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THEORETICAL NOTE

An Ontology of Decision Models

Lisheng He, Wenjia Joyce Zhao, and Sudeep Bhatia

University of Pennsylvania

Decision models are essential theoretical tools in the study of choice behavior, but there is little consensus
about the best model for describing choice, with different fields and different research programs favoring
their own idiosyncratic sets of models. Even within a given field, decision models are seldom studied
alongside each other, and insights obtained using 1 model are not typically generalized to others. We
present the results of a large-scale computational analysis that uses landscaping techniques to generate
a representational structure for describing decision models. Our analysis includes 89 prominent models
of risky and intertemporal choice, and results in an ontology of decision models, interpretable in terms
of model spaces, clusters, hierarchies, and graphs. We use this ontology to measure the properties of
individual models and quantify the relationships between different models. Our results show how decades
of quantitative research on human choice behavior can be synthesized within a single representational

framework.
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The study of how people make decisions is a central topic of
research in psychology, as well as in various other social,
behavioral, and biological sciences (Camerer, Loewenstein, &
Rabin, 2004; Kahneman & Tversky, 2000; Glimcher & Fehr,
2013). This research has been remarkably influential, shaping
our understanding of the psychological determinants of choice,
of individual rationality, of markets and societies, and of the
biological bases of human behavior (Bettman, Luce, & Payne,
1998; Glimcher & Rustichini, 2004; Starmer, 2000; Weber &
Johnson, 2009). Much of this work has relied on decision
models in order to describe choice processes, predict choice
outcomes, and interpret the relationship between choices and
various affective, cognitive, clinical, socioeconomic, demo-
graphic, and neurobiological variables.

Decision models are parameterized mathematical functions
or computer algorithms, which take as inputs a set of available
choice options and produce as outputs predictions regarding
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decision makers’ choices over this set. In risky decision mak-
ing, for example, these models predict choices over gambles,
which offer potentially probabilistic rewards. Likewise, in in-
tertemporal decision making, these models predict choices over
sequences of outcomes, which offer potentially delayed rewards.
By quantitatively describing the ways in which choices are made,
decision models allow researchers to infer parameters correspond-
ing to latent decision constructs (risk aversion, time discounting,
regret, probability weighting, attentional bias, loss aversion, pres-
ent bias, etc.) from behavioral data, giving the study of decision
making conceptual rigor and empirical precision. For this reason,
decision models are essential theoretical tools in psychology (Birn-
baum, 2008; Brandstitter, Gigerenzer, & Hertwig, 2006; Buse-
meyer & Townsend, 1993; Ericson, White, Laibson, & Cohen,
2015; Scholten & Read, 2010), economics (Laibson, 1997; Loe-
wenstein & Prelec, 1992; Loomes & Sugden, 1982; Tversky &
Kahneman, 1992; Yaari, 1987) and neuroscience (Kable & Glim-
cher, 2010; McClure, Ericson, Laibson, Loewenstein, & Cohen,
2007), and have been extensively applied to study human behavior
in clinical, financial, managerial, consumer, policy, and other
applied domains.

However, despite decades of decision research, we do not cur-
rently have a unified model of choice behavior, or any academic
consensus about the right decision model for studying how people
make decisions. Rather, the long history and vast interdisciplinary
scope of decision research have given rise to a very large number
of distinct models, each making seemingly unique claims about
how people deliberate and choose between available options. In
this article, we catalogue 89 different models of simple risky and
intertemporal choice. The existence of so many decision models
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complicates our understanding of choice behavior, impeding sci-
entific progress.

Another source of confusion is the fact that decision models
involve a menagerie of overlapping assumptions. In risky choice,
for example, some decision models may assume a nonlinear trans-
formation of payoffs (e.g., expected utility theory, Bernoulli,
1738), others may assume a nonlinear transformation of probabil-
ities (e.g., dual theory, Yaari, 1987), and some may assume both
(e.g., cumulative prospect theory, Tversky & Kahneman, 1992).
Likewise, some models may allow the payoffs offered by a gamble
to influence how other payoffs of the same gamble are evaluated
(e.g., the transfer-of-attention exchange model, Birnbaum, 2008),
some may allow the payoffs of a gamble to influence how payoffs
of other gambles are evaluated (e.g., regret theory, Loomes &
Sugden, 1982); and others may do both (e.g., the priority heuristic,
Brandstatter et al., 2006). Which of these assumptions give rise to
the idiosyncratic predictions of the model, and do two models that
share a given assumption make similar predictions? Without an-
swering these questions, our understanding of the essential math-
ematical operations necessary to describe human choice behavior
remains incomplete.

Finally, it is difficult to make rigorous model-based empirical
claims without first characterizing the relationships between dif-
ferent decision models and between the constructs that their pa-
rameters represent. Imagine observing a relationship between a
model parameter and an affective, cognitive, clinical, socioeco-
nomic, demographic, or neurobiological variable of interest. For
example, activity in the limbic system may correlate with the
decision maker’s weighting of immediate payoffs (McClure, Laib-
son, Loewenstein, & Cohen, 2004), time pressure may be associ-
ated with the use of a particular heuristic (Payne, Bettman, &
Johnson, 1988), higher incentives may lead to an increase in risk
aversion (Holt & Laury, 2002), and individuals prone to addictive
behavior may be more likely to discount future rewards (MacKil-
lop et al., 2011). Testing for such relationships is increasingly
common and these tests represent one of the main ways in which
decision models are used to describe empirical regularities in
choice behavior. However, these tests typically involve the param-
eters or predictions of a limited number of models or even a single
model, and we cannot tell if the variable of interest is better
described by one of the numerous other models in the literature. A
range of different decision constructs (specified by a range of
different models) could be associated with limbic system activa-
tion, the effects of time pressure and incentives, and addiction
proneness. Understanding these associations is necessary for a
rigorous, cumulative, and transdisciplinary science of human
choice behavior.

One way to address the above issues is to build a single repre-
sentational structure that describes all existing decision models, or,
in other words, an onfology of decision models. Such an ontology
would specify the relationships between models, allowing re-
searchers to quantitatively measure the similarities of models, and
determine whether or not the results obtained using a given model
can be attributed to others. By formalizing the relationships be-
tween models, the ontology would also measure the relative flex-
ibility of models, including both their generality (ability to mimic
the predictions of other models) and their uniqueness (ability to
make predictions that cannot be mimicked by others). By relating
model similarities and dissimilarities to various model properties,

a model ontology could also be used to test which of the mathe-
matical assumptions in the models give rise to their idiosyncratic
predictions.

Our goal in this article is to build such an ontology of decision
models. In order to do so, we perform a computational analysis
that uses Monte Carlo methods to measure the relationships be-
tween models. Specifically, we calculate (potentially asymmetric)
similarities and dissimilarities between pairs of models through
landscaping analysis (Navarro, Pitt, & Myung, 2004), which mea-
sures how well one model can fit the data generated by another
(this method is also sometimes called data-uninformed parameter-
bootstrapping cross-fitting, Wagenmakers, Ratcliff, Gomez, &
Iverson, 2004). We use landscaping with a wide range of randomly
sampled model parameters and choice questions in order to un-
cover the pairwise similarities between numerous different models.
Finally, various statistical and computational tools, such as multi-
dimensional scaling and graph-theoretic analysis, are applied to
these pairwise similarities, to interpret and analyze the represen-
tational structure captured in our ontology.

Our approach is inspired by the insights of Broomell, Budescu,
and Por (2011), who use pairwise comparisons of models to
understand structures of model relationships, and Pachur, Suter,
and Hertwig (2017), who try to integrate prospect theory and
heuristic approaches to studying risky choice by analyzing model
mimicry. It is also related to a number of recent articles that
attempt to synthesize existing findings on choice behavior in a
single representational structure or typology (Chapman, Dean,
Ortoleva, Snowberg, & Camerer, 2018; Eisenberg et al., 2019;
Hollands et al., 2017). Unlike most prior work, our analysis is
quantitative, and based on an established statistical technique with
well-known theoretical properties. We apply this technique on a
very large scale, in order to construct ontologies that include nearly
every risky and intertemporal model that can be specified using a
tractable parameterized mathematical function or algorithm, and
subsequently use our ontologies to answer a wide range of
metatheoretical questions involving model relationships and struc-
tures in decision making research.

Method

Models

Our analysis involves 62 prominent models of risky choice and
27 prominent models of intertemporal choice, from numerous
academic disciplines, published from the 1950s to the present day.
We consider only mathematically tractable and parameterized
models, and thus exclude general axiomatic models, qualitative
(verbal) models, and simulation-based models. Details of the mod-
els are presented in Appendixes A-E.

Although our set of models is highly diverse, we can simplify
our analysis and better interpret the model ontology by categoriz-
ing the models into a small set of discrete categories. For risky
choice, we consider four core model categories: (a) subjective
expected utility theories (SEUT), which multiply transformed or
untransformed payoffs against transformed or untransformed prob-
abilities (e.g., cumulative prospect theory, Tversky & Kahneman,
1992); (b) risk-as-value models, which explicitly incorporate a
disutility caused by the riskiness (or variability) of the gamble
(e.g., portfolio theory, Markowitz, 1952); (c) counterfactual mod-
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els, which compare the payoffs of gambles against alternate pay-
offs of the same gamble or other gambles (e.g., regret theory,
Loomes & Sugden, 1982); and (d) heuristic models, which use
cognitive shortcuts to choose between gambles (e.g., the priority
heuristic, Brandstitter et al., 20006).

For intertemporal choice, we consider three categories: (a) delay
discounting models, which weigh payoffs as a function of their
respective delays independently (e.g., Samuelson, 1937); (b) in-
terval discounting models, which weigh payoffs as a function of
both their delays and the interval (i.e., the difference of delays)
between options (e.g., Kable & Glimcher, 2010); and (c) time-as-
attribute models, which represent time delay as a separate attribute,
and combine delays and payoffs using various linear and nonlinear
combination rules or heuristic shortcuts (e.g., Scholten & Read,
2010).

In addition to the above categories, we also analyze the under-
lying mathematical assumptions made by the various models. We
consider four such assumptions for risky models: Whether or not
the model involves (a) payoff transformations; (b) probability
transformations; (c) interactions between the components (payoffs
or probabilities) of a single option (“intraoption interaction); or (d)
interactions between the components across options (“interoption
interaction”). The first two of these assumptions play a crucial role
in the SEUT category, but also characterize many counterfactual
models (which may, e.g., involve a nonlinear regret function
applied to payoffs). The third assumption is common across all
four categories of models. By allowing the outcomes of a gamble
to influence the evaluation of other outcomes of the same gamble,
this assumption allows a model to account for independence vio-
lations such as the Allais paradox (Allais, 1953; Kahneman &
Tversky, 1979). The fourth assumption is typically only present in
counterfactual models and heuristic models. By allowing the out-
comes of a gamble to influence the evaluation of outcomes of other
gambles, this assumption is necessary for a model to account for
transitivity violations (Tversky, 1969).

We also consider three such assumptions in intertemporal
choice: Whether or not the model assumes (a) nonlinear transfor-
mations of delays, (b) interactions between the delays of different
options, and (c) interactions between the payoffs of different
options. Again, the first assumption is common in multiple model
categories. The next two assumptions, which allow for the mag-
nitude of discounting or the evaluation of payoffs of a given option
to depend on other options in the choice set, can give rise to
transitivity violations. The assumptions studied here are not mu-
tually exclusive and many models apply two or more assumptions
simultaneously to compute utility.

Stochastic Specifications

We apply the decision models to binary choices between gam-
bles or payoffs sequences. As most of these models are determin-
istic, we need to assume some type of stochastic specification in
model implementation. For utility-based models, we use both logit
and probit choice rules. The logit choice rule defines the proba-
bility of choosing option X in a binary choice between X and Y as
plX; Y] = m, where p[.XE Y] is increasin.g. in
UX) — U(Y), and l/e represents the noisiness of the decision
process. The larger the value of 1/e, the smaller the effect of

U(X) — U(Y) on p[X; Y]. Likewise, probit defines the probability

of choosing X as p[X; Y] = ®(e(UX) — U(Y))), where 0 = @
(-) = 1 is the cumulative standard normal distribution. In the main
text we only present the results of the logit analysis. The results of
the probit analysis can be found in the online supplementary
materials.

The above stochastic specifications can only be applied to
models that generate cardinal utilities or decision propensities. For
heuristic models, which do not assign cardinal values to options,
we assume a constant-error choice rule (also known as tremble
noise). This stochastic specification transforms binary determinis-
tic responses, such as a choice of X or Y, into choice probabilities
plX; Y] by permitting a fixed probability & of making an error
response (with 0 = p = 1). Thus, for example, if the model
predicts the choice of X, we have p[X;Y] = 1 — & and p
[v;:X] = 4.

Most existing applications of utility-based models use logit (or
probit) stochastic specifications, and most existing applications of
heuristic models use constant-error stochastic specifications. These
are thus the stochastic specifications that we focus on in the main
text. However, the use of different stochastic specifications for
different classes of models may introduce artificial differences in
model predictions, and thus distort our results. To control for this
possibility we present additional analysis using only the constant-
error specifications for both utility-based and heuristic models, in
the online supplemental materials.

Experimental Designs and Decision Stimuli

A set of choice pairs or decision stimuli is required for the
decision models to make predictions. As experimental design
could be crucial in determining the (dis)similarity between mod-
els’ predictions, we consider two different designs (a main and an
alternative design) for generating decision stimuli for the risky and
intertemporal decision domains and establishing the generalizabil-
ity of the results. For risky models, our main design uses two types
of binary choice questions. One type of question involves choices
between two 2-branch gambles, denoted as X = ($x, p; $0, 1-p)
and Y = ($y, ¢; $0, 1-g). The other type of choice question
involves choices between a sure payoff and a two-branch gamble,
denoted as X = ($x, 1; $0, 0) and Y = ($y, ¢; $0, 1-¢). There are
50 questions per choice type, totaling 100 choice questions in each
choice set from the main experimental design. Our alternative
design, in contrast, involves only choices between two two-branch
gambles, and thus contains 100 choice questions between X = ($x,
p; $0, 1-p) and Y = ($y, ¢; $0, 1-q).

The main design in intertemporal choice also uses two types of
binary choice questions. One type of question involves choices
between two delayed payoffs, that is, choices between X = ($x, 1)
and Y = ($y, s), in which 0 < x < y and 0 < ¢t < s. The other
involves choices between an immediate and a delayed payoff, that
is, choices between X = ($x, 0) and Y = ($y, s). Again, there are
50 questions of each type, totaling 100 questions in each choice set
from the main experimental design. The alternative design uses
only delayed payoffs, and has 100 choice questions between X =
($x,H)and Y = ($y, s), in which 0 < x < yand 0 < ¢ < s.

The main designs for both risky and intertemporal choice in-
volve questions in which one choice option offers a certain or
immediate payoff. We explicitly include these questions as many
decision models make special predictions in the presence of cer-
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tainty or immediacy. The alternative designs, in contrast, only
consider a single type of question, and are thus useful for checking
the robustness of our ontology in settings in which the choice set
isn’t specifically engineered to involve certainty or immediacy.
We present the results of the main design in our main text, and
present the results of the alternative design in the online supple-
mental materials.

We generate risky and intertemporal choice questions according
to the above designs by randomly sampling payoffs, probabilities,
and time delays from uniform distributions. In risky choice be-
tween X = ($x, p; $0, 1-p) and Y = ($y, ¢; $0, 1-g), x and y are
randomly and independently sampled from a uniform distribution
U(0, 100); p and ¢ are randomly, independently sampled from a
uniform distribution U(0, 1). Likewise, in risky choice questions
between X = ($x, 1; $0, 0) and Y = ($y, ¢; $0, 1-¢), y is randomly
sampled from uniform distribution U(0, 100) and x is randomly
selected from uniform distribution U(0, y); ¢ is randomly sampled
from a uniform distribution U(0, 1).

In intertemporal choice between X = ($x, 1) and ¥ = ($y, s), in
which 0 <x <yand 0 <t <s,yand s are randomly sampled from
a uniform distribution U(0, 100); x is randomly sampled from the
uniform distribution U(0, y); and ¢ is randomly sampled from the
uniform distribution U(0, s). In choices between X = ($x, 0) and ¥ =
($y, 5), in which 0 < x < yand 0 < s, y and s are randomly sampled
from a uniform distribution U(0, 100) and x is randomly sampled
from the uniform distribution U(0, y). In the alternative experimental
designs all choice questions are sampled in the same manner as the
first type of choice questions in the main experimental design, X =
($x, 1; $0, 0) vs. Y = ($y, ¢; $0, 1-g) for risky models, and X = ($x,
1) versus Y = ($y, s) for intertemporal models).

Note that the above stimuli involve only positive payoffs, that is,
the gain domain. However, understanding the differences between
positive and negative payoffs, that is, the gain and loss domains,
has been the focus of a lot of theoretical and empirical work in
risky choice (e.g., Kahneman & Tversky, 1979). We focus our
analysis on the gain domain as only a few risky models (mostly
variants of prospect theory) explicitly differentiate between gains
and losses. Most other models are explicitly formulated only for
gains. Some can be made to predict loss domain phenomena, such
as loss aversion, with additional assumptions not made by the
initial authors (e.g., different model parameters for positive and
negative payoffs), whereas others are mathematically restricted to
the gain domain. That said, we present an additional set of tests
using mixed gambles composed of both positive and negative
payoffs in the online supplemental materials. To make our risky
decision models applicable to the loss domain we make some
important changes to model specifications and exclude certain
models from the analysis. Our results from the mixed gamble
analysis are thus not directly comparable to the results for the gain
domain presented in the main text.

Landscaping Analysis

As discussed in the introduction, we obtain a (potentially asym-
metric) measure of similarity between pairs of models by means of
landscaping analysis (Navarro et al., 2004; also see Wagenmakers
et al., 2004 for a related approach). Here we write the set of N
binary choice questions as an experimental design Q. A generating
model G can be written as a function f; that takes experimental

design Q as input and, based on a set of its parameters 0,
produces an N-length vector of choice probabilities f;(Q | 0;) as an
output. Landscaping calculates how well a second fitted model F
is able to approximate this vector of choice probabilities. This
involves searching the parameter space of F for some set of
parameters 0,. that minimizes the dissimilarity between f,(Q16,)
and f;(Q165). We use Kullback-Leibler (KL) divergence to mea-
sure dissimilarity, and thus minimize KL divergence between
fHQ16,) and f(Q16), denoted as Dy [f6(Q105) [ fH(Q16p)].
Minimizing KL divergence is equivalent to maximizing the like-
lihood with an infinite number of observed choice data, and using
minimum KL divergence bypasses the need for simulating noisy
choices numerous times to obtain accurate fit statistics. This gives
our approach a degree of computational tractability not possible
using standard model simulation and fitting techniques using like-
lihood values as a measure of fitting quality.

We implement landscaping in four steps. First, a set of N = 100
choice questions, Q, is generated in accordance with the prespeci-
fied experimental design (outlined above). Second, for a given
generating model G, and a given experimental design Q, a set of
parameter values are sampled from a reasonable prior distribution
(these distributions are summarized in Appendix E). Third, G, with
the sampled parameter values, is applied to the set of choice
questions, Q, resulting in a 100-length vector of choice probabil-
ities f5(Q10s). Fourth, another model, F, is fit to the N-length
vector of choice probabilities by minimizing the KL divergence
between the predictions of the fitted model and the predictions of
the generating model. We write this measure of KL divergence as:

D1 [f6(C106) || fr(Q16p)]
N
2( D

g=1 \oE{X,.Y,

J6(0166)
ot olox £ Cro5 )

where f;(0]605) is the scalar predicted probability of choosing
option o in choice question g (either X, or Y,) given model G and
parameters 0. f(0]0,) is the scalar predicted probability of
choosing option o in choice question ¢ given model F' and param-
eters 0. The summation E()E{Xq,yq} (-) measures the KL divergence
of using F' to mimic G for the pair of options in each choice
question g. E{,V: 1 (+) follows the chain rule of KL divergence which
states that the total KL divergence over all choice questions is the
sum of the KL divergences for individual choice questions.

We search for the minimum KL divergence via the Nelder-
Mead simplex algorithm, implemented by MATLAB’s fminsearch
command. Here we repeat the optimization procedure in fmin-
search 500 times with random starting points to ensure that we
reach the global minimum for each fit. To ensure that all KL
divergences are tractable, we constrain f;(o|0,) and f(0]6,) to
have a floor of 0.001 and a ceiling of 0.999. This allows us to avoid
the extreme choice probabilities of 0 or 1 (for which KL diver-
gence can be infinite). We use base-2 logarithms for calculating
the KL divergences. Thus, the resulting KL divergences are in bits.

The 100 samples of Q and 6, and subsequent fits of model F
to G, are used to calculate an expectation of the minimum KL
divergence, which we write as:

dr = Bg g ming {DkL[f6(Q106) | fr(Q10p]}

dgp captures how closely F can mimic the predictions by G with
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dsr = 0 indicating that F can fit G perfectly. This measure is
asymmetric, as one model may be able to fit the predictions
generated by another, but not vice versa. Thus, we calculate d;-
separately for each possible combination of generating and fitted
model.

As mentioned earlier, we consider three stochastic specifications
(logit, probit, and constant-error) for utility-based models and two
experimental designs (a main and an alternative design) for both
risky and intertemporal choice models. There are 62 risky decision
models. Thus, for each combination of stochastic specification and
experimental design, 3,844 (i.e., 62 X 62) pairwise model dissim-
ilarities are estimated, resulting in a 62 X 62 asymmetric matrix.
Likewise, there are 27 intertemporal decision models. Thus, for
each combination of stochastic specification and experimental
design, 729 (i.e., 27 X 27) model dissimilarities are estimated,
resulting in a 27 X 27 asymmetric matrix. We also consider a
mixed gamble design for a subset of 56 risky choice models (with
the logit stochastic specification), resulting in 56 X 56 = 3,136
pairwise model dissimilarities. As each measure of dissimilarity is
approximated using 100 different samples of decision stimuli and
parameters of the generating model, our entire project involves the
estimation of a total of 3,057,400 minimum KL divergences
(2,620,000 for risky models and 437,400 for intertemporal mod-
els). The results of the logit/main design combination are presented
in the main text. Detailed results from other combinations are
presented in the online supplementary materials.

Results

Reliability and Generalizability

We began by testing the reliability and the generalizability of
the measured model dissimilarities. We tested the former using
split-half reliability. Here we divided each set of the 100 random
samples for estimating d, into two halves and calculated the
expectation of model dissimilarities for each half, ds,, with 50
in the subscript indicating the number of simulations in each half.
We then estimated the similarity between the two halves using
inner-product matrix correlation (Ramsay, ten Berge, & Styan,
1984) and implemented it using the MatrixCorrelation package in

Table 1

R (Indahl, Nes, & Liland, 2018; R Core Team, 2018). Across all
the 12 computational analyses (2 choice domains X 2 experimen-
tal designs X 3 stochastic specifications), the matrix correlation
coefficients between the two subsets were constantly close to 1,
suggesting extremely high reliability of our measurement of model
dissimilarities (see Table 1 for reliability statistics).

We next examined the similarities of the dissimilarity matrices
from different experimental designs and stochastic specifications
for a test of generalizability. This was again done with inner-
product matrix correlation. For both choice domains, we obtained
six dissimilarity matrices, by crossing two experimental designs
and three stochastic specifications. For risky decision models,
these correspond to six 62 X 62 matrices. For intertemporal
decision models, these correspond to six 27 X 27 matrices. We
calculated the matrix correlation coefficients for each pair of
matrices for each choice domain, respectively. Table 1 presents the
inner-product matrix correlation coefficients across different sto-
chastic specifications and experimental designs.

Given a stochastic specification (logit, probit or constant-error),
the dissimilarity matrices from different experimental designs
were highly consistent with each other, with all correlation coef-
ficients above or close to 0.95 (i.e., the figures in boldface in Table
1). Turning to stochastic specifications, with the same experimen-
tal design (either main or alternative), logit and probit specifica-
tions were almost identical to each other, with correlation coeffi-
cients close to 1 for both risky and intertemporal models. This
likely reflects the fact that these two stochastic specifications
generate similar mappings of cardinal utility to choice probability.
Even with different experimental designs, the correlation coeffi-
cients between logit and probit always exceed 0.93 for both risky
and intertemporal models.

The correlation coefficients between logit/probit and the constant-
error stochastic specifications are, however, slightly lower. As shown
in Table 1, these range between 0.79 and 0.88 for risky decision
models, and between 0.75 and 0.84 for intertemporal choice models,
depending on the experimental design. These results indicate that
stochastic specification can influence a model’s quantitative predic-
tions (see Blavatskyy & Pogrebna, 2010; Loomes & Sugden, 1995;
Regenwetter et al., 2018; Scholten, Read, & Sanborn, 2014 for ex-
tended discussion). Nonetheless the correlations are all fairly high,

Reliability and Generalizability of the Measure of Model Dissimilarities via Inner-Product Matrix Correlation Coefficients

Risky choice

Intertemporal choice

Main Alternative Main Alternative
Reliability and
generalizability L P C L P C L P C L P C
Reliability 0.99 0.99 0.93 0.99 1.00 0.98 0.99 0.99 0.97 0.98 0.98 0.97
Generalizability
Main
L 1 1
P 1.00 1 1.00 1
C 0.87 0.88 1 0.81 0.82 1
Alternative
L 0.96 0.95 0.79 1 0.94 0.93 0.75 1
P 0.96 0.96 0.81 1.00 1 0.95 0.95 0.77 1.00 1
C 0.83 0.84 0.95 0.82 0.83 1 0.83 0.84 0.97 0.79 0.81 1

Note.

L = logit; P = probit; C = constant-error. All p values for all the values in bold font is p < .001.
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6 HE, ZHAO, AND BHATIA

indicating that our dissimilarity matrices, and subsequent ontologies,
are fairly stable.

Note that we also analyzed an experimental design with both
gains and losses in the risky choice domain. These tests resulted in
somewhat different model dissimilarity matrices. However, these
results are not directly comparable to those from the gain domain
presented above, as our extension to the loss domain required
fundamental changes to model specifications and the exclusion of
a subset of risky choice models. We elaborate on these differences
in the online supplemental materials.

Model Spaces

The set of model dissimilarities obtained through landscaping
quantify model relationships for each pair of models. To better
interpret these relationships, we used the pairwise similarities to
drive representations of the models as points in a multidimensional
space. Such spatial representations provide an intuitive description
of similarities across numerous models. Additionally, central
points in such spaces identify prototypical models and peripheral
points in such spaces identify atypical and unusual models, allow-
ing for an intuitive understanding of the representational structure
captured in the model dissimilarity matrices.

a
o
27
44 K
45
N
62
53
[ ]
4
o 2
46 o
@ .r.é. PY L]
4z 0 49
29, 5 5
32
as';.q 3.8 2
7 28 @ 33 10 48
> o
o 150 M, & ks °
26 ° 4 y 59
@ 40 o L
1 1812
° [ ]
L ] 15 50 °
. 54
51
@ o0
Category
® SEUT

@ Risk-as-value
@ Counterfactual
@ Heuristics

In order to obtain spatial representations, we first symmetrized
our measures of model dissimilarity: dgr = d_FG = %d”
We projected these symmetrized model dissimilarity measures
onto latent dimensions via nonmetric multidimensional scaling
(NMDS; Kruskal, 1964a; Venables & Ripley, 2002). The nonmet-
ric approach relaxes the assumption of a cardinal distance measure
of classical multidimensional scaling and relies solely on the rank
order of the symmetrized KL divergence, dgr. Thus, the NMDS
solutions would hold constant even if any other distance measure

that is monotonically increasing in dgr is used. We obtained
NMDS representations by minimizing the stress of the low-
dimensional configurations (Kruskal, 1964b). To ensure that the
global minimum stress was reached, the optimization procedure
was repeated 100,000 times with random starting configurations.

Two-dimensional representations of the space of risky and in-
tertemporal models, obtained through the above methods applied
to the logit stochastic specification and the main experimental
design, are shown in Figures la and 2a, respectively. Analogous
figures for alternative stochastic specifications and designs are
provided in Figures S1 and S3 of the online supplemental mate-
rials, and the relationships between model spaces derived using
different stochastic specifications and experimental designs is

1 Expected value maximization
2 Expected utiity maximization
3 Subjective expected utility
4 Subjective expected money
5 Certainty equivalence theory
6 Odds-based subjective weighted uti
7 Prospect theory
8  Dual theory w/ hyperbolic weighting
9 Dual theory w/ quadratic weighting
10 Prospective reference theory

11 Venture theory

12 Cumulative prospect theory

13 Cumulative prospect theory w/

Lattimore et al.'s weighting
14  Decision field theory
15 Rank affected multiplicative weighting
16 Cumulative prospect theory w/ Prelec’s
weighting
ity 17 Cumulative prospect theory w/
Gonzalez and Wu's weighting
18 Prospect theory w/ Wu et al.'s
editing rule
19 Transfer of attention exchange
20 Dual systems w/ expected value
evaluation
21 Salience theory

Figure 1.
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Distracted decision field theory
Dual s