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Evaluating Designer Learning
and Performance in Interactive
Deep Generative Design

Deep generative models have shown significant promise in improving performance in
design space exploration. But there is limited understanding of their interpretability, a
necessity when model explanations are desired and problems are ill-defined. Interpretabil-
ity involves learning design features behind design performance, called designer learning.
This study explores human—machine collaboration’s effects on designer learning and
design performance. We conduct an experiment (N =42) designing mechanical metamater-
ials using a conditional variational autoencoder. The independent variables are: (i) the
level of automation of design synthesis, e.g., manual (Where the user manually manipulates
design variables), manual feature-based (where the user manipulates the weights of the fea-
tures learned by the encoder), and semi-automated feature-based (where the agent gener-
ates a local design based on a start design and user-selected step size); and (ii) feature
semanticity, e.g., meaningful versus abstract features. We assess feature-specific learning
using item response theory and design performance using utopia distance and hypervolume
improvement. The results suggest that design performance depends on the subjects’ feature-
specific knowledge, emphasizing the precursory role of learning. The semi-automated
synthesis locally improves the utopia distance. Still, it does not result in higher global
hypervolume improvement compared to manual design synthesis and reduced designer
learning compared to manual feature-based synthesis. The subjects learn semantic features
better than abstract features only when design performance is sensitive to them. Potential
cognitive constructs influencing learning in human—machine collaborative settings are dis-
cussed, such as cognitive load and recognition heuristics. [DOI: 10.1115/1.4056374]

Ashish M. Chaudhari’

Sociotechnical Systems Research Center,
College of Computing,

Massachusetts Institute of Technology,
Cambridge, MA 02139

e-mails: amchaudhari@mit.edu;
ashish.chaudhari@philips.com

Daniel Selva
Assistant Professor
Aerospace Engineering,
Texas A&M University,
College Station, TX 77840
e-mail: dselva@tamu.edu

Keywords: design space exploration, deep generative models, interpretability

In this paper, we highlight that bringing a human designer into
the DSE can potentially better balance a designer’s learning and
design performance compared to a “black-box” only optimization
[14,15]. Existing approaches to human-in-the-loop design space
exploration take designer inputs on design- and feature selection
[16-18] and present feedback on performance metrics and the
diversity of generated methods [3,19]. The interaction between a
human designer and the computer includes visual graphical user
interfaces [16], natural language processing interfaces for question
answering and textual explanations [20], and tangible physical
interfaces [14]. Despite this progress, there is a limited understand-
ing of whether generative design methods are effective for human
learning. Specifically, the evaluation of how and whether different
types of features (semantic versus abstract) and modes of interaction
improve designer learning and design performance are limited.

Existing approaches apply automation to different functions such
as design search, design analysis, and design evaluation [21].
Within each part, the level of automation can vary from low to
high, i.e., from manual to fully automatic. This paper explicitly ana-
lyzes levels of automation of design exploration. Also, the type of
feature is associated with engineering significance. Features are
information sets that refer to the form, function, material, or preci-
sion attributes of a part [22]. The semantic nature of a feature can
exploit an individual’s dense prior knowledge relative to abstract,
data-driven features [23]. Therefore, the research objective of this
paper is to quantify the effects of changing two interactivity-related
factors in DSE: (i) the level of automation of the search function,

1 Introduction

Deep learning methods have been applied to a variety of engi-
neering design problems such as airfoil design [1], structural
design [2-4], and metamaterial design [5]. Indeed, design space
exploration (DSE) using deep learning, referred to as deep genera-
tive design, creates novel designs efficiently and shows improve-
ments over traditional optimization methods [6,7]. Deep learning
methods can effectively optimize well-defined design performance
metrics and meet quantitative requirements under constraints [8].
Deep generative design helps by distilling high-dimensional input
data into low-dimensional representations, which we call features.
However, to be useful for deriving insights, the features need to
be understood by designers, a key requirement for model interpret-
ability. In this context, designer learning includes identifying suc-
cessful designs, understanding the features behind successful
designs and constraints, and knowing the analogical association
between designs [9,10]. Knowing driving features can aid in direct-
ing the exploration of a large design space [11-13]. Understanding
key features is also necessary when designers must explain design
decisions to stakeholders, which requires rationales, especially in
the early design phase. This learning process is a prerequisite
when a design problem is ill-defined, and the knowledge from
early design tasks needs to be transferred to subsequent design
processes.
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e.g., whether a designer generates a design manually from its con-
stituting parts (low automation), manually from predefined features,
or automatically using a deep generative design method (high auto-
mation); and (ii) the semanticity of features, e.g., features can have a
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Table 1 Dimensions and categories of existing interactive deep generative design techniques

Dimension Categories Examples

Design space
Feature space
Objective space

Choose desired designs from generated designs to guide further exploration
Parametric change or selection made to latent embedding or feature values
A user selects a desired range or values for a specific design objective

Input type

Performance-driven
Diversity-driven
Learning-driven

DSE outcomes

Generated designs maximize fixed performance metrics or converge towards true Pareto front
Designs are generated to increase diversity in decision/feature and objective spaces
Designs are generated to learn the main aspects driving the problem, such as sensitivities or features

common among Pareto designs

Human-machine
interface
Natural language
interface
Tangible interface

Graphical user interface  Generated designs and/or features are visualized as images or graphs and objective/feature space are
visualized as scatter plots

User asks questions through voice or a chatbox, and human—machine provides answers such as
explanations about the design’s performance

A user creates designs by manipulating a physical representation of it (e.g., wooden blocks on a tabletop)

while visualizing the tradespace information on a computer screen

semantic meaning, or they can be abstract latent features that are an
output of a generative design algorithm. The evaluative criteria of
the automation and feature type level are designer learning and
design performance.

The approach follows a human subject experiment and a quanti-
tative measurement of designer learning and design performance. A
conditional variation autoencoder (C-VAE) [24] enables the gener-
ative design of mechanical metamaterials with strength-based and
density-based objectives. The human subject experiment instanti-
ates variations of the C-VAE based on the independent variables
under study. Overall, the experimental data include 42 subjects
from a within-subject experiment. We measure design performance
with established multi-disciplinary design optimization measures.
Similarly, a questionnaire measures designer learning after each
experimental condition separately [25,26]. An item response
theory (IRT) model estimates the subjects’ feature-specific “abili-
ties” based on the questionnaire responses [27].

This study contributes critical behavioral insights and an IRT
model for assessing learning in interactive deep generative design.

(1) The analysis is the intertwined nature of design performance
with designer learning, a hypothesis promoted by Sim and
Duffy [9,28,29]. For example, the semi-automated generated
method with a high level of automation adversely impacts the
subjects’ feature-specific learning and overall design perfor-
mance. Barriers to feature learning likely diminish the
designer’s ability to generate better designs.

(2) The study identifies behavioral patterns in how individuals
learn about feature importance in interactive deep generative
design. The positive influence of semanticity on how much
the subjects learn and their performance depends on the fea-
tures’ performance sensitivity. The higher the performance
sensitivity due to a feature, the higher the related learning.
These insights can help design better interactive and
learning-focused deep generative design tools.

(3) The paper also contributes a unique approach combining
experiments and IRT to evaluate component-level learning
of features. There have been qualitative approaches to
assess feature understanding [30,31]. But the presented
method is the first in developing a quantitative IRT model
for evaluating learning in a human—machine collaborative
setting. Provided that a questionnaire is implemented and rel-
evant design features are embedded in test questions, the IRT
model can scale to other design problems for evaluating
feature-specific abilities.

The rest of the paper is structured as follows. Section 2 reviews
existing interactive methods for generative design and related
research studies. Section 3 presents the mathematical details of
the C-VAE-based interactive tool, the IRT model, and the experi-
ment design. Section 4 provides results from the analysis of the
experimental data. Section 5 explains the main findings and
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suggests future design support tools. Section 6 presents the conclu-
sion. The developed tool is available.?

2 Related Work

2.1 Interactive Generative Design Methods. Generative
design refers to computational design methods that can automatically
conduct DSE under constraints [4,8]. Generative design methods
create multiple optimal designs by varying the weights of multi-
objective and design parameters using gradient-based (e.g., stochastic
gradient descent) or gradient-free (e.g., genetic algorithms) tech-
niques. This paper focuses on deep generative design, which refers
to algorithms that generate new designs using deep learning [32].
Deep neural networks (DNNs) and convolutional neural networks
(CNNs) are frequently used to build surrogate models for engineering
problems due to their high performance in learning patterns from
images to recognize objects. The CNN consists of convolution and
pooling layers, with fully connected layers at the end. Variational
autoencoders use multiple CNNs. An encoder network transforms
inputs into low-dimensional latent features. A decoder network is
to reconstruct a design from features that maximize similarity to
the original inputs [33].

There are many variations in the functional allocation between
humans and algorithms in the optimization. This paper includes
one option which is the user selecting the step size, but other
options could be the user repairing designs to make them feasible,
the user giving feedback to the agent about its designs, the user pro-
viding additional constraints to the optimizer in real-time, etc. More
formally, existing interactive generative design approaches vary
along the dimensions of input type, knowledge outcomes, and the
type of human—machine interface. Table 1 presents a description
of these dimensions. The input type pertains to how user feedback
is incorporated. A user might steer design exploration by choosing a
desired set of designs or design variable values [34], select design
parameters or features [17,35], or set a range for desired objective
values [15,19]. Using high-level rather than low-level features can
reduce the number of input commands. In the context of detailed
parametric tasks, generative design methods utilize form features,
material features, precision features, or primitive features [22]. Fur-
thermore, generative design typically attempts to solve multi-
objective problems with multiple conflicting design criteria. Any
desired DSE outcomes must be represented as a particular loss func-
tion. Existing generative design methods can optimize predefined
performance metrics like structural compliance [36,5,4], maximize
the diversity of generated designs [3,7,8], or learn driving features
behind selected designs [17,35]. Finally, the mode of interaction
between a user and the underlying tool can be a graphical user inter-
face, natural language interface, or tangible interface. The human—
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machine interface also provides feedback to the user through visual
representations of generated designs [37-40], explanations about
evaluation models and driving features [19], and evaluations of
physical prototypes [14]. This paper adopts a methodology where
a user makes parametric changes in the feature space to optimize
performance and learning objectives using visual design representa-
tions on a graphical user interface.

2.2 Interpretability Approaches for Deep Generative
Models. Interpretability broadly refers to the ability to present
and explain understandably the cause-and-effect relationship
between inputs and outputs of a machine learning model [41,42].
The need for interpretability arises when predictions and calculated
metrics do not suffice for making informed decisions. For example,
in the conceptual design, the real-world objectives are challenging
to quantify, decision risks or stakes are high, and there is a tradeoff
between objectives. The reasons behind analyzing interpretability
are to explain complex deep learning models, enhance the fairness
of model results, create white-box models, or test the robustness/
sensitivity of predictions [43]. The scope of interpretability is
broader than that of explainability, which refers to explanations of
the internal logic and mechanisms of deep learning models. We
focus on evaluating the interpretability of existing deep learning
models, given their prevalence in the current design literature.

The type of interpretability evaluation depends on the machine
learning task and whether real humans are involved in experiments.
Application-grounded, human-grounded, and functionally grounded
evaluation are three types of evaluation approaches [42].
Application-grounded evaluation conducts experiments with
domain experts within a real-world application, e.g., public testing
of self-driving cars. Such evaluations require substantial time
and effort, but are sometimes necessary for real-world validation.
Human-grounded evaluations involve experiments with lay
humans in the real-world with simplified tasks. Human experiments
test hypotheses by questioning human participants about the prefer-
ence between different explanations or by identifying correct predic-
tions from the presented input/explanation. Finally, functionally
grounded evaluations use a formal definition of interpretability for
automated interpretations. This approach requires defining quantita-
tive metrics as proxies for interpretability. Functionally grounded
metrics are applicable when working with models that have been val-
idated, such as by human experiments. The survey by Linardatos
et al. [43] summarizes various model-specific and model-agnostic
methods for functionally grounded evaluation. Some model-specific
methods analyze gradients of outputs with respect to inputs to find
salient features, e.g., sensitivity analysis for DNNs [44], Deep learn-
ing important features (DeepLIFT) [45], and visual explanations for
CNNs [46]. Some model-agnostic methods compute importance
values for input features within predictions, e.g., local interpretable
model-agnostic explanations (LIME) [47] and shapley additive
explanations (SHAP) [48].

In this study, we use human-grounded evaluation of interpretabil-
ity for interactive deep generative design because such methods
have limited behavioral validation. On a related point, Sec. 2.3
points to conflicting findings on the effectiveness of the deep gen-
erative design.

2.3 Learning and Performance Outcomes of Deep
Generative Design. The effectiveness of interactive generative
design tools may depend on task complexity, usability, and users’
expertise. Viros i Martin and Selva [49] compare two versions of
an human-machine agent with a natural language interface
varying in functionality and level of pro-activeness. An “assistant”
version only answers technical questions from the designer (e.g.,
querying databases and doing data analysis), whereas the “peer”
version provides recommendations to improve design solutions.
They find that more interactions with the tool in both versions
improve the design performance and learning. Recent research
finds that the collaboration of a human and a computer agent
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significantly ~improves design performance compared to
human-only or agent-only processes [14,19,50-52]. A body of
research on hybrid human—machine teams [53,54] finds that low-
performing players benefit from the decision support, but this
support can be overly conservative for high-performing players.
The cognitive agent boosts the performance of low-performing
teams in a changing problem setting but hurts the performance of
high-performing teams [40]. Also, the evidence in Ref. [15] high-
lights differences in learning between expert designers and novices.

Despite being a crucial part of design decision-making, designer
learning has received little attention in evaluating deep generative
models. Recent studies have proposed approaches to measuring
knowledge. One general approach is to pose questions testing indi-
viduals’ specific learning about the problem at hand, as demon-
strated by Bang and Selva [30] for tradespace exploration.
Related to this, IRT offers a consistent approach to estimating
concept-specific ability from observations of test responses. Math-
ematically, IRT defines the functional relationship between the indi-
vidual’s ability/knowledge on a topic and the likelihood that they
correctly answer questions on the same topic [25]. The simplest
IRT model uses a scalar ability parameter and the binary response,
related through a Sigmoid function. More complex IRT models
have been applied for estimating multi-dimensional ability levels,
which can be either independent of each other [26] or interconnec-
ted in a Bayesian network [27]. This work presents a new variation
of IRT for quantifying learning from design space exploration.

3 Methodology

Interactive design space exploration implicitly supports learning
and performance goals by allowing visualization, generation, and
evaluation of alternative designs. An example of a learning goal
is identifying the driving features that make up good designs such
as Pareto-optimal designs. An example of a performance goal is
maximizing one or more design objectives.

3.1 Implementation of the Interactive Deep Generative
Design. We use a conditional variational autoencoder (C-VAE)
to represent the relationships between designs, features, and objec-
tives. Figures 1(a) and 1(b) present the network structure of C-VAE.
Suppose a vector or matrix x represents a design. Features z; are
predefined, deterministic functions of design X mainly representing
mechanical and geometric features of designs such as shape and
size. Grayscale image / denotes a visual representation of design
x, with each pixel taking a value between [0,1].

Two sequential neural networks, encoder and decoder, operate on
image [ as part of the variational autoencoder. The encoder network
E:{l,z,} = {pa o,} converts image I and predefined features z, into
mean u, and standard deviation o, vectors that have the same length
as latent dimensions. A latent feature vector z, is a sample from a
normal distribution with the same mean and deviation vectors
N(u,, o,). Furthermore, the decoder network D: {z;, z,} — [ trans-
forms the predefined features z; and the latent features z, into a recon-
structed image 1. Furthermore, separate neural networks post-process
the C-VAE outcomes. First, the adaptation network A : I — X refor-
mats the grayscale image I into a binary array of the same size as
x, resulting in a reconstructed design X. Second, the regression
network R:{z,z,} — ¥ predicts the design objective values §
from features. The network structures in Fig. 1(b) include operators
such as 2D convolution (Conv2D), 2D transposed convolution
(Conv2DT), linear transformation (Dense), and activation functions
such as rectified linear units and Sigmoid function (Sigm) [55]. The
dense layer does not have an activation function.

We propose three modes of human—machine collaboration con-
cerning the level of automation of search decisions a designer
must take:

(1) (Manual design synthesis) A user defines design x with all its
constituent parts;
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Fig. 1 (a) The structure of the conditional variational autoenco-
der. A user can directly manipulate feature inputs (z,, z,) on the
decoder network D and (b) The structure of individual networks.

(2) (Manual feature-based design synthesis); and
(3) (Semi-automated feature-based design synthesis).

Sections 3.1.1, 3.1.2, and 3.1.3 present the operationalization of
these three collaborative modes.

3.1.1 Manual Design Synthesis. The first collaborative mode
involves a user manually creating a design x with all its constituting
components and the C-VAE evaluating the design objectives §. A
user only sees the design objective outputs § and does not
observe the intermediate latent features z,.

3.1.2 Manual Feature-Based Design Synthesis. In the second
mode, a user manually selects features z,, z, individually to gener-
ate designs with the decoder network D. Selecting feature values is
done one feature at a time, either from predefined features or latent
features. For every feature value adjustment, the C-VAE automati-
cally generates a new design. A user can further decide whether to
evaluate design objectives at any generated design or not. Suppose
initial design x and its features z; and z, are given. A user makes
Az, change to the latent features and evaluates the new design cor-
responding to the updated latent features z5 =z, + Az,. The output
of this process is a newly reconstructed design x' = A(D(z,, z5)) and
its design objective values y' = R(z;, z5).

3.1.3  Semi-Automated Feature-Based Design Synthesis. In the
semi-automated mode, an optimization algorithm searches the
design space or feature space in a semi-automated manner to max-
imize design objectives. A designer chooses tuning parameter(s)
such as step size in this optimization. The step size is interpreted
as a measure of “desired change with respect to selected design.”
The higher the step size, the more exploration with respect to the
selected design, whereas a small step size exploits a region near
that design. This approach allows users to retain a high level of
control of exploration versus exploitation, using the agent for
local search, even for exploration with a larger step. The C-VAE
performs a fixed number of steps of the gradient descent algorithm
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in the feature space. A user selects a step size y from a given range.
A larger step size indicates more significant changes in the selected
features. Suppose X is an initial design and z; o and z,  are its fea-
tures. A gradient descent iteration updates the features by an amount
proportional to the gradient of design objectives with respect to fea-
tures. This process repeats for a fixed N iterations i=1, ..., N:

Z1;, =111 — YV, Rz, 25)
;=121 — YV, R(Z1, Z,)

(€Y

Here, V,, R(z,, 2,) and V,,R(z;, z,) are the Jacobian matrices of the
regression network with respect to features z; and z,, respectively.
Out of the N iterations, the user is shown only the results from the
iteration with the largest weighted sum of design objectives. All
design objectives are normalized between [0,1] with larger values
preferred, and they have equal weights—which introduces a bias
towards designs in the central region of the Pareto front.

z), Z; = arg max ZRj(Zl,ia 22) (2)
ol

where R; is jth component of regression network output. Accord-
ingly, the user observes the newly reconstructed design
x* =A(D(zj, z;)) and corresponding design objectives values
Yy =R(z}, z3).

3.2 Measures of Design Performance and Designer
Learning

3.2.1 Multi-objective Performance Metrics. We use three
established performance measures calculated based on the values
of the design objectives y. First, hypervolume improvement is a
measure commonly used in multi-objective optimization [56].
Given a set S of points (e.g., the output of a design search
process), the hypervolume indicator of S is the area (for a 2D
case) of the union of the region of the objective space dominated
by each point in S and limited by a user-defined reference point.
The reference point is at or near the anti-utopia point, i.e., the small-
est objective value for each objective, assuming the problem
requires objective maximization.

Second, a metric based on credit assignment strategies from
multi-armed bandit theory evaluates designs more locally [57]. If
an initial design x is modified to produce a new design x’, then
the value of X’ is determined based on whether or not X’ dominates
x. If the new design dominates the initial one, i.e., if it is better than
the initial design in all objectives, it receives a value of 1. Con-
versely, if the initial design dominates the new design, the new
one receives a score of 0. If no design dominates, the new design
receives a score of 0.5.

Third, the distance to the utopia point is the closest distance
between the generated designs set S and the utopia point. In maxi-
mization, the utopia point has coordinates equal to the largest pos-
sible objective values, whereas in minimization, the utopia point has
the smallest possible objective values as its coordinates.

3.2.2 Designer Learning: Feature-Specific Abilities. After
exploring the design space, we implement a psychometric assess-
ment approach to measure designer learning. This approach involves
multiple-choice questions and an IRT model to estimate the feature-
specific ability from an individual’s responses. The feature-specific
ability measures the degree to which a designer understands the
effect of that feature on design objectives. These features are the
same as the predefined and latent features in the C-VAE in Sec.
3.1. We use two types of questions to assess a person’s knowledge:
(i) design comparison and (ii) feature identification [30]. A design
comparison question includes two given designs (say A and B) and
requires a person to choose the design they think has a higher
value for a given objective. For a given pair of designs (say A and
B), a subject selects one of four choices: (i) “Option A,” (ii)
“Option B,” (iii) “Minimal difference,” and (iv) “Not sure.” The
“Not sure” option reduces the likelihood of a false-positive response.
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Furthermore, a feature identification question tests a person’s ability
to correctly identify a particular feature’s effect on a design objective
in the context of adding the feature to a specific design. The question
assumes that only the given feature changes value while other fea-
tures are kept constant. In response to how the given objective
changes, the person chooses four options: “Increases,” “Decreases,”
“Minimal change,” and “Not sure.”

We use two methods to estimate designer learning based on the
answers to these questions. The first learning metric is simply the
fraction of correct responses to a question, which is the number
of correct responses divided by the total number of available
responses. In the second method, the IRT model represents the
link between feature-specific abilities and the correctness of
responses to individual questions. We use a Bayesian inference
technique to estimate the posterior distributions of feature-specific
abilities, conditional on the binary data about the correctness of
the subjects’ question-specific responses. Let 0 be the vector of
feature-specific abilities, where variable 0, can take any real
value. Higher values of 6, suggest more accurate knowledge of
the effect of the kth feature component on different objectives.
The probability that a response to question g is correct increases
with the individual’s abilities. More specifically, one question
may test the knowledge of more than one feature but only the fea-
tures relevant to the question are included in the model. That is, an
individual’s question-specific ability is Oy =, Wi g0k, Where
Wy =1, if the knowledge of feature z; is relevant for question g,
or w,=0 otherwise. We assume that the prior distribution on
every model parameter is a standard normal distribution with zero
mean and unit variance. The following function gives the likelihood
of a correct response:

F0. ¢ g )=+ (1 - }) Sigm(ay@yave ) ()
q q

where a,, is a question-specific discrimination (slope) parameter, j3,
is the question-specific difficulty (threshold) parameter, c, is the
number of choices available in the multiple-choice question ¢,
and Sigm is the Sigmoid function. Larger a, indicates a stronger
distinction between the ability required to answer correctly versus
incorrectly. Larger f3, indicates a need for a higher average ability
to answer correctly. The quantity 1/c, in Eq. (3) represents the like-
lihood of guessing the right answer by chance alone, called a
pseudo-guessing parameter. The further scaling by an amount
(I —(1/cy)) ensures that the output probability is constrained
between 0 and 1. In the limit of 8, ,,¢ >>f,, the sigmoid approaches
1 and so does the probability of correctly answering the question.
Conversely, for 0, .y < <f,, the sigmoid approaches 0 and the prob-
ability of a correct answer is equivalent to guessing. For 0, ., = f,,
the model predicts a probability exactly halfway between pure
guessing (f;()=1/c;) and certainty (f;(.)=1). Note that the
responses to different questions may be correlated if they test the
knowledge of the same features. Parameter c, is fixed (equal to 3
for three available options for a correct answer) but others are
learned during model training.

3.3 Human Subject Experiment

3.3.1 Mechanical Metamaterial Design Problem. The experi-
mental task involves the design of 2D mechanical metamaterials.
A mechanical metamaterial is an artificially engineered structure
of lattice units replicated in all directions. The lattice topology
exhibits unique and tunable properties. Surjadi et al. [58] discuss
unique properties of metamaterials and their applications in struc-
tural design and additive manufacturing.

We consider designs consisting of a unit cell structure repeating
horizontally and vertically. The unit cell structure consists of mul-
tiple links joining nodes in a 3x3 grid in the XY plane. This
defines a design space of 2°° possible designs, which is reduced
to 2%® unique designs if we account for duplicates due to the repli-
cation of the unit cell structure in 2D space. Such design problem
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presents the right level of complexity for student subjects to
develop problem understanding.

A metamaterial is evaluated using two design objectives: maxi-
mize vertical stiffness (which relates to strength) and minimize
volume fraction (which relates to weight). The default model of
choice for computing stiffness is a Hooke’s law-based truss stiffness
model (termed as the “truss model”), taken from Ref. [59, Ch.9].
The 2D metamaterial is a truss structure with each member
assumed to only experience axial forces. The individual stiffness
matrices for each member are determined by solving Hooke’s law
relationship. In cases where the truss model fails due to isolated
members, a lower fidelity fiber stiffness model (called “the fiber
model”) is employed based on Cox [60]. The fiber model considers
each member as a fiber and computes a length-normalized approx-
imation of the effective stiffness.

The design problem also requires a feasibility constraint that
metamaterials should satisfy: No two links in a unit cell should
intersect, except at nodes; and a resulting metamaterial should be
connected in the sense of a network graph, i.e., it should not have
any disconnected subcomponents.

3.3.2  User Interface. Figure 2 presents the interactive design
exploration platform used in the experiment. On the top panel, the tra-
despace plot shows a collection of existing designs (denoted by
circles) and user-generated designs (indicated by triangles). A user
may click on any design in the tradespace plot to visualize its
details, including the unit cell structure on the bottom left panel
(design visualization panel). On the bottom right panel, a user gener-
ates a new design through one of the three modes of interaction
described in Sec. 3.1: the manual design synthesis (labeled
“Change Design” in the figure), the manual feature-based design
synthesis (“Change Feature”), and the semi-automated feature-based
design synthesis (“Auto Feature Changes”). The manual design
synthesis allows users to create a metamaterial design by specifying
aunit cell structure. Upon clicking on the “Test metamaterial” button,
the tradespace plot displayed the objective values of the new design
and the design visualization panel shows the newly tested design. In
the manual feature-based design synthesis mode (see Fig. 3), a user
selects a change in individual features and considers the effect of
the feature change on the selected design and its objectives. A
newly generated design is updated in real-time on the design visual-
ization panel whenever there is a change in feature values. The user
must click on the “Test metamaterial” button to evaluate the gener-
ated design. In the semi-automated feature-based design synthesis
mode, a user selects the maximum amount of change desired with
respect to the initial design, and the C-VAE predicts the best possible
design within that neighborhood of the initial design, according to
Sec. 3.1.3. A newly generated design and the differences in features
for the set change are visualized in real-time. Here again, the user has
to signal intentionally, clicking on the “Test Metamaterial” button, if
they want to evaluate a newly generated design.

3.3.3  Experiment Design. Table 2 presents the experiment pro-
tocol, including the order of the design synthesis tasks and learning
tests. The experimental conditions vary in two independent vari-
ables: (i) the level of automation and (ii) the semanticity of features.
The level of automation involves the interaction between a designer
and the conditional variational autoencoder (C-VAE). That is, a
subject completes one of the following tasks at any given time:
the manual design synthesis (task 1), the manual feature-based
design synthesis (task 2), and the semi-automated feature-based
design synthesis (task 3), as described in Sec. 3.1. In each task,
the user can only generate new designs using one functionality. Fur-
thermore, the predefined features z; in the C-VAE have semantic
meanings (semantic features), whereas the latent features z, are
mathematical variables (abstract features). Table 3 provides a
brief description for individual features. We select five semantic
features for the mechanical metamaterial design problem: horizontal
lines, vertical lines, diagonal lines, triangles, and three-star nodes.
The other five abstract features are the outputs from the encoder
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Fig. 2 A snapshot of the user interface showing interactive tradespace plot (top), visualization of selected metamaterial
(bottom left), and the user-modified design (bottom right). The Pareto front in the tradespace plot is only for feasible
designs. The picture shows infeasible designs but we have a filter button only to show feasible designs.

051403-6 / Vol. 145, MAY 2023

Change Design Change Features Auto Feature Changes Change Design Change Features Auto Feature Changes
f Nid Hial Low Mid High
ow # 1gn Overall Change: 0.17
raheae 50 Name Selected Suggested (Change”)
Feature 4: -0.60 Feature 2 0.16 0.16 (-0.00)
Feature 4 -1.86 -1.99(-0.14)
Feature 5: -0.25
Feature 5 1.09 1.01 (-0.08)
Verticnl Lipes: ~0: 15 Vertical Lines ~ -0.97 1.34¢.0.37)
Diagonals: -0.95 Three Stars -1.06 -0.85 {0.20)
*Positive change represent an increase
Test Metamaterial Test Metamaterial

Fig. 3 Manual feature-based design synthesis (left) and semi-automated feature-based design synthesis (right); in both con-
ditions, a generated design’s real-time rendering is visible on screen, as depicted in the bottom left part of Fig. 2. But the objec-
tive values are shown only after a user has clicked the “Test Metamaterial” button.
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Table 2 The order of design synthesis tasks and the learning tests in the experiment protocol

I Design pretest
I Task 1

Design posttest
I Task 2

First feature test
v Task 3

Second feature test

16 design comparison questions

Manual design synthesis (8 min)

16 design comparison questions

Manual feature-based design synthesis (8 min)

20 feature identification questions

Semi-automated feature-based design synthesis (8 min)
20 feature identification questions

Note: The protocol also implements the reverse order (Part I, IV, III, and II) for approximately 20 of 42 subjects.

Table 3 The sensitivity of design objectives to the abstract and semantic features

Feature Description Volume fraction Vertical stiffness
Feature 1 Derived from C-VAE None None
Feature 2 Derived from C-VAE None High
Feature 3 Derived from C-VAE High None
Feature 4 Derived from C-VAE None None
Feature 5 Derived from C-VAE None None
Horizontal lines Number of horizontal links connecting two nodes High None
Vertical lines Number of vertical links connecting two nodes High High
Diagonals Number of inclined links connecting two nodes High High
Triangles Number of three links (any orientation) connecting three nodes to each other High None
Three-stars Number of three links connecting a single center node to three outer nodes separately High None

network, with the probability distribution approximately equal to
the standard normal distribution for each one.

The experiment involves 42 junior-, senior-, and graduate-level
students from engineering disciplines at Texas A&M University.
Each subject completes the three tasks with different levels of auto-
mation. The order of three tasks, given by Table 2, is reversed for
about half of the subjects pool so that no design synthesis task
always follows the same task in both orders. This setup helps to
counterbalance order effects. Task 1 with a pretest is always con-
ducted at the start of the experiment. For every subject, a total of
ten semantic and abstract features are randomly divided into two
groups of five each, one for task 2 and the other for task
3. Because the features are randomly assigned to different tasks
for each subject, all 10 features still appear in every task over the
entire subject population. This within-subject design ensures that
each subject completes all three tasks and sees five abstract features
and five semantic features at some point between tasks 2 and 3. We
can still partition the collected data into different levels of automa-
tion and types of features. The design allows us to study relative dif-
ferences between different experimental conditions. The total
experiment lasts about 45 min, and each subject receives a fixed
payment of 20 USD at the end. The subjects must spend a
minimum of 5min on the instructions, which include textual and
graphical details of the metamaterial problem and the user interface.
The eight minutes of task duration provided extra time to familiarize
themselves with the interface and was selected after pilot testing.

We administer four learning tests throughout the experiment, as
shown in Table 2. Before any design synthesis task, part I includes
a design pretest with 16 design comparison questions to test the
prior knowledge of the subject about the mechanical metamaterial
design problem. With the task ordering shown in Table 2, part II
includes a manual design synthesis task and a design posttest
with 16 design comparison questions to measure resultant learning.
We do not repeat questions between design pretest and posttest to
prevent the subjects from remembering answers. The questions in
both tests still have a similar distribution of question complexity,
as measured by the feature difference Az, (see Fig. 4(a)). Parts III
and IV, respectively, include the manual- and semi-automated
feature-based design synthesis and first and second feature tests,
which include 20 feature identification questions each. About half
of all subjects complete the tasks in the reverse order of parts I,
IV, III, and II to mitigate the impact of task order in the data.
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3.4 Model Training. We train the conditional variational auto-
encoder on a dataset of 21,444 designs, which were generated from a
greedy search using genetic algorithms [61]. The training data
include 3 x 3 metamaterial lattice structures represented as 28 x 28
pixel grayscale images and 28-bit binary vectors, and the objectives
vector for each design, made of vertical stiffness, volume fraction,
and feasibility constraint. An image is generated from the binary
vector representation of a metamaterial design. A pixel has a value
of 1 if it falls on an active link or O otherwise. An image of an
example unit lattice is highlighted in the bottom left part of Fig. 2.
The image acts as an input / to the encoder network.

The loss function of the C-VAE comprises four terms. The recon-
struction loss measures the difference between input designs and
reconstructed designs. The Kullback—Leibler divergence (KLD)
loss measures the difference in the posterior feature distribution
and the standard normal distribution to reduce correlation among
different features [62]. The KLD loss was weighted ten times the
actual KLD loss. The regression loss compares the predicted and
observed values of the objectives. Finally, a correlation loss term
maximizes the correlation of feature 2 and feature 3, respectively,
with vertical stiffness and volume fraction. This loss artificially
introduces strong sensitivity between the design objectives and
select abstract features to help with the assessment. The hypothesis
is that if those features are strongly correlated with the design objec-
tives, the user should be able to learn those features more correctly.
Table 3 differentiates high versus low sensitivity features in the
trained model based on the total-effect Sobol index. The semantic
features are converted from integer numbers to normalized float
values by centering with sample mean and standardizing with
sample deviation. These values feed into the C-VAE as vector z;.
We ran the Adam-based stochastic optimization algorithm for 50
epochs with a batch size of 128.

4 Results

The results present descriptive statistics and the posterior esti-
mates from the item response theory model. The results use the
aggregated data of both experimental task orders, as described in
Table 2. We highlight the order-specific differences whenever rele-
vant. The rest of the section is divided into the designer learning and
performance outcomes.
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Fig. 4 (a) The accuracy of subjects’ responses is proportional to the feature distance
between design pairs in design posttest. This correlation is not significant in the design
pretest, (b) intentionally, the correlation of the feature distance with the distance in the objec-
tives space is insignificant for design pairs, (c) the correctness of responses is on average
high for semantic features such as “horizontal lines,” “vertical lines,” and “diagonals” in
task 2 (feature test 1), and (d) task 3 (feature test 2) produces lower accuracy of responses
than task 2, especially for semantic features like “horizontal lines” and “vertical lines.”

4.1 Designer Learning Outcomes. The experimental task
increases the subjects’ ability to differentiate designs based on
design objectives in the design comparison questions asked.
Figure 4(a) presents the average correctness of responses in the
learning tests. We observe that the average correctness is higher
in the design posttest than in the pretest (relative #-statistic =4.12,
two-sided p-value <0.001, Cohen’s d =0.78). This difference is sta-
tistically significant irrespective of the task order. The average cor-
rectness of design posttest is higher during the forward order parts I,
I, I, IV (relative z-statistic=2.47, two-sided p-value=0.018,
Cohen’s d=0.73) and during the reverse task order (z-statistic =
2.58, two-sided p-value =0.014, Cohen’s d=0.84). Furthermore,
in the design posttest, the average correctness of response increases
in proportion to the feature distance between the designs being com-
pared (slope =0.13 (£0.035), intercept =0.05 (+0.18), r-value =
0.16, and a one-sided p-value <0.001). Here, the feature distance
||Az||, defines the MSE distance between the features of two
designs in a test question. The more different the two designs are,
the easier it is expected for the subjects to predict the influence of
features on a given objective correctly. Note that the correlation
between the feature distance and the distance in the objective
space (IAyl) is statistically insignificant, according to the results in
Fig. 4(b). Thus, Ayl is not expected to confound the effect of
||Az||> on the average correctness of responses.

Overall, the subjects most accurately learn the effect strength and
direction for features with inherently significant and positive effects
on the design objectives. The semanticity further improves the accu-
racy of responses. According to Fig. 4(c), high sensitivity semantic
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features such as “horizontal lines,” “vertical lines,” and “diagonals”
collectively have higher mean correctness of response than the other
semantic features (relative r-statistic=4.5, two-sided p-value <
0.001, Cohen’s d=0.69), especially for task 2. Furthermore, these
three semantic features have better correctness of response than
the high sensitivity abstract features, i.e., “feature 2” and “feature
3” (relative f-statistic = 3.40, two-sided p-value <0.001, Cohen’s d
=0.54).

Task 3 produces a lower accuracy of responses compared to task
2. The *“horizontal lines” feature has lower average correct
responses in feature test 2 than feature test 1, according to
Figs. 4(c) and 4(d) (t-statistic=1.74, two-sided p-value=0.08,
Cohen’s d=0.36). A similar effect is observed for the “vertical
lines” feature (¢-statistic =2.24, two-sided p-value =0.03, Cohen’s
d=0.40). The differences in other features are not statistically sig-
nificant for the average correctness metric.

For a consistent comparison of feature-specific knowledge, Fig. 5
presents feature-specific abilities estimated using the item response
theory model. A boxplot shows the first, second, and third quartiles
as horizontal lines and the sample mean as a filled marker. The
hollow circles outside a boxplot are sample outliers. Between
design pretest and posttest, we observe that the subjects exhibit
increased understanding of the effects of semantic features, except
for the “diagonals” feature. In the design pretest, the subjects, on
average, have a poor understanding of the influence of horizontal
lines—horizontal lines do not influence the vertical stiffness. In
the design posttest questionnaire, the most considerable estimated
ability is for vertical lines.
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Fig.5 The posterior samples of feature-specific abilities & show that the subjects’ knowledge about the semantic
features improves in the design posttest compared to the design pretest, except for the “diagonals” feature. In the
feature tests, the subjects, on average, appear to show higher ability levels in feature test 1 than in feature test 2,
especially for “horizontal lines,” “vertical lines,” and “diagonals.”

Figure 5 further shows the differences in the feature-based abili-
ties measured from the feature tests. We observe that the estimated
abilities for semantic features, such as horizontal, vertical, and diag-
onal lines, are higher than feature 2 and feature 3 combined
(t-statistic=71.60, p-value =0.001, Cohen’s d=2.23) in feature
test 1. And the subjects perform worse on the knowledge of hori-
zontal lines and vertical lines in feature test 2 (task 3) than in
feature test 1 (task 2). These results are consistent with the descrip-
tive results presented in Fig. 4.

4.2 Design Performance Outcomes. The degree of perfor-
mance improvement compared to the initial Pareto front varies
across conditions. When comparing the overall performance based
on all generated designs, the manual design synthesis (task 1) pro-
vides better mean performance than the other two conditions.
Figure 6 presents the distribution of 1000 bootstrapped means for
various performance measures. Bootstrapping allows hypothesis
testing by resampling multiple sample sets from the experimental
data [63]. Hypervolume improvement measures the improvement
in the final generated Pareto front relative to the initial Pareto front.
The higher the hypervolume improvement, the better. Since all
design objectives are normalized between [0, 1], the hypervolume
of 1 represents the utopia point. In Fig. 6(a), the mean
hypervolume improvement is larger in task 1 than task 3 (z-statistic
=2.78, p-value =0.008, Cohen’s d =0.43). At the same time, the
smallest distance to utopia measures the distance between the final
generated Pareto front and the utopia point ([1,0]). The smaller the
distance, the better the performance. This metric is smaller in task
1 than in task 3 (z-statistic =3.19, p-value =0.003, Cohen’s d=
0.45), as given in Fig. 6(b).
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Task 3 performs better at the level of individual-generated
designs when compared to task 1. The local dominance metric mea-
sures the improvement in each generated design relative to the
initial design that it modifies. From Fig. 6(c), about 20% of gener-
ated designs in task 3 dominate their respective initial designs, com-
pared to about 10% in task 1. The difference in the number of
dominant generated designs compared to dominated generated
designs in task 3 is large and statistically significant (z-statistic =
3.11, p-value=0.004, Cohen’s d=0.74). However, a generated
design in task 1 is likely to be twice as close to the utopia point
as a generated design in task 3 if we kept the initial design the
same (7-statistic = 6.08, p-value <0.001, Cohen’s d =0.71), accord-
ing to Fig. 6(d).

Among the semantic features, the changes made in the number of
horizontal and vertical lines have a large, statistically significant
correlation with the corresponding changes in overall hypervolume,
as given in Table 4. Similarly, a significant correlation is observed
for “Feature 4.” Since the objectives are negligibly sensitive to
“feature 4,” this result could occur due to potential higher-order
interaction effects. The subject population tested all features with
similar frequency. Despite this effort, some features do not
exhibit a high correlation with positive outcomes, possibly due to
the relatively low influence of these features or the subjects’ low
feature-specific abilities.

5 Discussion

5.1 Positive Influence of Certain Semantic Features on
Designer Learning. The results in Figs. 4 and 5 show that the
effects of certain semantic features (e.g., horizontal and vertical
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designs in task 1 is two times as high as task 3

lines) are easier to learn for the subjects than other semantic and
abstract features. These high-ability features are semantic and
have considerable sensitivity due to the design objectives. As
observed from Table 4, the subjects also learn to improve design
performance by manipulating these features.

The constructs that may explain the above observations are the
recognition of semantic features and intertwined effects of design
performance and designer learning. First, the semantic nature can
exploit an individual’s dense prior knowledge [23], which the data-
driven features lack, to explain feature behavior. The recognition
from memory, i.e., recognition heuristic [64], places a higher
value on identifiable features. The recognition heuristic might
even be one of the first simple cues humans use to make decisions
[65]. The recognition and simplicity could be a differentiating factor
between single-link features (such as horizontal lines, vertical lines,
and diagonals) and multi-link features (such as triangles and
three-stars). Furthermore, retrospective learning triggers involve
the need to learn from successful and failed designs [9]. The high

Table 4 The correlation between the change in feature value
and the change in overall hypervolume

Feature Effort (feature changes) Pearson’s r
Feature 1 215 0.014
Feature 2 229 0.057
Feature 3 187 0.116
Feature 4 226 -0.189*
Feature 5 150 —0.182
Horizontal lines 154 -0.295%
Vertical lines 156 0.625%
Diagonals 161 -0.114
Triangles 186 0.038
Three stars 150 —0.0366

Correlation coefficients are statistically significant with two-sided p-value <
0.005.
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sensitivity of certain semantic features likely allows the subjects
to observe significant variations in objective values, thus triggering
feature-specific learning for certain features. On the other hand, the
low feature sensitivity does not provide a clear association between
successful or failed designs and the changes in respective features.

5.2 Mixed Influence of High Automation on Design
Performance. From Fig. 6, we observe that higher automation in
task 3 improves the local dominance of a newly generated design
compared to an initial design. However, the local improvement in
such a generated design could be half of that of a manually synthe-
sized design, as seen from Fig. 6. This local dominance also does
not necessarily translate into more significant hypervolume
improvement. Potential explanations for this result could be
related to (i) the low diversity of user-selected initial designs, (ii)
the low amount of user-selected change (step size y in Eq. (1)) in
the initial design, (iii) the fixed number of iterations (~50) used
in the gradient descent algorithm, (iv) non-convex objective func-
tion, or (iv) the cognitive load in understanding model output.

Higher autonomy offers users more freedom in testing custom
features and creating new designs. The subjects develop metamater-
ial designs based on the limited number of features in the experi-
ment. Allowing users to define and test their features could
facilitate learning [17]. Also, the cognitive load involved in
parsing the automated suggestions should be a concern. A large
amount of information on the user interface may complicate the
comprehension and trustworthiness of results and could likely
reduce the design performance of hybrid human—machine teams
[40]. In task 3, the subjects view suggestions for five features simul-
taneously. However, in parametric design activities, a designer
commonly evaluates one design variable at a time [66]. Besides
the interpretability of information, human decision-makers are
likely only to consider a single automated suggestion from a
machine learning model at a time [67].

Also, higher model accuracy and complexity of design represen-
tation may influence the results. For example, more advanced deep
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learning models could increase the design performance in task 3,
but whether that improves designer learning is not guaranteed.
The ease of use and complexity of design representation may influ-
ence how often the model gets used and, thus, designer learning.
The semi-automated design synthesis may become more desirable
for a complicated representation where manual design synthesis is
not feasible.

5.3 Implications for Engineering Design Decision Support.
Human-machine collaborative design requires that the human
designer comprehend and trust the model results. Design decisions
depend on the accurate understanding of model inputs, outputs, and
the causal effects of the latent features. We observe that semantic
nature and their effect size on design objectives influence the
causal understanding of features. Semanticity can form a basis for
human—machine collaboration and would scale up to more
complex problems as long as meaningful semantic design features
can be defined. While the method remains applicable, model train-
ing may require a larger amount of data for more complex problems.
Accordingly, future design assistants should explicitly describe the
underlying features in a roughly linguistic sort and clarify their
effects on design objectives. The knowledge representation hypoth-
esis by Brian Smith [68] similarly states that any mechanically intel-
ligent system should embody a semantic representation of
knowledge. The emerging approaches to achieving interpretability,
such as transparency and post hoc explanations [41], offer addi-
tional ways to improve the designer’s causal understanding.

The findings also highlight the role of designer learning in DSE
and its effect on performance. Restricted learning due to a higher
level of automation, cognitive overload from model outputs, or
abstract features reduce the potential for higher design performance.
Even though optimization using deep generative design can provide
incremental improvements, global performance improvement is
also a function of designer learning, especially in the human—
machine collaborative setting.

5.4 Limitations and Future Directions. More validation with
different deep learning methods, subject populations, and design
problems is necessary to generalize the findings. This paper uses
deep learning and the conditional variational encoder to focus on
generative design. Some alternatives are evolutionary computation,
adaptive or component-specific step size algorithms, or more
advanced neural network architectures. Future work can evaluate
such options in a human—machine collaborative setting. Addition-
ally, we do not compare or test interpretability tools such as saliency
maps, feature importance graphs, partial dependence plots, or spe-
cificity versus coverage plots. On the upside, the graphical interface
and item response theory model provide a unique way to evaluate
different alternatives in the future.

In data collection, the subjects did not have detailed domain
knowledge and learned about mechanical metamaterials during
the experimental task. While their engineering education forms a
basis for their decisions, the lack of domain knowledge can drive
their focus on certain semantic features. A more complicated
design problem will need subjects with significant expertise to
have external validity. However, laboratory experiments are still
scalable to more complex problems. Recent research suggests that
the representativeness in lab experiments depends not on matching
subjects, tasks, and context separately, but rather on the behavior
that emerges from the interplay of these three dimensions [69].
Moreover, the prevalence of open-source tools makes it easier to
design user interfaces (oTree and MATLAB) and recruit lay subjects
(Amazon Mechanical Turks). Future work can still validate the find-
ings by comparing the patterns of designers’ learning and perfor-
mance outcomes between novices and experts. As with any
experimental study, one needs to perform context-specific valida-
tion using more experiments when applying the insights to new
settings.
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6 Conclusion

The rise of deep learning applications in human—machine collab-
orative design necessitates the analysis of model interpretability,
mainly to satisfy designer learning and performance goals. This
paper facilitates such analysis by combining an interactive deep
generative tool, human subject experiments, and a learning assess-
ment based on item response theory. The findings provide essential
mathematical tools and behavior insights for future design assis-
tants. The subjects in our experiment appear to understand the sen-
sitivity better for certain semantic features than abstract features.
Cognitive factors such as cognitive load and semantic features are
essential in mediating the overall design performance. If the find-
ings hold, future interactive deep generative design platforms
should emphasize discovering influential features and explaining
them in the context of the problem definition. Interpretability mea-
sures would help maximize learning outcomes and performance
while enlisting computational intelligence for design exploration.
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