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Fig. 1. Our interactive design system helps users explore key design axes for knitting to generate highly customized patterns from input shape templates;
e.g., a seamless yoke dress with princess-cut apparent seams (a), and drop shoulder dresses with textures on the arms and skirt (b—d). The output of our
system is a knit pattern template that lets users vary the shape while preserving the design, for example, creating a child’s dress with short sleeves (d) that
matches an adult dress (b), or varying skirt texture and angle, and sleeve knitting direction (c). The system guarantees that all results and variations are

machine knittable.

We present an interactive design system for knitting that allows users to
create template patterns that can be fabricated using an industrial knit-
ting machine. Our interactive design tool is novel in that it allows direct
control of key knitting design axes we have identified in our formative
study and does so consistently across the variations of an input paramet-
ric template geometry. This is achieved with two key technical advances.
First, we present an interactive meshing tool that lets users build a coarse
quadrilateral mesh that adheres to their knit design guidelines. This solu-
tion ensures consistency across the parameter space for further customiza-
tion over shape variations and avoids helices, promoting knittability. Sec-
ond, we lift and formalize low-level machine knitting constraints to the
level of this coarse quad mesh. This enables us to not only guarantee
hand- and machine-knittability, but also provides automatic design assis-
tance through auto-completion and suggestions. We show the capabilities
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through a set of fabricated examples that illustrate the effectiveness of our
approach in creating a wide variety of objects and interactively exploring
the space of design variations.
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1 INTRODUCTION

Knitting is a versatile craft with rich aesthetic and functional de-
sign spaces. Its scope ranges from garments and toys to architec-
tural structures and medical implants. The ubiquity of knit textiles
in our lives is driven by programmable knitting machines. Machine
knitting has the potential to become the next 3D printing: knit tex-
tiles are pervasive, customization of knit objects like clothing is val-
ued, and machine prices have fallen within reach of maker spaces,
small shops, and hobbyists.

However, makers lack design tools that provide needed con-
trol over familiar design axes, enable customization of existing
designs, and encourage exploration of the design space. Consider
the variety of dress shapes in Figure 1. There are several options
for knitting patterns that can construct these shapes. The knit-
ting designer must choose from patterns like these to achieve
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functional and aesthetic effects. Based on interviews we conducted
with knitting designers, we identified seven design axes that are
typically present in knitting patterns.

Shape Variability. Specific aspects (or geometry parameters) of
a knit object’s shape and size can vary without requiring a
wholly new pattern. For example, a pattern designer might
vary the length of a skirt and sleeves and the height of the
waist to change an adult’s dress to a child’s dress (b vs d).

Composition. The basic building blocks of knit objects are sheets
and tubes, which are composed to form a shape. For example,
shoulder design in garments may be composed as smoothly
merging or abutting tubes (a vs b).

Seaming. Related to composition, seams are used to connect
building blocks (e.g., the shoulders in b) but also within a
building block (e.g., the sleeve in c).

Orientation. Knitting looks different, and stretches differently,
in the horizontal and vertical directions. As the sleeve of
¢ shows, changing orientation can change the locations of
seams. Thus, the orientation, or alignment of stitches along
the surface, is an important design choice.

Surface Layout. Knitted objects are typically comprised concep-
tually meaningful regions. Layout includes the axes of sym-
metry, a line of increases or decreases, and the boundaries of
a texture region, such as textures on the dress skirts, and the
apparent seams in (a and c).

Curvature Shaping. Sheets and tubes are flat grids of stitches un-
til shaping stitches are added, creating non-grid formations
that add intrinsic curvature. Curvature is distributed around
the bodice in (c¢) and concentrated towards the front in (d).

Surface Texture. Texture is achieved by varying stitches on the
surface of a sheet or tube without varying curvature. Com-
plex surface patterning of stitch variants gives knitting its aes-
thetic versatility, as shown in the dress skirts (a—d).

Customization and exploration of designs require interactive
control of these seven design axes. There are two challenges to in-
teractive design. First, knitting patterns must meet several discrete
local and global constraints in order to be fabricable. Stitches must
cover the surface with a small number of yarns while avoiding heli-
cal structures that cause cyclic dependencies in the fabrication pro-
cess. Shaping stitches must be placed to capture mesh curvature,
but also respect limitations on their type and relative alignment.
Second, the seven axes are strongly intertwined at the stitch level,
so making a decision along one axis can undo decisions made along
other axes. For example, changing the orientation of stitches in the
sleeve of the dress between (b) and (c) requires different curvature
shaping stitches, changes the composition of the sleeve from a tube
to a sheet, requiring a seam down the length of the arm, and rotates
the surface texture by 90 degrees. Ideally, a design tool should en-
force the constraints without overly limiting the designers’ ability
to explore, which is hampered if design decisions undo each other.

Prior work addressed several of these design axes. For exam-
ple, Yuksel et al. [2012] demonstrate that a coarse quad-dominant
mesh modeling of geometry enables the representation of impor-
tant design axes of knitting, such as orientation and surface texture,
and supports iterative modifications to these axes. However, with-
out a design tool that can automatically generate the quad mesh
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from high-level design input, this representation cannot support it-
eration on axes such as composition and shape variability. Simi-
larly, without a strong theoretical connection between knittability
constraints and the algorithm that generates a pattern from a quad
mesh, it is impossible to guarantee knittability. As a result, a de-
sign tool cannot suggest design solutions or warn users when they
make changes that will break their design.

To address these limitations, we introduce two theoretically-
grounded advances. First, we present a novel meshing tool
that expresses the theoretical relationship between the singularity
structure of quad meshes and the knitting design axes. This lets
users of all knitting design skill levels generate coarse meshes that
satisfy their design goals and avoid helical structures that lead to
undesirable patterns. Furthermore, our algorithm takes as input a
parametric template geometry that can vary over a specified pa-
rameter space, for example, a dress whose sleeves can vary from
short to long or whose skirt can be elongated, allowing a design to
be customized for a user.

Second, we introduce formal knittability criteria over the
coarse mesh to ensure knittability without over-constraining the
design space. By knittability in this work, we mean a valid ma-
chine knitting patterns in conjunction with constraints to account
for physical limits of knitting machines and yarn that improve
design robustness. Our validation and accompanying algorithms
enable not only notifications about knittability problems, but pro-
mote interactive design across multiple design axes supported by
auto-completion and automated design suggestions.

Based on these theoretical insights, we contribute a practical
knitting design framework that supports

—requirements for design axes drawn from real-world knitting
design experts;

—variable template patterns that correctly propagate design de-
cisions as parameters of the geometry are modified;

—direct manipulation by users of multiple, interdependent de-
sign axes;

—automatic knittability checking and auto-complete assisted
design;

—generation of knitting machine instructions.

2 UNDERSTANDING KNITTING DESIGN AND ITS
RELATION TO QUAD MESHES

Knitting builds on a long craft, design, and artistic history [Spencer
2001]. Knitters can refer to books (e.g., Budd [2002]) or websites
(e.g., Ravelry [2019]) that include a wealth of knitting patterns
and design strategies. To discuss pattern design strategies, we first
briefly review how knit objects are constructed (see McCann et al.
[2016] and Underwood [2009] for a more thorough review). We
then present the results of our study with knitting pattern design-
ers, which drove our technical innovations. We will also explain
how knitting relates to quad meshing to facilitate with understand-
ing later sections.

Constructing Knit Objects . Knit objects consist of a grid-like fab-
ric of interconnected stitches. A grid of stitches can be a sheet of
fabric, or the ends can be joined to form tubes, called knitting in the
round (Figure 2). Knit objects are composed of joining and cutting
these elements in various ways and orientations.
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Fig. 2. Knit object construction. (left) A segment of knit fabric showing
the basic stitch types and curvature shaping. (right). The two basic knit-
ting primitives: sheets and tubes. Grid cells represent stitches, and arrows
denote order of fabrication.

Stitches in the grid are formed sequentially by pulling a yarn
loop through a “parent” loop in the row below it. To create a
stitch, the loop it is pulled through must have been knitted already.
This means that knitting inherently constrains the order in which
stitches can be constructed. The central constraint of knitting is
that the graph of stitch dependencies must be non-cyclic. The first
row of stitches have no parent stitches, so they must be created
with a special type of stitch called a cast-on. Similarly, the final
row of stitches is closed with a stitch called a bind-off; which acts
to stabilize the knit object. This is important because a non-bind-
off stitch with no children can unravel.

The grid can be locally distorted by adding and removing loops
to add curvature to the fabric. This is done along columns us-
ing special increase and decrease stitches and along rows using
“short rows” (Figure 2). Also, by varying the direction, each loop
is pulled through (knit and purl)—as well as other loop properties
that create twists, holes, and overlayed loops—it is possible to cre-
ate surface texture, such as cables, lace, and ribbing. As an example,
varying the order that loops are stacked or pulled in an increase
or decrease can create leaning increases or decreases, which ap-
pear to tilt left or right. Aligning several leaning stitches in a line
can create the appearance of a seam in the fabric, as visible in
Figure 11(b). Throughout the article, we will use “apparent seam”
to distinguish these seam-like stylistic choices from true seams,
which occur when separately knitted edges are sewn together as a
post-process.

Knitting machines do not change the important axes of knit
design, but they do add fabrication constraints not found in hand
knitting. A V-bed knitting machine contains two beds of small
needles at fixed spacing. A piece of yarn is shuttled back and forth
between the beds by a carrier, and the needles are programmed
to interact with the yarn (e.g., grabbing a loop), or each other
(e.g., passing loops) as the yarn passes. Each needle holds one
or more active loops at a time, and only these loops can be built
upon. Once a machine drops a loop, it cannot pick it back up, so
all stitches needed in the future must be held on needles. While
loops can move between needles to create gaps for increases and
overlaps for decreases, the physical dimensions of needle size
and spacing limit how large a gap can be without snapping the
yarn (overstretching the yarn), and how many loops can overlap
before dropping off the small needles (overstacking a needle).
These impose an upper bound on the number of loops each stitch
can increase or decrease, which we conservatively cap at two,
and make short-rows preferable for shaping (for hand knitters,
increases and decreases are preferred).
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Designing Knitting Patterns: A Research Survey and Study.
To understand how designers construct knitting patterns, we
surveyed popular keywords used with over 200,000 free knitting
patterns available on Ravelry.com and conducted a contextual
inquiry [Beyer and Holtzblatt 1999] with five knitters, focusing
on the design process, motivations behind design decisions, and
the use of patterns and other artifacts or tools. We describe the
details of this study in our supplemental material and discuss here
the key results.

Our survey of patterns showed that the most popular search key-
words specified composition (129 K patterns mentioned seaming;
160 K mentioned seamless; almost all specified sheets (flat, 227 K
patterns) or tubes (in the round, 181 K patterns)). Next in frequency
came orientation (163 K patterns) and shaping (32 K patterns use
short rows, which could underestimate the importance of shaping
since almost all patterns use increases and decreases). The use of
such keywords suggests that the identified design axes are of in-
terest not only to pattern designers but also to knitters.

Regarding study results, participants tended to enter initial
planning stages based on some inspiration (e.g., a picture) or an
internal image of the final object they wanted to create. They drew
this out as a sketch of the objects’ composition or directly trans-
lated it onto a grid (a stitch-level representation) using (something
like) perler beads or graph paper. They also determined knitting
orientation, texturing, added symmetry, and created an assembly
plan, as needed, at this phase of the project. More complex objects
were broken down into different components to be designed
individually.

Participants also discussed the challenges of modifying an exist-
ing pattern by re-sizing, coloring, texturing, and modifying design
elements. Of these, resizing was by far the most common since
small changes (like the specific knitter, yarn, and needles) could
alter the number of stitches needed to achieve their goal. They did
not have automated methods to do this. Instead, they used arith-
metic, visual inspection, trying things on, or comparing theirs to
a to-scale pattern. Because many knitters preferred to knit in the
round, a second common change was to the composition of a pat-
tern of sewn sheets (such as a sweater) into a tube. Thus, a knitting
design tool could be of value not only to designers but also to the
much larger group of knitters who simply want to make things
that fit. This also demonstrates that stitch level decisions can be
deferred until fabrication time while still respecting a design in-
tent, indicating that the design is actually captured by a higher
level structure.

Our survey and study provide evidence that an ideal tool for
knitting pattern design should support changes in the target
shape (especially size), composition, orientation, seaming, curva-
ture shaping, texture, and surface layout features such as symme-
try. However, simply supporting these design axes is insufficient.
Knitters want to modify them, which is currently time-consuming
and difficult. They struggle to ensure that the resulting pattern will
be knittable and to preserve one design decision when modifying
others.

Quad Meshing and Knit Design. Quad meshes are meshes with
only quadrilateral faces, and the mesh vertices typically have four
adjacent edges (or three if on boundary). Such vertices are called
regular, while others are called irregular or singular. The surplus
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or deficit of adjacent edges is the index of a singularity (a singular
vertex). A typical knit stitch, like a quad in a quad mesh, has exactly
four neighboring stitches, a compelling parallel that motivates the
most popular stitch-level representation: Stitch Meshes [Yuksel
et al. 2012]. In addition to this low-level correspondence, we found
two higher level correspondences.

First, based on our study with knitters, we see that they think
and lay out knitting designs in sheets and tubes. When they com-
bine the sheets and tubes, these structures may come together
in greater or fewer than four edges, creating singularities. We
found connections between several common knitting patterns and
groups of singularities with particular indices, which we compiled
into a set of composition rules that can be applied to a surface to
control how the surface is broken down into sheets and tubes.

Second, knitting has two orthogonal directions formed by rows
and columns of stitches (course and wale, respectively). In quad
meshing, locally orthogonal axes are represented by a cross field
—a pair of vector fields over a surface that are always locally
orthogonal. Several methods for converting a triangle mesh to a
quad mesh (remeshing) use cross fields to guide the orientation
of quads. The orientation of rows and columns in knitting is an
important design decision, so we employ a cross field to capture
the designer’s intent.

Quad meshes have rows and columns found by following neigh-
boring quads on opposite edges. If two different quads in the same
row are also in the same column—meaning there is a cycle, the row
is a helix. While knitting in the round is technically knitting one
helix, in our representation (and also in standard knitting patterns)
this helix is not explicitly represented. Instead, it is broken into in-
dividual rows, and the overall helix is constructed only at knitting
time when transitioning between these rows. This view of knitting
makes it easier for us to reason about stitch construction depen-
dencies; specifically that all of the stitches in a row must be con-
structed before any stitches in later rows. A quad mesh helix cre-
ates a cyclic dependency between stitches, which is not knittable.

3 RELATED WORK

Knitting design research can be segmented into three domains
of inquiry: representation, which is typically stitch, primitive or
mesh-based; pattern knittability, which includes both generation
and verification of hand and machine knit patterns; and interactiv-
ity, which includes support for the seven design axes identified in
our survey and study. In addition to these topics, we will discuss
prior works on quad meshing for knitting, an important step in
our system.

Representation of Knit Patterns. Representations fall into three
categories. Stitch-based representations specify individual knit-
ting operations and can be written as language, charts, or
annotated meshes. Primitive-based ones address tubes and sheets
directly, while patch-based ones extend mesh representations to
multiple stitches per element.

Traditionally, knitting patterns are conveyed as stitch-based
fabrication instructions, typically in a language called knitspeak
[Hofmann et al. 2019] or visually in a chart (e.g., Briar [2019],
SHIMA SEIKI [2019], and STOLL [2019]). Several systems use quad-
dominant meshes rather than a chart or language to represent
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Table 1. Desirable Features of a Knitting Design Tool Supported
by Literature
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Unfilled stars show partial satisfaction of the goal; either users have direct, but
incomplete control, or complete but indirect control. For example, Yuksel et al.
[2012] gives direct, but incomplete control over orientation since orientations
may only align with coarse input mesh edges, and Narayanan et al. [2019] gives
complete but indirect control over surface layout since symmetries and feature
placement can be specified exactly by moving stitches one by one. If properties
are assumed from the input, or are both indirect and incomplete, they are not
considered controlled. An unfilled star for mesh input indicates that
pre-processing outside the system is required.

objects at the stitch level [Igarashi et al. 2008; Wu et al. 2018, 2019;
Yuksel et al. 2012]. In these systems, quad faces represent regular
stitches, triangles the ends of short rows, and pentagons increases
and decreases. Additional data are embedded to indicate orien-
tation and to differentiate stitch types, such as knits from purls.
While stitches directly correspond to the fabrication process, knit-
tability is a primary issue here, which we discuss in the following
section.

Since knitting is composed of tubes and sheets, an intuitive al-
ternative is to specify a knit object as a composition of parametric
sheet and tube primitives (e.g., Kaspar et al. [2019] and McCann
et al. [2016]). This approach has the advantage of supporting pa-
rameterization of these primitives, enabling a single pattern to act
as a template for customization. It is also possible to provide knit-
tability guarantees over this representation, though matching an
arbitrary input target shape is not straightforward.

If we generalize meshing to represent multiple stitches per quad,
we gain many of the benefits of primitive-based approaches, while
still being able to match an input target shape [Yuksel et al. 2012].
However, this approach has not been extended to include pattern
generation and ensure knittability, and depends on a high-quality
patch input that aligns with the desired design.

Knittability. Knitting an object requires the generation of a
valid sequence of stitches. Because stitches are created by pulling
loops through other stitches, such an ordering is not guaranteed
to exist. Thus, stitch-based representations typically lack inherent
guarantees of knittability (though commercial systems warn
about potential failures). When representing the dual graph of a
stitch-level mesh, dependency errors in a pattern can be found
by cycle checking. Popescu et al. [2017] pioneered the graph
approach with a hybrid representation, and Narayanan et al.



[2018] extended it by directly constructing a graph over an input
model and identifying a sufficient set of constraints on the graph
to guarantee machine knittability. However, these checks must be
done for every iteration to a pattern.

Using a primitive-based representation, McCann et al. [2016] de-
veloped a provably correct transfer planning algorithm that sched-
ules a pattern on a machine knitting machine. Kaspar et al. [2019]
extended this work with more primitives, more composition op-
tions, and a more robust texturing system.

Knittability guarantees have not been demonstrated for patch-
based representations. This would require imposing constraints
that ensure knittability. If it were possible to guarantee knittability,
a patch-based representation would be preferable to stitch-based
approaches because of its generality, and to primitive-based ap-
proaches because of its flexibility in easily representing a wide va-
riety of input shapes.

Interactive Knit Design Tools. Stitch-level mesh-based ap-
proaches are intuitive for representing underlying geometry,
can automatically generate a knittable solution for a specific
geometry, and support low-level control over specific stitches.
For example, Nayaranan et al. [2019] support direct stitch mesh
editing while ensuring machine knittability. However, concepts
such as composition, orientation, and surface layout are not
directly represented in a stitch-based mesh; rather, they are
expressed through the stitches that are specified. Thus, the
design tool cannot know when they are violated. Furthermore, all
these modifications are lost if the original object’s geometry is
changed.

In contrast, primitive-based methods guarantee machine knitta-
bility and allow shape to be varied parametrically since primitives
can be parameterized [Kaspar et al. 2019; McCann et al. 2016]. Such
methods defer stitch-level decisions until instruction generation,
which allows interactive editing of composition and other design
goals, such as curvature and texture (see Table 1). However, this
approach has two key disadvantages. First, it requires expertise
to model a desired shape, making it particularly challenging for
applications involving more complex geometry. Second, while it
is possible to control composition and shape variations, editing
is indirect, requiring expertise to achieve even simple variations
that can depend on multiple parameters in a complex way—a
classic problem in parametric computer-aided-design (CAD)
systems [Yares 2013].

Supporting direct editing of design goals requires a representa-
tion that relates stitches to shapes. Patch-based approaches have
this potential. Prior work demonstrated the power of patches to
allow control over curvature shaping and surface texture, and
to allow movement and changing of stitch types [Yuksel et al.
2012]. However, several key limitations remain, which our work
addresses. First, Yuksel et al. [2012] use a coarse polygonal mesh
as input, which requires a high level of user expertise to gener-
ate, and limits interactive control over composition and orienta-
tion. Our first key contribution shows that by developing meshes
that correspond to a knitter’s conceptual breakdown of a knit ob-
ject, we can enable control over multiple important design axes. In
particular, we prove that by controlling singularities in the mesh,
knitters can intuitively and directly specify and iterate on these
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design axes and generate helix-free quad meshes that are neces-
sary for knittability.

Furthermore, Yuksel et al. [2012] are not concerned with knitta-
bility, generating patterns only suitable for simulation and render-
ing. While rules have been developed to ensure machine knittabil-
ity on stitch-level meshes, where constraints come directly from
analyzing the fabrication process [Narayanan et al. 2018], it is not
trivial to extend this to patches. This is the second key contribu-
tion of our work. We design a lightweight set of high-level patch
constraints that do not over-constrain the design space but enable
us to create and formally prove the correctness of, an algorithm for
translating them into knittable patterns. This allows novel system-
level contributions: constraints can be directly encoded in solvers,
enabling interactive verification and completion during labeling,
automatic seam placement, and geometric optimization, while re-
specting machine constraints and shaping preferences.

Quad Meshing. Our method works at the patch level, which is
defined as a coarse quad mesh on the input surface. Quad meshing
is an active research area and we refer readers to Bommes et al.
[2013] for a survey. The fundamental challenge in applying exist-
ing quad-meshing techniques to patch-level knitting design is al-
lowing users to control the composition and surface patch layout.
Extensive work on quad meshing [Bommes et al. 2013] has shown
that field-guided methods best enable user control. In field-guided
methods, orthogonal vector “cross”fields on the surface are op-
timized for a given smoothness energy and to meet user specifi-
cations (e.g., direction strokes). A quad mesh is then created by
finding a parameterization whose gradients are optimally aligned
with the field. For a review of concepts in field design, we refer in-
terested readers to Section 3.2 of a state-of-the-art report [Vaxman
et al. 2016].

Despite great advances in this area, directional control while
avoiding helices remains challenging, particularly for coarse
meshes. Solutions to directly remove helices [Bommes et al.
2011a] would change composition guidelines in unpredictable
ways. Polyvector fields with curl reduction [Diamanti et al. 2015;
Panozzo et al. 2014] can minimize, but fail to completely avoid, he-
lices. Directly partitioning the mesh into quad layouts [Campen
and Kobbelt 2014] could avoid helices but at the expense of a man-
ual strategy that does not map well to how knitters make patterns.

Different quad and quad-dominant meshing techniques have
been proposed for knitting. For example, Wu et al. [2018] use
a field-guided method to generate a stitch-level quad-dominant
mesh but cannot ensure knittability because cycles cannot be
fully avoided. [Narayanan et al. 2018] ensure knittability using a
harmonic scalar field meshing technique that takes as input level
set constraints of a scalar function approximating knitting rows.
However, this method works at the stitch level and does not allow
for composition or surface layout control.

In this work, we propose a new strategy to enable design
control while avoiding helices in a coarse quad mesh. This is
achieved by utilizing a key insight on the relationship between
common knitting compositions and quad mesh singularities. In
our system, composition guidelines selected by users are directly
translated to singularity constraints on the mesh, which, in turn,
can be used to drive a cross-field design algorithm based on trivial
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Fig. 3. Overview of our framework. (a) Triangle meshes from a parametric template (the system deals with a single mesh at a time). (b) Input triangle mesh
with user annotations of composition, layout, and direction guidelines. (c) Generated quad mesh patches, which are consistent across template variations.
(d) Quad mesh annotated for knitting the body tube in the round using short rows to curve the tube. Blue lines indicate seams. The same design applies to
all template variations (two shown here). (¢) Duck knit with short rows. (f) Quad mesh annotated with different textures and orientations; the body is knit
as seamed sheets with decreases. (g) Duck knit with textures and a large head from template (f).

connections [Crane et al. 2010]. We choose to use pure quad
meshes rather than quad-dominant meshes in order to exploit this
singularity structure. Achieving knittability with quad-dominant
meshes would require extra constraints aligning singular faces.
We defer to Section 5 to introduce the details of our method.

4 SYSTEM OVERVIEW

Figure 3 illustrates our system with an example of designing a toy
duck. The system takes as input one variation from a parametric
template of a duck mesh (a); if the geometry is not already a trian-
gle mesh, the system will tessellate it into one. A parametric tem-
plate is defined by parameters that describe degrees of freedom
q € A, where A defines the ranges of parameter variations that
map to continuous geometric deformations. For our examples, we
created the input parametric templates semi-manually by first cre-
ating cuboid cages in Blender and then computing the coefficients
for interpolation [Schulz et al. 2017a]. Parametric templates can
also be created with a variety of geometric editing methods [Gal
et al. 2009; Jacobson et al. 2011] or parametric CAD tools. Our sys-
tem allows users to create knit templates by enabling consistent
control of design axes across the space of geometric variations.
The user starts by directly annotating knitting composition, lay-
out, and orientation guidelines for how to break the duck into
patches by indicating (blue dots in (b)) that the top of the head
should be knit as a sheet to create a flap, that the head should be
a tube abutting the body (yellow dots in (b)), and that the layout
should be symmetric across the body. These composition guide-
lines are selected from an illustrated menu (Figure 4) and placed by
clicking a position on the input mesh. They can also draw desired
stitch orientation directly on the mesh, as well as explicitly spec-
ify layout boundaries as feature lines (not needed for this example).
Our system maps these knitting directives to orientation, edge, and
singularity constraints to create a novel coarse quad re-meshing al-
gorithm that jointly re-meshes the entire parameter space of the
input template to create a single parametric patch layout that satis-
fies the guidelines for all parameter values, (two shown, (c)). Users
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can choose to enable any available symmetries for their annota-
tions, which encourages, but does not guarantee that the resulting
quad layout generation will be symmetric.

This patch layout becomes the canvas on which the user
designs their template. By clicking and dragging, they specify
per-quad orientations, surface textures, and curvature shaping
guidelines, as well as specifying seams. Users may also enforce
exact symmetries by placing “equal stitch count” constraints on
specific patch edges, which will be taken into account during the
stitch generation step. Our interface is backed by a patch-level
knittability solver that not only validates the user’s design but
also assists in the design process by automatically finishing
partial designs with knittable completions. In (d), the user has
specified seaming-off the neck and knitting the inner tube with
short rows, as well as a simple stockinette texture, while in (f),
the user has rotated the orientation on the body, and our solver
has assisted by finding an alternative seaming strategy that works
with that orientation. At any point during design, the user can
vary the template parameters to preview different customizations
of their design. Finally, the user selects two variations to generate
machine instructions for and fabricate (e and g).

5 INTERACTIVE SURFACE PATCH SPECIFICATION

After loading a parametric template of a triangle mesh, the user
seeks to automatically generate a coarse quad mesh that adheres
to the composition, orientation, and surface layout guidelines. Our
key insight here is that there exists a direct relationship between the
singularity structure of cross fields and knitting composition guide-
lines. By identifying this correspondence, we created a quad mesh-
ing algorithm that is both theoretically grounded and able to repre-
sent important and commonly used knit pattern design techniques.
Importantly, the method ensures the resulting mesh is helix free,
a fabrication requirement of knitting, by providing feedback on
knitting composition requirements, as well as a helix visualization
tool to help users tune the grid size parameter toward a helix-free
design.
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Fig. 4. Knitting composition rules shown as quad singularities on
remeshed quad meshes. The corresponding triangle mesh versions are
shown on the right-hand side. Knitting directions are in orange and seams
in blue. Expansion rules correspond to negative singularities (top two
rows): joining tubes with no change of knitting direction can be done with-
out seams with one —1 singularity (E1) or with a seam connecting two
—% singularities (E2); joining tubes with direction change requires closed
seams, which can be done with two —% singularities (E3) or four —i singu-
larities (E4); adding a hole without changing the knitting direction can be
done with two —% or four —;11 singularities (E5, E6). Contraction rules cor-
respond to positive singularities (bottom row): knitting in the round and
joining at a line seam corresponds to two +% singularities (C1); knitting
in the round and closing with a flap that is knitted as a sheet and seamed
along its boundary corresponds to four +i singularities (C2); and knitting
a flat patch corresponds to four +% singularities at the boundary (C3).

Singularities and Composition Guidelines. The key composition
guidelines used in knitting to assemble tubes and sheets map di-
rectly to singularities in the quad mesh. This is not surprising given
their mutual correlation with the shape topology. We identified
nine knitting-relevant composition rules (see Figure 4), each defin-
ing a set of singularities and seams whose indices either add up
to —1 or +1. Expansion rules (—1 singularity sum) compose tubes
together (E1—E4) or create a hole (E5—E6). Contraction rules (+1
singularity sum) close tubes with a slit seam (C1) or flap (C2), or
bound sheets (C3). Contracting to a point is omitted as a +1 point
singularity is not possible on a quad mesh.

This approach has several advantages.

First, composition rules describe common knitting patterns; for
example, E1 splits a glove into fingers, and E2 is common in the
armpits of sweaters. Therefore, knitters can work in terms they
already understand rather than in singularities—they select com-
position rules from a menu and then click on the mesh to specify
where they should be placed (see pilot study in Section 8).

Second, because which composition rules to use is associated
with the template’s topology, we can validate a composition and
provide feedback on whether more expansion or contraction rules
are needed: the sum of all singularity indices must be equal to
the Euler characteristic, y: e index(v) = y = 2 - 29 — b,
where V is the set of vertices, g the genus number, and b the num-
ber of boundary loops. Importantly, giving control over composi-
tion allows the same shape to have multiple valid compositions.
For example, in the inset figure, the
arm of the teddy bear model could
be created by adding curvature to the
body tube (left), which is more likely
to fail on a machine, or knit by doing
a merge and then a flap at the hand
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(right), which is a more natural design for knitters to come up with.
Our interface allows users to have such high-level control while
ensuring that the total sum of subscribed singularities is valid.

Finally, with these composition rules, no additional seams are
necessary except on surfaces of non-zero genus (e.g., a torus would
need a seam to separate the first and last row), an additional benefit
of our approach.

Controlled Meshing for Knitting. Based on the correspondence
analyzed above, composition guidelines selected by users define
singularity constraints on the mesh. Our system uses these
constraints to drive the trivial connections cross-field design
algorithm [Crane et al. 2010].

Designers can further provide knitting direction guidelines by
drawing directly on the mesh. Soft directional guidelines respect the
existing composition and are treated as constraints on the trivial
connections solver. Hard direction guidelines override the singular-
ity structure imposed by the composition; the field is completely
determined through cross-field interpolations, with these direction
guidelines as constraints [Ray et al. 2008]. Hard directional guide-
lines are typically not necessary and often ill-advised because they
may cause arbitrary singularities and create cyclic dependencies
(helices). To give designers full control of the directional field, our
method includes this option and checks for helices [Bommes et al.
2011b] providing feedback to designers.

We further let designers sketch directly on the mesh to place fea-
ture lines for surface layout control. We also allow easy specifica-
tion of smooth closed loops using the method proposed in Campen
and Kobbelt [2014]. If feature lines are specified as seams, the mesh
gets cut along them; this affects field optimization since there can
be no smoothness constraints across seams. Otherwise, feature
lines are treated as hard integer constraints in the integer grid op-
timization, which enforces placement of edges on the generated
quad mesh.

Finally, these fields and constraints are used to create a mesh
using mixed-integer quadrangulation (MIQ) [Bommes et al.
2009]. The key modification that we make to the MIQ optimiza-
tion relates to templates, which we now discuss.

Parametric Template Variations. Parametric templates have been
extensively used in the fabrication community to allow shape
variability and customization while preserving manufacturabil-
ity [Schulz et al. 2014; Shugrina et al. 2015]. Commercial sys-
tems also use templates for personalization, e.g., for 3d printing
(https://www.thingiverse.com/). To generate a parametric knit
template, we must define a consistent quad-mesh across the param-
eter space defined by template parameters q € A. By consistency,
we mean that the user should define design axes only once, and
they should propagate consistently throughout the full parameter
space.

We assume that the user inputs a parametric template trian-
gle mesh with point-wise correspondence—i.e., there is a bijective
homeomorphism between Mg and Mq for all g,q € A, where
My is a mesh representing the variation defined by g. This corre-
spondence is directly specified when a parametric model is created
by geometric deformations, and there are methods for construct-
ing these maps for parametric CAD models [Schulz et al. 2017b].
Given a point-wise correspondence, a naive solution could define

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.


https://www.thingiverse.com/

16:8 « B.Jones et al.

a quad-mesh for one shape and propagate the result. However, this
may create quads with high distortion if variations are large. Con-
sistent quad meshing has only recently started to be studied. Azen-
cot et al. [2017] proposes a method for consistent cross fields be-
tween two shapes with point-wise correspondence. However, this
work would not allow us to preserve composition guidelines across
variations since singularities and combinatorics of the final meshes
may vary.

Our key insight of representing the composition axis as singu-
larities makes consistent template generation possible by propa-
gating the singularities with the point-wise correspondence and
using them to drive the cross-field optimization on each mesh M.
We can then jointly solve for a parameterization using a variation
on MIQ. As described by Bommes et al. [2009], MIQ takes as input
a cross field, defined by two orthogonal vector fields (ur, vr); it
finds a parameterization onto an integer grid (1, v) by minimizing
[|AVu—ur]||+||hVo—vr| integrated over the surface, for some size
parameter h and additional integer constraints derived from sin-
gularities. Since singularities are preserved in our method across
template variations, we can use any value of g to define the integer
constraints and minimize an energy summed over all variation of

the mesh q € A:

_ _ 4 _v4
O I R T B e e

To solve this numerically, we discretize the inner integral as a
sum over triangles and the outer one by sampling values on A.
Since computation could grow significantly with the number of
samples, we solve MIQ in parallel across n different configurations
of the mesh and add in a linear equality constraint that the (w4, v7)
coordinate values should be equal according to the point-wise cor-
respondence between meshes. Because these are linear constraints,
we can use them to eliminate variables that are part of the MIQ
solver. This makes the system matrix for solving n samples about
the same size as for one sample.

6 INTERACTIVE SURFACE PATCH ANNOTATION

Once a patch layout is designed, it is used
as a grid to lay out design guidelines that colow
directly control seaming, surface texture,
and curvature shaping, and to provide ad-
ditional partial control over orientation and
composition. Conceptually, each patch cor-
responds to a quadrilateral patch of knit
fabric, with each side presenting a uniform
boundary (row or column) to its neighbors,
as shown in the inset image. To modify the design, the designer
uses five tools to set design guidelines as labels on the mesh ele-
ments, which will be used to control the final pattern generation.
The orientation tool allows row and column directions to be
set by clicking and dragging across coarse mesh faces. The seam-
ing tool allows seams to be created by clicking on a coarse mesh
edge to create a seam extended to the next singularity or mesh
edge. Right clicking allows non-singular vertices to be marked as
stopping points for seams to allow for arbitrary seamed layouts.
The texture brush applies knit texture labels (such as ribbing) to
coarse mesh faces. The constraints brush can constrain the type of
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Fig. 5. Patch design and construction. (top left) Patch design seen in the
user interface. Here, short rows are positioned at the top and leaning in-
creases to the right. The gray background color indicates that the texture
is a rib. (top right) Patch knit graph generated by our system. Node color
indicates knit or purl. Leaning increases and short rows are highlighted to
illustrate their positioning. Nodes outside the quad are patch borders used
to ensure correctness and to align neighboring patches when connected.
When patches are connected to form the final pattern, they are contracted
away (bottom).

existence of increases, decreases, or short rows in faces, as well as
add sizing constraints along coarse mesh edge paths (constraining
two paths to have the same stitch count). Finally, the eraser tool
remove previously placed design guidelines.

Our system assists users by validating the knittability of their
choices and automatically completing partial designs as users
work. Given a coarse patch mesh M = (7, &, H,V), with faces
F, edges &, half-edges H, and vertices V, the labels are

Orientation | D(H) : H — {Col In, Col Out, Row In, Row Out}
Seaming | S(E) : & — {True, False}
Curvature Shaping | can_shape(F) : 7 — {True, False}
shaping(F) : # — {Row In, Row Out, Both, Distributed}
can_shortrow(F) : ¥ — {True, False}
shortrow_side(F) : ¥ — {Col In, Col Out}

Texture | tex(F): F — Z
Time | Tp: F - Z

Figure 5 shows how these labels appear in our interface. Al-
though not explicitly represented, the user can still make some
compositional changes, for example, choosing between a tube and
a seamed sheet in Figure 6. Curvature shaping guidelines indicate
whether a type of curvature shaping is allowed in a patch, and, if
so, they provide guidelines for how to place them. The location of
short rows is particularly important for knittability. The surface
texture parameter is an index into a database of knit-purl textures
from [Kooler 2012]. Time is a proxy for the order of patch fabri-
cation, and stitch count measures the length, in stitches, of each
quad side. The time parameter is automatically set by our system.



Fig. 6. Interactive seaming suggestions. (left) Initial suggestion minimiz-
ing seams (blue lines), assuming no composition or layouts are given. (mid-
dle) Suggestion after the user specified that the full head would be a sep-
arate piece seamed at the neck. (right) Suggestion after the user changed
knitting direction on the body.

Although these properties must be defined for each mesh
element, the user does not need to manually set all of them.
Instead, any specific decisions a user does make are treated as
constraints on the design space, and our system automatically
completes a valid design from partial specifications by inputting
these constraints plus our patch-level knittability constraints into
a constraint solver, then optimizing for minimal seaming. This is
especially helpful for finding seam patterns on complex shapes,
as shown in Figure 6.

Patch Level Knittability. We build upon validity properties on a
stitch-level mesh, defined by Narayanan et al. [2018]. While this
prior work defines low-level constraints by analyzing the fabrica-
tion process, we need to guarantee fabricability using only patch
level information. To accomplish this, we designed a lightweight
set of constraints on the patch representation that guarantees ma-
chine knittability if patches are constructed with a small set of con-
straints explained in the next section.

Here, we give an overview of the constraints on patch layout
and parameters. Their mathematical description and proof of suf-
ficiency are left to supplemental material. Patches are considered
neighbors only if the edge between them is not a seam, and the half-
edge labels on non-seam edges must be compatible pairs: (Row In,
Row Out) or (Col In, Col Out). This allows us to refer to the patch
structure with respect to its dual graph of row and column edges
(ordered from Row Out to Row In), and define row and column
neighbors.

C1 - Right-Handed Patches: The row and column directions
of knitting form orthogonal axes on the surface, and our first
constraint ensures that patch orientations align to these axes. To
enforce this, we require that orientation labels follow the order
Col In, Row Out, Col Out, and Row In, when circulating a patch
boundary counter-clockwise. Patches with exactly one side with
each orientation in this order we call regular, as they are almost
always the desired structure.

We additionally allow irregular quads to enable greater flexibil-
ity in orientation control post-quad meshing (see Figure 7), which
can be particularly useful when hard constraints on orientations
are used to override composition guidelines. Because faces are
all quadrilateral, one of the other orientations will be missing. In
knitting terms, these missing orientations are the start or end of
short rows, or where a piece of fabric is knit to or from a point.
We only allow the doubling of one orientation per face, except
for the special cases of all Col In or all Col Out, which our system
breaks into four irregular faces to use as sources and sinks.
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Fig. 7. Left: All valid quad faces (C1), (C3). Orange arrows are column
edges; green are row edges. The large face is regular, the most common.
The six on the right are allowed irregular faces, which can be interpreted
as regular by adding a 0 length side of the missing direction and merging
similar sides. Sources and sinks (bottom) are partitioned into four regular
quads (with one zero-length side each). Right: An irregular face in use and
an example tessellation.
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Fig. 8. A helix formed by inconsistent short rows.

C2 - Time Aligned: Time value is equal between row neighbors
and strictly increases between column neighbors in the out-in
direction. This ensures that there is a valid order of fabrication for
the object.

C3 - Limited Row Degree: Each face has at most one Row
In and Row Out side. This is necessary to avoid creating cyclic
knitting dependencies when connecting patches, as it allows
patches to be grouped into distinct rows.

C4 - Consistent Short Rows: Row neighbors must have the
same short-row location guidelines. This is used to prevent helices
from forming within a row of patches (Figure 8). They cannot be
aligned with splits or merges (discussed in Section 7).

Encoding Constraints. We implement these constraints as a sys-
tem of satisfiability modulo theories (SMT) equations included
in our supplemental material. We use SMT because we have mixed
boolean and integer constraints and because SMT solvers can vali-
date a design before all variables are set, and will even find a com-
plete and valid set of labels whenever possible, which we use as de-
sign suggestions. In order to encode (C1) with boolean constraints,
we express orientation as a pair of boolean variables and enforce
right-handedness per mesh corner by limiting which orientations
can be adjacent.

Enforcing (C1) at corners allows us to make an optimization that
improves both the speed of the solver and the quality of the results.
As stated above, regular faces are preferable in most cases. Irreg-
ular faces are only actually necessary at singularities, such as the
example in Figure 7, where their doubled or omitted directions off-
set extra or missing edges. We therefore limit our corner constraint
to only allow non-regular adjacency at singularities by default. If
the user wants an irregular face elsewhere, other mesh vertices can
be designated to act like singularities.
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Another optimization made for speed and quality is seam
bundling and optimizing for minimal seaming. An easy solution to
find is the trivial solution of seaming every edge. In most designs,
using the minimal amount of seaming is desirable, but computing
this across every possible edge is intractable. To mitigate this, we
leverage the facts that (1) there is no structural use for a seam that
does not partition the mesh, and (2) the set of mesh separatrices is
a sufficient set of seams to make any shape knittable with only reg-
ular faces. Rather than consider each edge separately, we bundle
paths of edges into long seams that are assigned to a single SMT
variable. By default, we initially use the separatrices as bundles, but
the user can click on edges to add other seam bundles for solver
analysis. This makes the solver fast enough to find a minimally
seamed solution by binary search on a maximum total seam length.

This heuristic is adequate for minimizing the amount of sewing
that is necessary, but the solver may suggest seams on features that
are not aesthetically pleasing. Because the suggestions are given at
interactive rates, the user can interact with the model by disallow-
ing seams in some locations and enforcing them in others. A result
of such interaction is shown in the second duck image Figure 6
where the user prescribes a seam along the neck and the system in
term suggests a flap on top of the head to minimize the total seams
under this configuration. Finally, the third image shows what hap-
pens when the designer decides to change the knit direction on
the body. The system automatically suggests a seam. All of these
suggestions were provided at interactive rates.

7 KNIT PATTERN AND MACHINE
INSTRUCTIONS GENERATION

Once a design is finalized, a specific template instance is chosen
to be knit. Here, we describe how provably knittable machine in-
structions are generated for any set of template parameters, which
we now consider fixed.

Sizing Optimization. The first step to creating an object is
determining the shape and size of each patch. To do this, we
calculate an integer stitch count for each side of each patch by
minimizing the squared error between the side length of each
patch in the template configuration chosen, and the length of
that number of stitches as produced by the target machine. This
optimization is done in the presence of several constraints to
improve quality and guarantee knittability.

Symmetry is enforced along mesh symmetries chosen by the
user. We also account for the user’s shaping choices here: if they
specify no short rows in a patch, then the number of rows in and
out must be equal, and similarly for columns if forbidding increases
and decreases. The ratio of width change to height and height
change to width are capped to avoid needing increases or decreases
of more than two stitches at a time, or overly tall short rows. The
user is also allowed size lines, paths whose total length is important
to get exact for sizing (such as the length of a sleeve or circumfer-
ence of a cuff), which are constrained to a maximum total error.

Finally, a feasible splits and merges criterion is enforced. When-
ever more than two tubes are joined seamlessly within a row, the
center tube(s) must have an equal number of stitches on their front
and back halves so that they can be flattened evenly between the
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front and back stitch beds. The exact formulation of the objective
function and constraints are given in our supplemental material.

Pattern Generation. Pattern generation involves tessellating
each patch into a composition of stitches, connecting them, and
defining an order for stitch construction allowing the pattern to
be scheduled on a knitting machine. Stitch-level representations of
patches will have one stitch wide borders, sized according to the
sizing optimization, and connected with simple 1:1 edges. These
borders are used to define how patches are merged together to
construct a stitch-level pattern, as shown in Figure 5.

A design goal of our system is to be extensible for future ad-
vancements, so we want our guarantees of knittability to be ag-
nostic to how patches are generated. To this end, we define a mini-
mal set of requirement for patches which, in conjunction with our
coarse mesh properties, guarantee machine knittability:

P1 - Knittable: a patch plus its border is a valid Knit graph as
defined by Narayanan et al. [2018] (described below), and
P2 - Consistently Stacked: any exposed short rows (rows that
connect to only one row border) are either all stacked at the
top or bottom of a patch, according to its short row location,
shortrow_side(F), and are exposed along the same border.

Validation. We are using knit graphs [Narayanan et al. 2018] as
our formalism of knittability. These are directed graphs with row
edges and column edges, where each node represents two stitches
in a column. Each node also has an integer time value, similar to
that of our coarse representation. Knit graphs are defined to have
several properties which, if all met, ensure machine knittability.
Unfortunately, validating several of these properties requires stitch
level information of non-neighboring patches, which we cannot
determine at the patch level. We formulate a slight variation of the
Knit Graph properties that imply the original but make the prob-
lematic properties locally checkable. In particular, we remove the
helix-free criterion and replace it with a stricter version of time
alignment. This formulation also covers some edge cases that the
prior work did not encounter, but which we must contend with.
We leave a detailed discussion of the differences in our formula-
tion and a derivation of the original properties to supplemental
material. Our knit graph properties are

K1 - Consistent Handedness: Knit graph nodes are right-
handed in the same sense as (C1). This ensures that the represented
fabric does not twist or cross over itself on the bed.

K2 - Time Aligned: Time values are equal within a row and
strictly increase up columns.

K3 - Limited Node Degree: Each node has at most one row
neighbor on each side, and at most two column neighbors. The row
restriction reflects the fact that a stitch has only two yarn ends, and
the column restriction prevents the machine from overstacking or
overstretching yarn on or between needles.

K4 - Feasible Splits and Merges: Interior tubes at splits and
merges have an equal number of stitches on their front and back
halves. Since splits and merges only occur along patch boundaries,
this is directly enforced by sizing optimization.

Now we sketch a proof of knittability—a formal proof is found
in our supplemental material. Property (K4) is an exact constraint



on the sizing optimization ((C4) only allows full rows at splits and
merges). Properties (K1) and (K3) depend only on the edge struc-
ture around nodes, which does not change with the contraction
used to join patches, so (P1) is sufficient to guarantee them. (K2)
will be true if the border nodes on adjacent patches have matching
time values. While this is not true by construction, (C3)-(C4) and
(P2) together allow us to re-scale time values within each patch so
that they do align on borders.

When designing our framework,
we deliberated between having graph
nodes or graph edges on the borders / N\ /‘ ’\
between patches. The inset image ./' \. L R )
illustrates why we chose edges. If TN ./ \.
nodes are chosen, then it would be * W M /' \
possible to change the local edge ®ee o 4
structure when merging, violating X v
(K3) (left). Using edges also allows
easy specification of increases or decreases leaning into a shared
edge, a common knitting effect creating an apparent seam (right).

Knit Graph and Instruction Generation. Our system uses a sim-
ple patch generation algorithm. An example patch is shown it
Figure 5. We construct patch knit graphs in rows of constant time
value (K2), linearly interpolating their widths. Sizing optimization
ensures that no row is more than double the width of its neighbors,
so we can distribute increases and decreases without violating (K3).
(C1) says that the overall patch has the same orientation require-
ment as (K1), so we can place all internal edges with the same ori-
entations. We place short rows in accordance with (P2) to account
for differences between rows in and out. Finally, we construct a
simple, one node border for each edge attached by simple edges.

8 RESULTS

We set out to design a system for creating high-level knitting tem-
plates that can be customized to enable shareability and remixing,
and that enables fast and easy iteration over the seven axes of knit
design. We demonstrate the effectiveness of our approach by a se-
ries of examples highlighting the capabilities of our system in qual-
ity parametric meshing, creating a wide variety of objects, and in-
teractively exploring the space of design variations.

Quad Meshing. Other work has taken a field-based meshing
approach to knitting, but ours is the first to explicitly incorporate
singularity structure to control composition. The teddy bear
example demonstrates the benefits of this approach. It would be
natural to knit the teddy bear using tubes for each limb and one
for the body and head. Achieving this composition from only
user-provided direction strokes is very difficult because specific
compositions need specific singularity placements, and singulari-
ties are difficult to control with only directional strokes. In Figure 9,
the left two images are typical examples of a purely orientation-
based meshing of the model. The inability to precisely control
field singularities leads to helices wrapping around the body.
These require long and unnatural seams to break the dependency
cycles they induce. On the right is a structure resulting from the
application of our composition rules, and the resulting knit bear.
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Fig. 9. (left two) Meshing results achieved by sketching directions on the
surface. Both have helices that must be seamed off and would be com-
plicated and non-intuitive to sew. (third) The meshed teddy that our sys-
tem generated to match the composition rules of knitting each limb in the
round and then sewing them onto the torso followed by (fourth) an image
of its physical realization as a multi-part knit. The blue lines are seaming
suggestions proposed by our algorithm.

Fig. 10. Our consistent meshing is shown on the left and compared to
the naive approach of running the MIQ on one mesh and transferring the
resulting quadrangulation onto another using the point-wise correspon-
dences (two examples shown on the right).

We also validate our joint parametric MIQ by comparing it to the
nave strategy of solving against a single mesh variation and propa-
gating via pointwise correspondence. In Figure 10, all dresses have
the same singularity structure. The dresses on the left were jointly
parameterized using our approach, while the pairs on the right
were computed on one dress and transferred to the second. Com-
pared to the joint parameterization, transferring the child’s pattern
to the adult dress leads to distortions in the midsection, whereas
the other direction has distortions in the bust and asymmetries in
the skirt.

Design Space Coverage. Next, we analyze our tool’s coverage of
the design space, based on the design axes that we have identified.

Surface Texture. Textures are illustrated in Figures 1 and 11. As
can be seen in both, texture does not need to be uniformly applied
over the entire model but instead can be applied to any region that
aligns with patch borders. This provides full control over texture
since surface layout features can be used to influence border place-
ment during meshing. Interaction of texture with other design axes
can be complex. For example, textures and shaping can co-exist in
the same patch and are automatically handled by our pattern gen-
eration algorithm. In Figure 11(c), the diamonds at the bottom are
much wider than the diamonds at the top, due to decreases neces-
sary to change the radius of the skirt from bottom to waist.

Curvature Shaping. Shaping plays an aesthetic as well as a func-
tional role. Figure 11 illustrates user control over how decreases
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are placed for different aesthetic results. Skirt (a) is fully symmet-
ric, while skirts (b) and (c) have flat backs, with shaping only al-
lowed on the front, and skirt (d) only has shaping at the sides with
a flat front and back. Skirts (b—d) have decreases aligned and lean-
ing toward a patch edge, creating an apparent seam.

Surface Layout. As already described, surface layout features im-
pact the placement and transitions between textures. Figure 11
shows another fundamental, though more subtle, impact on curva-
ture shaping—the user prescribed feature lines to control the place-
ment of apparent seams, as can be seen when comparing skirts
(b) and (c). Symmetry is another important layout feature. Once
this is specified, the system will automatically ensure symmetry
in the placement of increases and decreases, seams, and even sin-
gularities on compositing guidelines. For example, in Figure 3, it
would be hard to place singularities symmetrically without auto-
mated support.

Seaming. Key functional aspects of seaming are specified during
composition, but these interact through decisions about the
surface layout of the mesh; seaming is often necessary to support
orientation changes. Our system helps the user navigate this
space. As was discussed in Figure 6, even if seaming guidelines
from composition and surface layout are not provided, a valid
and minimal seam choice will be presented to the user, who can
interactively control the placement by enforcing or disallowing
seams on certain areas. The system updates the seam suggestions
at interactive rates, to allow easy exploration while guaranteeing
knittability. Figure 12 shows the seaming layouts of our machine
knit examples with seams.

Orientation. As discussed in multiple examples, orientation af-
fects the ease of knitting, shaping choices, and seaming placement.
Further, local changes in orientation can lead to non-fabricable
designs if not validated globally (an important reason orienta-
tion change is not supported in [Narayanan et al. 2019]). In ad-
dition to allowing orientation control during meshing, our sys-
tem allows users to easily flip the orientations locally. As can
be seen in Figures 3 and 13, the system will automatically sug-
gest seams after a direction change to ensure knittability and up-
date shaping to conform to the mesh—e.g., use short rows instead
of increases/decreases on the sleeves to match the circumference
change from shoulder to wrist.

Composition. Composition guidelines allow designers to create
large pattern variation from the same input mesh. For example, in
Figure 14, the design on the left uses a Norwegian drop shoulder
and is seamed at the arms. The design on the right is a seamless
yoke sweater, which is done with merges at the armpits followed
by evenly distributed decreases up to the neckline. A similar com-
position variation is shown on the dresses (a) and (b-d) in Figure 1.
Composition guidelines are particularly useful when knitting com-
plex shapes, as discussed in Figure 9. We further illustrate how
they can be used to structure irregular shapes like the bunny (see
Figure 15). By specifying how we wish to knit the ears and tail, our
system discovers appropriate knitting directions to capture both
the compositional structure and the complex curvature.

Variable Shape. As discussed in Section 2, resizing is an impor-
tant and common aspect of knit pattern design and use. Resizing
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is challenging because it requires changing both the stitch counts
of shaping operations, such as the number of short rows, increases,
and decreases, as well as re-applying any textures to the new stitch
layout. Furthermore, resizing typically requires variations on the
geometry itself. A dress made to fit a child is not simply a rescaled
adult dress.

Our method allows users to create a mesh that is jointly opti-
mized over multiple parameter values of a shape, which allows
users to specify knitting guidelines on a single template and have
them be directly applied to different shape variations. For example,
in Figure 1, the adult and child dresses are variations of the same
drop shoulder pattern with identical textures but different relation-
ships between arm length, skirt length, and torso height. Figure 16
further illustrates how our system allows designers to create cus-
tomizable templates for knitting, by illustrating three fabricated
variations of a hat. Both of these examples were enabled by our
consistent quad-meshing method, shown in Figure 10.

Interactive Exploration. All models took about 4-13 minutes
to design: the quad meshing step took about 1-6 minutes, the
labeling about 1-3, and pattern generation with sizing optimiza-
tion in 2-4 minutes (except the bunny, which took 15 minutes
to optimize sizing). To establish the effectiveness of our inter-
active editing capabilities for design space iteration, we asked
Narayanan to recreate some variations of the dresses in Figure 1
using [Narayanan et al. 2019]. In our system, we were able to
create an initial design in 5 minutes, and create the variants (c)
and (d) in 2 minutes each, most of which is spent in pattern
generation. Variant (a) took 8 minutes as it required composition
changes. Narayanan estimated that it would take between 15 and
40 minutes for each texture variation, depending on how carefully
textures were applied, and between 45 and 60 minutes to change
shaping between short rows and increases and decreases. Their
system would not be able to handle direction changes or re-sizing
without complete re-design. This shows how our approach and
solver assisted editing enables exploration of design alternatives
on the scale of minutes rather than hours.

Pilot Study. We validated the usability of our system by conduct-
ing a pilot user study with three participants having experience in
knitting or garment design but not in geometry processing. In the
study, we first gave a tutorial on how to use our system and then
asked the participants to reproduce a textured variant the duck de-
sign shown in Figure 3(e), and also to create their own dress design
using the model from Figure 1. All participants were able to deter-
mine the correct composition rules to recreate the duck within 9
minutes on average, and were also able to design a knittable dress
within the half-hour provided them. As shown in Figure 17, all
three dress designs have a different composition structure. While
the users had no understanding of quad-meshing singularities they
managed to achieve the desired structure using the intuitive com-
position guidelines in our tool. These dresses further illustrate the
design freedom in textures, shaping, seaming, and surface layout.
The details of the study can be found in the supplemental materials.

Additional Implementation Details. With the user-designed
cross field as input, we use the libigl [Jacobson et al. 2019] imple-
mentation of MIQ to generate the global parameterization; users
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Fig. 11. Meshing, labeling, and fabricated results of four skirts generated from the same input mesh, with different coarse meshing and labeling. Orange
lines on (b) and (d) highlight the apparent seams caused by concentrating shaping, and on (c) highlight the effect of shaping to narrow the texture toward
the top of the skirt. Red “X”s over a shaping label indicate that no shaping is allowed in that patch, a symmetric decal indicates distributed decreases, and

an angled decal indicates leaning decreases aligned to the edge the decal leans toward.

Fig. 12. Seaming layouts of all machine knit examples. Blue lines indicate seams in the original design, whereas yellow seams were added manually to
account for missing functionality in our scheduler implementation. The skirts, hats, and seamless dress were omitted because they do not have any seams.
The angled and child dress are ommitted because they use the same template as the drop shoulder dress (far right). The human scale sweater also uses this

seaming layout.

can adjust a parameter for quad size to obtain the desired level
of coarseness. To compute the cross-field given composition rule
singularities, we use the implementation of the trivial connections
from Directional [Vaxman et al. 2020]. LibQEx [Ebke et al. 2013] is
used to extract the quad mesh. Z3 solver [de Moura and Bjerner
2008] is used for SMT equations. We implemented 20 textures
from Kooler [2012] and applied different combinations to most
of the models we fabricated to illustrate this capability. For ma-
chine knitting, we use the scheduler code provided by Narayanan
et al. [2018; 2019] to generate instructions for the knitting machine.
Hand knitting instructions were generated using custom code. All
examples are knitted either by hand or by a 7-gauge SHIMA SEIKI

SWG091N2 knitting machine. Models were hand-stitched together
along seam lines after knitting, and the toy models were stuffed

with batting.

9 LIMITATIONS AND FUTURE WORK

Our system invites several avenues for future work.

Our quad meshing pipeline has limitations, some of which are
long-standing problems in meshing. Global parameterization will
not be interactive if the resolution of the input mesh is fine, or
if too many constraints are added. In order for our composition
rules to prevent cycles, it is important that the singularities
are connected by mesh edges. This is not explicitly guaranteed
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Fig. 13. Close up of the sleeves from Figure 1 dresses (b) and (c). In (b),
columns are aligned down the sleeve, while in (c) they wrap around.

Fig. 14. Three sweater patterns from the same input model but meshed
and labeled differently. The left sweater has seamed sleeves and short rows
on the neck, while the one in the middle was completely knitted in the
round using increases and decreases. These two sweaters were knitted by
hand, showing how our method can be used for both machine- and hand-
knitting. The rightmost sweater has the same composition as the leftmost,
machine knit to human scale with textures added on the arms.
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Fig. 15. The Stanford bunny illustrates composition guidelines. It is
meshed by placing line seams (C1) on the tips of the ears, a split from
the head to two ears (E1), and a flap on the tail (C2).

by our meshing algorithm and can fail, for example, if two
symmetric composition rules are only slightly offset from each
other. However, in most cases, our helix checking visualization
and the tunable grid size parameter combined can avoid the
helices. For example, when a participant of the user study created
the duck design, they initially chose a grid size that led to a
helix, but the researchers were able to help the participant tune
the grid size a bit to create
a helix-free design (shown
in the inset figure: left
contains a helix and the
magenta triangles indicate
where the helix could
start; right is helix-free).
Our implementation of
patch generation is very

ACM Transactions on Graphics, Vol. 41, No. 2, Article 16. Publication date: December 2021.

Fig. 17. Variations of the dress created by users in the pilot study (top row
is front view, bottom row back view), illustrating the usability and design
freedom in the system. Users were able to control composition using only
prior experience on knitting or garment design but no understanding of
geometry processing, quad meshing or singularities.

simple and does not capture the full richness of possible surface
textures such as cables, lace, or colorwork. We also do not take
into account the physical properties of surface texture on the
patches themselves. However, our system is designed to be built
upon using our patch formalization in order to support these
capabilities, so recent work focusing on surface textures such as
Hofmann et al. [2019], Leaf et al. [2018], or Karmon et al. [2018]
could be used to generate patches within our framework.

To generate machine instructions, we used the open source
scheduler implementation from Narayanan et al. [2019], which
does not support some of the more complex composition rules that
we do such as flaps to close tubes, even though the scheduler as
described in that article does. Reimplementing that functionality
was beyond the scope of this work, so we worked around the



limitation by introducing extra seams to partition our designs into
shapes that the scheduler will accept. We manually added these
seams using our existing seaming tool by simply selecting and
clicking one edge along each sheet-tube boundary (a transition
between a sheet a tube is always bounded by singular vertices,
and so can be seamed without adding), but this could be easily au-
tomated by labeling each coarse row as tube-like or sheet-like (is it
a cycle), and adding a seam between any rows that alternate from
sheets to tubes. Fully automatic machine instruction generation
would require re-implementing the missing functionality. The
yellow seams in Figure 12 illustrate where we added these seams.

Finally, it would be interesting to incorporate physical sim-
ulation into the design loop. In addition to the internal forces
explored by works like [Kaldor et al. 2008], [Leaf et al. 2018],
and [Karmon et al. 2018], the form of a knit object is strongly
influenced by the physical context it will be used in, such as
stuffing or draping over a person. For instance, our duck example
was knit with short rows to achieve the torus body, but could
have been knit as a simple straight tube and relied on stuffing for
the shaping. Simulation of both internal and external forces could
help designers visualize the final result of their design decisions
before fabricating. Simulation of the machine knitting process
will also be important to address the problem of machine tuning.
The definition of machine knittability we use does not guarantee
that the program generated will not fail on a real machine due to
the interaction of machine tuning parameters (yarn tension and
stitch size) and material properties (yarn thickness, friction, etc.)
To the best of our knowledge, no existing work tackles this aspect
of automatic knitting machine programming.

10 CONCLUSION

Our system makes the design of machine-and hand-knittable ob-
jects accessible to a lot more people. First, it lets users easily and
quickly explore interrelated design axes while guaranteeing knit-
tability and pattern production. Furthermore, because the system
takes a parametric 3D model as input, it generates template pat-
terns customizable by users unfamiliar with intricacies of knitting.
As a result, machine knitting, like 3D models, can become cus-
tomizable, modifiable, and universally accessible.
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