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Fig. 1. Our interactive design system helps users explore key design axes for kniting to generate highly customized paterns from input shape templates; 

e.g., a seamless yoke dress with princess-cut apparent seams (a), and drop shoulder dresses with textures on the arms and skirt (b–d). The output of our 

system is a knit patern template that lets users vary the shape while preserving the design, for example, creating a child’s dress with short sleeves (d) that  

matches an adult dress (b), or varying skirt texture and angle, and sleeve kniting direction (c). The system guarantees that all results and variations are  

machine knitable. 

We present an interactive design system for knitting that allows users to 

create template patterns that can be fabricated using an industrial knit-

ting machine. Our interactive design tool is novel in that it allows direct 

control of key knitting design axes we have identifed in our formative 

study and does so consistently across the variations of an input paramet-

ric template geometry. This is achieved with two key technical advances. 

First, we present an interactive meshing tool that lets users build a coarse 

quadrilateral mesh that adheres to their knit design guidelines. This solu-

tion ensures consistency across the parameter space for further customiza-

tion over shape variations and avoids helices, promoting knittability. Sec-

ond, we lift and formalize low-level machine knitting constraints to the 

level of this coarse quad mesh. This enables us to not only guarantee 

hand- and machine-knittability, but also provides automatic design assis-

tance through auto-completion and suggestions. We show the capabilities 
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through a set of fabricated examples that illustrate the efectiveness of our 

approach in creating a wide variety of objects and interactively exploring 

the space of design variations. 
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1 INTRODUCTION 

Knitting is a versatile craft with rich aesthetic and functional de-

sign spaces. Its scope ranges from garments and toys to architec-

tural structures and medical implants. The ubiquity of knit textiles 

in our lives is driven by programmable knitting machines. Machine 

knitting has the potential to become the next 3D printing: knit tex-

tiles are pervasive, customization of knit objects like clothing is val-

ued, and machine prices have fallen within reach of maker spaces, 

small shops, and hobbyists. 

However, makers lack design tools that provide needed con-

trol over familiar design axes, enable customization of existing 

designs, and encourage exploration of the design space. Consider 

the variety of dress shapes in Figure 1. There are several options 

for knitting patterns that can construct these shapes. The knit-

ting designer must choose from patterns like these to achieve 
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functional and aesthetic efects. Based on interviews we conducted 

with knitting designers, we identifed seven design axes that are 

typically present in knitting patterns. 

Shape Variability. Specifc aspects (or geometry parameters) of 

a knit object’s shape and size can vary without requiring a 

wholly new pattern. For example, a pattern designer might 

vary the length of a skirt and sleeves and the height of the 

waist to change an adult’s dress to a child’s dress (b vs d). 

Composition. The basic building blocks of knit objects are sheets 

and tubes, which are composed to form a shape. For example, 

shoulder design in garments may be composed as smoothly 

merging or abutting tubes (a vs b). 

Seaming. Related to composition, seams are used to connect 

building blocks (e.g., the shoulders in b) but also within a 

building block (e.g., the sleeve in c). 

Orientation. Knitting looks diferent, and stretches diferently, 

in the horizontal and vertical directions. As the sleeve of 

c shows, changing orientation can change the locations of 

seams. Thus, the orientation, or alignment of stitches along 

the surface, is an important design choice. 

Surface Layout. Knitted objects are typically comprised concep-

tually meaningful regions. Layout includes the axes of sym-

metry, a line of increases or decreases, and the boundaries of 

a texture region, such as textures on the dress skirts, and the 

apparent seams in (a and c). 

Curvature Shaping. Sheets and tubes are fat grids of stitches un-

til shaping stitches are added, creating non-grid formations 

that add intrinsic curvature. Curvature is distributed around 

the bodice in (c) and concentrated towards the front in (d). 

Surface Texture. Texture is achieved by varying stitches on the 

surface of a sheet or tube without varying curvature. Com-

plex surface patterning of stitch variants gives knitting its aes-

thetic versatility, as shown in the dress skirts (a–d). 

Customization and exploration of designs require interactive 

control of these seven design axes. There are two challenges to in-

teractive design. First, knitting patterns must meet several discrete 

local and global constraints in order to be fabricable. Stitches must 

cover the surface with a small number of yarns while avoiding heli-

cal structures that cause cyclic dependencies in the fabrication pro-

cess. Shaping stitches must be placed to capture mesh curvature, 

but also respect limitations on their type and relative alignment. 

Second, the seven axes are strongly intertwined at the stitch level, 

so making a decision along one axis can undo decisions made along 

other axes. For example, changing the orientation of stitches in the 

sleeve of the dress between (b) and (c) requires diferent curvature 

shaping stitches, changes the composition of  the sleeve from a tube  

to a sheet, requiring a seam down the length of the arm, and rotates 

the surface texture by 90 degrees. Ideally, a design tool should en-

force the constraints without overly limiting the designers’ ability 

to explore, which is hampered if design decisions undo each other. 

Prior work addressed several of these design axes. For exam-

ple, Yuksel et al. [2012] demonstrate that a coarse quad-dominant 

mesh modeling of geometry enables the representation of impor-

tant design axes of knitting, such as orientation and surface texture, 

and supports iterative modifcations to these axes. However, with-

out a design tool that can automatically generate the quad mesh 

from high-level design input, this representation cannot support it-

eration on axes such as composition and shape variability. Simi-

larly, without a strong theoretical connection between knittability 

constraints and the algorithm that generates a pattern from a quad 

mesh, it is impossible to guarantee knittability. As a result, a de-

sign tool cannot suggest design solutions or warn users when they 

make changes that will break their design. 

To address these limitations, we introduce two theoretically-

grounded advances. First, we present a novel meshing tool 

that expresses the theoretical relationship between the singularity 

structure of quad meshes and the knitting design axes. This lets 

users of all knitting design skill levels generate coarse meshes that 

satisfy their design goals and avoid helical structures that lead to 

undesirable patterns. Furthermore, our algorithm takes as input a 

parametric template geometry that can vary over a specifed pa-

rameter space, for example, a dress whose sleeves can vary from 

short to long or whose skirt can be elongated, allowing a design to 

be customized for a user. 

Second, we introduce formal knittability criteria over the 

coarse mesh to ensure knittability without over-constraining the 

design space. By knittability in this work, we mean a valid ma-

chine knitting patterns in conjunction with constraints to account 

for physical limits of knitting machines and yarn that improve 

design robustness. Our validation and accompanying algorithms 

enable not only notifcations about knittability problems, but pro-

mote interactive design across multiple design axes supported by 

auto-completion and automated design suggestions. 

Based on these theoretical insights, we contribute a practical 

knitting design framework that supports 

—requirements for design axes drawn from real-world knitting 

design experts; 

—variable template patterns that correctly propagate design de-

cisions as parameters of the geometry are modifed; 

—direct manipulation by users of multiple, interdependent de-

sign axes; 

—automatic knittability checking and auto-complete assisted 

design; 

—generation of knitting machine instructions. 

2 UNDERSTANDING KNITTING DESIGN AND ITS 
RELATION TO QUAD MESHES 

Knitting builds on a long craft, design, and artistic history [Spencer 

2001]. Knitters can refer to books (e.g., Budd [2002]) or websites 

(e.g., Ravelry [2019]) that include a wealth of knitting patterns 

and design strategies. To discuss pattern design strategies, we frst 

briefy review how knit objects are constructed (see McCann et al. 

[2016] and Underwood [2009] for a more thorough review). We 

then present the results of our study with knitting pattern design-

ers, which drove our technical innovations. We will also explain 

how knitting relates to quad meshing to facilitate with understand-

ing later sections. 

Constructing Knit Objects . Knit objects consist of a grid-like fab-

ric of interconnected stitches. A grid of stitches can be a sheet of 

fabric, or the ends can be joined to form tubes, called knitting in the 

round (Figure 2). Knit objects are composed of joining and cutting 

these elements in various ways and orientations. 
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Fig. 2. Knit object construction. (lef) A segment of knit fabric showing 

the basic stitch types and curvature shaping. (right). The two basic knit-

ting primitives: sheets and tubes. Grid cells represent stitches, and arrows 

denote order of fabrication. 

Stitches in the grid are formed sequentially by pulling a yarn 

loop through a “parent” loop in the row below it. To create a 

stitch, the loop it is pulled through must have been knitted already. 

This means that knitting inherently constrains the order in which 

stitches can be constructed. The central constraint of knitting is 

that the graph of stitch dependencies must be non-cyclic. The frst 

row of stitches have no parent stitches, so they must be created 

with a special type of stitch called a cast-on. Similarly, the fnal 

row of stitches is closed with a stitch called a bind-of, which acts 

to stabilize the knit object. This is important because a non-bind-

of stitch with no children can unravel. 

The grid can be locally distorted by adding and removing loops 

to add curvature to the fabric. This is done along columns us-

ing special increase and decrease stitches and along rows using 

“short rows” (Figure 2). Also, by varying the direction, each loop 

is pulled through (knit and purl)—as well as other loop properties 

that create twists, holes, and overlayed loops—it is possible to cre-

ate surface texture, such as cables, lace, and ribbing. As an example, 

varying the order that loops are stacked or pulled in an increase 

or decrease can create leaning increases or decreases, which ap-

pear to tilt left or right. Aligning several leaning stitches in a line 

can create the appearance of a seam in the fabric, as visible in 

Figure 11(b). Throughout the article, we will use “apparent seam” 

to distinguish these seam-like stylistic choices from true seams, 

which occur when separately knitted edges are sewn together as a 

post-process. 

Knitting machines do not change the important axes of knit 

design, but they do add fabrication constraints not found in hand 

knitting. A V-bed knitting machine contains two beds of small 

needles at fxed spacing. A piece of yarn is shuttled back and forth 

between the beds by a carrier, and the needles are programmed 

to interact with the yarn (e.g., grabbing a loop), or each other 

(e.g., passing loops) as the yarn passes. Each needle holds one 

or more active loops at a time, and only these loops can be built 

upon. Once a machine drops a loop, it cannot pick it back up, so 

all stitches needed in the future must be held on needles. While 

loops can move between needles to create gaps for increases and 

overlaps for decreases, the physical dimensions of needle size 

and spacing limit how large a gap can be without snapping the 

yarn (overstretching the yarn), and how many loops can overlap 

before dropping of the small needles (overstacking a needle). 

These impose an upper bound on the number of loops each stitch 

can increase or decrease, which we conservatively cap at two, 

and make short-rows preferable for shaping (for hand knitters, 

increases and decreases are preferred). 

Designing Knitting Patterns: A Research Survey and Study. 

To understand how designers construct knitting patterns, we 

surveyed popular keywords used with over 200,000 free knitting 

patterns available on Ravelry.com and conducted a contextual 

inquiry [Beyer and Holtzblatt 1999] with fve knitters, focusing 

on the design process, motivations behind design decisions, and 

the use of patterns and other artifacts or tools. We describe the 

details of this study in our supplemental material and discuss here 

the key results. 

Our survey of patterns showed that the most popular search key-

words specifed composition (129 K patterns mentioned seaming; 

160 K mentioned seamless; almost all specifed sheets (fat, 227 K 

patterns) or tubes (in the round, 181 K patterns)). Next in frequency 

came orientation (163 K patterns) and shaping (32 K patterns use 

short rows, which could underestimate the importance of shaping 

since almost all patterns use increases and decreases). The use of 

such keywords suggests that the identifed design axes are of in-

terest not only to pattern designers but also to knitters. 

Regarding study results, participants tended to enter initial 

planning stages based on some inspiration (e.g., a picture) or an 

internal image of the fnal object they wanted to create. They drew 

this out as a sketch of the objects’ composition or directly trans-

lated it onto a grid (a stitch-level representation) using (something 

like) perler beads or graph paper. They also determined knitting 

orientation, texturing, added symmetry, and created an assembly 

plan, as needed, at this phase of the project. More complex objects 

were broken down into diferent components to be designed 

individually. 

Participants also discussed the challenges of modifying an exist-

ing pattern by re-sizing, coloring, texturing, and modifying design 

elements. Of these, resizing was by far the most common since 

small changes (like the specifc knitter, yarn, and needles) could 

alter the number of stitches needed to achieve their goal. They did 

not have automated methods to do this. Instead, they used arith-

metic, visual inspection, trying things on, or comparing theirs to 

a to-scale pattern. Because many knitters preferred to knit in the 

round, a second common change was to the composition of a pat-

tern of sewn sheets (such as a sweater) into a tube. Thus, a knitting 

design tool could be of value not only to designers but also to the 

much larger group of knitters who simply want to make things 

that ft. This also demonstrates that stitch level decisions can be 

deferred until fabrication time while still respecting a design in-

tent, indicating that the design is actually captured by a higher 

level structure. 

Our survey and study provide evidence that an ideal tool for 

knitting pattern design should support changes in the target 

shape (especially size), composition, orientation, seaming, curva-

ture shaping, texture, and surface layout features such as symme-

try. However, simply supporting these design axes is insufcient. 

Knitters want to modify them, which is currently time-consuming 

and difcult. They struggle to ensure that the resulting pattern will 

be knittable and to preserve one design decision when modifying 

others. 

Quad Meshing and Knit Design. Quad meshes are meshes with 

only quadrilateral faces, and the mesh vertices typically have four 

adjacent edges (or three if on boundary). Such vertices are called 

regular, while others are called irregular or singular. The surplus 
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or defcit of adjacent edges is the index of a singularity (a singular 

vertex). A typical knit stitch, like a quad in a quad mesh, has exactly 

four neighboring stitches, a compelling parallel that motivates the 

most popular stitch-level representation: Stitch Meshes [Yuksel 

et al. 2012]. In addition to this low-level correspondence, we found 

two higher level correspondences. 

First, based on our study with knitters, we see that they think 

and lay out knitting designs in sheets and tubes. When they com-

bine the sheets and tubes, these structures may come together 

in greater or fewer than four edges, creating singularities. We 

found connections between several common knitting patterns and 

groups of singularities with particular indices, which we compiled 

into a set of composition rules that can be applied to a surface to 

control how the surface is broken down into sheets and tubes. 

Second, knitting has two orthogonal directions formed by rows 

and columns of stitches (course and wale, respectively). In quad 

meshing, locally orthogonal axes are represented by a cross feld 

—a pair of vector felds over a surface that are always locally 

orthogonal. Several methods for converting a triangle mesh to a 

quad mesh (remeshing) use cross felds to guide the orientation 

of quads. The orientation of rows and columns in knitting is an 

important design decision, so we employ a cross feld to capture 

the designer’s intent. 

Quad meshes have rows and columns found by following neigh-

boring quads on opposite edges. If two diferent quads in the same 

row are also in the same column—meaning there is a cycle, the row 

is a helix. While knitting in the round is technically knitting one 

helix, in our representation (and also in standard knitting patterns) 

this helix is not explicitly represented. Instead, it is broken into in-

dividual rows, and the overall helix is constructed only at knitting 

time when transitioning between these rows. This view of knitting 

makes it easier for us to reason about stitch construction depen-

dencies; specifcally that all of the stitches in a row must be con-

structed before any stitches in later rows. A quad mesh helix cre-

ates a cyclic dependency between stitches, which is not knittable. 

 

Knitting design research can be segmented into three domains 

of inquiry: representation, which is typically stitch, primitive or 

mesh-based; pattern knittability, which includes both generation 

and verifcation of hand and machine knit patterns; and interactiv-

ity, which includes support for the seven design axes identifed in 

our survey and study. In addition to these topics, we will discuss 

prior works on quad meshing for knitting, an important step in 

our system. 

Representation of Knit Patterns. Representations fall into three 

categories. Stitch-based representations specify individual knit-

ting operations and can be written as language, charts, or 

annotated meshes. Primitive-based ones address tubes and sheets 

directly, while patch-based ones extend mesh representations to 

multiple stitches per element. 

Traditionally, knitting patterns are conveyed as stitch-based 

fabrication instructions, typically in a language called knitspeak 

[Hofmann et al. 2019] or visually in a chart (e.g., Briar [2019], 

SHIMA SEIKI [2019], and STOLL [2019]). Several systems use quad-

dominant meshes rather than a chart or language to represent 

Table 1. Desirable Features of a Kniting Design Tool Supported 

by Literature 

Unflled stars show partial satisfaction of the goal; either users have direct, but 
incomplete control, or complete but indirect control. For example, Yuksel et al. 
[2012] gives direct, but incomplete control over orientation since orientations 
may only align with coarse input mesh edges, and Narayanan et al. [2019] gives  
complete but indirect control over surface layout since symmetries and feature 
placement can be specifed exactly by moving stitches one by one. If properties 
are assumed from the input, or are both indirect and incomplete, they are not 
considered controlled. An unflled star for mesh input indicates that 
pre-processing outside the system is required. 

objects at the stitch level [Igarashi et al. 2008; Wu et al.  2018, 2019; 

Yuksel et al. 2012]. In these systems, quad faces represent regular 

stitches, triangles the ends of short rows, and pentagons increases 

and decreases. Additional data are embedded to indicate orien-

tation and to diferentiate stitch types, such as knits from purls. 

While stitches directly correspond to the fabrication process, knit-

tability is a primary issue here, which we discuss in the following 

section. 

Since knitting is composed of tubes and sheets, an intuitive al-

ternative is to specify a knit object as a composition of parametric 

sheet and tube primitives (e.g., Kaspar et al. [2019] and McCann 

et al. [2016]). This approach has the advantage of supporting pa-

rameterization of these primitives, enabling a single pattern to act 

as a template for customization. It is also possible to provide knit-

tability guarantees over this representation, though matching an 

arbitrary input target shape is not straightforward. 

If we generalize meshing to represent multiple stitches per quad, 

we gain many of the benefts of primitive-based approaches, while 

still being able to match an input target shape [Yuksel et al. 2012]. 

However, this approach has not been extended to include pattern 

generation and ensure knittability, and depends on a high-quality 

patch input that aligns with the desired design. 

Knittability. Knitting an object requires the generation of a 

valid sequence of stitches. Because stitches are created by pulling 

loops through other stitches, such an ordering is not guaranteed 

to exist. Thus, stitch-based representations typically lack inherent 

guarantees of knittability (though commercial systems warn 

about potential failures). When representing the dual graph of a 

stitch-level mesh, dependency errors in a pattern can be found 

by cycle checking. Popescu et al. [2017] pioneered the graph 

approach with a hybrid representation, and Narayanan et al. 
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[2018] extended it by directly constructing a graph over an input 

model and identifying a sufcient set of constraints on the graph 

to guarantee machine knittability. However, these checks must be 

done for every iteration to a pattern. 

Using a primitive-based representation, McCann et al. [2016] de-

veloped a provably correct transfer planning algorithm that sched-

ules a pattern on a machine knitting machine. Kaspar et al. [2019] 

extended this work with more primitives, more composition op-

tions, and a more robust texturing system. 

Knittability guarantees have not been demonstrated for patch-

based representations. This would require imposing constraints 

that ensure knittability. If it were possible to guarantee knittability, 

a patch-based representation would be preferable to stitch-based 

approaches because of its generality, and to primitive-based ap-

proaches because of its fexibility in easily representing a wide va-

riety of input shapes. 

Interactive Knit Design Tools. Stitch-level mesh-based ap-

proaches are intuitive for representing underlying geometry, 

can automatically generate a knittable solution for a specifc 

geometry, and support low-level control over specifc stitches. 

For example, Nayaranan et al. [2019] support direct stitch mesh 

editing while ensuring machine knittability. However, concepts 

such as composition, orientation, and surface layout are not 

directly represented in a stitch-based mesh; rather, they are 

expressed through the stitches that are specifed. Thus, the 

design tool cannot know when they are violated. Furthermore, all 

these modifcations are lost if the original object’s geometry is 

changed. 

In contrast, primitive-based methods guarantee machine knitta-

bility and allow shape to be varied parametrically since primitives 

can be parameterized [Kaspar et al. 2019; McCann et al.  2016]. Such 

methods defer stitch-level decisions until instruction generation, 

which allows interactive editing of composition and other design 

goals, such as curvature and texture (see Table 1). However, this 

approach has two key disadvantages. First, it requires expertise 

to model a desired shape, making it particularly challenging for 

applications involving more complex geometry. Second, while it 

is possible to control composition and shape variations, editing 

is indirect, requiring expertise to achieve even simple variations 

that can depend on multiple parameters in a complex way—a 

classic problem in parametric computer-aided-design (CAD) 

systems [Yares 2013]. 

Supporting direct editing of design goals requires a representa-

tion that relates stitches to shapes. Patch-based approaches have 

this potential. Prior work demonstrated the power of patches to 

allow control over curvature shaping and surface texture, and 

to allow movement and changing of stitch types [Yuksel et al. 

2012]. However, several key limitations remain, which our work 

addresses. First, Yuksel et al. [2012] use a coarse polygonal mesh 

as input, which requires a high level of user expertise to gener-

ate, and limits interactive control over composition and orienta-

tion. Our frst key contribution shows that by developing meshes 

that correspond to a knitter’s conceptual breakdown of a knit ob-

ject, we can enable control over multiple important design axes. In 

particular, we prove that by controlling singularities in the mesh, 

knitters can intuitively and directly specify and iterate on these 

design axes and generate helix-free quad meshes that are neces-

sary for knittability. 

Furthermore, Yuksel et al. [2012] are not concerned with knitta-

bility, generating patterns only suitable for simulation and render-

ing. While rules have been developed to ensure machine knittabil-

ity on stitch-level meshes, where constraints come directly from 

analyzing the fabrication process [Narayanan et al. 2018], it is not 

trivial to extend this to patches. This is the second key contribu-

tion of our work. We design a lightweight set of high-level patch 

constraints that do not over-constrain the design space but enable 

us to create and formally prove the correctness of, an algorithm for 

translating them into knittable patterns. This allows novel system-

level contributions: constraints can be directly encoded in solvers, 

enabling interactive verifcation and completion during labeling, 

automatic seam placement, and geometric optimization, while re-

specting machine constraints and shaping preferences. 

Quad Meshing. Our method works at the patch level, which is 

defned as a coarse quad mesh on the input surface. Quad meshing 

is an active research area and we refer readers to Bommes et al. 

[2013] for a survey. The fundamental challenge in applying exist-

ing quad-meshing techniques to patch-level knitting design is al-

lowing users to control the composition and surface patch layout. 

Extensive work on quad meshing [Bommes et al. 2013] has  shown  

that feld-guided methods best enable user control. In feld-guided 

methods, orthogonal vector “cross”-felds on the surface are op-

timized for a given smoothness energy and to meet user specif-

cations (e.g., direction strokes). A quad mesh is then created by 

fnding a parameterization whose gradients are optimally aligned 

with the feld. For a review of concepts in feld design, we refer in-

terested readers to Section 3.2 of a state-of-the-art report [Vaxman 

et al. 2016]. 

Despite great advances in this area, directional control while 

avoiding helices remains challenging, particularly for coarse 

meshes. Solutions to directly remove helices [Bommes et al. 

2011a] would change composition guidelines in unpredictable 

ways. Polyvector felds with curl reduction [Diamanti et al. 2015; 

Panozzo et al. 2014] can minimize, but fail to completely avoid, he-

lices. Directly partitioning the mesh into quad layouts [Campen 

and Kobbelt 2014] could avoid helices but at the expense of a man-

ual strategy that does not map well to how knitters make patterns. 

Diferent quad and quad-dominant meshing techniques have 

been proposed for knitting. For example, Wu et al. [2018] use  

a feld-guided method to generate a stitch-level quad-dominant 

mesh but cannot ensure knittability because cycles cannot be 

fully avoided. [Narayanan et al. 2018] ensure knittability using a 

harmonic scalar feld meshing technique that takes as input level 

set constraints of a scalar function approximating knitting rows. 

However, this method works at the stitch level and does not allow 

for composition or surface layout control. 

In this work, we propose a new strategy to enable design 

control while avoiding helices in a coarse quad mesh. This is 

achieved by utilizing a key insight on the relationship between 

common knitting compositions and quad mesh singularities. In 

our system, composition guidelines selected by users are directly 

translated to singularity constraints on the mesh, which, in turn, 

can be used to drive a cross-feld design algorithm based on trivial 
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Fig. 3. Overview of our framework. (a) Triangle meshes from a parametric template (the system deals with a single mesh at a time). (b) Input triangle mesh 

with user annotations of composition, layout, and direction guidelines. (c) Generated quad mesh patches, which are consistent across template variations. 

(d) Qad mesh annotated for kniting the body tube in the round using short rows to curve the tube. Blue lines indicate seams. The same design applies to 

all template variations (two shown here). (e) Duck knit with short rows. (f) Qad mesh annotated with diferent textures and orientations; the body is knit 

as seamed sheets with decreases. (g) Duck knit with textures and a large head from template (f). 

connections [Crane et al. 2010]. We choose to use pure quad 

meshes rather than quad-dominant meshes in order to exploit this 

singularity structure. Achieving knittability with quad-dominant 

meshes would require extra constraints aligning singular faces. 

We defer to Section 5 to introduce the details of our method. 

Figure 3 illustrates our system with an example of designing a toy 

duck. The system takes as input one variation from a parametric 

template of a duck mesh (a); if the geometry is not already a trian-

gle mesh, the system will tessellate it into one. A parametric tem-

plate is defned by parameters that describe degrees of freedom 

q ∈ A, where  A defnes the ranges of parameter variations that 

map to continuous geometric deformations. For our examples, we 

created the input parametric templates semi-manually by frst cre-

ating cuboid cages in Blender and then computing the coefcients 

for interpolation [Schulz et al. 2017a]. Parametric templates can 

also be created with a variety of geometric editing methods [Gal 

et al. 2009; Jacobson et al.  2011] or parametric CAD tools. Our sys-

tem allows users to create knit templates by enabling consistent 

control of design axes across the space of geometric variations. 

The user starts by directly annotating knitting composition, lay-

out, and  orientation guidelines for how to break the duck into 

patches by indicating (blue dots in (b)) that the top of the head 

should be knit as a sheet to create a fap, that the head should be 

a tube abutting the body (yellow dots in (b)), and that the layout 

should be symmetric across the body. These composition guide-

lines are selected from an illustrated menu (Figure 4) and  placed  by  

clicking a position on the input mesh. They can also draw desired 

stitch orientation directly on the mesh, as well as explicitly spec-

ify layout boundaries as feature lines (not needed for this example). 

Our system maps these knitting directives to orientation, edge, and 

singularity constraints to create a novel coarse quad re-meshing al-

gorithm that jointly re-meshes the entire parameter space of the 

input template to create a single parametric patch layout that satis-

fes the guidelines for all parameter values, (two shown, (c)). Users 

can choose to enable any available symmetries for their annota-

tions, which encourages, but does not guarantee that the resulting 

quad layout generation will be symmetric. 

This patch layout becomes the canvas on which the user 

designs their template. By clicking and dragging, they specify 

per-quad orientations, surface textures, and curvature shaping 

guidelines, as well as specifying seams. Users may also enforce 

exact symmetries by placing “equal stitch count” constraints on 

specifc patch edges, which will be taken into account during the 

stitch generation step. Our interface is backed by a patch-level 

knittability solver that not only validates the user’s design but 

also assists in the design process by automatically fnishing 

partial designs with knittable completions. In (d), the user has 

specifed seaming-of the neck and knitting the inner tube with 

short rows, as well as a simple stockinette texture, while in (f), 

the user has rotated the orientation on the body, and our solver 

has assisted by fnding an alternative seaming strategy that works 

with that orientation. At any point during design, the user can 

vary the template parameters to preview diferent customizations 

of their design. Finally, the user selects two variations to generate 

machine instructions for and fabricate (e and g). 

5 INTERACTIVE SURFACE PATCH SPECIFICATION 

After loading a parametric template of a triangle mesh, the user 

seeks to automatically generate a coarse quad mesh that adheres 

to the composition, orientation, and surface layout guidelines. Our 

key insight here is that there exists a direct relationship between the 

singularity structure of cross felds and knitting composition guide-

lines. By identifying this correspondence, we created a quad mesh-

ing algorithm that is both theoretically grounded and able to repre-

sent important and commonly used knit pattern design techniques. 

Importantly, the method ensures the resulting mesh is helix free, 

a fabrication requirement of knitting, by providing feedback on 

knitting composition requirements, as well as a helix visualization 

tool to help users tune the grid size parameter toward a helix-free 

design. 
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Fig. 4. Kniting composition rules shown as quad singularities on 

remeshed quad meshes. The corresponding triangle mesh versions are 

shown on the right-hand side. Kniting directions are in orange and seams 

in blue. Expansion rules correspond to negative singularities (top two 

rows): joining tubes with no change of kniting direction can be done with-

out seams with one −1 singularity (E1) or with a seam connecting two 

− 1 singularities (E2); joining tubes with direction change requires closed 2 

seams, which can be done with two − 1 singularities (E3) or four − 1 singu-2 4 
larities (E4); adding a hole without changing the kniting direction can be 

done with two − 1 or four 2 − 1 singularities (E5, E6). Contraction rules cor-4 
respond to positive singularities (botom row): kniting in the round and 

joining at a line seam corresponds to two + 1 singularities (C1); kniting 2 
in the round and closing with a flap that is knited as a sheet and seamed 

along its boundary corresponds to four 1+ singularities (C2); and kniting 4 

a flat patch corresponds to four + 1 singularities at the boundary (C3). 4 
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Singularities and Composition Guidelines. The key composition 

guidelines used in knitting to assemble tubes and sheets map di-

rectly to singularities in the quad mesh. This is not surprising given 

their mutual correlation with the shape topology. We identifed 

nine knitting-relevant composition rules (see Figure 4), each defn-

ing a set of singularities and seams whose indices either add up 

to −1 or +1.  Expansion rules (−1 singularity sum) compose tubes 

together (E1—E4) or create a hole (E5—E6). Contraction rules (+1 

singularity sum) close tubes with a slit seam (C1) or fap (C2), or 

bound sheets (C3). Contracting to a point is omitted as a +1 point 

singularity is not possible on a quad mesh. 

This approach has several advantages. 

First, composition rules describe common knitting patterns; for 

example, E1 splits a glove into fngers, and E2 is common in the 

armpits of sweaters. Therefore, knitters can work in terms they 

already understand rather than in singularities—they select com-

position rules from a menu and then click on the mesh to specify 

where they should be placed (see pilot study in Section 8). 

Second, because which composition rules to use is associated 

with the template’s topology, we can validate a composition and 

provide feedback on whether more expansion or contraction rules 

are needed: the sum of all singularity indices must be equal to �
the Euler characteristic, χ : v ∈V index (v ) = χ = 2 − 2д − b, 
where V is the set of vertices, д the genus number, and b the num-

ber of boundary loops. Importantly, giving control over composi-

tion allows the same shape to have multiple valid compositions. 

For example, in the inset fgure, the 

arm of the teddy bear model could 

be created by adding curvature to the 

body tube (left), which is more likely 

to fail on a machine, or knit by doing 

a merge and then a fap at the hand 

(right), which is a more natural design for knitters to come up with. 

Our interface allows users to have such high-level control while 

ensuring that the total sum of subscribed singularities is valid. 

Finally, with these composition rules, no additional seams are 

necessary except on surfaces of non-zero genus (e.g., a torus would 

need a seam to separate the frst and last row), an additional beneft 

of our approach. 

Controlled Meshing for Knitting. Based on the correspondence 

analyzed above, composition guidelines selected by users defne 

singularity constraints on the mesh. Our system uses these 

constraints to drive the trivial connections cross-feld design 

algorithm [Crane et al. 2010]. 

Designers can further provide knitting direction guidelines by 

drawing directly on the mesh. Soft directional guidelines respect the 

existing composition and are treated as constraints on the trivial 

connections solver. Hard direction guidelines override the singular-

ity structure imposed by the composition; the feld is completely 

determined through cross-feld interpolations, with these direction 

guidelines as constraints [Ray et al. 2008]. Hard directional guide-

lines are typically not necessary and often ill-advised because they 

may cause arbitrary singularities and create cyclic dependencies 

(helices). To give designers full control of the directional feld, our 

method includes this option and checks for helices [Bommes et al. 

2011b] providing feedback to designers. 

We further let designers sketch directly on the mesh to place fea-

ture lines for surface layout control. We also allow easy specifca-

tion of smooth closed loops using the method proposed in Campen 

and Kobbelt [2014]. If feature lines are specifed as seams, the mesh 

gets cut along them; this afects feld optimization since there can 

be no smoothness constraints across seams. Otherwise, feature 

lines are treated as hard integer constraints in the integer grid op-

timization, which enforces placement of edges on the generated 

quad mesh. 

Finally, these felds and constraints are used to create a mesh 

using mixed-integer quadrangulation (MIQ) [Bommes et al. 

2009]. The key modifcation that we make to the MIQ optimiza-

tion relates to templates, which we now discuss. 

Parametric Template Variations. Parametric templates have been 

extensively used in the fabrication community to allow shape 

variability and customization while preserving manufacturabil-

ity [Schulz et al. 2014; Shugrina et al. 2015]. Commercial sys-

tems also use templates for personalization, e.g., for 3d printing 

(https://www.thingiverse.com/). To generate a parametric knit 

template, we must defne a consistent quad-mesh across the param-

eter space defned by template parameters q ∈ A. By consistency, 

we mean that the user should defne design axes only once, and 

they should propagate consistently throughout the full parameter 

space. 

We assume that the user inputs a parametric template trian-

gle mesh with point-wise correspondence—i.e., there is a bijective 

homeomorphism between Mq and M for all q, q ∈ A, where  

Mq is a mesh representing the variation defned by q. This corre-
spondence is directly specifed when a parametric model is created 

by geometric deformations, and there are methods for construct-

ing these maps for parametric CAD models [Schulz et al. 2017b]. 

Given a point-wise correspondence, a naive solution could defne 

q 

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021. 

https://www.thingiverse.com/


6 INTERACTIVE SURFACE PATCH ANNOTATION 

16:8 • B. Jones et al. 

a quad-mesh for one shape and propagate the result. However, this 

may create quads with high distortion if variations are large. Con-

sistent quad meshing has only recently started to be studied. Azen-

cot et al. [2017] proposes a method for consistent cross felds be-

tween two shapes with point-wise correspondence. However, this 

work would not allow us to preserve composition guidelines across 

variations since singularities and combinatorics of the fnal meshes 

may vary. 

Our key insight of representing the composition axis as singu-

larities makes consistent template generation possible by propa-

gating the singularities with the point-wise correspondence and 

using them to drive the cross-feld optimization on each mesh Mq . 

We can then jointly solve for a parameterization using a variation 

on MIQ. As described by Bommes et al. [2009], MIQ takes as input 

a cross feld, defned by two orthogonal vector felds (uT , vT ); it
fnds a parameterization onto an integer grid (u,v ) by minimizing 

�h∇u−uT �+ �h∇v−vT � integrated over the surface, for some size 

parameter h and additional integer constraints derived from sin-

gularities. Since singularities are preserved in our method across 

template variations, we can use any value of q to defne the integer 
constraints and minimize an energy summed over all variation of 

the mesh q ∈ A: 

∇ q 
E = 
� �

�  −  � �
� u � + �
� � �

h∇ q
h u v   v . −  ��dAdq A T T  �

M 

To solve this numerically, we discretize the inner integral as a 

sum over triangles and the outer one by sampling values on A. 

Since computation could grow signifcantly with the number of 

samples, we solve MIQ in parallel across n diferent confgurations 
of the mesh and add in a linear equality constraint that the (uq ,vq ) 
coordinate values should be equal according to the point-wise cor-

respondence between meshes. Because these are linear constraints, 

we can use them to eliminate variables that are part of the MIQ 

solver. This makes the system matrix for solving n samples about 

the same size as for one sample. 

 

Fig. 5. Patch design and construction. (top lef) Patch design seen in the 

user interface. Here, short rows are positioned at the top and leaning in-

creases to the right. The gray background color indicates that the texture 

is a rib. (top right) Patch knit graph generated by our system. Node color 

indicates knit or purl. Leaning increases and short rows are highlighted to 

illustrate their positioning. Nodes outside the quad are patch borders used 

to ensure correctness and to align neighboring patches when connected.

When patches are connected to form the final patern, they are contracted 

away (botom). 

Once a patch layout is designed, it is used 

as a grid to lay out design guidelines that 

directly control seaming, surface texture, 

and curvature shaping, and to provide ad-

ditional partial control over orientation and 

composition. Conceptually, each patch cor-

responds to a quadrilateral patch of knit 

fabric, with each side presenting a uniform 

boundary (row or column) to its neighbors, 

as shown in the inset image. To modify the design, the designer 

uses fve tools to set design guidelines as labels on the mesh ele-

ments, which will be used to control the fnal pattern generation. 

The orientation tool allows row and column directions to be 

set by clicking and dragging across coarse mesh faces. The seam-

ing tool allows seams to be created by clicking on a coarse mesh 

edge to create a seam extended to the next singularity or mesh 

edge. Right clicking allows non-singular vertices to be marked as 

stopping points for seams to allow for arbitrary seamed layouts. 

The texture brush applies knit texture labels (such as ribbing) to 

coarse mesh faces. The constraints brush can constrain the type of 

 

existence of increases, decreases, or short rows in faces, as well as 

add sizing constraints along coarse mesh edge paths (constraining 

two paths to have the same stitch count). Finally, the eraser tool 

remove previously placed design guidelines. 

Our system assists users by validating the knittability of their 

choices and automatically completing partial designs as users 

work. Given a coarse patch mesh M = (F , E, H , V ), with faces 
F , edges E, half-edges H , and vertices V , the labels are 

Orientation D (H ) : H → {Col In, Col Out, Row In, Row Out}
Seaming S(E ) : E → {True, False}

Curvature Shaping can_shape(F ) : F → {True, False}
shaping(F ) : F → {Row In, Row Out, Both, Distributed}
can_shortrow(F ) : F → {True, False}
shortrow_side(F ) : F → {Col In, Col Out}

Texture tex(F ) : F → Z 
Time TF : F → Z 

Figure 5 shows how these labels appear in our interface. Al-

though not explicitly represented, the user can still make some 

compositional changes, for example, choosing between a tube and 

a seamed sheet in Figure 6. Curvature shaping guidelines indicate 

whether a type of curvature shaping is allowed in a patch, and, if 

so, they provide guidelines for how to place them. The location of 

short rows is particularly important for knittability. The surface 

texture parameter is an index into a database of knit-purl textures 

from [Kooler 2012]. Time is a proxy for the order of patch fabri-

cation, and stitch count measures the length, in stitches, of each 

quad side. The time parameter is automatically set by our system. 
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Fig. 6. Interactive seaming suggestions. (lef) Initial suggestion minimiz-

ing seams (blue lines), assuming no composition or layouts are given. (mid-

dle) Suggestion afer the user specified that the full head would be a sep-

arate piece seamed at the neck. (right) Suggestion afer the user changed 

kniting direction on the body. 

Although these properties must be defned for each mesh 

element, the user does not need to manually set all of them. 

Instead, any specifc decisions a user does make are treated as 

constraints on the design space, and our system automatically 

completes a valid design from partial specifcations by inputting 

these constraints plus our patch-level knittability constraints into 

a constraint solver, then optimizing for minimal seaming. This is 

especially helpful for fnding seam patterns on complex shapes, 

as shown in Figure 6. 

Patch Level Knittability. We build upon validity properties on a 

stitch-level mesh, defned by Narayanan et al. [2018]. While this 

prior work defnes low-level constraints by analyzing the fabrica-

tion process, we need to guarantee fabricability using only patch 

level information. To accomplish this, we designed a lightweight 

set of constraints on the patch representation that guarantees ma-

chine knittability if patches are constructed with a small set of con-

straints explained in the next section. 

Here, we give an overview of the constraints on patch layout 

and parameters. Their mathematical description and proof of suf-

fciency are left to supplemental material. Patches are considered 

neighbors only if the edge between them is not a seam, and the half-

edge labels on non-seam edges must be compatible pairs: (Row In, 

Row Out) or (Col In, Col Out). This allows us to refer to the patch 

structure with respect to its dual graph of row and column edges 

(ordered from Row Out to Row In), and defne row and column 

neighbors. 

C1 - Right-Handed Patches: The row and column directions 

of knitting form orthogonal axes on the surface, and our frst 

constraint ensures that patch orientations align to these axes. To 

enforce this, we require that orientation labels follow the order 

Col In, Row Out, Col Out, and Row In, when circulating a patch 

boundary counter-clockwise. Patches with exactly one side with 

each orientation in this order we call regular, as they are almost 

always the desired structure. 

We additionally allow irregular quads to enable greater fexibil-

ity in orientation control post-quad meshing (see Figure 7), which 

can be particularly useful when hard constraints on orientations 

are used to override composition guidelines. Because faces are 

all quadrilateral, one of the other orientations will be missing. In 

knitting terms, these missing orientations are the start or end of 

short rows, or where a piece of fabric is knit to or from a point. 

We only allow the doubling of one orientation per face, except 

for the special cases of all Col In or all Col Out, which our system 

breaks into four irregular faces to use as sources and sinks. 

Fig. 7. Lef: All valid quad faces (C1), (C3). Orange arrows are column 

edges; green are row edges. The large face is regular, the most common. 

The six on the right are allowed irregular faces, which can be interpreted 

as regular by adding a 0 length side of the missing direction and merging 

similar sides. Sources and sinks (botom) are partitioned into four regular 

quads (with one zero-length side each). Right: An irregular face in use and 

an example tessellation. 

Fig. 8. A helix formed by inconsistent short rows. 

C2 - Time Aligned: Time value is equal between row neighbors 

and strictly increases between column neighbors in the out–in 

direction. This ensures that there is a valid order of fabrication for 

the object. 

C3 - Limited Row Degree: Each face has at most one Row 

In and Row Out side. This is necessary to avoid creating cyclic 

knitting dependencies when connecting patches, as it allows 

patches to be grouped into distinct rows. 

C4 - Consistent Short Rows: Row neighbors must have the 

same short-row location guidelines. This is used to prevent helices 

from forming within a row of patches (Figure 8). They cannot be 

aligned with splits or merges (discussed in Section 7). 

Encoding Constraints. We implement these constraints as a sys-

tem of satisfability modulo theories (SMT) equations included 

in our supplemental material. We use SMT because we have mixed 

boolean and integer constraints and because SMT solvers can vali-

date a design before all variables are set, and will even fnd a com-

plete and valid set of labels whenever possible, which we use as de-

sign suggestions. In order to encode (C1) with boolean constraints, 

we express orientation as a pair of boolean variables and enforce 

right-handedness per mesh corner by limiting which orientations 

can be adjacent. 

Enforcing (C1) at corners allows us to make an optimization that 

improves both the speed of the solver and the quality of the results. 

As stated above, regular faces are preferable in most cases. Irreg-

ular faces are only actually necessary at singularities, such as the 

example in Figure 7, where their doubled or omitted directions of-

set extra or missing edges. We therefore limit our corner constraint 

to only allow non-regular adjacency at singularities by default. If 

the user wants an irregular face elsewhere, other mesh vertices can 

be designated to act like singularities. 
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Another optimization made for speed and quality is seam 

bundling and optimizing for minimal seaming. An easy solution to 

fnd is the trivial solution of seaming every edge. In most designs, 

using the minimal amount of seaming is desirable, but computing 

this across every possible edge is intractable. To mitigate this, we 

leverage the facts that (1) there is no structural use for a seam that 

does not partition the mesh, and (2) the set of mesh separatrices is 

a sufcient set of seams to make any shape knittable with only reg-

ular faces. Rather than consider each edge separately, we bundle 

paths of edges into long seams that are assigned to a single SMT 

variable. By default, we initially use the separatrices as bundles, but 

the user can click on edges to add other seam bundles for solver 

analysis. This makes the solver fast enough to fnd a minimally 

seamed solution by binary search on a maximum total seam length. 

This heuristic is adequate for minimizing the amount of sewing 

that is necessary, but the solver may suggest seams on features that 

are not aesthetically pleasing. Because the suggestions are given at 

interactive rates, the user can interact with the model by disallow-

ing seams in some locations and enforcing them in others. A result 

of such interaction is shown in the second duck image Figure 6 

where the user prescribes a seam along the neck and the system in 

term suggests a fap on top of the head to minimize the total seams 

under this confguration. Finally, the third image shows what hap-

pens when the designer decides to change the knit direction on 

the body. The system automatically suggests a seam. All of these 

suggestions were provided at interactive rates. 

Once a design is fnalized, a specifc template instance is chosen 

to be knit. Here, we describe how provably knittable machine in-

structions are generated for any set of template parameters, which 

we now consider fxed. 

Sizing Optimization. The frst step to creating an object is 

determining the shape and size of each patch. To do this, we 

calculate an integer stitch count for each side of each patch by 

minimizing the squared error between the side length of each 

patch in the template confguration chosen, and the length of 

that number of stitches as produced by the target machine. This 

optimization is done in the presence of several constraints to 

improve quality and guarantee knittability. 

Symmetry is enforced along mesh symmetries chosen by the 

user. We also account for the user’s shaping choices here: if they 

specify no short rows in a patch, then the number of rows in and 

out must be equal, and similarly for columns if forbidding increases 

and decreases. The ratio of width change to height and height 

change to width are capped to avoid needing increases or decreases 

of more than two stitches at a time, or overly tall short rows. The 

user is also allowed size lines, paths whose total length is important 

to get exact for sizing (such as the length of a sleeve or circumfer-

ence of a cuf), which are constrained to a maximum total error. 

Finally, a feasible splits and merges criterion is enforced. When-

ever more than two tubes are joined seamlessly within a row, the 

center tube(s) must have an equal number of stitches on their front 

and back halves so that they can be fattened evenly between the 

front and back stitch beds. The exact formulation of the objective 

function and constraints are given in our supplemental material. 

Pattern Generation. Pattern generation involves tessellating 

each patch into a composition of stitches, connecting them, and 

defning an order for stitch construction allowing the pattern to 

be scheduled on a knitting machine. Stitch-level representations of 

patches will have one stitch wide borders, sized according to the 

sizing optimization, and connected with simple 1:1 edges. These 

borders are used to defne how patches are merged together to 

construct a stitch-level pattern, as shown in Figure 5. 

A design goal of our system is to be extensible for future ad-

vancements, so we want our guarantees of knittability to be ag-

nostic to how patches are generated. To this end, we defne a mini-

mal set of requirement for patches which, in conjunction with our 

coarse mesh properties, guarantee machine knittability: 

P1 - Knittable: a patch plus its border is a valid Knit graph as 

defned by Narayanan et al. [2018] (described below), and 

P2 - Consistently Stacked: any exposed short rows (rows that 

connect to only one row border) are either all stacked at the 

top or bottom of a patch, according to its short row location, 

shortrow_side(F ), and are exposed along the same border. 

Validation. We are using knit graphs [Narayanan et al. 2018] as  

our formalism of knittability. These are directed graphs with row 

edges and column edges, where each node represents two stitches 

in a column. Each node also has an integer time value, similar to 

that of our coarse representation. Knit graphs are defned to have 

several properties which, if all met, ensure machine knittability. 

Unfortunately, validating several of these properties requires stitch 

level information of non-neighboring patches, which we cannot 

determine at the patch level. We formulate a slight variation of the 

Knit Graph properties that imply the original but make the prob-

lematic properties locally checkable. In particular, we remove the 

helix-free criterion and replace it with a stricter version of time 

alignment. This formulation also covers some edge cases that the 

prior work did not encounter, but which we must contend with. 

We leave a detailed discussion of the diferences in our formula-

tion and a derivation of the original properties to supplemental 

material. Our knit graph properties are 

K1 - Consistent Handedness: Knit graph nodes are right-

handed in the same sense as (C1). This ensures that the represented 

fabric does not twist or cross over itself on the bed. 

K2 - Time Aligned: Time values are equal within a row and 

strictly increase up columns. 

K3 - Limited Node Degree: Each node has at most one row 

neighbor on each side, and at most two column neighbors. The row 

restriction refects the fact that a stitch has only two yarn ends, and 

the column restriction prevents the machine from overstacking or 

overstretching yarn on or between needles. 

K4 - Feasible Splits and Merges: Interior tubes at splits and 

merges have an equal number of stitches on their front and back 

halves. Since splits and merges only occur along patch boundaries, 

this is directly enforced by sizing optimization. 

Now we sketch a proof of knittability—a formal proof is found 

in our supplemental material. Property (K4) is an exact constraint 
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on the sizing optimization ((C4) only allows full rows at splits and 

merges). Properties (K1) and (K3) depend only on the edge struc-

ture around nodes, which does not change with the contraction 

used to join patches, so (P1) is sufcient to guarantee them. (K2) 

will be true if the border nodes on adjacent patches have matching 

time values. While this is not true by construction, (C3)–(C4) and 

(P2) together allow us to re-scale time values within each patch so 

that they do align on borders. 

When designing our framework, 

we deliberated between having graph 

nodes or graph edges on the borders 

between patches. The inset image 

illustrates why we chose edges. If 

nodes are chosen, then it would be 

possible to change the local edge 

structure when merging, violating 
(K3) (left). Using edges also allows 

easy specifcation of increases or decreases leaning into a shared 

edge, a common knitting efect creating an apparent seam (right). 

Knit Graph and Instruction Generation. Our system uses a sim-

ple patch generation algorithm. An example patch is shown it 

Figure 5. We construct patch knit graphs in rows of constant time 

value (K2), linearly interpolating their widths. Sizing optimization 

ensures that no row is more than double the width of its neighbors, 

so we can distribute increases and decreases without violating (K3). 

(C1) says that the overall patch has the same orientation require-

ment as (K1), so we can place all internal edges with the same ori-

entations. We place short rows in accordance with (P2) to account 

for diferences between rows in and out. Finally, we construct a 

simple, one node border for each edge attached by simple edges. 

8 RESULTS  

We set out to design a system for creating high-level knitting tem-

plates that can be customized to enable shareability and remixing, 

and that enables fast and easy iteration over the seven axes of knit 

design. We demonstrate the efectiveness of our approach by a se-

ries of examples highlighting the capabilities of our system in qual-

ity parametric meshing, creating a wide variety of objects, and in-

teractively exploring the space of design variations. 

Quad Meshing. Other work has taken a feld-based meshing 

approach to knitting, but ours is the frst to explicitly incorporate 

singularity structure to control composition. The teddy bear 

example demonstrates the benefts of this approach. It would be 

natural to knit the teddy bear using tubes for each limb and one 

for the body and head. Achieving this composition from only 

user-provided direction strokes is very difcult because specifc 

compositions need specifc singularity placements, and singulari-

ties are difcult to control with only directional strokes. In Figure 9, 

the left two images are typical examples of a purely orientation-

based meshing of the model. The inability to precisely control 

feld singularities leads to helices wrapping around the body. 

These require long and unnatural seams to break the dependency 

cycles they induce. On the right is a structure resulting from the 

application of our composition rules, and the resulting knit bear. 

Fig. 9. (lef two) Meshing results achieved by sketching directions on the 

surface. Both have helices that must be seamed of and would be com-

plicated and non-intuitive to sew. (third) The meshed teddy that our sys-

tem generated to match the composition rules of kniting each limb in the 

round and then sewing them onto the torso followed by (fourth) an image 

of its physical realization as a multi-part knit. The blue lines are seaming 

suggestions proposed by our algorithm. 

Fig. 10. Our consistent meshing is shown on the lef and compared to 

the naive approach of running the MIQ on one mesh and transferring the 

resulting quadrangulation onto another using the point-wise correspon-

dences (two examples shown on the right). 

We also validate our joint parametric MIQ by comparing it to the 

nave strategy of solving against a single mesh variation and propa-

gating via pointwise correspondence. In Figure 10, all dresses have 

the same singularity structure. The dresses on the left were jointly 

parameterized using our approach, while the pairs on the right 

were computed on one dress and transferred to the second. Com-

pared to the joint parameterization, transferring the child’s pattern 

to the adult dress leads to distortions in the midsection, whereas 

the other direction has distortions in the bust and asymmetries in 

the skirt. 

Design Space Coverage. Next, we analyze our tool’s coverage of 

the design space, based on the design axes that we have identifed. 

Surface Texture. Textures are illustrated in Figures 1 and 11. As  

can be seen in both, texture does not need to be uniformly applied 

over the entire model but instead can be applied to any region that 

aligns with patch borders. This provides full control over texture 

since surface layout features can be used to infuence border place-

ment during meshing. Interaction of texture with other design axes 

can be complex. For example, textures and shaping can co-exist in 

the same patch and are automatically handled by our pattern gen-

eration algorithm. In Figure 11(c), the diamonds at the bottom are 

much wider than the diamonds at the top, due to decreases neces-

sary to change the radius of the skirt from bottom to waist. 

Curvature Shaping. Shaping plays an aesthetic as well as a func-

tional role. Figure 11 illustrates user control over how decreases 
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are placed for diferent aesthetic results. Skirt (a) is fully symmet-

ric, while skirts (b) and (c) have fat backs, with shaping only al-

lowed on the front, and skirt (d) only has shaping at the sides with 

a fat front and back. Skirts (b–d) have decreases aligned and lean-

ing toward a patch edge, creating an apparent seam. 

Surface Layout. As already described, surface layout features im-

pact the placement and transitions between textures. Figure 11 

shows another fundamental, though more subtle, impact on curva-

ture shaping—the user prescribed feature lines to control the place-

ment of apparent seams, as can be seen when comparing skirts 

(b) and (c). Symmetry is another important layout feature. Once 

this is specifed, the system will automatically ensure symmetry 

in the placement of increases and decreases, seams, and even sin-

gularities on compositing guidelines. For example, in Figure 3, it  

would be hard to place singularities symmetrically without auto-

mated support. 

Seaming. Key functional aspects of seaming are specifed during 

composition, but these interact through decisions about the 

surface layout of the mesh; seaming is often necessary to support 

orientation changes. Our system helps the user navigate this 

space. As was discussed in Figure 6, even if seaming guidelines 

from composition and surface layout are not provided, a valid 

and minimal seam choice will be presented to the user, who can 

interactively control the placement by enforcing or disallowing 

seams on certain areas. The system updates the seam suggestions 

at interactive rates, to allow easy exploration while guaranteeing 

knittability. Figure 12 shows the seaming layouts of our machine 

knit examples with seams. 

Orientation. As discussed in multiple examples, orientation af-

fects the ease of knitting, shaping choices, and seaming placement. 

Further, local changes in orientation can lead to non-fabricable 

designs if not validated globally (an important reason orienta-

tion change is not supported in [Narayanan et al. 2019]). In ad-

dition to allowing orientation control during meshing, our sys-

tem allows users to easily fip the orientations locally. As can 

be seen in Figures 3 and 13, the system will automatically sug-

gest seams after a direction change to ensure knittability and up-

date shaping to conform to the mesh—e.g., use short rows instead 

of increases/decreases on the sleeves to match the circumference 

change from shoulder to wrist. 

Composition. Composition guidelines allow designers to create 

large pattern variation from the same input mesh. For example, in 

Figure 14, the design on the left uses a Norwegian drop shoulder 

and is seamed at the arms. The design on the right is a seamless 

yoke sweater, which is done with merges at the armpits followed 

by evenly distributed decreases up to the neckline. A similar com-

position variation is shown on the dresses (a) and (b–d) in Figure 1. 

Composition guidelines are particularly useful when knitting com-

plex shapes, as discussed in Figure 9. We further illustrate how 

they can be used to structure irregular shapes like the bunny (see 

Figure 15). By specifying how we wish to knit the ears and tail, our 

system discovers appropriate knitting directions to capture both 

the compositional structure and the complex curvature. 

Variable Shape. As discussed in Section 2, resizing is an impor-

tant and common aspect of knit pattern design and use. Resizing 

is challenging because it requires changing both the stitch counts 

of shaping operations, such as the number of short rows, increases, 

and decreases, as well as re-applying any textures to the new stitch 

layout. Furthermore, resizing typically requires variations on the 

geometry itself. A dress made to ft a child is not simply a rescaled 

adult dress. 

Our method allows users to create a mesh that is jointly opti-

mized over multiple parameter values of a shape, which allows 

users to specify knitting guidelines on a single template and have 

them be directly applied to diferent shape variations. For example, 

in Figure 1, the adult and child dresses are variations of the same 

drop shoulder pattern with identical textures but diferent relation-

ships between arm length, skirt length, and torso height. Figure 16 

further illustrates how our system allows designers to create cus-

tomizable templates for knitting, by illustrating three fabricated 

variations of a hat. Both of these examples were enabled by our 

consistent quad-meshing method, shown in Figure 10. 

Interactive Exploration. All models took about 4–13 minutes 

to design: the quad meshing step took about 1–6 minutes, the 

labeling about 1–3, and pattern generation with sizing optimiza-

tion in 2–4 minutes (except the bunny, which took 15 minutes 

to optimize sizing). To establish the efectiveness of our inter-

active editing capabilities for design space iteration, we asked 

Narayanan to recreate some variations of the dresses in Figure 1 

using [Narayanan et al. 2019]. In our system, we were able to 

create an initial design in 5 minutes, and create the variants (c) 

and (d) in 2 minutes each, most of which is spent in pattern 

generation. Variant (a) took 8 minutes as it required composition 

changes. Narayanan estimated that it would take between 15 and 

40 minutes for each texture variation, depending on how carefully 

textures were applied, and between 45 and 60 minutes to change 

shaping between short rows and increases and decreases. Their 

system would not be able to handle direction changes or re-sizing 

without complete re-design. This shows how our approach and 

solver assisted editing enables exploration of design alternatives 

on the scale of minutes rather than hours. 

Pilot Study. We validated the usability of our system by conduct-

ing a pilot user study with three participants having experience in 

knitting or garment design but not in geometry processing. In the 

study, we frst gave a tutorial on how to use our system and then 

asked the participants to reproduce a textured variant the duck de-

sign shown in Figure 3(e), and also to create their own dress design 

using the model from Figure 1. All participants were able to deter-

mine the correct composition rules to recreate the duck within 9 

minutes on average, and were also able to design a knittable dress 

within the half-hour provided them. As shown in Figure 17, all  

three dress designs have a diferent composition structure. While 

the users had no understanding of quad-meshing singularities they 

managed to achieve the desired structure using the intuitive com-

position guidelines in our tool. These dresses further illustrate the 

design freedom in textures, shaping, seaming, and surface layout. 

The details of the study can be found in the supplemental materials. 

Additional Implementation Details. With the user-designed 

cross feld as input, we use the libigl [Jacobson et al. 2019] imple-

mentation of MIQ to generate the global parameterization; users 
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Fig. 11. Meshing, labeling, and fabricated results of four skirts generated from the same input mesh, with diferent coarse meshing and labeling. Orange 

lines on (b) and (d) highlight the apparent seams caused by concentrating shaping, and on (c) highlight the efect of shaping to narrow the texture toward 

the top of the skirt. Red “X”s over a shaping label indicate that no shaping is allowed in that patch, a symmetric decal indicates distributed decreases, and  

an angled decal indicates leaning decreases aligned to the edge the decal leans toward. 

Fig. 12. Seaming layouts of all machine knit examples. Blue lines indicate seams in the original design, whereas yellow seams were added manually to 

account for missing functionality in our scheduler implementation. The skirts, hats, and seamless dress were omited because they do not have any seams. 

The angled and child dress are ommited because they use the same template as the drop shoulder dress (far right). The human scale sweater also uses this 

seaming layout. 

can adjust a parameter for quad size to obtain the desired level 

of coarseness. To compute the cross-feld given composition rule 

singularities, we use the implementation of the trivial connections 

from Directional [Vaxman et al. 2020]. LibQEx [Ebke et al. 2013] is  

used to extract the quad mesh. Z3 solver [de Moura and Bjørner 

2008] is used for SMT equations. We implemented 20 textures 

from Kooler [2012] and applied diferent combinations to most 

of the models we fabricated to illustrate this capability. For ma-

chine knitting, we use the scheduler code provided by Narayanan 

et al. [2018; 2019] to generate instructions for the knitting machine. 

Hand knitting instructions were generated using custom code. All 

examples are knitted either by hand or by a 7-gauge SHIMA SEIKI 

SWG091N2 knitting machine. Models were hand-stitched together 

along seam lines after knitting, and the toy models were stufed 

with batting. 

9 LIMITATIONS AND FUTURE WORK 

Our system invites several avenues for future work. 

Our quad meshing pipeline has limitations, some of which are 

long-standing problems in meshing. Global parameterization will 

not be interactive if the resolution of the input mesh is fne, or 

if too many constraints are added. In order for our composition 

rules to prevent cycles, it is important that the singularities 

are connected by mesh edges. This is not explicitly guaranteed 
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Fig. 13. Close up of the sleeves from Figure 1 dresses (b) and (c). In (b), 

columns are aligned down the sleeve, while in (c) they wrap around. 

Fig. 14. Three sweater paterns from the same input model but meshed 

and labeled diferently. The lef sweater has seamed sleeves and short rows 

on the neck, while the one in the middle was completely knited in the 

round using increases and decreases. These two sweaters were knited by 

hand, showing how our method can be used for both machine- and hand-

kniting. The rightmost sweater has the same composition as the lefmost, 

machine knit to human scale with textures added on the arms. 

Fig. 16. Customizable knit paterns for hats created with our systems. 

Fig. 15. The Stanford bunny illustrates composition guidelines. It is 

meshed by placing line seams (C1) on the tips of the ears, a split from 

the head to two ears (E1), and a flap on the tail (C2). 

Fig. 17. Variations of the dress created by users in the pilot study (top row 

is front view, botom row back view), illustrating the usability and design 

freedom in the system. Users were able to control composition using only 

prior experience on kniting or garment design but no understanding of 

geometry processing, quad meshing or singularities. 
by our meshing algorithm and can fail, for example, if two 

symmetric composition rules are only slightly ofset from each 

other. However, in most cases, our helix checking visualization 

and the tunable grid size parameter combined can avoid the 

helices. For example, when a participant of the user study created 

the duck design, they initially chose a grid size that led to a 

helix, but the researchers were able to help the participant tune 

the grid size a bit to create 

a helix-free design (shown 

in the inset fgure: left 

contains a helix and the 

magenta triangles indicate 

where the helix could 

start; right is helix-free). 

Our implementation of 

patch generation is very 

simple and does not capture the full richness of possible surface 

textures such as cables, lace, or colorwork. We also do not take 

into account the physical properties of surface texture on the 

patches themselves. However, our system is designed to be built 

upon using our patch formalization in order to support these 

capabilities, so recent work focusing on surface textures such as 

Hofmann et al. [2019], Leaf et al. [2018], or Karmon et al. [2018] 

could be used to generate patches within our framework. 

To generate machine instructions, we used the open source 

scheduler implementation from Narayanan et al. [2019], which 

does not support some of the more complex composition rules that 

we do such as faps to close tubes, even though the scheduler as 

described in that article does. Reimplementing that functionality 

was beyond the scope of this work, so we worked around the 
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limitation by introducing extra seams to partition our designs into 

shapes that the scheduler will accept. We manually added these 

seams using our existing seaming tool by simply selecting and 

clicking one edge along each sheet-tube boundary (a transition 

between a sheet a tube is always bounded by singular vertices, 

and so can be seamed without adding), but this could be easily au-

tomated by labeling each coarse row as tube-like or sheet-like (is it 

a cycle), and adding a seam between any rows that alternate from 

sheets to tubes. Fully automatic machine instruction generation 

would require re-implementing the missing functionality. The 

yellow seams in Figure 12 illustrate where we added these seams. 

Finally, it would be interesting to incorporate physical sim-

ulation into the design loop. In addition to the internal forces 

explored by works like [Kaldor et al. 2008], [Leaf et al. 2018], 

and [Karmon et al. 2018], the form of a knit object is strongly 

infuenced by the physical context it will be used in, such as 

stufng or draping over a person. For instance, our duck example 

was knit with short rows to achieve the torus body, but could 

have been knit as a simple straight tube and relied on stufng for 

the shaping. Simulation of both internal and external forces could 

help designers visualize the fnal result of their design decisions 

before fabricating. Simulation of the machine knitting process 

will also be important to address the problem of machine tuning. 

The defnition of machine knittability we use does not guarantee 

that the program generated will not fail on a real machine due to 

the interaction of machine tuning parameters (yarn tension and 

stitch size) and material properties (yarn thickness, friction, etc.) 

To the best of our knowledge, no existing work tackles this aspect 

of automatic knitting machine programming. 

10 CONCLUSION 

Our system makes the design of machine-and hand-knittable ob-

jects accessible to a lot more people. First, it lets users easily and 

quickly explore interrelated design axes while guaranteeing knit-

tability and pattern production. Furthermore, because the system 

takes a parametric 3D model as input, it generates template pat-

terns customizable by users unfamiliar with intricacies of knitting. 

As a result, machine knitting, like 3D models, can become cus-

tomizable, modifable, and universally accessible. 
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