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Abstract. A wide body of empirical research has revealed the descriptive shortcomings of
expected value and expected utility models of risky decision making. In response, numer-
ous models have been advanced to predict and explain people’s choices between gambles.
Although some of these models have had a great impact in the behavioral, social, andman-
agement sciences, there is little consensus about which model offers the best account of
choice behavior. In this paper, we conduct a large-scale comparison of 58 prominent
models of risky choice, using 19 existing behavioral data sets involving more than 800 par-
ticipants. This allows us to comprehensively evaluate models in terms of individual-level
predictive performance across a range of different choice settings. We also identify the psy-
chological mechanisms that lead to superior predictive performance and the properties of
choice stimuli that favor certain types of models over others. Moreover, drawing on re-
search on the wisdom of crowds, we argue that each of the existing models can be seen as
an expert that provides unique forecasts in choice predictions. Consistent with this claim,
we find that crowds of risky choice models perform better than individual models and
thus provide a performance bound for assessing the historical accumulation of knowledge
in our field. Our results suggest that each model captures unique aspects of the decision
process and that existing risky choice models offer complementary rather than competing
accounts of behavior. We discuss the implications of our results on theories of risky deci-
sion making and the quantitative modeling of choice behavior.
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Introduction
Risk plays a key role in everyday choice, with
managerial, financial, consumer, and health decision
making often involving the evaluation of probabilistic
outcomes and the optimization of value in the face of
uncertainty. Unsurprisingly, understanding how peo-
ple make risky choices is one of the most important
research topics in the behavioral sciences, and it is a
central focus of fields such as managerial decision mak-
ing, behavioral decision research, judgment and deci-
sion making, and behavioral economics. Dating back to
the correspondence between Blaise Pascal and Pierre de
Fermat, some have argued that people should always
maximize expected value in risky choice. However, ear-
ly thought experiments, such as the St. Petersburg para-
dox proposed by Nicolaus and Daniel Bernoulli, have
challenged this view by speculating what people would

do, therefore putting alternative descriptive theories of
decision under risk into perspective. Following these
challenges, expected utility theory (EUT), pioneered by
Daniel Bernoulli (1738) and axiomatized by von Neu-
mann and Morgenstern (1944), has provided an influ-
ential approach to thinking about both normative and
descriptive aspects of risky choice.

Of course, research on risky choice behavior did not
end with EUT. Rather, the question of what people do
when confronted with options that offer potentially
probabilistic outcomes has fueled a transgenerational, in-
terdisciplinary research program, with tremendous im-
pact both within academia and in applied settings. The
first behavioral experiments designed to answer this
question focused on specific deviations from EUT (Allais
1953, Edwards 1954). Soon several discrepancies had
been uncovered, and the accumulated empirical
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evidence gave rise to a wave of fully fledged behavioral
models (each associated with different psychological
mechanisms) that could be directly contrasted with EUT
in terms of descriptive adequacy (e.g., Kahneman and
Tversky 1979, Tversky and Kahneman 1992, Busemeyer
and Townsend 1993, and Birnbaum 2008). The rate at
which new models have been advanced has only accel-
erated over the years—at the time of writing this article,
several dozens of behavioral models of risky choice had
been proposed (Starmer 2000, He et al. 2020).

Judging by the volume of models available to explain
existing data, the study of people’s risk-taking behavior
should be one of the most mature fields in the social
and behavioral sciences. What is the current state of the
art in terms of describing people’s behavior and predict-
ing their choices? How much progress have we collec-
tively achieved across disciplines, and what are the psy-
chological mechanisms that are necessary to get good
predictions? Surprisingly, it is hard to find answers to
these questions. More often than not, different models
are seen as competitors, where the success of a model
directly discredits rival theoretical accounts. Moreover,
it remains hard to assess the relative importance of dif-
ferent psychological mechanisms and the overall output
of the collective scientific endeavor, as the study of risky
choice is rather fragmented even within disciplines, and
even more so across disciplines.

There are three main roadblocks hindering progress
and synthesis across disciplines. First, new theoretical
papers typically compare the advanced model against
a handful of main competitors; as a result, it is hard to
judge how a model fares against the overall state of
the art in predicting and describing people’s choices.
Although this is a reasonable approach given the large
number of potential competitors, it can lead to a splin-
tered view of the literature and important ideas being
forgotten. Second, different studies use very different
data sets to evaluate the performance of models. Mod-
el performance largely depends on the selection of
stimuli included in different experiments (see Erev
et al. (2017) for a similar critique), and consequently,
the predictive ability of models varies across studies,
making comparisons between different theoretical ac-
counts particularly complicated. Finally, among the
existing empirical studies, only a modest subset has
generated enough data to allow for the estimation of
model parameters of individuals, despite the fact that
model parameters correspond to psychological factors,
such as subjective perception, attention, and emotion,
which could be highly idiosyncratic across people
(Edwards 1955, Bordalo et al. 2012, Loewenstein et al.
2015). In the absence of such individual-level tests, our
understanding of the descriptive power of many exist-
ing models is incomplete.

What is needed is a transdisciplinary analysis that
comprehensively integrates the rich set of theoretical

insights identified by prior researchers and uses these
insights to identify the state of the art in modeling
individual-level risky choice, quantify the progress
made over the past several decades, understand how
key psychological properties of these models relate to
model performance for different data sets, and devel-
op novel ideas for improving the predictive and ex-
planatory scope of risky decision-making research. In
this paper we hope to present such an analysis. First,
we build a collection of 58 risky choice models
from numerous papers published in disciplines such
as management, economics, and psychology. It is im-
portant to note that we instantiate these models in
code, thereby formalizing their functional forms and
rigorously specifying their implementation details. To
the best of our knowledge, this is the most extensive
set of risky choice models compiled and implemented
so far. Second, we build a collection of risky choice
data sets, again drawn from different papers. Our col-
lection includes both data sets with mixed gambles
and with only positive gambles (i.e., gains) and data
sets with numerous different types of choice problems
(including randomly generated and experimenter-
curated choice problems, as well as one and two non-
zero branches choice problems), allowing for a much
more comprehensive evaluation of different models.
Additionally, each of our data sets has a large number
of responses on the individual level, facilitating
individual-level model fits and tests. Overall, these
data sets involve 825 individuals making 76,910 risky
choices in total. Again, to the best of our knowledge,
this is one of the largest risky choice data sets com-
piled so far. The large panel of models and the vast
test bed of data sets allow for an unprecedentedly
complete evaluation of different individual models.
To our knowledge, we are the first to quantitatively fit
many of the models, and our tests outperform the size
of the data sets and model sets used in prior work by
an order of magnitude.

The rich collection of models and choice stimuli that
we have collected also allows us to better understand
the properties of the models and choice problems that
drive our results. We attempt this analysis by parti-
tioning our set of models based on the assumed
psychological mechanisms (e.g., probability weighting,
regret, attention) and by partitioning our stimuli based
on the correlations between the underlying probabili-
ties and payoffs as well as the expected value (EV) dif-
ference between options. We are subsequently able to
test which mechanisms lead to superior model perfor-
mance and how this varies based on the underlying
stimuli structure offered to participants.

Seeing models as competing against each other is a
limitation in itself, and it may not do full justice to the
historical accumulation of knowledge in risky choice
research. A more productive approach may be to
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consider models as complementary and thereafter to
exploit the collective wisdom accumulated in different
research papers across different disciplines. Thus, in
this paper, we integrate research on risky choice and
research on the wisdom of crowds (Galton 1907,
Surowiecki 2004) to develop and test model crowds,
where each model is seen as an expert whose judg-
ments can be aggregated with those of other models
to better describe choice behavior. Hitherto, the princi-
ple of crowd wisdom has been used to aggregate the
opinions of different people in estimation and catego-
rization tasks. Averaged opinions typically lead to
more reliable estimates and in many cases outperform
the predictions of the best-performing individual. In a
similar vein, model crowds could leverage insights of
various risky choice models and predict people’s be-
havior better than any individual model. Moving
from individuals to models is a natural step. In fact,
there are often towering intellectual figures standing
behind the models, and models can, in many ways, be
seen as the (mathematically specified) decision rules
that would be used by these experts to predict indi-
vidual choice.

Model crowds hold great promise for improving
our ability to predict people’s behavior. In the field of
machine learning, model aggregation has proven
valuable for improving prediction in regression and
classification tasks by efficiently leveraging small
amounts of data and reducing sensitivity to specific
samples (and thus reducing variance; Breiman 1998,
Polikar 2006). Thus, it comes as no surprise that en-
semble models, which aggregate the predictions of
several distinct models, are often proclaimed the win-
ners of machine learning competitions (Bell and Koren
2007, Niculescu-Mizil et al. 2009). Closer to home, en-
semble models have shown great promise in a series
of prediction competitions featuring models that were
developed and tuned by research teams using training
data from large behavioral experiments with the goal
to predict the proportion of people choosing a risky
option over another in a holdout data set (Erev et al.
2010, 2017) and have been leveraged by cognitive
modelers to uncover people’s cognitive processes
(Singmann et al. 2018). What’s more, in risky choice
and other choice processes more broadly, it is reason-
able to assume that individuals’ decision strategies
may be governed by a number of factors that are not
present in any single decision model. Thus, crowds of
individual models relying on different theoretical as-
sumptions may capture these factors and thus predict
individual-level behavior better than any single model
does (Payne et al. 1988, Scheibehenne et al. 2013).

Overall, model crowds combine the insights of nu-
merous existing models to predict and describe choice
behavior, and thus they provide a measure of the pro-
gress we have collectively achieved across disciplines.

We can also quantify the contribution of each individ-
ual model in a model crowd, which can be used to
identify the idiosyncratic predictive value of the mod-
el (when taking into account the predictions of other
models in the crowd). When crowd models are evalu-
ated over entire historical periods, they can be used to
quantify the growth of knowledge over time, becom-
ing a powerful tool to study the history of risky choice
research. Last but not least, by calculating the average
weights of models that rely on a specific psychological
mechanism or by removing all models using a specific
mechanism, model crowds can provide a measure of
the relative importance of different psychological
mechanisms in improving our predictive ability. We
next test our 58 risky choice models, along with vari-
ous model crowds generated from these models, as
well as their assumed psychological mechanisms, to
obtain a comprehensive understanding of the descrip-
tive power of behavioral theories of risky choice.

Methods
Models
We collected the long list of risky choice models using
a multistage process. We first searched Google Scholar
using various keywords (e.g., “risky choice model”
and “risky decision model”) and looked for models in
regular review articles published in the Annual Review
of Psychology and the Journal of Economic Literature
(Edwards 1954, 1961; Becker and McClintock 1967;
Rapoport and Wallsten 1972; Slovic et al. 1977;
Einhorn and Hogarth 1981; Pitz and Sachs 1984; Payne
et al. 1992; Starmer 2000; Hastie 2001; Simonson et al.
2001; Weber and Johnson 2009; Oppenheimer and
Kelso 2015). Then, using citation chaining we found
additional models presented in papers citing our list
of models. We then circulated these models to our col-
leagues using the Society for Judgment and Decision
Making email listserv, who helped us identify
additional models not present in our list. Finally, we
manually searched through prominent journals in
management, psychology, and economics, such as
Management Science, Psychological Review, and Ameri-
can Economic Review, for recently published models
that may not have been on our list.

Overall, our focus was on mathematically or algo-
rithmically specified models of description-based ris-
ky choice with precise functional forms that could be
fit to choice data. Thus, we excluded models of deci-
sion making under ambiguity (e.g., Camerer and
Weber 1992), models of experience-based risky deci-
sion making (e.g., Gilboa and Schmeidler 1995 and
Hertwig and Erev 2009), models of reference depen-
dence (e.g., Kőszegi and Rabin 2006), qualitative models
(e.g., Loewenstein et al. 2001), purely axiomatic models
without restrictions on functional forms (e.g., Machina
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1982), models of risk perception (e.g., Pollatsek
and Tversky 1970), and models that did not have
analytically specified likelihood functions and needed
to be simulated to make predictions (e.g., Erev et al.
2017).

Despite these restrictions, we were able to collect 58
distinct models. Each of these models makes implicit
or explicit assumptions about the psychological mech-
anisms at play in risky choice, and our large collection
of models gives us an unprecedented opportunity to
analyze the role of these mechanisms in model per-
formance. After consulting the original papers of the
models and identifying the mechanisms that their
authors evoked when presenting the models, we cate-
gorized models as involving one or more of nine
mechanisms: (1) payoff transformation, (2) probability
transformation, (3) attention, (4) sampling, (5) regret,
(6) disappointment, (7) ranking, (8) threshold, and (9)
dispersion (see Figure 1). Models with the first and
second mechanisms transform payoffs into subjective
values (e.g., Bernoulli 1738) or probabilities into sub-
jective probabilities (e.g., Edwards 1954) using nonlin-
ear functions, and such models use these transformed
payoffs or probabilities to evaluate the gambles. Mod-
els with attention (e.g., Busemeyer and Townsend
1993 and Birnbaum 2008) assume that decision mak-
ers selectively focus on some payoffs, probabilities, or
states of the world, whereas models with sampling
(e.g., Lieder et al. 2018) assume that decision makers
simulate or retrieve from memory the outcomes that
are used to evaluate the gambles. Models that allow
for regret (e.g., Bell 1982 and Loomes and Sugden
1982) typically compare the payoffs of a gamble
against the payoffs of other gambles, whereas models

that allow for disappointment (e.g., Bell 1985 and
Loomes and Sugden 1986) typically compare the pay-
offs of a gamble against the payoffs of the same gam-
ble. Models that use ranking (e.g., Thorngate 1980 and
Birnbaum 1997) order the payoffs or probabilities in-
volved and make decisions based on the ranks of
these payoffs or probabilities. Models that use thresh-
olds (e.g., Fishburn 1977 and Diecidue and van de
Ven 2008) typically use discrete cutoffs for payoffs or
probabilities to evaluate gambles. Models with the
dispersion mechanism (e.g., Markowitz 1952 and We-
ber et al. 2004) compute some measure of variability
for gambles, and they typically penalize models with
high variance payoffs. Of course, a given model can
allow for multiple mechanisms at the same time, such
as transformations of both payoffs and probabilities
(e.g., prospect theory; see Kahneman and Tversky
(1979)), decision making under the influence of both
regret and disappointment (e.g., Mellers et al. 1999),
or heuristic choice with a sequence of transformation
and threshold operations (e.g., Leland 1994). These
mechanisms are nonexclusive, and a certain model
may make use of more than one of them.

In order to fit stochastic choice data, we applied the
logit choice rule to models that generate utilities or
choice propensities on a cardinal scale. For models
that generate choice propensities on an ordinal scale
(e.g., heuristics), for which the logit rule was not ap-
plicable, a trembling-hand (i.e., constant-error) choice
rule was applied to accommodate choice stochasticity.
The two stochastic specifications are not as different
as they may appear. Indeed, if we allow the logit
choice rule to take an ordinal preference order as the
input, it reduces to the trembling-hand choice rule (by

Figure 1. (Color online) Psychological Mechanisms in Risky DecisionModels

Notes. Shaded cells mean that the model involves the psychological mechanism. Details and full names of the models can be found in the supple-
mentary appendix.

He, Analytis, and Bhatia: The Wisdom of Model Crowds
4 Management Science, Articles in Advance, pp. 1–26, © 2021 INFORMS



yielding a probability of choosing the preferred option
and a complementary probability of making an error
fixed across items). Additional details regarding the
models and their implementation are provided in the
supplementary appendix.

Data Sets
We evaluated the models with a wide range of data
sets from experimental studies. First, we downloaded
data sets that have been made available online (either
on personal websites or public repositories) from
recently published papers with risky choice experi-
ments. We also sent an email to the Society for
Judgment and Decision Making listserv, requesting
relevant data sets. All data sets were further screened
to meet the following criteria:

1. Contain individual-level choice data with at least
50 choice problems for each participant (as described in
the request email)

2. Offer a binary choice between monetary gambles
(with explicit descriptions for both probabilities and
payoffs)

3. Allow at most two possible monetary outcomes
for each gamble

With the above-mentioned measures taken, we ob-
tained a total of 19 data sets (see Table 1). Twelve of
these data sets involved gambles purely in the
gain domain, including one originally presented in
Rieskamp (2008), two in Fiedler and Glöckner (2012),
eight in Stewart et al. (2015), and one in Stewart et al.
(2016). Rieskamp’s (2008) data set involved 30 partici-
pants making 60 binary risky choices each. The
Stewart et al. (2015) data sets involved a total of 208
participants, each of whom made either 120 or 150 bi-
nary risky choices. Stewart et al. (2016) involved 48
participants, and each participant made 71 choices.
The other seven data sets involved gambles with
both gains and losses (i.e., mixed gambles), including
one data set collected by Erev et al. (2017), one by
Pachur et al. (2017), and five by Pachur et al. (2018).
The Erev et al. (2017) data set involved 60 partici-
pants making 57 binary choices each. The Pachur et al.
(2017) data set involved 122 participants making 105
binary choices each. The Pachur et al. (2018) data sets

involved 300 participants making either 91 or 51 bina-
ry choices each. Overall, the full array of data sets in-
volved 343 participants making 38,180 choices in the
gain domain and 482 participants making 38,730
choices in the mixed domain. Note that four models
(the relative risk-value models; Dyer and Jia 1997)
were designed exclusively for risky choice in the gain
domain and thus were excluded for the analysis of
mixed gambles (which involved losses). Thus, there
were 58 models for gains and 54 models for mixed
gambles. As such, the results from the two types of
data sets are presented separately in what follows. As
reported in the original papers, participants in these
experiments were incentivized based on their choices
in the tasks.

The data sets compiled in this paper involve a wide
range of gamble designs. Some data sets have generat-
ed gambles by systematically crossing payoffs with
probabilities and exhausting all possible combinations
of payoffs and probabilities (e.g., Stewart et al. 2015,
2016), whereas others have randomly selected gam-
bles from a reasonable stimulus space (Erev et al.
2017). Some designs have featured items that people
commonly encounter in real-world settings (Rieskamp
2008). Yet others have followed a hybrid approach
that combines manually crafted gambles with ran-
domly generated gambles (e.g., Pachur et al. 2018).
These designs can also be understood in terms of two
key quantitative properties: (1) the normalized EV dif-
ference between options and (2) the correlation be-
tween payoffs and its associated probabilities. The
normalized EV difference is a choice-level property.
For each binary choice between X and Y, the normal-
ized EV difference is defined as |EVX−EVY |

min{|EVX |, |EVY |}. The
correlation between payoffs and probabilities is an
experimental data set–level property. It is defined as
the Pearson’s correlation between all involved payoffs
and their associated probabilities in the experiment.
Note that some researchers have intentionally con-
trolled the normalized EV differences in the stimuli
sample to allow for data-efficient model selection
(e.g., Rieskamp 2008).

In Figure 2 we plot each data set in our analysis in
terms of the median normalized EV difference of its

Table 1. Summary of the Data Sets for Model Evaluation

Source Abbreviation Type Gamble design No. of none-zero No. of data sets No. of participants No. of trials

Rieskamp (2008) Rieskamp08 Gains Random 2 1 30 60
Fiedler and Glöckner (2012) FG12 Gains Random/Manual 2 2 57 50
Stewart et al. (2015) SRH15 Gains Manual 1 8 208 120 or 150
Stewart et al. (2016) SHM16 Gains Manual 1 1 48 71
Erev et al. (2017) EEPCC17 Mixed Random 2 1 60 57
Pachur et al. (2017) PMH17 Mixed Random/Manual 2 1 122 105
Pachur et al. (2018) PSMH18 Mixed Random/Manual 2 5 300 91 or 51
Total – – – 19 825 –
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component choice problems, as well as the correla-
tion between payoffs and probabilities across all its
choice problems. We see here that most of our data
sets have a negative correlation between payoffs and
probabilities, corresponding to a more ecologically
valid design (Pleskac and Hertwig 2014). There is a
large amount of variance in the median normalized
EV difference across data sets, and only a few data
sets keep this difference fixed at zero or very close to
zero. There do not appear to be systematic differ-
ences between gains and mixed gambles on these
two dimensions.

Cross-Validation
The 58 models in our collection have varying numbers
of parameters and different assumptions leading to
different degrees of flexibility. To control for flexibili-
ty, we used 10-fold cross-validation and evaluated the
models’ out-of-sample predictive performance. All
the analyses were conducted at individual level. Each
individual participant’s choice data were divided into
10 subsets. In each iteration, 9 subsets (i.e., 90% of
the choice data) served as the training set to train the
models and estimate their free parameters, and the
remaining subset served as the test set. The training-
testing procedure was repeated 10 times for each
participant, with each of the 10 subsets serving as the
test set once. Parameters were estimated by means of
maximum likelihood (Pitt et al. 2003). To ensure that
global maximum was reached, we repeated the SIM-
PLEX algorithm 500 times in the MATLAB fminsearch

function and selected the maximum likelihood estima-
tion. For a given model m, the estimated parameters
in the training set were used to make predictions in
the test set. For each choice problem i, the out-of-sam-
ple prediction using these parameters is denoted as
ŷm,i, which is the predicted probability that the first of
the two options on the choice problem is chosen. Be-
cause each trial served in the test set exactly once in
the 10-fold cross-validation, we obtained an out-of-
sample prediction for every choice problem in each
participant’s choice data.

We evaluated models’ out-of-sample predictive per-
formance with three different loss functions. The first
one is the binary prediction error. For a given model
m, the individual-level prediction error is defined as
PEm � 1

N

∑N
i�1I(|ŷm,i − yi| > 0:5), where yi is the ob-

served choice (1 if the first option is chosen on prob-
lem I and 0 otherwise), and N is the number of choice
problems; I(·) is the indicator function that returns 1 if
the argument is true and 0 otherwise. Note that in the
rare cases where the prediction ŷm,i was exactly 0.5,
the indicator function I(·) was replaced with a
prediction error of 0.5. The others were two probabil-
istic loss functions: log-loss and Brier score. The log-
loss is defined as LLm � − 1

N
∑N

i�1[yilog(ŷm,i) + (1− yi)
log(1− ŷm,i)]. The Brier score is defined as BSm �
1
N
∑N

i�1(ŷm,i − yi)2. The smaller the errors according to
these loss functions, the better the model performance.
The probabilistic loss functions take into account the
strength of preferences and are thus more sensitive to
the models’ quantitative predictions than the

Figure 2. (Color online) Two-Dimensional Display of the Data Sets Based on the Payoff-Probability Correlation and theMedian
Value of the Normalized EV Differences

Note. The labels of the data sets can be found in the “Abbreviation” column of Table 1.
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prediction error, which, by contrast, only encodes the
direction of preference.

Model Crowds
In addition to individual models, we built and test-
ed five model crowds, inspired by research on the
wisdom of crowds. Our model crowds took the indi-
vidual models’ (trained) out-of-sample predictions on
the test set as given and then made novel predictions
by combining the individual model predictions using
some model weighting scheme. It is important to note
that in designing such model crowds, we assigned
weights to the models independently of the test set,
which remained fully out of sample. As with the indi-
vidual models, model crowds were evaluated based
on their out-of-sample predictions with the same set of
loss functions previously described.

The first model crowd used in our analysis was a
naïve crowd that unconditionally averages out the
predictions of all models for each choice problem in
the test set. Specifically, for each choice problem i in
the test set, the naïve crowd’s predicted choice proba-
bility is the unweighted average of all individual
models’ choice probabilities: ŷnc,i � 1

M
∑M

m�1ŷm,i, where
M is the total number of individual models. Intuitive-
ly, the naïve crowd sees each individual model as be-
ing an equally valid predictor and thus aggregates the
individual models without weights (as with, e.g., the
equal weights heuristic decision rule; Dawes et al.
1989). Despite its simplicity, this model has been
shown to perform quite well in forecasting opinion
aggregation contexts, largely because of the robust-
ness (low variability) of its predictions (Hogarth 1978,
Clemen 1989, Armstrong 2001, Analytis et al. 2018).

A second model crowd was the weighted crowd.
This model used differences in model performances at
the training stage to inform model weights, so that
that better-performing models at the training stage
were given higher weights in the crowd. We used
Akaike weights for this purpose (Akaike 1973,
Wagenmakers and Farrell 2004). The Akaike weight
for a model is proportional to the model’s maximum
likelihood in the data it is fit on (in our case, the
training data), but it also includes a penalty for model
complexity in terms of the number of free parameters.
Accordingly, for each choice problem i in the
test set, the weighted crowds’ predicted choice proba-
bility is ŷwc,i �

∑M
m�1wAkaike

m ŷm,i, where wAkaike
m is model

m’s Akaike weight, with
∑M

m�1wAkaike
m � 1. Akaike

weight is defined as wAkaike
m � exp(−1

2AICm)
∑M

k�1exp(−1
2
AICk)

, where

AICm � −2logLm + 2Vm is the Akaike information cri-
terion for the training set (logLm is the maximum log

likelihood of the training data, and Vm is the number
of free parameters in m). The weighted crowd model
can be seen as aggregating individual model predic-
tions in a way that places more emphasis on the pre-
dictions of models that perform well on the training
data, and thus models whose predictions are more
likely to be correct in the test data (as with, e.g., the
weighted additive decision rule; e.g., Keeney and
Raiffa 1993). Similar models in the wisdom-of-crowds
literature weigh the predictions of individuals based
on their accuracy in prior forecasts, their self-reported
confidence, or some other measure of individual-level
performance, and for this reason they often outperform
the naïve crowd (Einhorn et al. 1977, Armstrong 2001,
Bahrami et al. 2010). The weighted crowd can also be
seen as an alternative implementation of Bayesian mod-
el averaging that penalizes model complexity by means
of the number of free parameters (Hoeting et al. 1999).

Our third and fourth model crowds were select crowds
(Goldstein et al. 2014, Mannes et al. 2014). As with the
weighted crowd, the select crowds utilize differential mod-
el performance in the training set to determine model
weights for predictions for the test set. They identify a par-
ticular number of best-performing models in the training
set and assign an equal weight to all selectedmodels. Con-
sistent with several recent applications of select crowds,
we varied the crowd size (e.g., Luan et al. 2012, Goldstein
et al. 2014, Mannes et al. 2014, Analytis et al. 2018, and Ga-
lesic et al. 2018). Specifically, we selected either the top 5 or
top 10 best-performing models in the training set for each
training-testing iteration and obtained the select crowd’s
predictions by unconditionally averaging the predictions
of the selected models. These models are referred to as
“select-5” and “select-10” crowds, respectively.

Aggregating the opinions of five or near to five mod-
els or experts has been shown to lead to good results
across settings (Makridakis and Winkler 1983, Ashton
and Ashton 1985). The prediction improvement tends to
diminish as additional models or experts are added to
the select crowd, depending on the quality of informa-
tion about past judge performance (e.g., see Mannes et al.
(2014)) and the exact nature of the problem (also see Ho-
garth (1978)). The select-10 crowd allows us to investi-
gate the sensitivity in the performance of the select
crowd approach as we increase the number of included
models. For the select-5 crowd, the predicted choice
probability for choice problem i is

ŷsc5,i ¼
XM
m1

wSelect-5
m ŷm,i,

where

wSelect-5
m ¼

1
5

if wAkaike
m among top 5,

0 otherwise:

8<
:
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Similarly, the prediction for select-10 crowd is

ŷsc10,i ¼
PM
m1

wSelect-10
m ŷm,i,

where

wSelect�10
m ¼

1

10
if wAkaike

m among top 10,

0 otherwise:

8<
:

The final model crowd was the contribution crowd.
This crowd is a variant of Budescu and Chen’s (2014)
contribution weighted model, which leverages each
individual model’s unique contribution to the aggre-
gate predictions in the training set. The contribution
of model m is based on the comparison between
the log-loss of the training set with the unweighted
mean predictions of all models (denoted by LLTraining)
and the log-loss with the unweighted mean predic-
tions of all models excluding model m (denoted
by −mLLTraining). When a model makes a positive
contribution, by decreasing the log-loss, it is given a
positive weight. The magnitude of the weight is pro-
portional to the magnitude of this unique contribution.
When a model does not decrease the log-loss, it is given
a zero weight (i.e., removed from the crowd). Formally,
the contribution-based weight for modelm is given as

wContribution
m

� I(LLTraining − −mLLTraining > 0)exp(LLTraining − −mLLTraining)
∑M

k�1[I(LLTraining − −kLLTraining > 0)exp(LLTraining − −kLLTraining)]
,

with
∑M

i�1wContribution
m � 1. Again, in our application of

this crowd, the contribution-based weights were de-
rived solely from the training set and were applied to
the test set to obtain the fully out-of-sample predicted
choice probability for each choice problem k, written as
ŷcc,i �

∑M
m�1wContribution

m ŷm,i.

Results
Individual Models
Predictive Performance. The wide range of data sets
we collected offer an ideal test bed for evaluating the
different models. As previously discussed, we evalu-
ated models’ out-of-sample predictive performance
with either prediction error, log-loss, or Brier score.
Figure 3 shows the models’ prediction errors for gains
and mixed gambles (for the results based on log-loss
and Brier score, see Supplementary Figures S1 and
S2). For gains, the dual-systems model (Loewenstein
et al. 2015) had the lowest overall prediction errors.
Other close competitors included prospective reference
theory (PRT; Viscusi 1989),odds-based subjective weight-
ed utility theory (odds-based SWU; Karmarkar 1978),

subjective expected utility theory (SEU; Edwards 1955),
and several variants of the (cumulative) prospect theory.
For mixed gambles, the leading models were two var-
iants of cumulative prospect theory that treated gains
and losses differently (Lattimore et al. 1992, Prelec 1998).
This result is consistent with earlier findings that the best
variant of cumulative prospect theory has a power value
function and Prelec’s probability weighting function
(Stott 2006). Other close competitors included the transfer
of attention exchange model (TAX; Birnbaum 2008),
odds-based subjective weighted utility theory (Karmar-
kar 1978), subjective expected utility theory (Edwards
1954), and the dual-systems model (Loewenstein
et al. 2015).

Although the exact ranking of models in predictive
performance varied with loss functions, the set of top-
performing models was highly robust across loss func-
tions. Figure 4 summarizes the similarities of model rank-
ings across loss functions. The Spearman rank correlations
between different loss functions were all above 0.94 for
gains and all above 0.75 for mixed gambles, suggesting a
high consistency across loss functions. The models’ rela-
tive predictive performance in the two types of data sets
was also highly consistent, with high Spearman’s rank
correlations according to any of the three loss functions
(see also Figure 4). That said, we found that the overall
log-losses, Brier scores, and prediction errors were higher
for mixed gambles than for gains. For example, the lowest
mean prediction error achieved by a model, on average,
across participants for gains was about 0.16, but the coun-
terpart for mixed gambles was almost twice as much, at
about 0.29. Nonetheless, it is premature to conclude that
the models were less accurate in predicting choices in the
mixed domain than in the gain domain, as other factors in
the stimulus sets, such as the EV differences, might also
lead to differential predictive performance.

Going beyond the mean performance of models
across participants, we also examined the proportion of
people for whom a certain model made the best out-of-
sample predictions according to the three loss functions.
This analysis revealed a high degree of heterogeneity in
the best-performing models at the individual level (see
Supplementary Figures S3–S5 for the models’ proportion
of the best predictive performance across participants for
the three loss functions). A large number of models accu-
mulated no less than 2% of the best predictive perfor-
mance across participants and measures for both gains
and mixed gamble data sets. This indicates that although
some models achieved high predictive performance, on
average, there was no unequivocal best-performing
model on the individual level.

Psychological Mechanisms. To assess the relative val-
ue of the nine different psychological mechanisms
characterizing the considered individual models, we
compared the average prediction error of all the
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models that make use of a mechanism with models
that do not. These results are summarized in Figure 5.
Our analysis suggests that payoff transformation is
the most crucial psychological mechanism for

improving our ability to predict risky choice; models
using the payoff transformation mechanism had a
prediction error of 0.17 with gains and a prediction er-
ror of 0.32 with mixed gambles, compared with

Figure 3. (Color online) Individual Models’Mean Prediction Errors Across Participants in Gains andMixed Gambles

Notes. The color of the bars indicates whether the model transforms payoffs or probabilities. Error bars represent standard errors of predictive
performance across data sets and individuals. Details and full names of the models can be found in the supplementary appendix. Model abbrevi-
ations are defined in Table A.1 of the supplementary appendix.
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prediction errors of 0.34 (gains) and 0.38 (mixed gam-
bles) for models without payoff transformation (this
corresponds to a paired-sample Cohen’s d of 1.63 for
gains and 1.50 for mixed gambles). These differences
can be seen by comparing the blue and red bars and
points in Figures 2 and 3. They are also clearly re-
flected in the bimodal distributions of predictive per-
formance, shown on the diagonal in Figure 4: one
peak of the distribution corresponds to the models
with payoff transformations, and the other corre-
sponds to the models with no payoff transformations.
Consistent with this result, models using the payoff

transformation mechanism outperformed their coun-
terparts that did not assume the mechanism. To
name a few examples, expected utility maximization
outperformed expected value maximization; the dual-
systems model with a power value function outper-
formed the dual-systems model with a linear value
function; regret theory with a power value function
outperformed regret theory with a linear value func-
tion; the three relative risk-value models with payoff
transformations outperformed the one relative risk-
value model with no payoff transformations; and
the similarity model, the only heuristic model that

Figure 4. (Color online) Summary of Predictive Performance in Gains andMixed Gambles Using Different Loss Functions

Notes. The diagonal plots the distributional densities of the predictive performance metrics. The lower cells display the scatterplots. The color of
the points in the scatterplots corresponds to the color scheme in Figure 2, indicatingwhether themodel transforms payoffs and probabilities non-
linearly. The upper cells display the corresponding Spearman correlation coefficients for pairs of data sets and loss functions (all p’s < 0.001).
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applies payoff transformation, outperformed all oth-
er heuristics.

Another top-performing mechanism was probabili-
ty transformation. Models using the probability trans-
formation mechanism had prediction errors of 0.21 for
gains and 0.33 for mixed gambles, compared with pre-
diction errors of 0.30 (gains) and 0.37 (mixed gambles)
for models without probability transformations (cor-
responding to a paired-sample Cohen’s d of 2.05 for
gains and 1.27 for mixed gambles). These differences
can be seen in the light red and dark blue bars and
points in Figures 3 and 4. The attention, sampling,

disappointment, and regret mechanisms often led
to favorable prediction outcomes. The attention
mechanism, for example, sometimes led prediction
gains comparable with those from payoff or probabili-
ty transformation. The ranking, threshold, and dis-
persion mechanisms, by contrast, did not improve
prediction outcomes. Models using these mechanisms
performed, on average, worse than models without
these mechanisms. Of course, there was substantial in-
terindividual variability. Even the modestly or poorly
performing mechanisms describe well a considerable
number of individuals.

Figure 5. (Color online) Mean Predictive Performance byModels with orWithout Certain Psychological Mechanism

Note. Error bars represent standard errors of predictive performance across data sets and individuals.
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Model Crowds
Predictive Performance. How well did model crowds
do in comparison with the individual models? To an-
swer this question, we first compared the model
crowds to the individual models that provided the
best average performance across participants using
the loss function scores in the test data. As shown in
Figure 6, the four performance-based model crowds
(i.e., the select-5, select-10, and weighted and contribu-
tion crowds) outperformed all individual models and
achieved the highest overall predictive performance.

Here, the individual model performance metric
labeled as “Aggregate best” is the best-performing
individual model in aggregate as in Figure 3 and
Supplementary Figures S1 and S2, depending on the
loss function implemented (later on, we examine indi-
vidual model performance with an alternative metric,
labeled “Training-contingent”). This pattern was true
for both gains and mixed gambles. Although the naïve
crowd did not outperform all the individual models,
it still surpassed a large majority of them, lagging be-
hind only a few individual models (implying that it

Figure 6. (Color online) Predictive Performance of Model Crowds and Best Individual Models

Note. Error bars represent standard errors of predictive performance across data sets and individuals.
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still demonstrated the wisdom of the crowds; see, e.g.,
Davis-Stober et al. (2014)). Overall, the model crowd
approach can improve overall predictive performance
in an out-of-sample manner. This was especially true
when the aggregation strategies assigned larger
weights to models that perform better at the training
stage (as in the select and weighted crowds) or when
aggregation strategies leverage each individual mod-
el’s unique strength in predicting choice behavior (as
in the contribution crowd). It is noteworthy that the
advantage of model crowds over individual models
was robust across all loss functions and was even
more pronounced with the probabilistic loss functions
(i.e., log-loss and Brier score), which were inherently
more sensitive to continuous model predictions.

Not only did model crowds have better average per-
formance across participants, they also made better pre-
dictions for a majority of participants when compared
with the best-performing individual models. The rows
labeled “Aggregate best” in Table 2 show the propor-
tion of participants for whom a model crowd made bet-
ter predictions than the best individual models using
the various loss functions on the test data. As can be
seen here, with log-loss as the loss function, the contri-
bution crowdmade better predictions than the best indi-
vidual model (which was CPT with Prelec’s probability
weighting function) for 72% of the participants in the
gains data sets. In the mixed gambles data sets, the
number went up to 88%. These patterns were robust to
different loss functions, as well as different model
crowds. The only exception, however, was the naïve
crowd for the gains data sets. The naïve crowd did not
make better predictions for a majority of participants
when compared with the best individual models in

gains. Its average predictive performance was also infe-
rior to the best-performing individual models (see Fig-
ure 5), suggesting that in risky choice, considering dif-
ferent models as equally valid in the model crowd may
not be the best way to leverage the collective wisdom of
individual models.

Note that the model crowds weigh the different
models based on their performance in the training
data. This allows them to flexibly identify best-
performing models (in the training set) for each indi-
vidual and use these models to make predictions.
Thus, the specific weighting scheme used by a partic-
ular model crowd varies across individuals. It could
be this flexibility, rather than crowd wisdom, that re-
sults in the better performance of model crowds in
Figure 5 and Table 2. To ensure that this was not the
case, we contrasted our model crowd predictions with
those of individual models with the same type of flexi-
bility. This was done with an approach that flexibly
paired each individual participant, at every split in
the 10-fold cross-validation, with the best-performing
model in the individual’s training set, evaluated
using the Akaike information criterion. This training-
contingent algorithm can be seen as a select crowd
with only the most promising model included (corre-
sponding to a select-1 crowd). We then used this
training-contingent model, to make predictions in the
test sets, for each participant for every split, and we eval-
uated its out-of-sample predictive performance with the
above-mentioned loss functions. The results of this anal-
ysis are shown in the “Training-contingent” bars in
Figure 6 and rows labeled “Training-contingent” in
Table 2. Here, we can see that the training-contingent
approach actually reduces predictive performance

Table 2. Proportion of Participants for Whom the Model Crowds Provide Better Predictive Performance Than the Best
Individual Models

Individual model Loss function Model crowds

Naïve Weighted Select-5 Select-10 Contribution

Gains

Aggregate best Prediction error 0.44 0.51 0.52 0.54 0.49
Aggregate best Log-loss 0.22 0.51 0.56 0.65 0.72
Aggregate best Brier score 0.16 0.55 0.6 0.68 0.64
Training-contingent Prediction error 0.50 0.64 0.61 0.61 0.57
Training-contingent Log-loss 0.34 0.77 0.78 0.76 0.76
Training-contingent Brier score 0.25 0.71 0.72 0.71 0.66

Mixed gambles

Aggregate best Prediction error 0.53 0.54 0.56 0.58 0.58
Aggregate best Log-loss 0.65 0.59 0.71 0.80 0.88
Aggregate best Brier score 0.51 0.6 0.68 0.74 0.73
Training-contingent Prediction error 0.57 0.63 0.61 0.62 0.60
Training-contingent Log-loss 0.66 0.79 0.80 0.77 0.77
Training-contingent Brier score 0.53 0.70 0.72 0.69 0.67

Note. When the two models provide the best out-of-sample predictive performance (especially with prediction error as the loss function), they
split the best-performance count.
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relative to the fixed individual models that provide the
best predictions across participants (likely because of the
high variance of this algorithm). Thus, the advantage
of model crowds over individual models cannot be at-
tributed to their flexibility in identifying the best indi-
vidual model in a particular split of the training data.
Rather, it is likely because of crowd wisdom, which ex-
ploits the complementarities of different models that
make up the crowd.

Finally, the four performance-based model crowds
had an obvious advantage over the naïve crowd that
treated all individual models as equally valid;
performance-based crowds can leverage the differen-
tial predictive power of individual models. The four
performance-based model crowds achieved roughly
the same predictive ability, with prediction error and
Brier score as loss functions. However, with log-loss
as the loss function, the contribution crowd tended to
provide the best overall predictive performance for
both gains and mixed gambles (see Figure 6). Our
analysis of model weights in the next section will un-
pack potential causes of the contribution crowd’s su-
perior predictive performance. The historical analysis
that follows also illustrates an additional strength of
the contribution crowd: it can successfully aggregate
model predictions regardless of the number and per-
formance variance of the models present in the model
pool. This will become apparent when looking at his-
torical time windows where low-performing models
are overrepresented (see Figure 9 for more details).

Weights in Model Crowds. The distribution of model
weights differed across model crowds. To examine this,
we calculated for each participant a measure of weight
dispersion in each model crowd using the Gini coeffi-
cient, a canonical measure of dispersion and inequality
in distributions. If all weights concentrate on one single
model, the Gini coefficient will be 1, meaning that there
is a minimal amount of dispersion. By contrast, in the
naïve crowd where each model receives an equal
weight, we have a Gini coefficient of 0, meaning a maxi-
mal amount of dispersion. The dispersion of model
weights in the four performance-based crowds lies in
between. As in Figure 7, select and weighted crowds
mostly concentrate on a few models, with the mean
Gini coefficients between 0.8 and 0.9, whereas the con-
tribution crowd strikes for a more balanced dispersion
of model weights, with Gini coefficients of about 0.5.

The success of model crowds can be also understood
in terms of the distribution of model weights. Model
crowds trade off between assigning larger weights on
the best-performing individual models and hedging
their bets by dispersing the weights more across differ-
ent models (Davis-Stober et al. 2014, Müller-Trede et al.
2017). The training-contingent model (which would cor-
respond to the select-1 crowd) and the naïve crowd

represent two boundary solutions to this trade-off. The
former goes all in and adopts the prediction of the best-
performing model in the training set (leading to a Gini
coefficient of 1), whereas the latter is maximally diverse
and unconditionally averages the predictions of all the
models, regardless of model performance in the train-
ing set (leading to a Gini coefficient of 0). Yet, as shown
in Figure 6, neither of the two boundary solutions per-
formed as well as the four performance-based model
crowds, the latter of which struck for a more balanced
distribution of model weights. The contribution crowd,
in particular, has been the best-performing model in
many of our tests using probabilistic loss functions in
both gains and mixed gambles. This result indicates
that good crowd solutions may, in fact, leverage a quite
diverse crowd of models (i.e., Gini coefficient of 0.5 for
the contribution crowd; also see Hong and Page (2004)
and Lamberson and Page (2012)).

The weights assigned to individual models in the
model crowds also allowed us to measure the degree
to which different models contributed to the crowd
predictions. Figure 8 displays the weight each individ-
ual model received in the contribution crowd, the
performance-based crowd that makes the best use
of model diversity (see Supplementary Figures S6–S8
for selected and weighted crowds). As expected, the
top contributors were often the models that did very
well in the individual model comparison. Moreover,
the fact that all models (except the random model)
made nonzero contributions in both the gains and the
mixed data sets indicates that each existing model
captures some unique features of choice behavior.

Figure 7. (Color online) Dispersion of Model Weights in
Model Crowds (Measuredwith Gini Coefficient)

Note. Error bars represent standard errors of Gini coefficients across
data sets and individuals.

He, Analytis, and Bhatia: The Wisdom of Model Crowds
14 Management Science, Articles in Advance, pp. 1–26, © 2021 INFORMS



Historical Trends
We also evaluated how predictive accuracy of risky
decision models evolved historically. Our historical
analysis started from the year 1950, at which point
there were only three models (the baseline random

model, expected value theory, and expected utility
theory), and extended until the year of 2018, at which
point, all the models involved in the current analysis
had been published. We first evaluated the perfor-
mance of the best-performing individual model at

Figure 8. (Color online) ModelWeights in the Contribution Crowd

Notes. The color of the bars indicates whether the model transforms payoffs and probabilities nonlinearly. Error bars represent standard errors of
model weights across data sets and individuals. Model abbreviations are defined in Table A.1 of the supplementary appendix.
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each point in time. This has been relatively stable over
most of the historical timeline. For gains, expected
utility theory was the best-performing model
before 1950, until the advent of SEU (Edwards 1954).
Afterward, there were minor improvements in
predictive accuracy with the odds-based subjective
weighted utility theory formulated by Karmarkar
(1978), prospective reference theory (Viscusi 1989),
two variants of cumulative prospect theory (Lattimore
et al. 1992, Prelec 1998), and the dual-systems model
(Loewenstein et al. 2015), depending on the loss func-
tion implemented (see Figure 9).

For mixed gambles, expected utility theory was also
the best model at the beginning. However, soon it was
supplanted by portfolio theory (Markowitz 1952) and
then again by subjective expected utility theory, which

led to a big leap in predictive performance. This
model remained the best-performing model for
more than two decades until odds-based subjective
weighted utility theory was introduced. A significant
historical leap came with the introduction of models
that treated gains and losses differently, such as cu-
mulative prospect theory and the TAX (Birnbaum
2008). Again, there are minor differences based on the
specific loss function used.

We also evaluated the performance of our model
crowds at each historical time point. As can be seen in
Figure 8, the contribution crowd outperformed the
best individual model available for nearly all time
points (regardless of the number and the composition
of models involved in the crowd). This was true for
both gains and mixed gambles, and the advantage of

Figure 9. (Color online) The Historical Evolution of Predictive Performance

Notes. For the model crowds, all models formulated up to the year reported on the x axis were used to calculate the crowd predictions for that
time point. CPT, cumulative prospect theory; EU, expected utility; Portfolio (VAR), portfolio theory with variance; PRT, prospective reference
theory; SEU, subjective expected utility; SWU, subjectiveweighted utility; TAX, transfer of attention exchange. For the full list of model abbrevia-
tions, see Table A.1 of the supplementary appendix.
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the contribution crowd was even more pronounced
for mixed gambles. These results again show that ag-
gregation algorithms that successfully exploit each
model’s strength in predicting idiosyncratic individual-
level data, while hedging their bets across different
models, can reliably predict risky choice behavior better
than individual models.

Model crowds other than the contribution crowd
showed slightly different patterns (the historical
trends of all model crowds can be found in Supple-
mentary Figure S9). These crowds underperformed in
early time periods, when only a limited number of
models were available. This was especially the case
for the naïve and select crowds, which assigned equal
weights to all models or to subsets of models used in
the crowd. The weighted crowd was more robust to
the effects of small crowds. However, with the intro-
duction of newer behavioral models, the performance
of model crowds greatly improved, and all model
crowds outperform the best individual model from
the 1970s onward. Overall, although being able to le-
verage crowd wisdom, the select and weighted
crowds appeared to be more sensitive to the composi-
tion of the model pool than did the contribution
crowd.

Psychological Mechanisms in Model Crowds
Not only can model crowds improve performance;
they can be also used to assess the relative importance
of different psychological mechanisms for the study
of risky choice. The first way to achieve this is to

evaluate the average weights of models that have a
specific mechanism and compare them with the aver-
age weights of models that do not have this mecha-
nism. This analysis reveals that models with payoff
transformation have much larger weight in the contri-
bution crowd than models without it. The difference
in average weights was pronounced for models with
the attention, probability transformation, and disap-
pointment mechanisms and moderate for the sam-
pling and regret mechanisms (Figure 10). By contrast,
the average weights of models with the threshold,
ranking, and dispersion mechanisms are lower than
those models that do not have these mechanisms.

A second approach to assess the relative impact of
each of the nine psychological mechanisms on predic-
tion is to remove all the models that involve the psy-
chological mechanism from the contribution crowd
(removing mechanisms one at a time). This is a pro-
cess similar to the historical analysis of the contribu-
tion crowd (see the dotted blue line in Figure 9), but
this time, models are filtered at the mechanism level.
As in Figure 11, removing models with payoff trans-
formation substantially increased the prediction error
in the contribution crowd, compared with the model
crowds using all the models as in Figure 5. The same
happened, but to a lesser extent, when models belong-
ing to the probability transformation mechanism were
removed. By contrast, removing any other psychologi-
cal mechanism did not appear to significantly
influence the crowd’s predictive performance. The re-
sults from both these analyses are largely consistent

Figure 10. (Color online) MeanWeights of the Models That Use aMechanism as Compared with the Models That Do Not Use
It in the Contribution Crowd

Note. Error bars represent standard errors of model weights across data sets and individuals.
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with the individual-level analysis of the different
mechanisms, which identified payoff and pro-
bability transformations as the two most important
mechanisms for improving predictive performance,
followed by attention, sampling, disappointment,
and regret.

Impact of Experimental Designs
Finally, we ran a sensitivity analysis by examining the
extent to which the results varied across data sets. The
relative rank of models’ prediction errors was highly
consistent across data sets, with high Spearman rank
correlation ρ (median � 0.88, mean � 0.90). This

Figure 11. (Color online) Predictive Performance of the Contribution CrowdUsing the Subset of Individual Models That Do
Not Involve the Mechanism on the xAxis

Note. Error bars represent standard errors of predictive performance across data sets and individuals.
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suggests that there is converging evidence across data
sets with regard to the models’ predictive perfor-
mance. The same holds true when considering the
contribution of different mechanisms to predictive
performance. To further bolster this point, we calcu-
lated a paired-sample Cohen’s d for each mechanism
by comparing the average predictive performance of
models that used the mechanism to that of models

that did not use the mechanism, for each data set. This
is shown in Figure 12, which displays the distribution
of Cohen’s d across data sets using different loss func-
tions. Mechanisms such as payoff transformation,
probability transformation, attention, sampling, disap-
pointment, and regret reliably boost predictive perfor-
mance across data sets for gains, whereas threshold,
ranking, and dispersion show ambiguous patterns.

Figure 12. (Color online) Boxplot Distribution of Cohen’s d of Each Psychological Mechanism Across Data Sets

Notes. For each data set, Cohen’s dwas calculated by comparing the mean predictive performance of the models that involve a mechanism with
that of the models that does not involve the mechanism. Each boxplot is composed of 12 Cohen’s d values in gains (corresponding to the 12 gains
data sets) and 7 Cohen’s d values inmixed gambles (corresponding to the 7 mixed data sets).
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The patterns for mixed gambles were similar, except
that the disappointment and regret mechanisms be-
came less productive for mixed gambles than for
gains. The predictive advantage of model crowds over
individual models also persisted in 13 out of the 19
data sets (68.4%), even if we allowed each data set to
be paired with its own best-performing individual
model. Overall, the results discussed in the previous
sections were corroborated across most data sets.

Yet there were still small differences that can be at-
tributed to specific experimental designs. This can be
in part seen in the distribution of Cohen’s d in Figure
12. To further illustrate this, we map out the data sets
on a two-dimensional plane using multidimensional
scaling (MDS). Specifically, we calculated a Spearman
rank correlation ρ between each pair of data sets in
terms of the models’ predictive performance and then
used 1 − ρ as the distance measure for MDS. As
shown in Figure 13, there appears to be a gap between
gains and mixed-gamble data sets. This gap is largely
driven by manually created data sets with one nonze-
ro branch in the choice (i.e., Stewart et al. 2015
[SRH15] and Stewart et al. 2016 [SHM16]) and does
not appear with data sets that involved randomly gen-
erated gambles involving two nonzero branches. The
gain data sets that have two nonzero branches (i.e.,
Fiedler and Glöckner 2012 [FG12] and Rieskamp 2008

[Rieskamp08]) are closer to the mixed-gamble data sets
(which involve randomly generated gambles and have
two nonzero branches in the gamble) than to the gain
data sets with manually created one-branch gambles.

Among the mixed-gamble data sets, there was a no-
table difference between data sets from experiment 2
of Pachur et al. (2018) and others. Specifically, in the
experiment 2 data sets of Pachur et al. (2018), heuristic
models such as the better-than-average heuristic, the
minimax regret heuristic, and the equiprobable heu-
ristic (Thorngate 1980) performed reasonably well,
whereas in other data sets the same heuristic models
predicted poorly. This is likely because the design of
the stimuli was favorable to these heuristic models.
For example, some choice items in this experiment
were simply rejecting/accepting a gamble with equal
odds of winning and losing. For such items, heuristic
models such as the equiprobable heuristic can mimic
many utility-maximizing models while being more
parsimonious. This analysis reveals that although the
results are remarkably stable across data sets, specific
design choices may still have an impact on the relative
performance of different decision models.

Discussion
For several decades, researchers have been searching
for a model to describe and explain risky choice. This

Figure 13. (Color online) Two-Dimensional SolutionWhen ApplyingMultidimensional Scaling on the Data Sets Using 1 − ρ
(Where ρ Corresponds to Spearman Rank Correlation) as the Distance

Notes. The labels of the data sets can be found in the “Abbreviation” column of Table 1. D1 and D2 represent the two dimensions of the multidi-
mensional scaling solution respectively.
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effort has resulted in dozens of mathematically dis-
tinct models that have their origins in several scientific
disciplines. Yet there has been little consensus with re-
gard to the state of the art in terms of predictive or de-
scriptive performance; different papers often compare
model performance on different data sets and assess
the performance of only small subsets of “rival” mod-
els. Different models are commonly seen as competi-
tors, with the success of one model undermining other
theoretical accounts. As things stand, it is hard to as-
sess the accumulated wisdom on risky choice from a
decades-long multidisciplinary research endeavor.

Our article hopes to address some of these issues
using a very large-scale model comparison. For this
comparison we complied a panel of 58 existing risky
choice models and compared their performance using
a comprehensive test bed of 19 existing risky choice
data sets that involved over 800 participants. Further-
more, drawing on insights from the wisdom-of-
crowds literature, we tested the predictions of model
crowds that aggregate the predictions of individual
models.

This analysis uncovered a number of novel results
regarding the predictive potential of risky choice
models and model crowds. First, the best-performing
models fell into the category of nonexpected utility
theories and were often variants of prospect theory
with both nonlinear transformations of payoffs
and probabilities (Edwards 1955, Karmarkar 1978,
Lattimore et al. 1992, Prelec 1998). Other models such
as the dual-systems model (Loewenstein et al. 2015)
and TAX (Birnbaum 2008) also made good predic-
tions. It is worth noting that there was substantially
individual-level variability, and most models did well
for at least a few participants. Second, model crowds,
and especially crowds that wisely leveraged the diver-
sity of the model pool, substantially improved predic-
tions across different measures and in most data sets.
Model crowds also provided a novel quantitative
methodology for tracking historical accumulation of
knowledge and for identifying key psychological
mechanisms in risky choice modeling. Finally, the
vast number of data sets allowed us to examine the
important yet elusive impact of experimental designs
on model selection. Although model performance
strongly correlated across different data sets, our ex-
ploratory analysis revealed that design choices such
as gains versus mixed gambles, randomly generated
versus manually curated items, and one-branch ver-
sus two-branch gambles moderated, to some degree,
the relative performance of the competing models.

The Predictive Power of Model Crowds
Human behavior is highly idiosyncratic such that a
model that works well for one individual may do
poorly for another. Furthermore, the decision rules

that guide choice are inherently noisy, reflecting fluc-
tuations in various cognitive, affective, and contextual
variables (Busemeyer and Townsend 1993, Bhatia and
Loomes 2017). People may also switch between deci-
sion rules depending on the nature of decision-
making problem at hand, a behavior commonly
referred to as strategy selection (Payne et al. 1988,
Lieder and Griffiths 2017). For example, they may rely
on utility maximization in some problems but switch
to heuristics in others. Alternatively, different strate-
gies may even interact in a single-choice problem, a
phenomenon commonly referred as strategy blending
(see Erickson and Kruschke (1998), Plonsky et al.
(2017), and Herzog and von Helversen (2018)). Thus,
trying to identify the one individual model that peo-
ple use might not be the most productive approach
when we want to predict people’s behavior.

The model crowd approach outlined in this article
seeks to accommodate a multitude of models that take
diverse theoretical perspectives (for a similar take on
the social sciences, see Smaldino (2017)). Of course,
we do not assume that decision makers deliberate
exactly like our model crowds. Rather, model crowds
allow researchers to approximate the diversity of
human mental processes, which results in improved
performance. Indeed, the best-performing model in
much of our analysis was the contribution crowd,
which is a crowd model that relies on considerable
model diversity, as assessed by the dispersion of the
model weight vector.

The model crowds’ superior predictive perfor-
mance can also be understood in terms of the bias-
variance trade-off (see Geman et al. (1992) and
Gigerenzer and Brighton (2009)). The total error of
predictive models in machine learning, statistics, and
cognitive science can be decomposed into three error
components: bias, variance, and irreducible noise.
Model crowds (or ensembles in machine learning)
drastically reduce the variance component of predic-
tion error (Breiman 1996), thereby improving overall
prediction. This is especially the case in the presence
of interindividual variability, as in our data sets. Go-
ing with the single best-performing model would lead
to good performance if we were able to identify the
right model for each individual ahead of time. How-
ever, matching an individual to the best-performing
model is a challenging problem (Davis-Stober et al.
2014). This is clearly illustrated in the case of the
training-contingent model: simply selecting the best-
performing model in the training set often does not
lead to the best predictions in the test set. Although
this approach scores low on bias, it suffers from high
variance, as it is sensitive to the specific sample that
was used to find the best-performing model. The
model crowds strike a much better balance on the
bias-variance trade-off by substantially reducing the
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risk of going all in on a single model without putting
much (or any) weight on others (see the supplement
of Analytis et al. (2018) for further discussion). In sum,
model crowds provide a statistically reliable approach
that allows for the capture of interindividual variabili-
ty in risky choice.

There are similar successful applications that har-
ness collective model wisdom in decision analysis.
Scheibehenne et al. (2013), for example, formulate the
metaphor of the heuristic toolbox in a hierarchical
Bayesian framework and show that by incorporating
multiple heuristics, the toolbox explains behavioral
data better than a single heuristic. Another example is
recent risky choice prediction competitions, in which
researchers were provided with ample training data
and were challenged to develop new modeling ap-
proaches or existing behavioral or machine learning
models that could predict the proportion of people
making a risky choice in a held-out test set. The most
successful models in these competitions were ensem-
bles or hybrid models encompassing insights from
several decision strategies (Erev et al. 2010, 2017;
Plonsky et al. 2017). Our paper extends this line of
analysis by including all previously proposed risky
choice models that can be translated to computer code,
generating predictions at the individual level, and us-
ing them as elements to construct model crowds.

A Historical Perspective
Our framework also provides a historical window onto
the evolution of the field of risky choice modeling, from
the axiomatization of expected utility theory by von
Neumann and Morgenstern to the sophisticated behav-
ioral models of the present day. We find an increase in
the rate at which new models have been introduced in
the pool of available models but diminishing returns in
overall predictive accuracy. In fact, for some measures
and data sets, it has been more than a decade since a
new model has outperformed the best-performing
model up to that point. A different picture emerges
when we look at crowd models: instead of a stagnating
field, we see a field with rapid improvement and con-
tinual progress. The introduction of new models adds
to our collective ability at predicting risky choices across
measures for both gains and mixed gambles.

We can also use our framework to look at the im-
portance of specific models over time. Prospect theo-
ry, arguably the most prominent behavioral decision
model, performed only modestly for both gains and
mixed gambles in our model comparison. In fact, sub-
jective expected utility, formulated by Edwards in
1954, and odds-based subjective weighted utility pub-
lished by Karmarkar in 1978, almost contemporane-
ously with prospect theory, outperformed prospect
theory in terms of predictive performance both for
gains and for mixed gambles. These models share

their core assumptions with prospect theory (such as
nonlinear transformations of both payoffs and proba-
bilities). Nonetheless, models that were later derived
from prospect theory outperformed these earlier mod-
els and were often among the top contestants. This is
especially true for mixed gambles, in which models
derived from prospect theory excel because of the as-
sumptions of loss aversion and differential probability
weights for gains and losses. Thus, although the
original prospect theory was never historically the
best-performing model, the new concepts that were
introduced in the field with prospect theory had a
long-lasting impact and eventually led to improve-
ments in our ability to predict risky choices. This is a
common motif in science: ideas need to be further re-
fined and elaborated on to reach their full potential.

Promising Psychological Mechanisms
Our large-scale model comparisons identified the
psychological mechanisms that yield good predictive
performance in risky choice. Payoff transformation was
by far the most important mechanism, followed by
probability transformation. Thus, it comes as no sur-
prise that the best-performing models, including the
variants of prospect theory previously mentioned, fall
into the category of nonexpected utility theories, which
use some nonlinear function to transform crude payoffs
to subjective values and, in addition, transform objec-
tive probabilities to subjective probabilities. This pattern
emerges in both gains and mixed gambles. Payoff trans-
formation, in particular, always improved model per-
formance, regardless of the other model characteristics
involved. The payoff and probability transformation
mechanisms were followed by the attention, sampling,
disappointment, and regret mechanisms. These three
mechanisms have been used often in recent years and
show some promise in their potential to improve our
ability to predict risky choice, especially when com-
bined with payoff and probability transforms.

Results on the relative importance of different psy-
chological mechanisms for prediction were replicated
in model crowds. Specifically, we tested the predictive
value of different psychological mechanisms (i) using
the weights in model crowds and (ii) by removing all
the models using a mechanism from the contribution
crowd. Once again, subjective payoff and subjective
probability transformation mechanisms stood out
as key mechanisms for improving predictive per-
formance in risky choice. Predictive performance
dropped substantially when models using these
mechanisms were removed from the contribution
crowd. The value of other mechanisms is more
modest, but our analysis of average weights in
model crowds suggests that it is always nonnegligible,
especially for models using the attention, sampling,
and disappointment mechanisms. That said, it is
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important to note that the exclusion of each of these
individual mechanisms from the crowd did not sub-
stantially impact performance. Unlike payoff and
probability transformation, the predictions of the indi-
vidual attention, sampling, and disappointment
mechanisms can be mimicked by a combination of
other psychological mechanisms.

Using the models in their original forms, our psy-
chological mechanism analysis reflects each mecha-
nism’s contribution in the research enterprise of risky
decision making. However, because the co-occurrence
of psychological mechanisms was not systematically
varied, we were unable to disentangle their contribu-
tions independent of the historical context. Although
beyond the scope of our paper, such an analysis may
be possible using more sophisticated techniques. For
example, in the domain of multialternative multiattri-
bute choice, Turner et al. (2018) use the switchboard
technique, where each mechanism can be turned to
different states (e.g., ON or OFF) to create composi-
tional models and thus systematically investigate the
core psychological mechanisms underlying multiattri-
bute choice. Such techniques can potentially provide
even better estimates of the contributions of different
mechanisms in the domain of risky choice, and we
hope that our work will inspire further research in
this topic in the near future.

Future Work
We have attempted a large-scale test of different risky
decision models (and their corresponding psychologi-
cal mechanisms) on a diverse set of experimental data
sets. This approach is increasingly necessary given the
growth of risky decision-making research over the
past few decades. Our model crowd approach also
provides a promising way to model and analyze
choice behavior by synthesizing the insights generat-
ed by dozens of models and allows us to quantitative-
ly track the historical evolution of the field. The
statistician George Box wittingly proclaimed that “all
models are wrong but some are useful” (Box 1979, p.
202). With the contribution crowd, we can evaluate
models, either new or old, with regard to their unique
contribution to the crowd, thus identifying which
models are “useful” and to what degree.

Although the results of this analysis are largely
robust across different data sets, and for different
stimuli samples, in some cases the strength of certain
models did depend on the design of gambles. An ex-
ample is experiment 2 of Pachur et al. (2018), whose
design choice favored heuristic models such as the
better-than-average, minimax-regret, and equiproba-
ble heuristics. These heuristic strategies do not involve
the essential mechanisms of payoff and probability
transformation and are thus unlikely to generalize to
other settings (such as those involving randomly

generated gambles). Future work can use our para-
digm to better understand the effect of design choice
on model behavior and model discrimination (see
Navarro et al. (2004); Wagenmakers et al. (2004);
Myung and Pitt (2009); Cavagnaro et al. (2013, 2016);
and He et al. (2020) for additional discussions). Addi-
tionally, although we have used an extremely large
set of existing data sets to analyze model performance,
all decision problems used in our analysis involve bi-
nary two-branch risky choices with full information.
In the future, our approach could be extended to addi-
tional data sets or types of problems. For example, re-
searchers could examine how models perform in set-
tings where more than two risky options are available
(Venkatraman et al. 2014) or when the decisions are
made under ambiguity (e.g., Ellsberg 1961).

We have addressed the theoretical and methodolog-
ical challenges involved in modeling risky choice.
These challenges are also common in other domains of
decision research, such as intertemporal choice, deci-
sions from experience, multiattribute choice, social de-
cision making, and strategic decision making (e.g.,
Frederick et al. 2002, Hertwig et al. 2004, Herzog and
von Helversen 2018, and Golman et al. 2020). In each
of the domains there are a large number of competing
behavioral models and preexisting experimental data
sets with considerable individual-level data. The large-
scale model evaluation and model crowd approaches
showcased in this paper can also be used to assess the
state of the art in these areas and to further improve re-
searchers’ ability to predict people’s choices. We look
forward to future work that builds on the numerous
existing theories and extensive empirical data in deci-
sion science, in order to provide a cumulative, trans-
disciplinary perspective on human choice behavior.
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