come up with.

Our interface allows users to have such high-level control while

ensuring that the total sum of subscribed singularities is valid.

Finally, with these composition rules, no additional seams are

necessary except on surfaces of non-zero genus (e.g., a torus would

need a seam to separate the frst and last row), an additional beneft

of our approach.

Controlled Meshing for Knitting. Based on the correspondence

analyzed above, composition guidelines selected by users defne

singularity constraints on the mesh. Our system uses these

constraints to drive the trivial connections cross-feld design

algorithm [Crane et al. 2010].

Designers can further provide knitting direction guidelines by

drawing directly on the mesh. Soft directional guidelines respect the

existing composition and are treated as constraints on the trivial

connections solver. Hard direction guidelines override the singular-

ity structure imposed by the composition; the feld is completely

determined through cross-feld interpolations, with these direction

guidelines as constraints [Ray et al. 2008]. Hard directional guide-

lines are typically not necessary and often ill-advised because they

may cause arbitrary singularities and create cyclic dependencies

(helices). To give designers full control of the directional feld, our

method includes this option and checks for helices [Bommes et al.

2011b] providing feedback to designers.

We further let designers sketch directly on the mesh to place fea-

ture lines for surface layout control. We also allow easy specifca-

tion of smooth closed loops using the method proposed in Campen

and Kobbelt [2014]. If feature lines are specifed as seams, the mesh

gets cut along them; this afects feld optimization since there can

be no smoothness constraints across seams. Otherwise, feature

lines are treated as hard integer constraints in the integer grid op-

timization, which enforces placement of edges on the generated

quad mesh.

Finally, these felds and constraints are used to create a mesh

using mixed-integer quadrangulation (MIQ) [Bommes et al.

2009]. The key modifcation that we make to the MIQ optimiza-

tion relates to templates, which we now discuss.

Parametric Template Variations. Parametric templates have been

extensively used in the fabrication community to allow shape

variability and customization while preserving manufacturabil-

ity [Schulz et al. 2014; Shugrina et al. 2015]. Commercial sys-

tems also use templates for personalization, e.g., for 3d printing

(https://www.thingiverse.com/). To generate a parametric knit

template, we must defne a consistent quad-mesh across the param-

eter space defned by template parameters q ∈ A. By consistency,

we mean that the user should defne design axes only once, and

they should propagate consistently throughout the full parameter

space.

We assume that the user inputs a parametric template trian-

gle mesh with point-wise correspondence—i.e., there is a bijective

homeomorphism between Mq and M for all q, q ∈ A, where

Mq is a mesh representing the variation defned by q. This corre-
spondence is directly specifed when a parametric model is created

by geometric deformations, and there are methods for construct-

ing these maps for parametric CAD models [Schulz et al. 2017b].

Given a point-wise correspondence, a naive solution could defne

q

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

https://www.thingiverse.com/

6 INTERACTIVE SURFACE PATCH ANNOTATION

16:8 • B. Jones et al.

a quad-mesh for one shape and propagate the result. However, this

may create quads with high distortion if variations are large. Con-

sistent quad meshing has only recently started to be studied. Azen-

cot et al. [2017] proposes a method for consistent cross felds be-

tween two shapes with point-wise correspondence. However, this

work would not allow us to preserve composition guidelines across

variations since singularities and combinatorics of the fnal meshes

may vary.

Our key insight of representing the composition axis as singu-

larities makes consistent template generation possible by propa-

gating the singularities with the point-wise correspondence and

using them to drive the cross-feld optimization on each mesh Mq .

We can then jointly solve for a parameterization using a variation

on MIQ. As described by Bommes et al. [2009], MIQ takes as input

a cross feld, defned by two orthogonal vector felds (uT , vT); it
fnds a parameterization onto an integer grid (u,v) by minimizing

�h∇u−uT �+ �h∇v−vT � integrated over the surface, for some size

parameter h and additional integer constraints derived from sin-

gularities. Since singularities are preserved in our method across

template variations, we can use any value of q to defne the integer
constraints and minimize an energy summed over all variation of

the mesh q ∈ A:

∇ q
E =
� �

� − � �
� u � + �
� � �

h∇ q
h u v v . − ��dAdq A T T �

M

To solve this numerically, we discretize the inner integral as a

sum over triangles and the outer one by sampling values on A.

Since computation could grow signifcantly with the number of

samples, we solve MIQ in parallel across n diferent confgurations
of the mesh and add in a linear equality constraint that the (uq ,vq)
coordinate values should be equal according to the point-wise cor-

respondence between meshes. Because these are linear constraints,

we can use them to eliminate variables that are part of the MIQ

solver. This makes the system matrix for solving n samples about

the same size as for one sample.

Fig. 5. Patch design and construction. (top lef) Patch design seen in the

user interface. Here, short rows are positioned at the top and leaning in-

creases to the right. The gray background color indicates that the texture

is a rib. (top right) Patch knit graph generated by our system. Node color

indicates knit or purl. Leaning increases and short rows are highlighted to

illustrate their positioning. Nodes outside the quad are patch borders used

to ensure correctness and to align neighboring patches when connected.

When patches are connected to form the final patern, they are contracted

away (botom).

Once a patch layout is designed, it is used

as a grid to lay out design guidelines that

directly control seaming, surface texture,

and curvature shaping, and to provide ad-

ditional partial control over orientation and

composition. Conceptually, each patch cor-

responds to a quadrilateral patch of knit

fabric, with each side presenting a uniform

boundary (row or column) to its neighbors,

as shown in the inset image. To modify the design, the designer

uses fve tools to set design guidelines as labels on the mesh ele-

ments, which will be used to control the fnal pattern generation.

The orientation tool allows row and column directions to be

set by clicking and dragging across coarse mesh faces. The seam-

ing tool allows seams to be created by clicking on a coarse mesh

edge to create a seam extended to the next singularity or mesh

edge. Right clicking allows non-singular vertices to be marked as

stopping points for seams to allow for arbitrary seamed layouts.

The texture brush applies knit texture labels (such as ribbing) to

coarse mesh faces. The constraints brush can constrain the type of

existence of increases, decreases, or short rows in faces, as well as

add sizing constraints along coarse mesh edge paths (constraining

two paths to have the same stitch count). Finally, the eraser tool

remove previously placed design guidelines.

Our system assists users by validating the knittability of their

choices and automatically completing partial designs as users

work. Given a coarse patch mesh M = (F , E, H , V), with faces
F , edges E, half-edges H , and vertices V , the labels are

Orientation D (H) : H → {Col In, Col Out, Row In, Row Out}
Seaming S(E) : E → {True, False}

Curvature Shaping can_shape(F) : F → {True, False}
shaping(F) : F → {Row In, Row Out, Both, Distributed}
can_shortrow(F) : F → {True, False}
shortrow_side(F) : F → {Col In, Col Out}

Texture tex(F) : F → Z
Time TF : F → Z

Figure 5 shows how these labels appear in our interface. Al-

though not explicitly represented, the user can still make some

compositional changes, for example, choosing between a tube and

a seamed sheet in Figure 6. Curvature shaping guidelines indicate

whether a type of curvature shaping is allowed in a patch, and, if

so, they provide guidelines for how to place them. The location of

short rows is particularly important for knittability. The surface

texture parameter is an index into a database of knit-purl textures

from [Kooler 2012]. Time is a proxy for the order of patch fabri-

cation, and stitch count measures the length, in stitches, of each

quad side. The time parameter is automatically set by our system.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

Computational Design of Knit Templates • 16:9

Fig. 6. Interactive seaming suggestions. (lef) Initial suggestion minimiz-

ing seams (blue lines), assuming no composition or layouts are given. (mid-

dle) Suggestion afer the user specified that the full head would be a sep-

arate piece seamed at the neck. (right) Suggestion afer the user changed

kniting direction on the body.

Although these properties must be defned for each mesh

element, the user does not need to manually set all of them.

Instead, any specifc decisions a user does make are treated as

constraints on the design space, and our system automatically

completes a valid design from partial specifcations by inputting

these constraints plus our patch-level knittability constraints into

a constraint solver, then optimizing for minimal seaming. This is

especially helpful for fnding seam patterns on complex shapes,

as shown in Figure 6.

Patch Level Knittability. We build upon validity properties on a

stitch-level mesh, defned by Narayanan et al. [2018]. While this

prior work defnes low-level constraints by analyzing the fabrica-

tion process, we need to guarantee fabricability using only patch

level information. To accomplish this, we designed a lightweight

set of constraints on the patch representation that guarantees ma-

chine knittability if patches are constructed with a small set of con-

straints explained in the next section.

Here, we give an overview of the constraints on patch layout

and parameters. Their mathematical description and proof of suf-

fciency are left to supplemental material. Patches are considered

neighbors only if the edge between them is not a seam, and the half-

edge labels on non-seam edges must be compatible pairs: (Row In,

Row Out) or (Col In, Col Out). This allows us to refer to the patch

structure with respect to its dual graph of row and column edges

(ordered from Row Out to Row In), and defne row and column

neighbors.

C1 - Right-Handed Patches: The row and column directions

of knitting form orthogonal axes on the surface, and our frst

constraint ensures that patch orientations align to these axes. To

enforce this, we require that orientation labels follow the order

Col In, Row Out, Col Out, and Row In, when circulating a patch

boundary counter-clockwise. Patches with exactly one side with

each orientation in this order we call regular, as they are almost

always the desired structure.

We additionally allow irregular quads to enable greater fexibil-

ity in orientation control post-quad meshing (see Figure 7), which

can be particularly useful when hard constraints on orientations

are used to override composition guidelines. Because faces are

all quadrilateral, one of the other orientations will be missing. In

knitting terms, these missing orientations are the start or end of

short rows, or where a piece of fabric is knit to or from a point.

We only allow the doubling of one orientation per face, except

for the special cases of all Col In or all Col Out, which our system

breaks into four irregular faces to use as sources and sinks.

Fig. 7. Lef: All valid quad faces (C1), (C3). Orange arrows are column

edges; green are row edges. The large face is regular, the most common.

The six on the right are allowed irregular faces, which can be interpreted

as regular by adding a 0 length side of the missing direction and merging

similar sides. Sources and sinks (botom) are partitioned into four regular

quads (with one zero-length side each). Right: An irregular face in use and

an example tessellation.

Fig. 8. A helix formed by inconsistent short rows.

C2 - Time Aligned: Time value is equal between row neighbors

and strictly increases between column neighbors in the out–in

direction. This ensures that there is a valid order of fabrication for

the object.

C3 - Limited Row Degree: Each face has at most one Row

In and Row Out side. This is necessary to avoid creating cyclic

knitting dependencies when connecting patches, as it allows

patches to be grouped into distinct rows.

C4 - Consistent Short Rows: Row neighbors must have the

same short-row location guidelines. This is used to prevent helices

from forming within a row of patches (Figure 8). They cannot be

aligned with splits or merges (discussed in Section 7).

Encoding Constraints. We implement these constraints as a sys-

tem of satisfability modulo theories (SMT) equations included

in our supplemental material. We use SMT because we have mixed

boolean and integer constraints and because SMT solvers can vali-

date a design before all variables are set, and will even fnd a com-

plete and valid set of labels whenever possible, which we use as de-

sign suggestions. In order to encode (C1) with boolean constraints,

we express orientation as a pair of boolean variables and enforce

right-handedness per mesh corner by limiting which orientations

can be adjacent.

Enforcing (C1) at corners allows us to make an optimization that

improves both the speed of the solver and the quality of the results.

As stated above, regular faces are preferable in most cases. Irreg-

ular faces are only actually necessary at singularities, such as the

example in Figure 7, where their doubled or omitted directions of-

set extra or missing edges. We therefore limit our corner constraint

to only allow non-regular adjacency at singularities by default. If

the user wants an irregular face elsewhere, other mesh vertices can

be designated to act like singularities.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

7 KNIT PATTERN AND MACHINE
INSTRUCTIONS GENERATION

16:10 • B. Jones et al.

Another optimization made for speed and quality is seam

bundling and optimizing for minimal seaming. An easy solution to

fnd is the trivial solution of seaming every edge. In most designs,

using the minimal amount of seaming is desirable, but computing

this across every possible edge is intractable. To mitigate this, we

leverage the facts that (1) there is no structural use for a seam that

does not partition the mesh, and (2) the set of mesh separatrices is

a sufcient set of seams to make any shape knittable with only reg-

ular faces. Rather than consider each edge separately, we bundle

paths of edges into long seams that are assigned to a single SMT

variable. By default, we initially use the separatrices as bundles, but

the user can click on edges to add other seam bundles for solver

analysis. This makes the solver fast enough to fnd a minimally

seamed solution by binary search on a maximum total seam length.

This heuristic is adequate for minimizing the amount of sewing

that is necessary, but the solver may suggest seams on features that

are not aesthetically pleasing. Because the suggestions are given at

interactive rates, the user can interact with the model by disallow-

ing seams in some locations and enforcing them in others. A result

of such interaction is shown in the second duck image Figure 6

where the user prescribes a seam along the neck and the system in

term suggests a fap on top of the head to minimize the total seams

under this confguration. Finally, the third image shows what hap-

pens when the designer decides to change the knit direction on

the body. The system automatically suggests a seam. All of these

suggestions were provided at interactive rates.

Once a design is fnalized, a specifc template instance is chosen

to be knit. Here, we describe how provably knittable machine in-

structions are generated for any set of template parameters, which

we now consider fxed.

Sizing Optimization. The frst step to creating an object is

determining the shape and size of each patch. To do this, we

calculate an integer stitch count for each side of each patch by

minimizing the squared error between the side length of each

patch in the template confguration chosen, and the length of

that number of stitches as produced by the target machine. This

optimization is done in the presence of several constraints to

improve quality and guarantee knittability.

Symmetry is enforced along mesh symmetries chosen by the

user. We also account for the user’s shaping choices here: if they

specify no short rows in a patch, then the number of rows in and

out must be equal, and similarly for columns if forbidding increases

and decreases. The ratio of width change to height and height

change to width are capped to avoid needing increases or decreases

of more than two stitches at a time, or overly tall short rows. The

user is also allowed size lines, paths whose total length is important

to get exact for sizing (such as the length of a sleeve or circumfer-

ence of a cuf), which are constrained to a maximum total error.

Finally, a feasible splits and merges criterion is enforced. When-

ever more than two tubes are joined seamlessly within a row, the

center tube(s) must have an equal number of stitches on their front

and back halves so that they can be fattened evenly between the

front and back stitch beds. The exact formulation of the objective

function and constraints are given in our supplemental material.

Pattern Generation. Pattern generation involves tessellating

each patch into a composition of stitches, connecting them, and

defning an order for stitch construction allowing the pattern to

be scheduled on a knitting machine. Stitch-level representations of

patches will have one stitch wide borders, sized according to the

sizing optimization, and connected with simple 1:1 edges. These

borders are used to defne how patches are merged together to

construct a stitch-level pattern, as shown in Figure 5.

A design goal of our system is to be extensible for future ad-

vancements, so we want our guarantees of knittability to be ag-

nostic to how patches are generated. To this end, we defne a mini-

mal set of requirement for patches which, in conjunction with our

coarse mesh properties, guarantee machine knittability:

P1 - Knittable: a patch plus its border is a valid Knit graph as

defned by Narayanan et al. [2018] (described below), and

P2 - Consistently Stacked: any exposed short rows (rows that

connect to only one row border) are either all stacked at the

top or bottom of a patch, according to its short row location,

shortrow_side(F), and are exposed along the same border.

Validation. We are using knit graphs [Narayanan et al. 2018] as

our formalism of knittability. These are directed graphs with row

edges and column edges, where each node represents two stitches

in a column. Each node also has an integer time value, similar to

that of our coarse representation. Knit graphs are defned to have

several properties which, if all met, ensure machine knittability.

Unfortunately, validating several of these properties requires stitch

level information of non-neighboring patches, which we cannot

determine at the patch level. We formulate a slight variation of the

Knit Graph properties that imply the original but make the prob-

lematic properties locally checkable. In particular, we remove the

helix-free criterion and replace it with a stricter version of time

alignment. This formulation also covers some edge cases that the

prior work did not encounter, but which we must contend with.

We leave a detailed discussion of the diferences in our formula-

tion and a derivation of the original properties to supplemental

material. Our knit graph properties are

K1 - Consistent Handedness: Knit graph nodes are right-

handed in the same sense as (C1). This ensures that the represented

fabric does not twist or cross over itself on the bed.

K2 - Time Aligned: Time values are equal within a row and

strictly increase up columns.

K3 - Limited Node Degree: Each node has at most one row

neighbor on each side, and at most two column neighbors. The row

restriction refects the fact that a stitch has only two yarn ends, and

the column restriction prevents the machine from overstacking or

overstretching yarn on or between needles.

K4 - Feasible Splits and Merges: Interior tubes at splits and

merges have an equal number of stitches on their front and back

halves. Since splits and merges only occur along patch boundaries,

this is directly enforced by sizing optimization.

Now we sketch a proof of knittability—a formal proof is found

in our supplemental material. Property (K4) is an exact constraint

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

Computational Design of Knit Templates • 16:11

on the sizing optimization ((C4) only allows full rows at splits and

merges). Properties (K1) and (K3) depend only on the edge struc-

ture around nodes, which does not change with the contraction

used to join patches, so (P1) is sufcient to guarantee them. (K2)

will be true if the border nodes on adjacent patches have matching

time values. While this is not true by construction, (C3)–(C4) and

(P2) together allow us to re-scale time values within each patch so

that they do align on borders.

When designing our framework,

we deliberated between having graph

nodes or graph edges on the borders

between patches. The inset image

illustrates why we chose edges. If

nodes are chosen, then it would be

possible to change the local edge

structure when merging, violating
(K3) (left). Using edges also allows

easy specifcation of increases or decreases leaning into a shared

edge, a common knitting efect creating an apparent seam (right).

Knit Graph and Instruction Generation. Our system uses a sim-

ple patch generation algorithm. An example patch is shown it

Figure 5. We construct patch knit graphs in rows of constant time

value (K2), linearly interpolating their widths. Sizing optimization

ensures that no row is more than double the width of its neighbors,

so we can distribute increases and decreases without violating (K3).

(C1) says that the overall patch has the same orientation require-

ment as (K1), so we can place all internal edges with the same ori-

entations. We place short rows in accordance with (P2) to account

for diferences between rows in and out. Finally, we construct a

simple, one node border for each edge attached by simple edges.

8 RESULTS

We set out to design a system for creating high-level knitting tem-

plates that can be customized to enable shareability and remixing,

and that enables fast and easy iteration over the seven axes of knit

design. We demonstrate the efectiveness of our approach by a se-

ries of examples highlighting the capabilities of our system in qual-

ity parametric meshing, creating a wide variety of objects, and in-

teractively exploring the space of design variations.

Quad Meshing. Other work has taken a feld-based meshing

approach to knitting, but ours is the frst to explicitly incorporate

singularity structure to control composition. The teddy bear

example demonstrates the benefts of this approach. It would be

natural to knit the teddy bear using tubes for each limb and one

for the body and head. Achieving this composition from only

user-provided direction strokes is very difcult because specifc

compositions need specifc singularity placements, and singulari-

ties are difcult to control with only directional strokes. In Figure 9,

the left two images are typical examples of a purely orientation-

based meshing of the model. The inability to precisely control

feld singularities leads to helices wrapping around the body.

These require long and unnatural seams to break the dependency

cycles they induce. On the right is a structure resulting from the

application of our composition rules, and the resulting knit bear.

Fig. 9. (lef two) Meshing results achieved by sketching directions on the

surface. Both have helices that must be seamed of and would be com-

plicated and non-intuitive to sew. (third) The meshed teddy that our sys-

tem generated to match the composition rules of kniting each limb in the

round and then sewing them onto the torso followed by (fourth) an image

of its physical realization as a multi-part knit. The blue lines are seaming

suggestions proposed by our algorithm.

Fig. 10. Our consistent meshing is shown on the lef and compared to

the naive approach of running the MIQ on one mesh and transferring the

resulting quadrangulation onto another using the point-wise correspon-

dences (two examples shown on the right).

We also validate our joint parametric MIQ by comparing it to the

nave strategy of solving against a single mesh variation and propa-

gating via pointwise correspondence. In Figure 10, all dresses have

the same singularity structure. The dresses on the left were jointly

parameterized using our approach, while the pairs on the right

were computed on one dress and transferred to the second. Com-

pared to the joint parameterization, transferring the child’s pattern

to the adult dress leads to distortions in the midsection, whereas

the other direction has distortions in the bust and asymmetries in

the skirt.

Design Space Coverage. Next, we analyze our tool’s coverage of

the design space, based on the design axes that we have identifed.

Surface Texture. Textures are illustrated in Figures 1 and 11. As

can be seen in both, texture does not need to be uniformly applied

over the entire model but instead can be applied to any region that

aligns with patch borders. This provides full control over texture

since surface layout features can be used to infuence border place-

ment during meshing. Interaction of texture with other design axes

can be complex. For example, textures and shaping can co-exist in

the same patch and are automatically handled by our pattern gen-

eration algorithm. In Figure 11(c), the diamonds at the bottom are

much wider than the diamonds at the top, due to decreases neces-

sary to change the radius of the skirt from bottom to waist.

Curvature Shaping. Shaping plays an aesthetic as well as a func-

tional role. Figure 11 illustrates user control over how decreases

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

16:12 • B. Jones et al.

are placed for diferent aesthetic results. Skirt (a) is fully symmet-

ric, while skirts (b) and (c) have fat backs, with shaping only al-

lowed on the front, and skirt (d) only has shaping at the sides with

a fat front and back. Skirts (b–d) have decreases aligned and lean-

ing toward a patch edge, creating an apparent seam.

Surface Layout. As already described, surface layout features im-

pact the placement and transitions between textures. Figure 11

shows another fundamental, though more subtle, impact on curva-

ture shaping—the user prescribed feature lines to control the place-

ment of apparent seams, as can be seen when comparing skirts

(b) and (c). Symmetry is another important layout feature. Once

this is specifed, the system will automatically ensure symmetry

in the placement of increases and decreases, seams, and even sin-

gularities on compositing guidelines. For example, in Figure 3, it

would be hard to place singularities symmetrically without auto-

mated support.

Seaming. Key functional aspects of seaming are specifed during

composition, but these interact through decisions about the

surface layout of the mesh; seaming is often necessary to support

orientation changes. Our system helps the user navigate this

space. As was discussed in Figure 6, even if seaming guidelines

from composition and surface layout are not provided, a valid

and minimal seam choice will be presented to the user, who can

interactively control the placement by enforcing or disallowing

seams on certain areas. The system updates the seam suggestions

at interactive rates, to allow easy exploration while guaranteeing

knittability. Figure 12 shows the seaming layouts of our machine

knit examples with seams.

Orientation. As discussed in multiple examples, orientation af-

fects the ease of knitting, shaping choices, and seaming placement.

Further, local changes in orientation can lead to non-fabricable

designs if not validated globally (an important reason orienta-

tion change is not supported in [Narayanan et al. 2019]). In ad-

dition to allowing orientation control during meshing, our sys-

tem allows users to easily fip the orientations locally. As can

be seen in Figures 3 and 13, the system will automatically sug-

gest seams after a direction change to ensure knittability and up-

date shaping to conform to the mesh—e.g., use short rows instead

of increases/decreases on the sleeves to match the circumference

change from shoulder to wrist.

Composition. Composition guidelines allow designers to create

large pattern variation from the same input mesh. For example, in

Figure 14, the design on the left uses a Norwegian drop shoulder

and is seamed at the arms. The design on the right is a seamless

yoke sweater, which is done with merges at the armpits followed

by evenly distributed decreases up to the neckline. A similar com-

position variation is shown on the dresses (a) and (b–d) in Figure 1.

Composition guidelines are particularly useful when knitting com-

plex shapes, as discussed in Figure 9. We further illustrate how

they can be used to structure irregular shapes like the bunny (see

Figure 15). By specifying how we wish to knit the ears and tail, our

system discovers appropriate knitting directions to capture both

the compositional structure and the complex curvature.

Variable Shape. As discussed in Section 2, resizing is an impor-

tant and common aspect of knit pattern design and use. Resizing

is challenging because it requires changing both the stitch counts

of shaping operations, such as the number of short rows, increases,

and decreases, as well as re-applying any textures to the new stitch

layout. Furthermore, resizing typically requires variations on the

geometry itself. A dress made to ft a child is not simply a rescaled

adult dress.

Our method allows users to create a mesh that is jointly opti-

mized over multiple parameter values of a shape, which allows

users to specify knitting guidelines on a single template and have

them be directly applied to diferent shape variations. For example,

in Figure 1, the adult and child dresses are variations of the same

drop shoulder pattern with identical textures but diferent relation-

ships between arm length, skirt length, and torso height. Figure 16

further illustrates how our system allows designers to create cus-

tomizable templates for knitting, by illustrating three fabricated

variations of a hat. Both of these examples were enabled by our

consistent quad-meshing method, shown in Figure 10.

Interactive Exploration. All models took about 4–13 minutes

to design: the quad meshing step took about 1–6 minutes, the

labeling about 1–3, and pattern generation with sizing optimiza-

tion in 2–4 minutes (except the bunny, which took 15 minutes

to optimize sizing). To establish the efectiveness of our inter-

active editing capabilities for design space iteration, we asked

Narayanan to recreate some variations of the dresses in Figure 1

using [Narayanan et al. 2019]. In our system, we were able to

create an initial design in 5 minutes, and create the variants (c)

and (d) in 2 minutes each, most of which is spent in pattern

generation. Variant (a) took 8 minutes as it required composition

changes. Narayanan estimated that it would take between 15 and

40 minutes for each texture variation, depending on how carefully

textures were applied, and between 45 and 60 minutes to change

shaping between short rows and increases and decreases. Their

system would not be able to handle direction changes or re-sizing

without complete re-design. This shows how our approach and

solver assisted editing enables exploration of design alternatives

on the scale of minutes rather than hours.

Pilot Study. We validated the usability of our system by conduct-

ing a pilot user study with three participants having experience in

knitting or garment design but not in geometry processing. In the

study, we frst gave a tutorial on how to use our system and then

asked the participants to reproduce a textured variant the duck de-

sign shown in Figure 3(e), and also to create their own dress design

using the model from Figure 1. All participants were able to deter-

mine the correct composition rules to recreate the duck within 9

minutes on average, and were also able to design a knittable dress

within the half-hour provided them. As shown in Figure 17, all

three dress designs have a diferent composition structure. While

the users had no understanding of quad-meshing singularities they

managed to achieve the desired structure using the intuitive com-

position guidelines in our tool. These dresses further illustrate the

design freedom in textures, shaping, seaming, and surface layout.

The details of the study can be found in the supplemental materials.

Additional Implementation Details. With the user-designed

cross feld as input, we use the libigl [Jacobson et al. 2019] imple-

mentation of MIQ to generate the global parameterization; users

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

Computational Design of Knit Templates • 16:13

Fig. 11. Meshing, labeling, and fabricated results of four skirts generated from the same input mesh, with diferent coarse meshing and labeling. Orange

lines on (b) and (d) highlight the apparent seams caused by concentrating shaping, and on (c) highlight the efect of shaping to narrow the texture toward

the top of the skirt. Red “X”s over a shaping label indicate that no shaping is allowed in that patch, a symmetric decal indicates distributed decreases, and

an angled decal indicates leaning decreases aligned to the edge the decal leans toward.

Fig. 12. Seaming layouts of all machine knit examples. Blue lines indicate seams in the original design, whereas yellow seams were added manually to

account for missing functionality in our scheduler implementation. The skirts, hats, and seamless dress were omited because they do not have any seams.

The angled and child dress are ommited because they use the same template as the drop shoulder dress (far right). The human scale sweater also uses this

seaming layout.

can adjust a parameter for quad size to obtain the desired level

of coarseness. To compute the cross-feld given composition rule

singularities, we use the implementation of the trivial connections

from Directional [Vaxman et al. 2020]. LibQEx [Ebke et al. 2013] is

used to extract the quad mesh. Z3 solver [de Moura and Bjørner

2008] is used for SMT equations. We implemented 20 textures

from Kooler [2012] and applied diferent combinations to most

of the models we fabricated to illustrate this capability. For ma-

chine knitting, we use the scheduler code provided by Narayanan

et al. [2018; 2019] to generate instructions for the knitting machine.

Hand knitting instructions were generated using custom code. All

examples are knitted either by hand or by a 7-gauge SHIMA SEIKI

SWG091N2 knitting machine. Models were hand-stitched together

along seam lines after knitting, and the toy models were stufed

with batting.

9 LIMITATIONS AND FUTURE WORK

Our system invites several avenues for future work.

Our quad meshing pipeline has limitations, some of which are

long-standing problems in meshing. Global parameterization will

not be interactive if the resolution of the input mesh is fne, or

if too many constraints are added. In order for our composition

rules to prevent cycles, it is important that the singularities

are connected by mesh edges. This is not explicitly guaranteed

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

16:14 • B. Jones et al.

Fig. 13. Close up of the sleeves from Figure 1 dresses (b) and (c). In (b),

columns are aligned down the sleeve, while in (c) they wrap around.

Fig. 14. Three sweater paterns from the same input model but meshed

and labeled diferently. The lef sweater has seamed sleeves and short rows

on the neck, while the one in the middle was completely knited in the

round using increases and decreases. These two sweaters were knited by

hand, showing how our method can be used for both machine- and hand-

kniting. The rightmost sweater has the same composition as the lefmost,

machine knit to human scale with textures added on the arms.

Fig. 16. Customizable knit paterns for hats created with our systems.

Fig. 15. The Stanford bunny illustrates composition guidelines. It is

meshed by placing line seams (C1) on the tips of the ears, a split from

the head to two ears (E1), and a flap on the tail (C2).

Fig. 17. Variations of the dress created by users in the pilot study (top row

is front view, botom row back view), illustrating the usability and design

freedom in the system. Users were able to control composition using only

prior experience on kniting or garment design but no understanding of

geometry processing, quad meshing or singularities.
by our meshing algorithm and can fail, for example, if two

symmetric composition rules are only slightly ofset from each

other. However, in most cases, our helix checking visualization

and the tunable grid size parameter combined can avoid the

helices. For example, when a participant of the user study created

the duck design, they initially chose a grid size that led to a

helix, but the researchers were able to help the participant tune

the grid size a bit to create

a helix-free design (shown

in the inset fgure: left

contains a helix and the

magenta triangles indicate

where the helix could

start; right is helix-free).

Our implementation of

patch generation is very

simple and does not capture the full richness of possible surface

textures such as cables, lace, or colorwork. We also do not take

into account the physical properties of surface texture on the

patches themselves. However, our system is designed to be built

upon using our patch formalization in order to support these

capabilities, so recent work focusing on surface textures such as

Hofmann et al. [2019], Leaf et al. [2018], or Karmon et al. [2018]

could be used to generate patches within our framework.

To generate machine instructions, we used the open source

scheduler implementation from Narayanan et al. [2019], which

does not support some of the more complex composition rules that

we do such as faps to close tubes, even though the scheduler as

described in that article does. Reimplementing that functionality

was beyond the scope of this work, so we worked around the

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

Computational Design of Knit Templates • 16:15

limitation by introducing extra seams to partition our designs into

shapes that the scheduler will accept. We manually added these

seams using our existing seaming tool by simply selecting and

clicking one edge along each sheet-tube boundary (a transition

between a sheet a tube is always bounded by singular vertices,

and so can be seamed without adding), but this could be easily au-

tomated by labeling each coarse row as tube-like or sheet-like (is it

a cycle), and adding a seam between any rows that alternate from

sheets to tubes. Fully automatic machine instruction generation

would require re-implementing the missing functionality. The

yellow seams in Figure 12 illustrate where we added these seams.

Finally, it would be interesting to incorporate physical sim-

ulation into the design loop. In addition to the internal forces

explored by works like [Kaldor et al. 2008], [Leaf et al. 2018],

and [Karmon et al. 2018], the form of a knit object is strongly

infuenced by the physical context it will be used in, such as

stufng or draping over a person. For instance, our duck example

was knit with short rows to achieve the torus body, but could

have been knit as a simple straight tube and relied on stufng for

the shaping. Simulation of both internal and external forces could

help designers visualize the fnal result of their design decisions

before fabricating. Simulation of the machine knitting process

will also be important to address the problem of machine tuning.

The defnition of machine knittability we use does not guarantee

that the program generated will not fail on a real machine due to

the interaction of machine tuning parameters (yarn tension and

stitch size) and material properties (yarn thickness, friction, etc.)

To the best of our knowledge, no existing work tackles this aspect

of automatic knitting machine programming.

10 CONCLUSION

Our system makes the design of machine-and hand-knittable ob-

jects accessible to a lot more people. First, it lets users easily and

quickly explore interrelated design axes while guaranteeing knit-

tability and pattern production. Furthermore, because the system

takes a parametric 3D model as input, it generates template pat-

terns customizable by users unfamiliar with intricacies of knitting.

As a result, machine knitting, like 3D models, can become cus-

tomizable, modifable, and universally accessible.

REFERENCES
Omri Azencot, Etienne Corman, Mirela Ben-Chen, and Maks Ovsjanikov. 2017. Con-

sistent functional cross feld design for mesh quadrangulation. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 1–13.

Hugh Beyer and Karen Holtzblatt. 1999. Contextual design. Interactions 6, 1 (1999),
32–42.

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011a. Global structure optimization
of quadrilateral meshes. In Proceedings of the Computer Graphics Forum, Vol. 30.
Wiley Online Library, 375–384.

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011b. Global Structure Opti-
mization of Quadrilateral Meshes. Computer Graphics Forum 30, 2 (April 2011),
375–384. DOI:https://doi.org/10.1111/j.1467-8659.2011.01868.x

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey: Quad-
Mesh Generation and Processing. Computer Graphics Forum 32, 6 (Sept. 2013),
51–76. DOI:https://doi.org/10.1111/cgf.12014

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangu-
lation. ACM Transactions on Graphics 28, 3 (July 2009), 1. DOI:https://doi.org/10.
1145/1531326.1531383

J. C. Briar. 2019. Stitch Maps. Retrieved 2021 from https://stitch-maps.com/.

Ann Budd. 2002. The Knitter’s Handy Book of Patterns: Basic Designs in Multiple Sizes
& Gauges. Interweave Press, Loveland, CO.

Marcel Campen and Leif Kobbelt. 2014. Dual strip weaving: Interactive design of quad
layouts using elastica strips. ACM Transactions on Graphics 33, 6 (Nov. 2014), 1–10.
DOI:https://doi.org/10.1145/2661229.2661236

Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial Connections
on Discrete Surfaces. Computer Graphics Forum 29, 5 (Sept. 2010), 1525–1533.
DOI:https://doi.org/10.1111/j.1467-8659.2010.01761.x

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efcient SMT solver. In Pro-
ceedings of the Tools and Algorithms for the Construction and Analysis of Systems,
C. R. Ramakrishnan and Jakob Rehof (Eds.), Springer Berlin Heidelberg, Berlin,
337–340.

Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015.
Integrable polyvector felds. ACM Transactions on Graphics (TOG) 34, 4 (2015),
1–12.

Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx:
Robust quad mesh extraction. ACM Transactions on Graphics 32, 6 (Nov. 2013),
1–10. DOI:https://doi.org/10.1145/2508363.2508372

Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. 2009. IWIRES: An
Analyze-and-Edit Approach to Shape Manipulation. ACM Transactions on Graph-
ics 28, 3, Article 33 (July 2009), 10 pages. DOI:https://doi.org/10.1145/1531326.
1531339

Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins, Scott E.
Hudson, James McCann, and Jennifer Mankof. 2019. KnitPicking Textures: Pro-
gramming and Modifying Complex Knitted Textures for Machine and Hand Knit-
ting. In Proceedings of the 32nd Annual ACM Symposium on User Interface Soft-
ware and Technology - UIST’19. ACM Press, New Orleans, LA, 5–16. DOI:https:
//doi.org/10.1145/3332165.3347886

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008. Knitting a 3D Model. Com-
puter Graphics Forum 27, 7 (Oct. 2008), 1737–1743. DOI:https://doi.org/10.1111/j.
1467-8659.2008.01318.x

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded bihar-
monic weights for real-time deformation. ACM Transactions on Graphics 30, 4
(2011), 78.

Alec Jacobson, Daniele Panozzo, et al. 2019. libigl: A simple C++ geometry processing
library. Retrieved from https://libigl.github.io/.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating knit-
ted cloth at the yarn level. ACM Transactions on Graphics 27, 3 (Aug. 2008), 1.
DOI:https://doi.org/10.1145/1360612.1360664

Ayelet Karmon, Yoav Sterman, Tom Shaked, Eyal Shefer, and Shoval Nir. 2018.
KNITIT: A computational tool for design, simulation, and fabrication of multi-
ple structured knits. In Proceedings of the 2nd ACM Symposium on Computational
Fabrication (Cambridge, Massachusetts). Association for Computing Machinery,
New York, NY, Article 4, 10 pages. DOI:https://doi.org/10.1145/3213512.3213516

Alexandre Kaspar, Liane Makatura, and Wojciech Matusik. 2019. Knitting Skeletons:
A Computer-Aided Design Tool for Shaping and Patterning of Knitted Garments.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology - UIST’19. ACM Press, New Orleans, LA, 53–65. DOI:https://doi.org/
10.1145/3332165.3347879

Donna Kooler. 2012. Donna Kooler’s encyclopedia of knitting (updated and rev ed.).
Leisure Arts, Little Rock, Ark. OCLC: ocn767630287.

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner.
2018. Interactive design of periodic yarn-level cloth patterns. ACM Transactions
on Graphics 37, 6 (Dec. 2018), 1–15. DOI:https://doi.org/10.1145/3272127.3275105

James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jen
Mankof, and Jessica Hodgins. 2016. A compiler for 3D machine knitting. ACM
Transactions on Graphics 35, 4 (July 2016), 1–11. DOI:https://doi.org/10.1145/
2897824.2925940

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann.
2018. Automatic Machine Knitting of 3D Meshes. ACM Transactions on Graphics
37, 3 (Aug. 2018), 1–15. DOI:https://doi.org/10.1145/3186265

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting
machine programming. ACM Transactions on Graphics 38, 4 (July 2019), 1–13.
DOI:https://doi.org/10.1145/3306346.3322995

Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014.
Frame felds: Anisotropic and non-orthogonal cross felds additional material. In
Proceedings of the ACM TRANSACTIONS ON GRAPHICS (PROCEEDINGS OF ACM
SIGGRAPH.

Mariana Popescu, Matthias Rippmann, Tom Van Mele, and Philippe Block. 2017.
Automated generation of knit patterns for non-developable surfaces. In
Proceedings of the Humanizing Digital Reality - Proceedings of the Design
Modelling Symposium 2017, K. De Rycke et al. (Ed.), Springer, Paris, 271–284.
DOI:https://doi.org/10.1007/978-981-10-6611-5_24

Ravelry. 2019. Ravelry. Retrieved 2021 from https://ravelry.com/.
Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-symmetry di-

rection feld design. ACM Transactions on Graphics 27, 2 (April 2008), 1–13.
DOI:https://doi.org/10.1145/1356682.1356683

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

https://doi.org/10.1111/j.1467-8659.2011.01868.x
https://doi.org/10.1111/cgf.12014
https://doi.org/10.1145/1531326.1531383
https://stitch-maps.com/
https://doi.org/10.1145/2661229.2661236
https://doi.org/10.1111/j.1467-8659.2010.01761.x
https://doi.org/10.1145/2508363.2508372
https://doi.org/10.1145/1531326.1531339
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1111/j.1467-8659.2008.01318.x
https://libigl.github.io/
https://doi.org/10.1145/1360612.1360664
https://doi.org/10.1145/3213512.3213516
https://doi.org/10.1145/3332165.3347879
https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/3186265
https://doi.org/10.1145/3306346.3322995
https://doi.org/10.1007/978-981-10-6611-5_24
https://ravelry.com/
https://doi.org/10.1145/1356682.1356683

16:16 • B. Jones et al.

Adriana Schulz, Ariel Shamir, Ilya Baran, David I. W. Levin, Pitchaya Sitthi- Amir Vaxman et al. 2020. Directional: A library for Directional Field Synthesis,
Amorn, and Wojciech Matusik. 2017a. Retrieval on parametric shape collec- Design, and Processing. DOI:https://doi.org/10.5281/zenodo.3338174
tions. ACM Transactions on Graphics 36, 1, Article 11 (Jan. 2017), 14 pages. Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes,
DOI:https://doi.org/10.1145/2983618 Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis,

Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-Amorn, and Wojciech Design, and Processing. Computer Graphics Forum 35, 2 (May 2016), 545–572.
Matusik. 2014. Design and fabrication by example. ACM Transactions on Graphics DOI:https://doi.org/10.1111/cgf.12864
(TOG) 33, 4 (2014), 1–11. Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel.

Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech 2018. Stitch meshing. ACM Transactions on Graphics 37, 4 (July 2018), 1–14.
Matusik. 2017b. Interactive design space exploration and optimization for CAD DOI:https://doi.org/10.1145/3197517.3201360
models. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–14. Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM

SHIMA SEIKI. 2019. SDS-ONE APEX series. Shima Seiki. Retrieved 2021 from Transactions on Graphics 38, 1 (Jan. 2019), 1–13. DOI:https://doi.org/10.1145/
https://www.shimaseiki.com/product/design/. 3292481

Maria Shugrina, Ariel Shamir, and Wojciech Matusik. 2015. Fab forms: Customizable Evan Yares. 2013. The failed promise of parametric CAD part 1: From the beginning.
objects for fabrication with validity and geometry caching. ACM Transactions on Retrieved from https://www.3dcadworld.com/the-failed-promise-of-parametric-
Graphics (TOG) 34, 4 (2015), 1–12. cad/. (Accessed on 09/06/2019).

David J. Spencer. 2001. Knitting Technology: A Comprehensive Handbook and Practical Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
Guide. Technomic, Lancaster, Pennsylvania. 386 pages. meshes for modeling knitted clothing with yarn-level detail. ACM Transac-

STOLL. 2019. M1PLUS®. Stoll. Retrieved 2021 from https://www.stoll.com/en/ tions on Graphics 31, 4 (July 2012), 1–12. DOI:https://doi.org/10.1145/2185520.
software/m1plusr/. 2185533

Jenny Underwood. 2009. The Design of 3D Shape Knitted Preforms. Ph.D. Dissertation.
RMIT University. Received June 2020; revised September 2021; accepted September 2021

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

https://doi.org/10.1145/2983618
https://www.shimaseiki.com/product/design/
https://www.stoll.com/en/software/m1plusr/
https://doi.org/10.5281/zenodo.3338174
https://doi.org/10.1111/cgf.12864
https://doi.org/10.1145/3197517.3201360
https://doi.org/10.1145/3292481
https://www.3dcadworld.com/the-failed-promise-of-parametric-cad/
https://doi.org/10.1145/2185520.2185533

