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PREDICTING FOOD HEALTHINESS JUDGMENT

Abstract
People make subjective judgments about the healthiness of different foods every day, which in turn
influence their food choices and health outcomes. Despite their importance, there are few quantitative
theories about the psychological underpinnings of such judgments. This study introduces a novel
computational approach that can approximate people’s knowledge representations for thousands of
common foods. We use these representations to predict how both lay decision-makers (general
population) and experts judge the healthiness of individual foods. We also apply our method to predict
the impact of behavioral interventions such as the provision of front-of-pack nutrient and calorie
information. Across multiple studies with data from 846 adults, our models achieve very high accuracy
rates (r2 from 0.65 to 0.77), and significantly outperform competing models based on factual nutritional
content. These results illustrate how new computational methods applied to established psychological

theory can be used to better predict, understand, and influence health behavior.

Statement of Relevance

Is granola healthy? What about steak? What type of knowledge do we use when judging the
healthiness of different foods? To answer this question, we study how different food names tend to
co-occur with other words in large-scale language data. We use this information to predict people’s
judgments of food healthiness and to uncover words and concepts that are more associated with
healthy and unhealthy foods. Our results show that people’s judgments of food healthiness are largely
explained by the strength of association with naturalness and rawness. In a series of experiments, we
demonstrate that these associations play a significant role in explaining judgments of healthiness

even if people are shown front-of-pack nutrient and calorie information.

Keywords: Judgment; food healthiness perceptions, knowledge representations; word embedding;

food labeling; computational models
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Computational Methods for Predicting and Understanding Food Judgment

Poor diet is one of the primary preventable causes of premature death in high-income
countries (Bauer et al., 2014). Understandably, people want to consume healthy foods as they
recognize the relationship between diet and health. However, people can only make healthy food
choices to the extent that they can correctly judge a food’s healthiness. One obstacle to healthy
eating is that there is no normative answer to the question: “what makes food healthy or unhealthy?”
(Lobstein & Davies, 2008). Still, it is commonly believed that food healthiness judgments are strongly

linked to beliefs about the nutritional content of food products (Scarborough et al., 2007).

Indeed, health organizations worldwide routinely emphasize which nutrients people should
avoid (high saturates, fats, sugars, salt) and which they should consume more of (high protein, fiber)
(Lobstein & Davies, 2008). This is apparent in the design of numerous front-of-pack food labeling
formats, which attempt to simplify complex nutrient information for consumers. Such interventions
highlight overall energy content and the presence of nutrients that are most associated with the rising
rates of obesity and chronic diseases (Kanter et al., 2018). Yet, evidence about the effectiveness of
such interventions is mixed (Sanjari et al., 2017).

The success of front-of-pack labeling rests on the assumption that people rely on energy and
nutrient information to judge a food’s healthiness (Orquin, 2014). However, evidence suggests that
healthiness judgments reflect pre-existing knowledge that people associate with foods’ perceived
naturalness (Siipi, 2012) and taste (Turnwald et al., 2017). These are further influenced by cultural
traditions (Pieniak et al., 2009), previous eating experiences (Papies, 2013), media/advertisements
(Whalen et al., 2018), background nutrition knowledge (Soederberg Miller & Cassady, 2015), choice
context (Downs et al., 2015), product category (Plasek et al., 2020), packaging (Reutner et al., 2015),
and health halo effects of labels such as “organic” (Perkovic & Orquin, 2018; Schuldt & Schwarz,
2010).

These factors contribute to the diverse and multidimensional knowledge representations that
decision-makers draw upon when making food-related judgments and choices. Indeed, specific
knowledge representations that are retrieved from memory (Scheibehenne et al., 2007) or explicitly
provided to the decision-maker (Schulte-Mecklenbeck et al., 2013) can be used to make choices
between food items using simple heuristics. Whereas knowledge representations may explain why

people think some foods are healthier than others, they may be biased, causing systematic and
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predictable errors in healthiness perception. This could explain why people’s judgments of healthiness
deviate from an estimate of healthiness based on nutrient and energy values of the food (Orquin,
2014).

Researchers studying food judgment and choice typically rely on knowledge representations
that are restricted to a predefined and limited set of factors and attributes (Steptoe et al., 1995). This
also means that current approaches are not well suited for making generalizable predictions about
judgments in the presence of interventions, such as different food labeling strategies (Kanter et al.,
2018). How can we identify and quantify knowledge representations that underpin people’s judgment
of food healthiness? We propose a novel approach to overcome these challenges, which relies on
recent advances in computational linguistics. Unlike previous approaches, in which food
representations were either manually specified by the researchers or based on self-reports, we
establish food representations using natural language data. More specifically, we use word
distribution statistics in large text corpora to uncover quantitative representations for words and
phrases that describe food items. The use of this type of data means that uncovered representations
reflect information conveyed in language, which individuals may use to form beliefs, and may even
guide everyday health judgment. We find support for this prediction by studying how knowledge
representations retrieved from natural language can account for judgments of food healthiness across
six experiments. Our further analysis reveals that our models perform well because they capture
associations related to naturalness or rawness of foods.

The knowledge representations used in our analysis are high-dimensional vectors for words
(also known as word embeddings) (Landauer & Dumais, 1997; Lenci, 2018; Mikolov et al., 2013). A
useful property of word vectors is that the proximities between vectors measure the associations
between individual words. These associations have been shown to correlate with human semantic,
factual, probability, and social judgments (Bhatia, 2017; Caliskan et al., 2017; Pereira et al., 2016).
Recently, researchers have shown that these word vectors can be used to quantify people’s
knowledge about various natural entities by using these as inputs into regressions that predict more
complex (potentially non-associative) judgments in other domains (Bhatia, 2019; Richie et al., 2019;
Zou & Bhatia, 2021).

Our approach is as follows: First, we obtain high-dimensional vector representations for food

items from popular word embedding models trained on large-scale textual datasets. We hypothesize
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that these word vectors may serve as a good approximation of knowledge representations that
underpin judgments of food healthiness. To test this proposition, with some training data involving
people’s ratings of diverse food items, we learn a mapping from our high-dimensional vector space to
the (one-dimensional) scale that measures perceptions of healthiness (i.e. people’s judgments). We
then apply this mapping to food items outside of the training data to predict people’s judgments for
these “out-of-sample” food items. Note that such a mapping identifies regions of the vector space
implicitly associated with food healthiness, and thus can be used to understand the conceptual and
associative underpinnings of health judgment. We can also build this kind of mapping separately for
different groups of people, to predict judgments of both lay and expert judges, as well as differences
in judgments between individuals exposed to different front-of-pack labeling strategies. Across six

studies, we demonstrate the generalizability, accuracy, and power of our approach.

Studies 1A, 1B and 1C
Our primary objective was to establish the feasibility of our computational approach in predicting
people’s judgments of food healthiness. Therefore, we elicited judgments of healthiness for a wide
range of food items (presented as food names) from the general population (Study 1A) and from a
sample of registered dietitians (Study 1B). In Study 1C, we tested the performance of our models on

healthiness judgments of foods’ nhames and images.

Methods
Participants

Our approach does not rely on standard null hypothesis testing but rather on maximizing out-
of-sample predictions. Using previous work for guidance (Bhatia, 2019), we chose to obtain
judgments for a diverse set of 172 foods and aimed to recruit at least 100 participants (with each
participant judging each of the 172 food items). The only exception was in Study 1B where we
prioritized how many responses we could obtain from nutritional experts in a three-month window.
Note that in all studies, the primary unit of analysis was the average healthiness rating, across all
participants, for a given food item.

In all studies, only participants over 18 years of age were eligible to take part. Our only

exclusion criterion was based on the correlation between each person’s food ratings and the grand
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mean of aggregate ratings for those foods within the sample. Prior to data analysis (in all studies
reported in this paper), we removed participants with a correlation lower than 0.4 with the grand mean
of all ratings in a given study (based on the inspection of data from Study 1A). Although this exclusion
criterion aimed to remove participants with very noisy ratings that would generate outlier responses,
an analysis of the full sample shows that none of our results are affected by this exclusion criteria
(see Section 1 of the Supplementary Materials).

For Study 1A, 149 participants were recruited from Prolific Academic in return for a fixed
payment of £1.30. Using the aforementioned criterion, data from 15 respondents were removed
leaving 134 participants as our final sample (aged 18-74 years, Mage = 29.57 years, SD = 8.86, 43%
females, and 84% had no dietary restrictions). For Study 1B, we contacted registered dietitians after a
formal introduction by email with a request to take part in our study and forward the invitation to their
colleagues. We also advertised the study on personal social media accounts. As an incentive,
participants were able to request a report of the main findings. Nineteen registered dietitians took part
in the study (none excluded, aged 23-56, Mage = 35.84 years, SD = 10.36, 89% females and 68% had
no dietary restrictions). One hundred participants recruited on Prolific Academic took part in Study 1C
in return for a fixed payment of £1.90. We excluded one participant based on the same criteria as in
Study 1A. This left 99 participants in our final sample (aged 18-69 years, Mage = 27.25 years, SD =
10.20, 44% females, and 82% had no dietary restrictions). A detailed breakdown of participants’
characteristics for this and other studies reported here is provided in the Supplementary Materials
(Section 2). This research was approved by the University of Warwick’s Biomedical and Scientific
Research Ethics Sub-Committee (approval # REGO-2018-2268).

Design and Procedure

In all studies, participants were asked to simply judge the healthiness of 172 foods on a scale
ranging from -100 (extremely unhealthy) to +100 (extremely healthy). In Study 1A and 1B, each food
was described using its name only. In Study 1C, a generic image of the food item was presented
directly below the food name. Responses were made using a slider, with its starting position always at
zero by default (neither healthy nor unhealthy). This scale was chosen because it is fine-grained (200
intervals) and balanced (symmetric around 0), offering nearly continuous data for predictive modeling
(Bhatia, 2019). Participants had the option of selecting “Don’t know” if they were unfamiliar with a food

item, with those ratings removed from the analysis. The order of the items was randomized for every
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participant and only one item was visible at a time. The same generic task instruction: “Using the
slider, please use your first impression to rate the following food item according to the scale below:”
was displayed above all stimuli in every study condition. After rating all foods, participants were asked
about their age, gender, and dietary restrictions (with the options of “Pescetarian (no meat, but eat

fish and/or shellfish)”, “Vegetarian”, “Vegan”, “Other (please specify if you wish)” and “None of the
above”). Our nutritional experts in Study 1B were also asked two additional demographic questions at
the end of the survey (namely, “No. of Years as a Registered Dietitian” and “Area of Specialism”).
Materials

We obtained a list of foods from the USDA Food Composition Database, the most recent
official publication of nutrient information pertaining to over 3102 unique food items (U.S. Department
of Agriculture, 2019). Only foods present in the vocabulary of the pre-trained word2vec model were
considered, leaving 571 food items (see the Computational Approach section for detail). Two hundred
food items, across all food categories (e.g. vegetables, meats, dishes), were manually chosen by co-
author WZ to ensure diversity in the stimuli set. Next, co-authors NG and LW removed uncommon
and ambiguous food items such as “squash” (because of its additional meaning related to sports),
resulting in the final list of 172 food items (see the OSF repository associated with this project for the
full list: https://osf.io/jys6u/). Note that the same list of 172 food items was used in all studies reported
in the main text of the manuscript.

In Study 1C, 69 of the food images were directly sourced from an image database for
experimental research (Blechert et al., 2019), with the remaining 103 images sourced online and
standardized to match (white background, 600 x 450 dimensions, and jpeg format).

Computational approach

We used three statistical models to predict subjective food healthiness judgments. Our
analysis relied on participants’ judgments at the aggregate level. We evaluated the accuracy of each
of our three statistical models in predicting subjective food healthiness judgments using leave-one-out
cross-validation, which means that we trained our models on all but one aggregate judgment (“training
data”) and used the trained model to predict the rating of the left-out food item (“test data”). We
repeated this procedure 172 times so that each food item was in the test data once. Cross-validation
ensures that our modeling avoided overfitting and that performance of each model was evaluated

based on model generalizability.
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In the first model, the Nutrient Model, we used nutrient content information to predict
healthiness judgments. This model was an ordinary-least-squared regression with main effects for
food calorie content, amounts of nutrients (fat, saturates, sugar, salt, and protein) per 100g, and the
relative coding scheme based on the UK traffic light labeling for fat, saturates, sugar and salt (green,
amber and red). Under the traffic light labeling system, green signifies a healthier food choice to
consumers implying “go ahead”; amber indicates the item contains moderate amounts of the negative
nutrient(s); and red signals caution for overconsumption (Trudel et al., 2015). The model was fit on
the training data, and the best fitting parameters of the model were applied to the nutrient information
of the (out-of-sample) food, in order to predict participant ratings. The nutrients and calorie information
included in the Nutrient Model reflects the current European Union’s regulations concerning
mandatory information for food package labeling (Article 30, Regulation No. 1169/2011 European
Commission, 2011). In the Supplementary Materials (Section 3), we summarize tests of the
robustness of our results using three extended versions of the Nutrient Model. First, we expanded the
Nutrient Model to incorporate the potential role of 23 nutrients (e.g., fiber, calcium, and Vitamin C).
Second, we also tested a version of the model that used nutrient amounts per portion size, defined as
the amount per 100 calories. We also combined these two extensions into our final, third model.

In our Vector Representation Model, we used vector representations from the word2vec
model (Mikolov et al., 2013). This model was pre-trained on a dataset of Google News articles, and
has 300-dimensional vector representations for three million common words and phrases in the
English language (see Mikolov et al., 2013 for details). In designing our studies, we only considered
foods whose name features in the pre-trained word2vec model. We also analyzed the predictions of
other established pre-trained word vector models, which we discuss in the Supplementary Materials
(Section 4). In our main analysis, we used normalized word vectors, in which the magnitude of the
vectors was scaled to be equal to 1. We regressed participants’ healthiness ratings on these vectors,
which allowed the model to learn a linear mapping from the semantic vector space to health
judgments. This learnt mapping was then applied to the vectors of other (out-of-sample) foods, in
order to predict participant ratings of those foods, and measure the models’ predictive accuracy.

Because of the high number of predictor variables in this model (300), we applied a
regularized regression technique known as ridge regression. Ridge regression allows high numbers of

predictors to be considered and takes into account whether predictors are highly correlated. In
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previous and similar work, ridge regression was the best-fitting regression technique for mapping pre-
trained 300-dimensional vector representations to judgments and was consequently chosen for our
analysis (Bhatia, 2019; Richie et al., 2019). We also tested other regression techniques including
lasso, support vector, and k-nearest neighbors regression and found ridge regression was indeed the
best-fitting regression. We discuss this robustness test in the Supplementary Materials (Section 5).

Finally, our third Combined Model concatenated the 11-dimensional Nutrient Model with the
300-dimensional Vector Representation Model. Using ridge regression, we explore the extent that
both models can collectively explain people’s subjective food healthiness judgments.
Results

We began by examining the distribution of aggregate healthiness ratings in Figure 1. Here we
observed that healthiness judgments varied greatly amongst food stimuli, both across and within food
categories. Unsurprisingly, the foods with the healthiest ratings were all fruit and vegetables, with the
top five mean ratings ranging between 77 and 82 for tomatoes, cucumber, apple, carrots, and
broccoli, respectively. The five foods that received the unhealthiest ratings, ranging between -65 and -

50, were cola, donut, skittles, cheeseburger, and kit kat.
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Figure 1

Distribution of aggregated food healthiness ratings from Study 1A
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Figure 2 summarizes the accuracy rates of our three models in Studies 1A, 1B, and 1C. The
dots within each scatterplot represent the out-of-sample predicted vs actual (aggregated) healthiness
ratings for the individual foods. As we are using predictive modeling, the coefficient of determination

(r?) reflects the performance of the model when making out-of-sample predictions.

Figure 2

A Comparison of Predictive Accuracy between Models in Studies 1A, 1B, and 1C.
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Note. A comparison of predictive accuracy between models that used only nutrient content, only word

vector representations, or a combination of nutrient content and word vector representations in a

general population sample (1A), expert sample (1B) and with food images included as stimuli (1C).
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As shown in Figure 2, the out-of-sample predictive accuracy of the Vector Representation
Model was very high across all studies, with an r2 ranging from 0.69 (95% CI [0.63, 0.75] to 0.76 (95%
Cl1[0.71, 0.81]). By comparison, the predictive accuracy of the model based on the foods’ nutritional
information was always lower (r? ranging from 0.35, 95% CI [0.24, 0.46] to 0.39, 95% CI [0.28, 0.50]).
The Combined Model performs best however, achieving marginally higher predictive accuracy than
the Vector Representation Model in every study (2 ranging from 0.75 (95% CI [0.70, 0.80] to 0.77,
95% CI[0.72, 0.82]). Overall, these findings highlight that the performance of the Vector
Representation Model is stable, even when using ratings from participants with high nutritional
expertise and with food images as stimuli.

We performed several robustness checks to assure the reliability of our findings. First, we ran
separate paired sample t-tests to compare the squared errors from different models for each study
(see Section 6 of the Supplementary Materials). Across all studies, the mean squared errors from the
Vector Representation Model and the Combined Model were significantly lower than those from the
Nutrient Model (all p < 0.01). We also repeated our analysis at the individual level, without
aggregating healthiness ratings for each food. Results are presented in our Supplementary Materials
(Section 7) and show that our findings remain largely unchanged. Section 4 of the Supplement
summarizes r? for the Vector Representation Model based on alternative word vectors obtained from
fastText (Mikolov et al., 2018) and GloVe (Pennington et al., 2014). Finally, in Section 5, we show the
results of different regression techniques, including lasso, support vector, and k-nearest neighbors.
Once again, using alternative word vectors or regression techniques did not alter our results.

Returning to the results from the Vector Representation Model based on the ridge regression
and word2vec vectors, our approach was also able to capture qualitative trends in our data by
correctly predicting the categories of foods judged as being high or low in healthiness. For example,
both observed and predicted ratings were highest for categories such as Fruits and Fruit Juices,
Vegetables and Vegetable Products, and Nut and Seed Products. Likewise, both observed and
predicted ratings were lowest for categories such as Baked Products, Sweets, and Fats and Oils. In
fact, when pooling the data by food category, we found the Vector Representation Model predicted
average healthiness ratings for categories of foods with an out-of-sample r? of 0.83 (95% CI [0.79,
0.86]). The Nutrient Model, in contrast, achieved an r2 of only 0.31 (95% CI [0.20, 0.41]). It seems

healthiness judgments are sensitive to the category of the food item, a property easily captured by the
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Vector Representation Model, but less so for the Nutrient Model (Orquin, 2014). Further details of this
analysis are provided in Section 8 of the Supplementary Materials.

The reason why the Vector Representation Model performs well is that it may capture the
latent associations underpinning judgments of healthiness. To explore these associations, we applied
a Principal Component Analysis to the vector representations of the 172 food items. Projections for
the first two components are shown in Figure 3. By inspecting Component 1, it is clear that negative
values correspond to mostly heavily processed and junk foods (e.g., pepperoni pizza, bacon, onion
rings), whereas positive values correspond mainly to organic and unprocessed vegetables and fruits
(e.g. apple, mango, lettuce, beets). Component 2 on the other hand, appears to reflect the
sweetness/sugariness of the food. The most positive scoring foods on this component are sugary
drinks (e.g. cola, lemonade) and sugary snacks (e.g. kit kat, dark chocolate). Among the negative
scores for Component 2, we can see meats (e.g., roasted turkey) but also less sugary vegetables

(e.g., brussels sprouts, asparagus).
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Figure 3

A 2d projection (based on the Principal Component Analysis) of vector representations for the 172

food names.
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Note. For clarity, only a random subset of 50 names are labeled on the plot.

Another benefit of the vector representation approach is that it can identify regions of the
semantic space related to food healthiness. This can be done by passing the vector representations
of common words (that are not necessarily food items) through a model trained on participants’ food
healthiness judgments. Words given high predictions would be those most associated with
healthiness and would capture the conceptual underpinnings of health judgment. Figure 4 shows a
word cloud of the fifty English language words with the highest healthiness predictions, derived with
this approach. Visibly, agriculture and nature-related words, such as crop, organic, and leaf, make up
the majority of this word cloud. Interestingly, the word healthy is also present in the word cloud even
though our model was never explicitly trained on this concept. It seems that implicit in people’s

judgments are associations with concepts like healthiness, as well as other concepts (e.g.,
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naturalness/degree of processing, organic, appearance) identified by previous researchers as being
psychological cues for food healthiness (Siipi, 2012). Our novel computational approach provides

quantitative methods for uncovering these associations.

Figure 4

Healthiest “Other” Words based on the Vector Representation Model
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Note. Words with the highest predicted healthiness ratings based on the Vector Representation Model

estimated for the lay people in Study 1A.

Studies 2A, 2B and 2C

Studies 1A-1C are based on judgments of food names and images. Yet, when people
evaluate foods, they are typically provided with additional nutritional information. Moreover, many food
labeling policies rest on the assumption that consumers make more informed decisions if nutritional
information is prominently displayed on food packaging. The relatively poor performance of the
Nutrient Model documented in Studies 1A-1C may reflect people’s lack of awareness (or memory) of
the nutritional values of the individual food items. Accordingly, if the nutritional information was made
more salient with the use of real food labeling strategies, we might expect that the contribution of
nutrients in the Nutrient Model would increase relative to the Vector Representation Model. Finally,

the results of Studies 1A-1C uncovered underlying associations between foods and naturalness, or
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rawness, which underpin food healthiness judgments. However, it is important to determine whether
these associations continue to play a role even if foods’ nutritional values are made more salient.

We addressed these issues in Studies 2A-2C by eliciting food healthiness judgments from
participants who saw either food names alone (as in Study 1A) or food names along with the label
highlighting various aspects of its nutrition. Again, we recruited adult participants for this series of
studies. In Study 2A, we provided our treatment group with information about the calories per 100g.
The provision of calorie information to aid healthy eating is supported by qualitative research showing
that consumers use energy content information (calories) as a proxy for the overall nutritional value of
a product (van Kleef et al., 2008). In Studies 2B and 2C, we examined the effects of information about
key nutrients (fat, saturates, sugars, and salt). Under EU rules, front-of-pack labeling of this kind is
acceptable with either no color-coding or traffic-light colored cues (i.e., red highlights high, orange
medium, and green low amounts of fat, saturates, sugar, and salt) (European Commission, 2011).
While both strategies highlight individual nutrients, it is the color-coded format that also aids
consumers to judge whether a particular amount is high, medium, or low. In Study 2B we gave the
treatment group nutrient labels without color-coding and in Study 2C we gave this group with nutrient
labels with color-coding.

Methods
Participants

There were 202 participants in Study 2A, and after the removal of five using our exclusion
criteria, 197 participants were included in the final analysis (aged 18-71 years, Mage = 30.30 years, SD
=10.74, 52% female, and 80% had no dietary restrictions). From the initial 199 participants who took
part in Study 2B, four were excluded leaving 195 participants (aged 18-65 years, Mage = 29.16 years,
SD = 10.28, 48% female, and 82% had no dietary restrictions). Finally, 202 participants took part in
Study 2C (aged 18-78 years, Mage = 34.69 years, SD = 11.51, 70% female, and 81% had no dietary
restrictions). No participants were excluded from this study as all participant responses fell above the
threshold for removal. Only residents of the UK were allowed to participate in Study 2C to assure
knowledge and familiarity with the traffic light food labeling system.

Design and Procedure
We tested the role of food labeling on judgment, in which we gradually (across studies)

introduced more informative (and realistic) formats of food labeling. All three studies used a between-
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subjects design. In half of the sample (control group) participants rated food healthiness of 172 foods
in the same manner as in Study 1A and 1B. In the treatment groups, participants rated each of the
food names presented alongside a nutrition label. In Study 2A, this was the energy (kcal) amounts per
100 grams of the food. In Study 2B, we additionally included the absolute amount of fats, saturates,
sugars and salts. Finally, in Study 2C, we used the same objective information as above, but also
added the “traffic light” system used in the UK, which indicates the relative amount of different
nutrients, categorizing them into green, amber, and red groups. The examples of the labeling used in

each study are presented in Figure 5.

Figure 5

Food stimuli presented to participants in Studies 2A, 2B and 2C

Study Control Condition Treatment Condition

2A Food Name Only Food Name + Typical values per 100g: Energy 607kcal

Typical values per 100g of the food item are as follows:

Energy Fat Saturates Sugars Salt

607keal

Energy Saturates Sugars Salt

Note. All participants were from a general population sample.

2B Food Name Only Food Name +

2C Food Name Only Food Name +

Results

As shown in Figure 6, the Vector Representation Model performed very well across all studies
and conditions. In fact, the out-of-sample predictive accuracy of the Vector Representation Model was
very high, with r? ranging from 0.65 (95% CI [0.59, 0.72]) to 0.77 (95% CI [0.72, 0.81]), in each study
and condition. By comparison, the predictive accuracy of the models based on the foods’ nutritional

information was lower but also much more variable (r? ranging from 0.33, 95% CI[0.22, 0.44]t0 0.77,
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95% CI1[0.72, 0.83)). Figure 6 reveals a systematic pattern — the predictive accuracy of the Nutrient
Model increased with the amount of the nutritional information presented alongside foods’ names.
This is unsurprising as it shows that people integrated label information into their judgments
(Gonzalez-Vallejo et al., 2016; Scarborough et al., 2007). Despite this, the Vector Representation
Model still performed better than the Nutrient Model when participants saw only calorie information
(Study 2A) and calorie information with front-of-pack nutrient labeling (Study 2B). Only in the most
informative condition, traffic light labeling (Study 2C), did the Nutrient Model outperform the Vector
Representation Model. Figure 6 also shows that the accuracy of the vector representation model is
identical across the two conditions in Studies 2A and 2B, although it does drop slightly in Study 2C.
This is not significant, as can be seen from the slight overlap in 95% Cls of the control (r?= 0.76, 95%
Cl =[0.71, 0.81]) and traffic light labelling conditions (r?= 0.65, 95% CI = [0.59, 0.72]) in Figure S3 of
the Supplementary Materials. In any case, these results show that associations with food names play
an important role in people’s judgments of healthiness, often more than its nutritional composition.
Figure 6 also summarizes the predictive accuracy of the Combined Model — which uses both
the word vectors and nutritional information to predict people’s judgments. In 5 out of 6 cases, the
Combined Model performed better than the individual models. The highest accuracy was achieved in
the traffic light labeling condition, with r2 of 0.91 (95% CI [0.89, 0.93]), which was markedly higher
than 0.77 (95% CI [0.72, 0.83]) of the Nutrient Model and 0.65 (95% CI [0.59, 0.72]) of the Vector
Representation Model. These results support the interpretation that word vectors explain people’s

judgments over and above the nutritional information of individual foods.
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Figure 6
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A Comparison of Predictive Accuracy between Models in Studies 2A, 2B and 2C

Control Condition

Treatment Condition

Food Mame Only
Vector Representation Mocel
P=077

Predicted Ratings

100 [} 100 -100 [] 100
Actusl Ratings
2B Food Mame Only
Mutrient Model Vector Representation Model
™ 2-0n34 =076

Predicted Ratings
=

-100 (1] 100
Actuzl Ratings
Food Mame Only
Vector Representation Model
£=076

Predicted Ratings

~im ] 100
Actual Ratings

Food Mame + Calorie Labeling
Vector Representation Model
=076

Predicted Ratings

-100 [ 100 -100 [ 100 -100 a 100

Actual Ratings

Food Name + Front—of-Pack Labeling
Vector Representation Model
=074

Predicted Ratings
>

100 [ 100 -0 (] 180 ] ] 100
Actual Ratings
Food Name + Traffic Light Labeling
Vector Representation Model Combinad Model
=065

Predicted Ratings

] [} 100 -100 [} 100
Actual Ratings

Note. A comparison of predictive accuracy between models that used only nutrient content, only word

vector representations, or a combination of nutrient content and word vector representations. Actual

ratings were all from a general population sample who were randomly assigned to either the control or

the treatment condition in each study.

Do representations of foods change when nutrient information of foods is highlighted? In other

words, do we observe a systematic shift in knowledge representations due to the various types of

food labeling? To answer this question, we computed differences between aggregate ratings for each

food made in the condition with and without a food label. We then refitted our Vector Representation

and Combined Model with these difference scores as a dependent variable. Figure 7 shows that the

Vector Representation Model explains a non-trivial amount of variance in the difference between the

conditions in all three studies. At the same time, the predictive accuracy of the Combined Model

increases markedly from Study 2A through to 2C, which confirms that people who saw additional
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nutritional information did in fact rely on it when making their judgments. This supports the
interpretation that even if food labeling changes how people make judgments, the reliance on
knowledge representations captured by the Vector Representation Model remains stable and
influential. It also shows that word vector representations can predict the idiosyncratic effects of

nutrient labels on health judgments for different food items.

Figure 7

Leave-one-out cross-validation results for the ability of vector representations to predict condition

differences
General Population Sample
Study 2A Study 28 Study 2C
Vector Representation Model Combined Model Vector Representation Model Combined Model Vector Representation Model Combined Model

£=0.34 rF=0.46 #=0.19 =055 . #=029 # =069

=
w
=]

=
=]

B
1
g

Predicted Difference Between Conditions
Predicted Difference Between Conditions
I
=
Predicted Difference Between Conditions

g
1

20 0 20 -20 0 20 60 -30 0 30 6060 -30 0 30 &
Actual Difference Between Conditions Actual Difference Between Conditions Actual Difference Between Conditions

=20 -0 0 10 20-20 -0 O 10 20 -

Note. Leave-one-out cross-validation results for the ability of vector representations (Vector
Representation Model) and the Combined Model to predict the difference between conditions in Study
2A (calorie information — control), Study 2B (calorie information with front-of-pack nutrient labeling —

control) and, Study 2C (traffic light labeling — control).

General Discussion

Everyday dietary decisions are influenced by people’s subjective perceptions of food
healthiness. Psychological explanations of this process are incomplete without an accurate model of
the rich knowledge and diverse associations underpinning people’s judgments of what food is healthy
and what is not. In this paper, we offer a novel method for uncovering these knowledge
representations by combining insights from machine learning and computational linguistics. Using
vector representations of food items derived from natural language, we show that it is possible to
predict healthiness judgments highly accurately. We show that people’s judgments can be partly

explained by the strength of association between individual food items and concepts pertaining to
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naturalness (e.g., harvest, leaf) and rawness (e.g., crop, organic). These associations play a role
even when judgments are made in the presence of food images or are made by trained dietitians. In
addition, high accuracy rates obtained by our Combined Model indicate that such knowledge
representations in language do not merely reflect beliefs about nutritional composition; rather they
capture something unique about people’s associations with different foods. Thus, our models can help
evaluate how different front-of-pack labeling strategies influence food healthiness judgments.

Unlike previous approaches, our method does not require us to identify specific factors or
attributes that we, as researchers, believe to be related to healthiness judgments. Instead, by using
our best-fit model to predict the “healthiness” of common words in the English language, we show that
nature-related words such as “crop”, “harvest”, and “agricultural” are implicit in people’s judgments.
This is consistent with other findings that perceived naturalness and healthiness are often intertwined
(Sanchez-Siles et al., 2019; Siipi, 2012 but see Fernbach et al., 2019). These results also align with
the finding that rawness or the degree to which a food has been processed is a strong cue of
healthiness in food choice (Scheibehenne et al., 2007; Schulte-Mecklenbeck et al., 2013). Notably,
our results indicate that models based on these associations are accurate even if participants are
explicitly told about the nutritional composition of foods.

Our approach offers a unique insight into the psychological basis of subjective food
healthiness judgments by exploring foods in their most abstract forms (name or image). That said, a
model trained on written text is unlikely to accurately capture sensorimotor information about foods
(e.g. smell, texture), which would also be relevant in real-world situations (De Deyne et al., 2016;
Lynott et al., 2020; Papies et al., 2020). Hence, while our results are promising, they are only a first
step in providing a rich set of attributes and associations that people use in judging foods’ healthiness.

Neither explicit food labeling nor expert judgments reduced the contributions of the knowledge
associations established by the Vector Representation model. With respect to expert judgments,
these findings are in line with research showing that nutritional expertise does not always translate
into a higher reliance on nutritional information when making healthiness judgments (Orquin, 2014).
Our results also speak to the value of nutritional labeling more generally. Given that associations
played a role in all studies, existing front-of-pack labeling can neither substitute nor correct for the

associations that people rely on when judging foods’ healthiness.
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There are many potentially useful applications of our computational approach. Future studies
could test the predictive ability of this Vector Representation Model with and against other formats of
nutrient labeling such as France’s Nutri-score label (color-coded without numerical information). Thus,
the use of this approach could be vital in determining a single internationally agreed nutrient labeling
system (Goiana-da-Silva et al., 2019), especially since it provides directly comparable results
between labeling formats. However, further work is necessary to establish whether the accuracy of
our models changes when participants are presented with other information present on pre-packaged
foods, such as branding, health claims, and back-of-pack nutrition labeling.

An important outstanding question is whether our Vector Representation Model is
generalizable to judgments of other foods than the 172 items tested in all six studies. In Section 10 of
our Supplementary Material, we report the results of a new study in which we elicited judgments of 60
new foods from a sample of 97 participants. Instead of training a new model, we used the Vector
Representation Model from Study 1A to derive predictions for our new foods. Our models performed
very well —with our approach we can predict healthiness judgments of new foods from a new group of
participants highly accurately. To assist future research, we have obtained predictions of our models

for hundreds of novel food items and made these available via OSF (https://osf.io/jys6u/). These can

be used to evaluate future interventions and to test alternative psychological mechanisms that
underpin human judgments and choices of foods. Overall, our studies provide new insights into
people’s food healthiness judgments, while our methods offer an exciting new avenue to researchers

and practitioners interested in designing interventions for healthy eating.


https://osf.io/jys6u/
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