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ABSTRACT

This paper presents a framework to describe and explain
human-machine collaborative design focusing on Design Space
Exploration (DSE), which is a popular method used in the early
design of complex systems with roots in the well-known design
as exploration paradigm. The human designer and a cognitive
design assistant are both modeled as intelligent agents, with an
internal state (e.g., motivation, cognitive workload), a knowl-
edge state (separated in domain, design process, and problem
specific knowledge), an estimated state of the world (i.e., sta-
tus of the design task) and of the other agent, a hierarchy of
goals (short-term and long-term, design and learning goals) and
a set of long-term attributes (e.g., Kirton’s Adaption-Innovation
inventory style, risk aversion). The framework emphasizes the re-
lation between design goals and learning goals in DSE, as previ-
ously highlighted in the literature (e.g., Concept-Knowledge the-
ory, LinD model) and builds upon the theory of common ground
from human-computer interaction (e.g., shared goals, plans, at-
tention) as a building block to develop successful assistants and
interactions. Recent studies in human-Al collaborative DSE are
reviewed from the lens of the proposed framework, and some new
research questions are identified. This framework can help ad-
vance the theory of human-Al collaborative design by helping
design researchers build promising hypotheses, and design stud-
ies to test these hypotheses that consider most relevant factors.

*Address all correspondence to this author.
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INTRODUCTION

Human designers — be they engineers, software develop-
ers, hardware designers, industrial designers, or architects — have
been aided in the design process by intelligent tools for over six
decades now [1]. As systems from all domains become more
complex, and given that our capabilities as human designers do
not evolve at the same rate, intelligent design tools have grown in
capabilities to better assist humans in the design process, leverag-
ing advances in artificial intelligence and computing infrastruc-
ture.

In this paper, we use the term cognitive assistants (CAs) to
refer to a broad class of such intelligent tools that act as agents
that “augment human intellect” [2]. By casting CAs as agents,
we imply that they interact with an environment and have goals
they try to achieve [3]; however, this definition does not imply
any level of autonomy or sophistication in the goals or in the
strategies used to achieve those goals. A standard gradient-based
design optimization tool can be compared to an agent with a sin-
gle static goal of finding the best possible design in a static design
space using a single strategy — going in the direction of the gradi-
ent; however, the definition also includes more intelligent assis-
tants that reason (e.g., generate sub-goals) based on their internal
state and estimated state of the world, use a variety of strategies
to achieve goals (e.g., different heuristics), and learn (i.e., adapt
to the environment to achieve their goals more efficiently). Rus-
sell and Norvig define these agents as learning agents [3].
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This paper proposes a framework that describes the interac-
tion and collaboration between two agents — the human designer
and a cognitive design assistant — involved in a design task. As
such, although the framework applies to rudimentary interactions
(e.g., through static Graphical User Interfaces), it is designed to
capture more sophisticated interactions including interactive and
natural language interfaces. These kinds of intelligent agents,
which have some reasoning and learning abilities and have a nat-
ural language interface, are the focus of this paper. They are
also more aligned with modern definitions of CA, such as the
one by Le and Wartschinski in [4]: “Cognitive Assistants offer
computational capabilities typically based on Natural Language
Processing, Machine Learning, as well as reasoning chains oper-
ating on large amounts of data, enabling them to assist humans
in cognitive processes”.

Although many design theories have been proposed, to the
best of our knowledge there is no single cohesive theoretical
framework in the literature that models the interaction and col-
laboration between a human designer and a CA during a design
process. There are, however, models that describe parts of it in
the design cognition literature [5, 6] (design by a single human
individual), design teams literature [7, 8] (human-human col-
laboration), and human-machine collaboration literature [9, 10]
(human-CA collaboration outside of design). This framework
builds upon these three bodies of work and focuses on the spe-
cific context of design space exploration, as a first step towards a
more general theory of human-AlI collaborative design.

To create better cognitive design assistants that improve de-
sign outcomes (e.g., design quality and diversity, efficiency) we
need a deeper understanding of the interaction between human
designers and CAs during the design process [11]. The goal
of the proposed framework is to provide a cohesive theoretical
frame of reference and a common language to develop and val-
idate new explanatory and predictive models that focus on spe-
cific components or processes of human-AlI collaborative design.
This is echoed by the review on design cognition by Hay et al.
in [11], where they remark the importance of studying how Al
can help in the design process, especially as a companion to hu-
man designers. Although the ideal framework would describe all
possible interactions between human designers, intelligent tools,
and design processes, this is out of scope for this paper.

A very high level view of the model is shown in Figure 1.
The main components involved are the Human Designer, the
Cognitive Assistant, the Tradespace Exploration Tool, and the
Tradespace Exploration Problem that is being solved. We have
chosen to focus on Design Space Exploration or Tradespace Ex-
ploration [12] as our design task of choice due to its popularity
in the early phases of complex system design [13].

Tradespace Exploration is widely used across different types
of design (e.g., consumer product design, complex system de-
sign, and architecture design), and is a useful process for two
main reasons: First, by systematically and quantitatively com-
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paring a large number of design alternatives, it helps reduce hu-
man biases from past experience and expertise, which can result
in better design outcomes (better design performance/cost/risk
obtained with less resources). Second, Tradespace Exploration
can help the designer learn useful information about the design
problem [6, 14] (e.g. what design decisions have the highest im-
pacts on the final value of the designs, how changes in the needs
of stakeholders affect the most valuable designs, etc.). For ex-
ample, two studies with NASA’s Jet Propulsion Laboratory’s A-
Team concluded that, in Tradespace Exploration studies for early
space missions design, the knowledge extraction part of the pro-
cess is at least as important as finding the best designs. In the
first study, Fillingim et al. [15] mention how design heuristics
— rules of thumb to guide the design process — are heavily used
during the tradespace exploration process by professionals, to the
point it justifies creating a formal repository of this knowledge so
that designers can perform better in future design problems. In
the second study [16], Viros-i-Martin and Selva conclude that
obtaining this knowledge about the design space and the trade-
offs between decisions is an important outcome of the process,
as evidenced by the answers on a semi-structured interview with
the test subjects (e.g., “having a clear understanding of this in-
formation is vital to our job as decisions need to be justified to
humans.”) As stakeholders’ needs change during the early de-
sign process, possessing this knowledge becomes key to rapidly
evolving designs to meet new needs and restrictions. Having
this knowledge about the design problem can also lead to bet-
ter design decisions [17, 18]. This knowledge discovery aspect
of Tradespace Exploration is central to the framework and model
we describe in this paper.

If we go into a more detailed view of the process, the objec-
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FIGURE 2. TRADESPACE EXPLORATION DESIGN PROCESS.

tive of Tradespace Exploration as a design process is to choose
one or a set of design alternatives from a pool of possibly mil-
lions. Each design alternative is described as a set of decisions
that can be organized differently for each design problem: deci-
sions can be discrete or continuous, and sets of decisions might
be grouped as assignments, combinations, partitions, etc. To bet-
ter describe what we mean by design decisions and their group-
ing, we follow the example of a satellite system design problem.
Nonetheless, this design process can be applied to any design
problem that can be decomposed into decisions. To make the ex-
ample more clear, as well as show all the steps and paths involved
in the process, we introduce Figure 2. Following our example,
first we start on the Formulation step, by identifying the needs
of stakeholders in the satellite system (e.g. they want to create
a satellite system that measures soil moisture at the Earth’s sur-
face by using well-tested components). This is followed by the
decision of how many satellites will the system have, as well
the decision on what structure will the satellites follow in space
(constellation, formation, train, federation, etc). This results in
a Problem Formulation, with which the Search step can begin.
Then, the next decision is what to put in each satellite and where
should that satellite be, which amounts to design synthesis. Some
of these decisions are discrete, while others are continuous, and
some of the decisions can be organized in sets that translate to
assignment or partition problems. Once that is performed, each
constellation is evaluated for cost and metrics related to stake-
holders’ needs, and this process is repeated until enough of them
exist, by which point we have a Dataset. A design dataset can
be visualized and analyzed, which are the two main activities in
the Analysis step. For example, one might look for patterns in
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well-performing satellite systems. Based on the results of this
analysis, the problem can either be reformulated by going back
to the first step, or new designs can be synthetized based on the
insights obtained during the process. If the designer is content
with the results on both designs and learning, the process can end
with final design choices; which in our example would amount to
the satellite system that will end up going to space. This zig-zag
process in tradespace exploration is common in design processes
based on the “design as exploration” philosophy that will be de-
tailed later in the paper [19-21].

In the framework we are describing in this paper, the con-
cept of knowledge and the acquisition of it — learning — take the
foremost role. A unified representation of knowledge can help
when creating robust metrics for measuring its acquisition. One
example of this pair of knowledge representation and a set of
metrics for measuring it can be observed in [22], where Bang
and Selva present Knowledge Graphs (KG) as an explicit repre-
sentation for knowledge and create a set of metrics and tests to
measure learning. In our framework, we do not prescribe any
knowledge representation for both human and CA’s knowledge,
but we do require that one exists, that it is explicit, and that met-
rics exist for learning to be measured with that representation of
knowledge.

The presented framework is of explanatory rather than pre-
dictive nature. It is intended to help design researchers explain
the phenomena observed in studies in the literature. It also de-
scribes certain kinds of interactions that have never been ob-
served yet due in part to lack of capabilities of current cogni-
tive design assistants. For most of the framework description,
we will have a running example based on Daphne [23], a design
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CA developed to help space engineers design distributed satellite
missions for Earth Observation.

The rest of the paper is organized as follows: First, we go
through the literature related to the main concepts and building
blocks of our framework. Following that, we describe the main
aspects of the framework by going into each part of it and de-
tailing the chosen models and attributes for both the human de-
signer, the CA, and their relationships. Then, we discuss how the
framework can describe the tradespace exploration process with
a temporal view of the interactions between the agents involved,
including examples of different kinds of interactions. Finally,
we discuss the implications of this model in the design of future
CAs, as well as plans for its validation.

RELATED WORK

Our framework builds on theories from different fields. In
this section, we review works on design cognition, design the-
ory, and human-machine interaction — from robots to computers
to CAs, in settings as different as a warehouse and a concurrent
design facility. We also review part of the large body of work
on understanding designer teams, with a strong focus on inter-
personal communication and how that affects each step of the
design process.

Design Theories and Design Cognition

Design as a science is usually traced back to the seminal
book from Simon, “The Sciences of the Artificial” [24], pub-
lished five decades ago. The design theory in the book describes
a design paradigm based on understanding the design activity as
a problem-solving activity. This translates to considering “de-
sign as search”: when given a problem statement, one has to
search for an optimal or satisficing solution. This breakthrough
motivated many design studies to test various aspects related to
the theory. Dinar et al. [25] describe over 180 related studies
published since the publication of Simon’s book. In the last
25 years, new theories of design have appeared, but most if
not all of them describe one or more “zig-zagging” processes,
where the designer jumps back and forth between two related
processes or spaces. For example, design as co-evolution [19]
describes a zig-zagging process between problem space and solu-
tion space, and Concept-Knowledge (C-K) theory [20] describes
a zig-zagging process between the concept space and the knowl-
edge space. The Function-Behaviour-Structure theory describes
design as zig-zagging between the design function and its struc-
ture, through different processes involving the behavior of the
design [21]. All of these processes sit on top of the zig-zagging
process between synthesis and evaluation of designs implicit in
any iterative design search scheme. Collectively, all these zig-
zagging processes and their interplay are what constitute the “de-
sign as exploration” framework, implemented in various related
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processes such as Trade Space Exploration [12] and set-based
design [26].

In the recent past, three different review papers [25, 27, 28]
have come to the conclusion that to design better tools for de-
signers understanding the design process is not enough. What is
needed is a better understanding of the cognitive processes in the
human designer’s mind. The main roadblock to improving the
understanding of a designer’s mind, according to the reviews,
is the lack of a common vocabulary or ontology for the design
processes, as well as the fact that metrics about cognition are dif-
ficult to measure. On the one hand, an attempt at unifying the
diverse design cognition theories in the literature is a theory by
Cash and Kreye known as the Uncertainty Driven Action (UDA)
model [29], where design is viewed as a process with three ac-
tions, all related to uncertainty perception. The driver for the
human to go through the design process is to reduce their un-
certainty with relation to the design problem, be it by acquiring
information, sharing it with other agents involved in the design,
or creating a representation for the design. On the other hand, a
new field of studying designers’ brains directly is opening up, as
described by Gero and Milovanovic in [30].

Coghnitive Assistants

The structure most modern CAs follow can be traced back to
a DARPA project known as the Cognitive Assistant that Learns
and Organizes (CALO) [31]. Many commercial CAs follow the
structure defined in CALO for CAs. Siri, from Apple, is a direct
spin-off of the project. As described in the Introduction, modern
CAs — as well as CALO - offer computational capabilities typi-
cally based on Natural Language Processing, Machine Learning,
and reasoning chains operating on large amounts of data, with
which they assist humans [4]. Of note, CAs do not need to im-
plement a cognitive architecture such as Soar [32] or ACT-R [33]
— and most of them currently do not implement any —, and nei-
ther do they need to learn from their interactions with users in any
form. This being said, our vision of CAs for this model is more
of a design peer that teams with the human designer rather than a
chatbot with no reasoning capabilities, which requires some hu-
man understanding capabilities. This means at least listening and
adapting to the designer to align priorities and goals during the
design process. The most general model that contains our vision
of a CA is that of Intelligent Agents [3], which observe their en-
vironment, and then act on it based off goals they are trying to
achieve. To formally model the attributes of the CA, we look
at the taxonomy for CAs defined in [34] by Maier et al. In that
paper, they define CAs in terms of 4 main characteristics: Learn-
ing, Intelligence, Autonomy, and Communication. Each of these
4 characteristics has a scale unique to them, with Gagne’s Hi-
erarchy of Learning [35] for Learning, Bloom’s Taxonomy [36]
for intelligence, an adapted version of the 5-Level Classification
Scale for Autonomous Vehicles [37] for Autonomy, and the Hi-
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erarchy of Natural Language Processing Skills [38] for Commu-
nication. For example, Daphne, the CA the authors have worked
on, has a rating of “Concept Learning” in the Learning attribute
— due to its ability to consistently answer queries with the same
intent even if the phrasing is different each time —, “Evaluate” in
the Intelligence attribute — due to its ability to criticize designs
from the user —, “Subsystem” in the Autonomy attribute — due
to its inability to completely carry out the design task without
human intervention —, and “Multiple Meanings” in the Commu-
nication attribute — due to its usage of advanced Speech-To-Text
techniques —. In our framework, we further specialize some of
these scales to make them more relevant to the design problem.

Usage of CAs in design — as per the modern definition pro-
vided above — is a pretty new development, so not a lot of them
are available publicly. All the design CAs mentioned in this para-
graph inform our model, both because of their strengths and their
weaknesses. The list includes the Daphne family of CAs, with a
version for Earth Observation mission design [23], and a version
for analysis of simulation data of Martian Entry, Descent, and
Landing [39], as well as the Systems Engineering Advisor [40],
whose purpose is to find gaps in requirements for space missions.
Other CAs include the intelligent agents in Hyform [41], geared
towards acting as peers to a hybrid design team for tasks involv-
ing Unmanned Aerial Vehicles, the intelligent virtual agent [10],
which helps with designing electoral districts, and the Design
Engineering Assistant [42], geared towards data processing to
help with early space mission design. There are examples of de-
sign assistants that do not fit exactly with the modern definition
of a CA yet are still relevant to our model as examples of certain
interactions. The Architect Collaborator (TAC) [43], conducts a
tradespace exploration of building designs for architects based on
requests from them. The Intelligent Manufacturing System De-
sign Assistant (IMDSA) [44] uses expert systems to assist in the
design of manufacturing plants. Sindi [45] performs tradespace
analysis based on designer preferences for highways. PQE and
Q-Chef [46] are a framework and implementation of an assistant
that finds novel designs based on the user input for recipes. All of
these CAs are mentioned during the paper when their capabilities
are a relevant example to the framework.

Human-Machine Collaboration

In our framework, we are trying to model the interaction be-
tween a human and a machine. The field with the most research
in the area, although with little attention to the design task, is
robotics. One of the key processes identified in human-robot in-
teraction as key to communication is the process of accumulating
common knowledge, beliefs, and assumptions in a collaborative
task, known as common ground [47]. Common ground helps
collaborators know what information their partners need, how to
present information so that it is understood, and whether part-
ners have interpreted information correctly [47]. The field of
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robotics has studied common ground as the basis for collabora-
tion between humans and robots [48]. Hoffman and Breazeal [9]
describe human-robot collaboration as based on shared goals and
plans, where the robot must be able to adapt in real-time to the
human actions. They claim that, based on the Joint Intention
Theory [49], in order for effective collaboration to emerge, all
teammates must have shared beliefs about the state of the task,
and a coordinated plan of action, as well as trust in the coun-
terpart. A successful application of this theory can be identified
in [50], where Nikolaidis et al. create a reinforcement learning
model based on joint action observation that significantly im-
proves team performance. In recent years, the research in the
field has moved towards fluency in the interaction, which is a
measure of how synchronized these hybrid teams of humans and
machines are [51]. Although design has not been the focus of
human-robot interaction, some recent work has looked into it.
For example, Cobbie [52] is a CA turned robot to foster creativ-
ity in sketches, and in [53], Law et al. present a robotic arm that
does tradespace exploration together with a human. Finally, de-
sign research has shown that adverse effects exist when creating
Als for design that do not take into account the human character-
istics and intentions [54].

To use all this corpus of robotics research in the field of de-
sign, our framework maps the concepts of shared goals and plans
between human and machine to the task of design space explo-
ration, listing the goals that human and machine move towards,
as well as how the CA plans according to its prediction of what
the human designer is planning.

Design Teams

Design can happen in teams. Our framework describes a hy-
brid team composed of a human and a CA — extensions to multi-
ple humans and one or more CAs are left for future work. A lot
of research has gone into understanding how design teams work
to make them better at performing the design task, although usu-
ally those teams are composed solely of multiple humans. Our
framework’s task is to adapt the results of the many works on
design teams to a hybrid team of human and CA. This research
has been approached from many fronts: for example, on the topic
of team formation, Jablokow et al. [8] investigate the effects of
team composition in terms of cognitive characteristics such as
Kirton’s Adaption-Innovation (KAI) scale, which measures an
individual’s cognitive preference for structure in generating and
working with ideas in problem solving. They find that teams with
individuals with a wide range of KAI scores discuss and explore
a higher variety of concepts, and they also find that encouraging
certain behaviors can increase the number of unique ideas gen-
erated. Also related to KAI, KABOOM [55] is an agent-based
framework that simulates design teams with different individual
values of KAI scores and communication rates to see how ef-
fective they are in a design task without requiring humans in the
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FIGURE 3. OVERVIEW OF THE FRAMEWORK: THE HUMAN
DESIGNER AND THE CA ARE MODELED AS INTELLIGENT
AGENTS.

loop. In Teamology [56], Wilde explains how using the Myers-
Briggs personality types can help in creating more effective de-
sign teams. Yet another approach is based on measuring the per-
sonality of team members and how that changes team dynamics
using the “Big Five Factors”, as seen in [S7-60]. Our framework
uses these metrics to better describe the human side of the team,
which in turn helps the CA adapt.

On the topic of team dynamics, we focus on the concept
of “roles”. In [7], Paton and Dorst describe that highly experi-
enced design teams tends to assign different roles to everyone
on the team, with the most common ones being “technician”,
“facilitator”, “expert/artist” and “collaborator”. Similar (almost
identical) roles also came up during our study of NASA’s JPL
A-Team [16]. The concept of “roles” is key to our description of
a design CA, as we have found CAs in the literature play one or
more of the roles described here during the design space explo-
ration task, usually changing between two or three of them when
helping the human designer.

MODEL OF HUMAN-AI COLLABORATIVE DSE

The pieces that compose the framework are shown in Figure
3, a more detailed view of Figure 1. The main idea is that both
the Human Designer and the Cognitive Assistant are modelled as
Intelligent Agents [61], while the Tradespace Exploration Task is
modelled as the environment where both agents exist and inter-
act.

The remainder of this section will be devoted to describ-
ing the characteristics of both agents in Figure 3, describing
Tradespace Exploration as an environment, and showing an ex-
ample of both agents’ behavior during the design task. To better
illustrate the concepts introduced in this section and the next,
we will use an example based on using the Daphne CA [23] to
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explore the design space for a next-generation space mission to
measure soil moisture. Occasionally, we will switch to another
of the many CAs for design mentioned in the literature review as
needed to illustrate specific points.

The Human Designer

The human designer is modeled as an intelligent agent [61].
A standard model for intelligent agents includes three layers,
whose outputs are fed to the next layer as input: perception,
decision, and action. In this framework, the perception layer’s
input is both the state of the design task — state of the world —
as well as the CA’s interactions, while its output is the human’s
estimated state of the world, as well as an inferred internal state
of the CA. With this information, together with its own inter-
nal State, Attributes, Goals, and Knowledge about the field and
design task (all described below), the human agent makes a deci-
sion on what to do next. Finally, the designer acts on the task or
interacts with the CA based on what they have decided to do. All
of the human’s internal characteristics are summarized in Figure
4: Attributes, which are characteristics of the agent that do not
change during a single design task; Internal State, which is a set
of characteristics that can and will evolve during the design pro-
cess; Estimated State of the World, which is an approximation
of the state of the design task; Inferred State of the CA, which is
what the human thinks the CA’s state looks like, given their inter-
actions; Knowledge, of which we focus on Domain Knowledge,
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Design Process Knowledge, and Problem Specific Knowledge;
and Goals, which guide the agent actions during the design pro-
cess.

Many of the cognitive theories for design mentioned in the
literature review fit the intelligent agent model: all of them have
the concept of Goals and Actions as key parts of the human cog-
nition. Combining this with the Tradespace Exploration Task en-
vironment and the human characteristics summarized in the At-
tributes and Internal State makes for a complete intelligent agent
model. Modern CAs — or at least those based on the architecture
of CALO, which includes most of them — are designed with the
assumption that the humans interacting with them act in accor-
dance to the Belief-Desire-Intention (BDI) [62] cognitive model
for intelligent agents. Finally, this choice of modeling also al-
lows for parallels with the CA, which is modeled as an intelligent
agent as well.

The choice of attributes for the human designer is based
on what the literature on design cognition and human-machine
collaboration has found to be important when working on
tradespace exploration tasks, as well as the interaction with the
CA in the design process, as that is the what the model is built
upon. In Figure 4, characteristics marked in italics have a strong
relation to the interaction with the CA, and mostly come from the
Human Machine Collaboration field, while those underlined are
closely related to the design task and come primarily from the
design theory literature. The following list enumerates the at-
tributes we have chosen for our model and why have we chosen
them: 1) Cognitive Style (KAI), because prior research has found
that teams with diverse scores in KAI tend to increase explo-
ration of the tradespace [8]. Therefore, measuring a designer’s
KAI score can guide the CA’s actions; 2) Level of Expertise,
because studies reviewed in [25] show that the behavior of de-
sign experts is very different to that of novices. Incidentally, this
has also been observed in studies performed with cognitive de-
sign assistants [16, 63]; 3) Risk Aversion, because a designer’s
bias towards certain design choices can be influenced by the hu-
man’s aversion to innovative but unproven designs, as shown in
many studies reviewed in [25]; 4) Expectations and Preconcep-
tions, i.e., how a human expects a machine to act based both on
what they know of similar machines and their past experiences,
which according to the HCI literature can significantly affect the
collaboration [9, 64].

The choice of internal state for the human designer is, once
again, based on what the literature has found to be important for
design space exploration and collaboration with machines. An
issue about all these short-term metrics is that measuring them
in real-time is hard, as most quantitative metrics require the us-
age of surveys. These are the variables in the designer’s state: 1)
Motivation, because prior literature mentions that emotions, and
especially motivation, should be a part of the design process [30];
2) Cognitive Workload, because of findings in HCI literature that
put a cap on the amount of cognitive load before performance
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starts to degrade in intensive tasks [65]; 3) Situational Aware-
ness, because it is a relevant metric for complex, rapidly chang-
ing environments such as tradespace exploration according to the
literature [66]. Additionally, the CA can guide the human de-
signer back to a highly aware state if they become disoriented; 4)
Trust in automation, because from HCI literature and some re-
sults with cognitive design assistants [63], we know it correlates
to performance in the design task; 5) Design Preferences, defined
here as both the human designer’s preferences on how to perform
exploration of the design space as well as their preferred design
decisions, whether based on facts or guts, because several of the
reviewed protocol studies in [25] highlight their importance in
relation to the design outcomes. They can change during the de-
sign process, based on new knowledge obtained about a design;
6) Design Fixation, again because several studies in design cog-
nition, as mentioned in [25], have found it to be correlated with
design task performance. We must mention that Design Fixation
is usually understood as a phenomenon, so we are abusing the
language to denote the degree of Design Fixation of the designer
during the design process.

One specially important part of the human designer’s state
in our model is their Knowledge, which justifies why it is a sep-
arate box in Figure 4. For the purpose of our framework, and
based on the knowledge classification in [67], we focus on the
following parts of the designer’s knowledge: Problem-Specific
knowledge, Domain knowledge, and Design Process knowledge.
Problem Specific knowledge is, as its name suggests, specific to
the current design task at hand — e.g. about what good designs
look like, features driving the structure of the design space, or
sensitivities of criteria to decisions, for that problem instance.
Domain knowledge concerns all general knowledge related to
a specific field — e.g. space and spacecraft, aerodynamics and
planes, thermodynamics and engines — which may be learned
during the DSE task. Design Process knowledge refers to gen-
eral knowledge about the design process — in our case, Design
Space Exploration. For example, how to interpret sensitivity in-
dices, or why a Pareto Front might lose usability when there are
too many objectives.

Finally, concerning goals, we distinguish between Design
goals and Learning goals as observed in Figure 5, with a hierar-
chy based on the time horizon of that goal, as described in [6].
The most important goals in this framework are the ones in the
middle of the hierarchy, which have the design project as their
time horizon. On one hand, the goal of any design task is to find a
design that maximizes value. On the other hand, there is the goal
of learning as much as possible about the specific design problem
that is being solved. In the long term, the organization for which
the designer is working for or the designer themselves might also
have goals, which can be as varied as creating long-lasting design
ideas or generalizing design-specific knowledge into field knowl-
edge that can be reused in future designs. A proposition of this
model is that the relationship between design and learning goals
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Design Goals

Design portfolios of
products that max
profit over time,
impact on society

Long-Term or
Organization Goals

Short-Term or
Project Goals

Create a Design That
Maximizes Value

Find designs that maximize
value

4

Find formulations for the
problem

Learning Goals

Discover new
knowledge, sources of
competitive advantage

& develop personnel

Learn about the
design problem

Learn what defines
value (single criterion,
multiple criteria?)

Learn about applicable
formulations for the design
problem

v

Find decisions that maximize
criteria

Learn about
decisions-criteria
interactions (models, etc.)

Designer not
isolated, works in

FIGURE 5. DOUBLE HIERARGEEY, (9 BIESIGN AND LEARNING GOALS.

goals/context

is synergistic. Both task-level goals can also be decomposed in
shorter-term goals, all of which further the main design or learn-
ing goal. The human designer will always be focused on trying to
fulfill one or more of them. For example, a designer trying to de-
sign a new satellite system for Earth Observation first learns the
value of the system based on what their mission requirements are
and which stakeholders are involved, then looks for valid repre-
sentations of the system so that new systems can be designed that
maximize the value that has been defined. Although this example
will be expanded upon in the example timeline, we can see how
the human designer switches between design and learning goals
continuously. This goal structure ties well with both the UDA [5]
and LinD [6] models of design cognition, as well as the differ-
ent steps and products generated during Tradespace Exploration,
which will be described in its own subsection. Apart from these
hierarchies, both agents have Collaboration goals, which inform
how the approach the interaction with the other agent. In the case
of the human designer, these goals are informed by their Expec-
tations and Preconceptions with respect to the CA agent.

The Cognitive Assistant

In our framework, the CA is also modeled as an intelligent
agent, and therefore it also has the perception, decision, and ac-
tion layers from the intelligent agent model. Similarly, as ob-
served in Figure 6, its characteristics can be decomposed in its
Attributes, its Internal State, its Estimated State of the World,

V006T06A052-8

__________________ J
Internal State Attributes
Dialogue State Learning
Proactivity Intelligence
Role Autonomy
Communication
T X
Estimated State 1
of the World 41
Cognitive
R, Assistant
Inferred State
of Human
v A
Knowledge Goals
Current Problem Database Design Goals
Heuristics Database Learning Goals
Historical Designs Database Collaboration Goals

FIGURE 6. COGNITIVE ASSISTANT STRUCTURE.

its Inferred State of the Human Designer, its Knowledge, and its
Goals.

The attributes are taken from [34], as it is a relatively com-
plete taxonomy of cognitive assistants, including scales for each
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of the attributes with explanations for each level of each attribute.
Learning refers to the degree to which a CA can connect ideas
to create new knowledge, ranging from simply responding to
queries to full-fledged Problem Solving for unique problems. In-
telligence refers to the degree a CA can process information, and
ranges from remembering facts to creation of new information.
Autonomy refers to the ability of the CA to act without wait-
ing for explicit permission from the human (e.g., a request), and
can range from completely passive to fully autonomous. Finally,
Communication refers to its Natural Language Processing capa-
bilities, ranging from labelling words or sentences to being able
to understand analogies. Daphne, as our example, was already
classified in the Related Work section.

The internal state for the CA depends on each CA’s imple-
mentation. For our framework, we list the following basic com-
ponents: 1) A Dialogue State that can vary from simply storing
the last question or query from the user to a full-blown dialogue
history, together with an up-to-date context of the conversation to
be able to converse with more agility and accuracy. Some CAs do
not have conversation capabilities, but an Action History can be
used instead or at the same time; 2) the Proactivity Level can ei-
ther be fixed or a slider from never taking initiative without being
queried to completely guiding the design process instead of the
human designer; 3) the Role, inspired by human designer teams
and their specialized roles, is the current specialized behavior the
CA is exhibiting, and different roles that are commonly imple-
mented in published CAs will be described shortly. We assume
a CA can only play a single role at a time. Daphne, as it stands
right now, is able to keep a limited context of the conversation
(e.g., what pronouns such as “this” may refer to), has a fixed pro-
activity level for each design session for a given role, and has 5
different roles.

The framework organizes the knowledge state of the CA in
3 different databases. The Current Problem Database contains
all information related to the current problem: there is a repre-
sentation of the design set for the tradespace exploration task,
including the problem formulation and all the designs discov-
ered under that formulation, as well as all the knowledge that
comes from mining the dataset, such as the driving features for
certain regions, value sensitivities to decisions, etc. The Heuris-
tics Database is a collection of expert knowledge related to the
design task at hand, and is a combination of Domain Knowledge
and Design Process Knowledge as described above. Finally, the
Historical Designs Database is a collection of past results of both
the current and past design tasks that can be searched through
for insights related to the current design, such as what decisions
have been taken before. Our example CA, Daphne, has the three
databases.

The CA’s Design and Learning goals follow the same struc-
ture as the human’s — see the last subsection for a more complete
definition. This ensures that shared goals and plans are possible
between both agents. Apart from those, the CA also has Collab-
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oration Goals, which are related to helping the human designer
through the design task. Examples of this goal include reducing
the Design Fixation of the human — by suggesting unexplored re-
gions of the design space, for example —, increasing the common
ground to ensure a fluid collaboration, or increasing the human
trust in the CA. Daphne currently does not have its own explicit
goals or goal-setting capabilities, but its implicit goals are to im-
prove the design set and guide the human designer through cri-
tique of their designs.

It is worth to get into a detailed description of roles, a part
of the internal state of design CAs. The following is a non-
exhaustive list of roles that current CAs in the literature play
during the design process.

“Historian” role: When a design CA plays the role of His-
torian, it looks up past designs in design databases to find
insights that are useful to the human designer. Such insights
might be heuristics, what heuristics are useful to the current
problem vs which are not, or even if a design has been at-
tempted before. These insights can be presented on-demand
in response to a human query or pro-actively to guide the
design process. CAs with this role: Daphne-EO [23], ESA’s
DEA [42].

“Analyst” role: When a design CA plays the role of Analyst,
it performs data analysis on the current tradespace, trying to
find patterns in regions of interest and presenting them to the
human designer. These patterns can be found using any of
the multitude of data mining or feature extraction algorithms
that currently exist. These data-driven insights can be shown
to the user by request or pro-actively. CAs with this role:
Daphne-EO, Daphne-EDL [39], HyForm [41].

“Explorer” role: When a design CA plays the role of Ex-
plorer, it helps the human designer find new, relevant de-
signs that have not been found yet. The methods to do this
are varied, and include global and local search and optimiza-
tion strategies. Again, these new designs can be shown to the
user by request or pro-actively. CAs with this role: Daphne-
EO, HyForm, Law’s IVA [10], TAC [43], [45].

“Expert” role: When a design CA plays the role of Expert, it
answers questions about the value of designs and the models
used to calculate it, such as why the CA is providing a cer-
tain score for a given design. As with all other roles, it can be
either reactive or proactive. CAs with this role: Daphne-EO,
HyForm, SEA [40], IMDSA [44].

“Critic” role: When a design CA plays the role of Critic, it
criticizes existing designs, identifying strengths and weak-
nesses, and giving suggestions on how to improve it. The
Critic role is particular in that its function is to gather and
aggregate input from the other roles. For example, the Ex-
pert in Daphne may provide the Critic with a weakness of
a design that is violating a rule of thumb about designing
Earth observation satellites, while the Historian may point
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out to the Critic that a design appears to be very novel com-
pared to the historical design database. Through this aggre-
gation function, the Critic role realizes something closer to
a real peer designer. As always, it can work re-actively or
pro-actively. CAs with this role: Daphne-EO, PQE [46].

Tradespace Exploration as an Environment

In Figure 3, the Tradespace Exploration Task is modelled as
the environment where both the human and CA agents interact.
As such, it has a set of attributes that both agents will observe
to create their estimated versions of the state of the world. If we
start by looking at Figure 2, one of these attributes is the current
step in the design process: the agents can either be in Formula-
tion, Search, Analysis, or picking the Final Choices. Continu-
ing with the same Figure, both the Problem Formulation and the
Dataset are also part of the state of the world. The last impor-
tant metric, specially given that tradespace exploration is usually
performed with tight time requirements and that it can affect the
behavior of the agents, is the time spent on the task — or the time
left to finish it. To complete the state of the world, we include
other attributes such as performance metrics (e.g. performance
range, cost range) and design diversity metrics (e.g. convergence,
crowding distance).

Example Timeline

Figure 7 showcases examples of interactions between the
human designer and the cognitive assistant during different steps
of the design process of a satellite system. The CA represented in
the example is an ideal CA that implements all functions and ca-
pabilities described in the framework. Currently, only a CA sim-
ulated through a Wizard-of-Oz experience [68] could provide all
the interactions shown in the example. Theoretically, any of the
cognitive architectures we mentioned previously — such as Soar
and ACT-R —, as well as more general architectures such as Re-
inforcement Learning agents can be trained to perform all the ca-
pabilities we mentioned. The main challenge remains in the dif-
ficulty and resources needed to train the agents. The point of this
example is to showcase a wide range of interactions, show the
interlinks between different zig-zagging processes in tradespace
exploration, and highlight the relation between learning and de-
signing goals.

On the range of interactions, we see the CA taking on the
five roles we described in the framework. For example, in the
first interaction, it acts as an Expert, and then switches to being an
Explorer to find new designs. Later, it plays the roles of Analyst,
Historian, and Critic. The CA can rapidly change its role in an
interaction by interaction basis. These examples also showcase
different levels of proactivity, from a small degree at the begin-
ning by asking follow-up questions to a completely autonomous
exploration of the tradespace, back to a reactive behavior when
asked about trends.
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If we focus on the steps of the design process that are de-
scribed in the middle of the Figure, we can observe how, even
though the process starts with Formulation and ends with Final
Choices, the process itself has the “zig-zag” behavior we have
previously mentioned, with jumps between the steps of Formu-
lation, Search, and Analysis.

In the right timeline, we can observe the human switching
goals between Learning and Design, and up and down the hier-
archy described in Figure 5. As already described, both agents’
goals for the task at hand are learning as much as possible about
the design problem while also creating the most valuable designs.
What we observe on the timeline is how the human’s goal at each
moment of time has a narrower scope than the ultimate goal. For
example, in the first interaction, the human is preoccupied with
finding out the requirements for the design they are doing, while
the assistant helps by giving out those requirements as well as ex-
tra questions to learn about the applicable representations. Later,
the human designer wants to mine the data for insights to cre-
ate designs that maximize the value to the stakeholders. These
insights compel the human to make changes to the problem for-
mulation. Finally, at the end of the design process, the human
designer wants to justify their final design choice to stakehold-
ers, going back to the top of the hierarchy for both design and
learning goals. On the CA side of things, we can observe the
agent tracks the human designer’s goals, and tries to keep the
interactions fluid as part of its collaboration goals.

When talking about learning, we can also look at it from the
lens of a model such as LinD [6]. LinD describes a taxonomy of
design actions with their relation to learning. In the example in
Figure 7, we can see examples of information gathering actions
— such as the first interaction —, synthesising — when the CA cri-
tiques the human’s design —, or analysing — when looking for
rules that describe the behavior of design in a certain region of
the tradespace —. LinD further classifies most of these actions as
in-situ learning activities, given that learning occurs at the time
of the design action, not before or after.

CONCLUSION

In this paper, we have presented a framework that describes
the interactions between human designers and cognitive assis-
tants that occur during the tradespace exploration process in the
early design of complex systems. We have described both the
human designer and the cognitive assistant as intelligent agents
and related their characteristics to previous research into hu-
man cognition in design, human-machine collaboration, and de-
sign teams, as well as described their interactions during the
tradespace exploration process through an example.

The next steps for this research in the short-term are both en-
hancing the behavioral part of the framework by formalizing it,
and performing a more exhaustive search of the literature to cre-
ate a complete list of important attributes for both the human and
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Human Cognitive
Designer Assistant
Design a new mission to
measure soil moisture OK. Downloaded WMO
considering proven requirements for soil moisture.
instruments in standard orbits. Formulation Would you like to consider
P-band reflectometers?
OK, but add constraint that /
they must fly with an L-band
instrument.
[AT explores tradespace in the
Search background, shows new
designs when available]
‘What do designs in this region
have in common? - They seem to avoid putting 2+
Analysis high energy instruments
together in any orbit and fly a
dual P/L-band radar
What do you think of this Search Separating the satellites in
design? \ more planes will help you
satisfy revisit requirement.
. Adding a radar instrument will
Analysis help you satisfy spatial
resolution requirements.
Add new orbit with a repeat .
cycle of 3 days around 600km. Formulation
| —————— L OK, done. I'll try to find some
designs with this new feature.
Compare results of current Search
formulation with previous \ The new formulation
formulation? increases mean value of
Analysis designs by 20%, and the
revisit requirement in
particular is better in 80% of
designs
I selected this design. Can you | Final Choices
explain why it gets this It achieves a science score of
science and cost scores? \ 0.87 thanks primarily to the
the synergistic combination of
the L+P-band instruments ins
a low repeat cycle orbit...

Human
Designer

Cognitive
Assistant

Design: [ want to create a
design that maximizes value for
a soil moisture measurement
mission.

Learning: What are common
requirements for such missions?

Design: With a new
constraint, the formulation is
OK.

Learning: It seems that most

designs in this region have a

P-band radar in a SSO. Is that
true?

Learning: It seems that cost is
not very sensitive to the orbits
here. Can you explain why?

Design: Add a new orbit at
800km

Learning: What is the best
formulation, the previous one
or the new one?

Design: I have chosen this
design as my final choice.
Learning: Can you help me
justify it to stakeholders?

Formulation

-

Search

Analysis

Search

\s

Analysis

/

>
Formulation

Search

Analysis

Final Choices

\

Learning: Here are the WMO
requirements for this mission.
Design: How does using
P-band radiometers work for
your problem?

Design: Al searches for
designs that maximize value
given current formulation

Learning: Yes, 95% of
designs in the region have that
feature, and 75% of designs
with that feature are in the
region.

Learning: All the orbits
considered are the same
altitude. Differences in
inclination have a small effect
on cost.

Learning: The new
formulation has had an effect
on the mean value of the
designs, and a better one on
the revisit requirement

Learning: The high science
score is due to the synergy of
instruments A and B in this
particular orbit

End of design process

End of design process

FIGURE 7. EXAMPLE OF A TRADESPACE EXPLORATION PROCESS WITH INTERACTION BETWEEN THE AGENTS AND GOALS.

CA agents, as well as the relationships between these attributes,
as some can be correlated. In the mid-term, we plan on conduct-
ing several studies to test hypotheses inspired by this framework,
in particular related to the common ground assumption, and the
relation between designer learning and design performance. To
conduct some of these studies, we plan to implement more ca-
pabilities in the Daphne CA, to make it a complete representa-
tion of the model we have described. That also implies having a
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model of the human inside the CA that looks similar to the one
described in this paper.

This would allow for a systematic validation of the frame-
work, with features and attributes being enabled or disabled for
different control groups to ascertain whether each of the compo-
nents mentioned in the model are important and consistent with
theory. Results from these studies may result in modifications to
the framework, e.g., if we realize an important aspect is missing.
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In the longer term, this framework would ideally evolve
from an explanatory model for hypothesis-building to a predic-
tive model that can anticipate what types of interactions are likely
to result in better design and learning outcomes. Armed with
those models, we hope we can design truly useful and insightful
design CAs that realize the vision of a peer designer.

Ultimately, the objective of this framework is to aid in the
creation of CA agents that improve the design process, including,
for example, an increase of design diversity, and improvement of
design convergence, and any other metric that might be deemed
crucial for a particular design problem.
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