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THEORETICAL NOTE

An Ontology of Decision Models

Lisheng He, Wenjia Joyce Zhao, and Sudeep Bhatia
University of Pennsylvania

Decision models are essential theoretical tools in the study of choice behavior, but there is little consensus
about the best model for describing choice, with different fields and different research programs favoring
their own idiosyncratic sets of models. Even within a given field, decision models are seldom studied
alongside each other, and insights obtained using 1 model are not typically generalized to others. We
present the results of a large-scale computational analysis that uses landscaping techniques to generate
a representational structure for describing decision models. Our analysis includes 89 prominent models
of risky and intertemporal choice, and results in an ontology of decision models, interpretable in terms
of model spaces, clusters, hierarchies, and graphs. We use this ontology to measure the properties of
individual models and quantify the relationships between different models. Our results show how decades
of quantitative research on human choice behavior can be synthesized within a single representational
framework.
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The study of how people make decisions is a central topic of
research in psychology, as well as in various other social,
behavioral, and biological sciences (Camerer, Loewenstein, &
Rabin, 2004; Kahneman & Tversky, 2000; Glimcher & Fehr,
2013). This research has been remarkably influential, shaping
our understanding of the psychological determinants of choice,
of individual rationality, of markets and societies, and of the
biological bases of human behavior (Bettman, Luce, & Payne,
1998; Glimcher & Rustichini, 2004; Starmer, 2000; Weber &
Johnson, 2009). Much of this work has relied on decision
models in order to describe choice processes, predict choice
outcomes, and interpret the relationship between choices and
various affective, cognitive, clinical, socioeconomic, demo-
graphic, and neurobiological variables.

Decision models are parameterized mathematical functions
or computer algorithms, which take as inputs a set of available
choice options and produce as outputs predictions regarding

decision makers’ choices over this set. In risky decision mak-
ing, for example, these models predict choices over gambles,
which offer potentially probabilistic rewards. Likewise, in in-
tertemporal decision making, these models predict choices over
sequences of outcomes, which offer potentially delayed rewards.
By quantitatively describing the ways in which choices are made,
decision models allow researchers to infer parameters correspond-
ing to latent decision constructs (risk aversion, time discounting,
regret, probability weighting, attentional bias, loss aversion, pres-
ent bias, etc.) from behavioral data, giving the study of decision
making conceptual rigor and empirical precision. For this reason,
decision models are essential theoretical tools in psychology (Birn-
baum, 2008; Brandstätter, Gigerenzer, & Hertwig, 2006; Buse-
meyer & Townsend, 1993; Ericson, White, Laibson, & Cohen,
2015; Scholten & Read, 2010), economics (Laibson, 1997; Loe-
wenstein & Prelec, 1992; Loomes & Sugden, 1982; Tversky &
Kahneman, 1992; Yaari, 1987) and neuroscience (Kable & Glim-
cher, 2010; McClure, Ericson, Laibson, Loewenstein, & Cohen,
2007), and have been extensively applied to study human behavior
in clinical, financial, managerial, consumer, policy, and other
applied domains.

However, despite decades of decision research, we do not cur-
rently have a unified model of choice behavior, or any academic
consensus about the right decision model for studying how people
make decisions. Rather, the long history and vast interdisciplinary
scope of decision research have given rise to a very large number
of distinct models, each making seemingly unique claims about
how people deliberate and choose between available options. In
this article, we catalogue 89 different models of simple risky and
intertemporal choice. The existence of so many decision models
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complicates our understanding of choice behavior, impeding sci-
entific progress.

Another source of confusion is the fact that decision models
involve a menagerie of overlapping assumptions. In risky choice,
for example, some decision models may assume a nonlinear trans-
formation of payoffs (e.g., expected utility theory, Bernoulli,
1738), others may assume a nonlinear transformation of probabil-
ities (e.g., dual theory, Yaari, 1987), and some may assume both
(e.g., cumulative prospect theory, Tversky & Kahneman, 1992).
Likewise, some models may allow the payoffs offered by a gamble
to influence how other payoffs of the same gamble are evaluated
(e.g., the transfer-of-attention exchange model, Birnbaum, 2008),
some may allow the payoffs of a gamble to influence how payoffs
of other gambles are evaluated (e.g., regret theory, Loomes &
Sugden, 1982); and others may do both (e.g., the priority heuristic,
Brandstatter et al., 2006). Which of these assumptions give rise to
the idiosyncratic predictions of the model, and do two models that
share a given assumption make similar predictions? Without an-
swering these questions, our understanding of the essential math-
ematical operations necessary to describe human choice behavior
remains incomplete.

Finally, it is difficult to make rigorous model-based empirical
claims without first characterizing the relationships between dif-
ferent decision models and between the constructs that their pa-
rameters represent. Imagine observing a relationship between a
model parameter and an affective, cognitive, clinical, socioeco-
nomic, demographic, or neurobiological variable of interest. For
example, activity in the limbic system may correlate with the
decision maker’s weighting of immediate payoffs (McClure, Laib-
son, Loewenstein, & Cohen, 2004), time pressure may be associ-
ated with the use of a particular heuristic (Payne, Bettman, &
Johnson, 1988), higher incentives may lead to an increase in risk
aversion (Holt & Laury, 2002), and individuals prone to addictive
behavior may be more likely to discount future rewards (MacKil-
lop et al., 2011). Testing for such relationships is increasingly
common and these tests represent one of the main ways in which
decision models are used to describe empirical regularities in
choice behavior. However, these tests typically involve the param-
eters or predictions of a limited number of models or even a single
model, and we cannot tell if the variable of interest is better
described by one of the numerous other models in the literature. A
range of different decision constructs (specified by a range of
different models) could be associated with limbic system activa-
tion, the effects of time pressure and incentives, and addiction
proneness. Understanding these associations is necessary for a
rigorous, cumulative, and transdisciplinary science of human
choice behavior.

One way to address the above issues is to build a single repre-
sentational structure that describes all existing decision models, or,
in other words, an ontology of decision models. Such an ontology
would specify the relationships between models, allowing re-
searchers to quantitatively measure the similarities of models, and
determine whether or not the results obtained using a given model
can be attributed to others. By formalizing the relationships be-
tween models, the ontology would also measure the relative flex-
ibility of models, including both their generality (ability to mimic
the predictions of other models) and their uniqueness (ability to
make predictions that cannot be mimicked by others). By relating
model similarities and dissimilarities to various model properties,

a model ontology could also be used to test which of the mathe-
matical assumptions in the models give rise to their idiosyncratic
predictions.

Our goal in this article is to build such an ontology of decision
models. In order to do so, we perform a computational analysis
that uses Monte Carlo methods to measure the relationships be-
tween models. Specifically, we calculate (potentially asymmetric)
similarities and dissimilarities between pairs of models through
landscaping analysis (Navarro, Pitt, & Myung, 2004), which mea-
sures how well one model can fit the data generated by another
(this method is also sometimes called data-uninformed parameter-
bootstrapping cross-fitting, Wagenmakers, Ratcliff, Gomez, &
Iverson, 2004). We use landscaping with a wide range of randomly
sampled model parameters and choice questions in order to un-
cover the pairwise similarities between numerous different models.
Finally, various statistical and computational tools, such as multi-
dimensional scaling and graph-theoretic analysis, are applied to
these pairwise similarities, to interpret and analyze the represen-
tational structure captured in our ontology.

Our approach is inspired by the insights of Broomell, Budescu,
and Por (2011), who use pairwise comparisons of models to
understand structures of model relationships, and Pachur, Suter,
and Hertwig (2017), who try to integrate prospect theory and
heuristic approaches to studying risky choice by analyzing model
mimicry. It is also related to a number of recent articles that
attempt to synthesize existing findings on choice behavior in a
single representational structure or typology (Chapman, Dean,
Ortoleva, Snowberg, & Camerer, 2018; Eisenberg et al., 2019;
Hollands et al., 2017). Unlike most prior work, our analysis is
quantitative, and based on an established statistical technique with
well-known theoretical properties. We apply this technique on a
very large scale, in order to construct ontologies that include nearly
every risky and intertemporal model that can be specified using a
tractable parameterized mathematical function or algorithm, and
subsequently use our ontologies to answer a wide range of
metatheoretical questions involving model relationships and struc-
tures in decision making research.

Method

Models

Our analysis involves 62 prominent models of risky choice and
27 prominent models of intertemporal choice, from numerous
academic disciplines, published from the 1950s to the present day.
We consider only mathematically tractable and parameterized
models, and thus exclude general axiomatic models, qualitative
(verbal) models, and simulation-based models. Details of the mod-
els are presented in Appendixes A–E.

Although our set of models is highly diverse, we can simplify
our analysis and better interpret the model ontology by categoriz-
ing the models into a small set of discrete categories. For risky
choice, we consider four core model categories: (a) subjective
expected utility theories (SEUT), which multiply transformed or
untransformed payoffs against transformed or untransformed prob-
abilities (e.g., cumulative prospect theory, Tversky & Kahneman,
1992); (b) risk-as-value models, which explicitly incorporate a
disutility caused by the riskiness (or variability) of the gamble
(e.g., portfolio theory, Markowitz, 1952); (c) counterfactual mod-
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els, which compare the payoffs of gambles against alternate pay-
offs of the same gamble or other gambles (e.g., regret theory,
Loomes & Sugden, 1982); and (d) heuristic models, which use
cognitive shortcuts to choose between gambles (e.g., the priority
heuristic, Brandstätter et al., 2006).

For intertemporal choice, we consider three categories: (a) delay
discounting models, which weigh payoffs as a function of their
respective delays independently (e.g., Samuelson, 1937); (b) in-
terval discounting models, which weigh payoffs as a function of
both their delays and the interval (i.e., the difference of delays)
between options (e.g., Kable & Glimcher, 2010); and (c) time-as-
attribute models, which represent time delay as a separate attribute,
and combine delays and payoffs using various linear and nonlinear
combination rules or heuristic shortcuts (e.g., Scholten & Read,
2010).

In addition to the above categories, we also analyze the under-
lying mathematical assumptions made by the various models. We
consider four such assumptions for risky models: Whether or not
the model involves (a) payoff transformations; (b) probability
transformations; (c) interactions between the components (payoffs
or probabilities) of a single option (“intraoption interaction); or (d)
interactions between the components across options (“interoption
interaction”). The first two of these assumptions play a crucial role
in the SEUT category, but also characterize many counterfactual
models (which may, e.g., involve a nonlinear regret function
applied to payoffs). The third assumption is common across all
four categories of models. By allowing the outcomes of a gamble
to influence the evaluation of other outcomes of the same gamble,
this assumption allows a model to account for independence vio-
lations such as the Allais paradox (Allais, 1953; Kahneman &
Tversky, 1979). The fourth assumption is typically only present in
counterfactual models and heuristic models. By allowing the out-
comes of a gamble to influence the evaluation of outcomes of other
gambles, this assumption is necessary for a model to account for
transitivity violations (Tversky, 1969).

We also consider three such assumptions in intertemporal
choice: Whether or not the model assumes (a) nonlinear transfor-
mations of delays, (b) interactions between the delays of different
options, and (c) interactions between the payoffs of different
options. Again, the first assumption is common in multiple model
categories. The next two assumptions, which allow for the mag-
nitude of discounting or the evaluation of payoffs of a given option
to depend on other options in the choice set, can give rise to
transitivity violations. The assumptions studied here are not mu-
tually exclusive and many models apply two or more assumptions
simultaneously to compute utility.

Stochastic Specifications

We apply the decision models to binary choices between gam-
bles or payoffs sequences. As most of these models are determin-
istic, we need to assume some type of stochastic specification in
model implementation. For utility-based models, we use both logit
and probit choice rules. The logit choice rule defines the proba-
bility of choosing option X in a binary choice between X and Y as
p�X; Y� � 1

1 � exp��ε�U�X� � U�Y���, where p[X; Y] is increasing in
U(X) � U(Y), and 1/ε represents the noisiness of the decision
process. The larger the value of 1/ε, the smaller the effect of
U(X) � U(Y) on p[X; Y]. Likewise, probit defines the probability

of choosing X as p�X; Y� � ��ε�U�X� � U�Y���, where 0 � �
�·� � 1 is the cumulative standard normal distribution. In the main
text we only present the results of the logit analysis. The results of
the probit analysis can be found in the online supplementary
materials.

The above stochastic specifications can only be applied to
models that generate cardinal utilities or decision propensities. For
heuristic models, which do not assign cardinal values to options,
we assume a constant-error choice rule (also known as tremble
noise). This stochastic specification transforms binary determinis-
tic responses, such as a choice of X or Y, into choice probabilities
p[X; Y] by permitting a fixed probability �

2 of making an error
response (with 0 � � � 1). Thus, for example, if the model
predicts the choice of X, we have p�X; Y� � 1 � �

2 and p
�Y; X� � �

2 .
Most existing applications of utility-based models use logit (or

probit) stochastic specifications, and most existing applications of
heuristic models use constant-error stochastic specifications. These
are thus the stochastic specifications that we focus on in the main
text. However, the use of different stochastic specifications for
different classes of models may introduce artificial differences in
model predictions, and thus distort our results. To control for this
possibility we present additional analysis using only the constant-
error specifications for both utility-based and heuristic models, in
the online supplemental materials.

Experimental Designs and Decision Stimuli

A set of choice pairs or decision stimuli is required for the
decision models to make predictions. As experimental design
could be crucial in determining the (dis)similarity between mod-
els’ predictions, we consider two different designs (a main and an
alternative design) for generating decision stimuli for the risky and
intertemporal decision domains and establishing the generalizabil-
ity of the results. For risky models, our main design uses two types
of binary choice questions. One type of question involves choices
between two 2-branch gambles, denoted as X � ($x, p; $0, 1-p)
and Y � ($y, q; $0, 1-q). The other type of choice question
involves choices between a sure payoff and a two-branch gamble,
denoted as X � ($x, 1; $0, 0) and Y � ($y, q; $0, 1-q). There are
50 questions per choice type, totaling 100 choice questions in each
choice set from the main experimental design. Our alternative
design, in contrast, involves only choices between two two-branch
gambles, and thus contains 100 choice questions between X � ($x,
p; $0, 1-p) and Y � ($y, q; $0, 1-q).

The main design in intertemporal choice also uses two types of
binary choice questions. One type of question involves choices
between two delayed payoffs, that is, choices between X � ($x, t)
and Y � ($y, s), in which 0 � x � y and 0 � t � s. The other
involves choices between an immediate and a delayed payoff, that
is, choices between X � ($x, 0) and Y � ($y, s). Again, there are
50 questions of each type, totaling 100 questions in each choice set
from the main experimental design. The alternative design uses
only delayed payoffs, and has 100 choice questions between X �
($x, t) and Y � ($y, s), in which 0 � x � y and 0 � t � s.

The main designs for both risky and intertemporal choice in-
volve questions in which one choice option offers a certain or
immediate payoff. We explicitly include these questions as many
decision models make special predictions in the presence of cer-
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tainty or immediacy. The alternative designs, in contrast, only
consider a single type of question, and are thus useful for checking
the robustness of our ontology in settings in which the choice set
isn’t specifically engineered to involve certainty or immediacy.
We present the results of the main design in our main text, and
present the results of the alternative design in the online supple-
mental materials.

We generate risky and intertemporal choice questions according
to the above designs by randomly sampling payoffs, probabilities,
and time delays from uniform distributions. In risky choice be-
tween X � ($x, p; $0, 1-p) and Y � ($y, q; $0, 1-q), x and y are
randomly and independently sampled from a uniform distribution
U(0, 100); p and q are randomly, independently sampled from a
uniform distribution U(0, 1). Likewise, in risky choice questions
between X � ($x, 1; $0, 0) and Y � ($y, q; $0, 1-q), y is randomly
sampled from uniform distribution U(0, 100) and x is randomly
selected from uniform distribution U(0, y); q is randomly sampled
from a uniform distribution U(0, 1).

In intertemporal choice between X � ($x, t) and Y � ($y, s), in
which 0 � x � y and 0 � t � s, y and s are randomly sampled from
a uniform distribution U(0, 100); x is randomly sampled from the
uniform distribution U(0, y); and t is randomly sampled from the
uniform distribution U(0, s). In choices between X � ($x, 0) and Y �
($y, s), in which 0 � x � y and 0 � s, y and s are randomly sampled
from a uniform distribution U(0, 100) and x is randomly sampled
from the uniform distribution U(0, y). In the alternative experimental
designs all choice questions are sampled in the same manner as the
first type of choice questions in the main experimental design, X �
($x, 1; $0, 0) vs. Y � ($y, q; $0, 1-q) for risky models, and X � ($x,
t) versus Y � ($y, s) for intertemporal models).

Note that the above stimuli involve only positive payoffs, that is,
the gain domain. However, understanding the differences between
positive and negative payoffs, that is, the gain and loss domains,
has been the focus of a lot of theoretical and empirical work in
risky choice (e.g., Kahneman & Tversky, 1979). We focus our
analysis on the gain domain as only a few risky models (mostly
variants of prospect theory) explicitly differentiate between gains
and losses. Most other models are explicitly formulated only for
gains. Some can be made to predict loss domain phenomena, such
as loss aversion, with additional assumptions not made by the
initial authors (e.g., different model parameters for positive and
negative payoffs), whereas others are mathematically restricted to
the gain domain. That said, we present an additional set of tests
using mixed gambles composed of both positive and negative
payoffs in the online supplemental materials. To make our risky
decision models applicable to the loss domain we make some
important changes to model specifications and exclude certain
models from the analysis. Our results from the mixed gamble
analysis are thus not directly comparable to the results for the gain
domain presented in the main text.

Landscaping Analysis

As discussed in the introduction, we obtain a (potentially asym-
metric) measure of similarity between pairs of models by means of
landscaping analysis (Navarro et al., 2004; also see Wagenmakers
et al., 2004 for a related approach). Here we write the set of N
binary choice questions as an experimental design Q. A generating
model G can be written as a function fG that takes experimental

design Q as input and, based on a set of its parameters �G,
produces an N-length vector of choice probabilities fG(Q | �G) as an
output. Landscaping calculates how well a second fitted model F
is able to approximate this vector of choice probabilities. This
involves searching the parameter space of F for some set of
parameters �F that minimizes the dissimilarity between fF(Q | �F)
and fG(Q | �G). We use Kullback-Leibler (KL) divergence to mea-
sure dissimilarity, and thus minimize KL divergence between
fF(Q | �F) and fG(Q | �G), denoted as DKL�fG�Q � 	G� � fF�Q � 	F��.
Minimizing KL divergence is equivalent to maximizing the like-
lihood with an infinite number of observed choice data, and using
minimum KL divergence bypasses the need for simulating noisy
choices numerous times to obtain accurate fit statistics. This gives
our approach a degree of computational tractability not possible
using standard model simulation and fitting techniques using like-
lihood values as a measure of fitting quality.

We implement landscaping in four steps. First, a set of N � 100
choice questions, Q, is generated in accordance with the prespeci-
fied experimental design (outlined above). Second, for a given
generating model G, and a given experimental design Q, a set of
parameter values are sampled from a reasonable prior distribution
(these distributions are summarized in Appendix E). Third, G, with
the sampled parameter values, is applied to the set of choice
questions, Q, resulting in a 100-length vector of choice probabil-
ities fG(Q | �G). Fourth, another model, F, is fit to the N-length
vector of choice probabilities by minimizing the KL divergence
between the predictions of the fitted model and the predictions of
the generating model. We write this measure of KL divergence as:

DKL�fG�Q | 	G� � fF�Q | 	F��

��
q�1

N 	 �
o��Xq,Yq�

fG�o | 	G�log2	 fG�o | 	G�
fF�o | 	F� 
 


where fG(o | �G) is the scalar predicted probability of choosing
option o in choice question q (either Xq or Yq) given model G and
parameters �G. fF(o | �F) is the scalar predicted probability of
choosing option o in choice question q given model F and param-
eters �F. The summation �o��Xq,Yq� �·� measures the KL divergence
of using F to mimic G for the pair of options in each choice
question q. �q�1

N �·� follows the chain rule of KL divergence which
states that the total KL divergence over all choice questions is the
sum of the KL divergences for individual choice questions.

We search for the minimum KL divergence via the Nelder-
Mead simplex algorithm, implemented by MATLAB’s fminsearch
command. Here we repeat the optimization procedure in fmin-
search 500 times with random starting points to ensure that we
reach the global minimum for each fit. To ensure that all KL
divergences are tractable, we constrain fG(o | �G) and fF(o | �F) to
have a floor of 0.001 and a ceiling of 0.999. This allows us to avoid
the extreme choice probabilities of 0 or 1 (for which KL diver-
gence can be infinite). We use base-2 logarithms for calculating
the KL divergences. Thus, the resulting KL divergences are in bits.

The 100 samples of Q and �G, and subsequent fits of model F
to G, are used to calculate an expectation of the minimum KL
divergence, which we write as:

dGF�EQ,	G
min	F{DKL[fG(Q | 	G) � fF(Q | 	F)]}

dGF captures how closely F can mimic the predictions by G with
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dGF � 0 indicating that F can fit G perfectly. This measure is
asymmetric, as one model may be able to fit the predictions
generated by another, but not vice versa. Thus, we calculate dGF
separately for each possible combination of generating and fitted
model.

As mentioned earlier, we consider three stochastic specifications
(logit, probit, and constant-error) for utility-based models and two
experimental designs (a main and an alternative design) for both
risky and intertemporal choice models. There are 62 risky decision
models. Thus, for each combination of stochastic specification and
experimental design, 3,844 (i.e., 62 � 62) pairwise model dissim-
ilarities are estimated, resulting in a 62 � 62 asymmetric matrix.
Likewise, there are 27 intertemporal decision models. Thus, for
each combination of stochastic specification and experimental
design, 729 (i.e., 27 � 27) model dissimilarities are estimated,
resulting in a 27 � 27 asymmetric matrix. We also consider a
mixed gamble design for a subset of 56 risky choice models (with
the logit stochastic specification), resulting in 56 � 56 � 3,136
pairwise model dissimilarities. As each measure of dissimilarity is
approximated using 100 different samples of decision stimuli and
parameters of the generating model, our entire project involves the
estimation of a total of 3,057,400 minimum KL divergences
(2,620,000 for risky models and 437,400 for intertemporal mod-
els). The results of the logit/main design combination are presented
in the main text. Detailed results from other combinations are
presented in the online supplementary materials.

Results

Reliability and Generalizability

We began by testing the reliability and the generalizability of
the measured model dissimilarities. We tested the former using
split-half reliability. Here we divided each set of the 100 random
samples for estimating dGF into two halves and calculated the
expectation of model dissimilarities for each half, dGF50, with 50
in the subscript indicating the number of simulations in each half.
We then estimated the similarity between the two halves using
inner-product matrix correlation (Ramsay, ten Berge, & Styan,
1984) and implemented it using the MatrixCorrelation package in

R (Indahl, Næs, & Liland, 2018; R Core Team, 2018). Across all
the 12 computational analyses (2 choice domains � 2 experimen-
tal designs � 3 stochastic specifications), the matrix correlation
coefficients between the two subsets were constantly close to 1,
suggesting extremely high reliability of our measurement of model
dissimilarities (see Table 1 for reliability statistics).

We next examined the similarities of the dissimilarity matrices
from different experimental designs and stochastic specifications
for a test of generalizability. This was again done with inner-
product matrix correlation. For both choice domains, we obtained
six dissimilarity matrices, by crossing two experimental designs
and three stochastic specifications. For risky decision models,
these correspond to six 62 � 62 matrices. For intertemporal
decision models, these correspond to six 27 � 27 matrices. We
calculated the matrix correlation coefficients for each pair of
matrices for each choice domain, respectively. Table 1 presents the
inner-product matrix correlation coefficients across different sto-
chastic specifications and experimental designs.

Given a stochastic specification (logit, probit or constant-error),
the dissimilarity matrices from different experimental designs
were highly consistent with each other, with all correlation coef-
ficients above or close to 0.95 (i.e., the figures in boldface in Table
1). Turning to stochastic specifications, with the same experimen-
tal design (either main or alternative), logit and probit specifica-
tions were almost identical to each other, with correlation coeffi-
cients close to 1 for both risky and intertemporal models. This
likely reflects the fact that these two stochastic specifications
generate similar mappings of cardinal utility to choice probability.
Even with different experimental designs, the correlation coeffi-
cients between logit and probit always exceed 0.93 for both risky
and intertemporal models.

The correlation coefficients between logit/probit and the constant-
error stochastic specifications are, however, slightly lower. As shown
in Table 1, these range between 0.79 and 0.88 for risky decision
models, and between 0.75 and 0.84 for intertemporal choice models,
depending on the experimental design. These results indicate that
stochastic specification can influence a model’s quantitative predic-
tions (see Blavatskyy & Pogrebna, 2010; Loomes & Sugden, 1995;
Regenwetter et al., 2018; Scholten, Read, & Sanborn, 2014 for ex-
tended discussion). Nonetheless the correlations are all fairly high,

Table 1
Reliability and Generalizability of the Measure of Model Dissimilarities via Inner-Product Matrix Correlation Coefficients

Reliability and
generalizability

Risky choice Intertemporal choice

Main Alternative Main Alternative

L P C L P C L P C L P C

Reliability 0.99 0.99 0.93 0.99 1.00 0.98 0.99 0.99 0.97 0.98 0.98 0.97
Generalizability

Main
L 1 1
P 1.00 1 1.00 1
C 0.87 0.88 1 0.81 0.82 1

Alternative
L 0.96 0.95 0.79 1 0.94 0.93 0.75 1
P 0.96 0.96 0.81 1.00 1 0.95 0.95 0.77 1.00 1
C 0.83 0.84 0.95 0.82 0.83 1 0.83 0.84 0.97 0.79 0.81 1

Note. L � logit; P � probit; C � constant-error. All p values for all the values in bold font is p � .001.
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indicating that our dissimilarity matrices, and subsequent ontologies,
are fairly stable.

Note that we also analyzed an experimental design with both
gains and losses in the risky choice domain. These tests resulted in
somewhat different model dissimilarity matrices. However, these
results are not directly comparable to those from the gain domain
presented above, as our extension to the loss domain required
fundamental changes to model specifications and the exclusion of
a subset of risky choice models. We elaborate on these differences
in the online supplemental materials.

Model Spaces

The set of model dissimilarities obtained through landscaping
quantify model relationships for each pair of models. To better
interpret these relationships, we used the pairwise similarities to
drive representations of the models as points in a multidimensional
space. Such spatial representations provide an intuitive description
of similarities across numerous models. Additionally, central
points in such spaces identify prototypical models and peripheral
points in such spaces identify atypical and unusual models, allow-
ing for an intuitive understanding of the representational structure
captured in the model dissimilarity matrices.

In order to obtain spatial representations, we first symmetrized

our measures of model dissimilarity: dGF� � dFG� �
dGF � dFG

2 .
We projected these symmetrized model dissimilarity measures
onto latent dimensions via nonmetric multidimensional scaling
(NMDS; Kruskal, 1964a; Venables & Ripley, 2002). The nonmet-
ric approach relaxes the assumption of a cardinal distance measure
of classical multidimensional scaling and relies solely on the rank
order of the symmetrized KL divergence, dGF�. Thus, the NMDS
solutions would hold constant even if any other distance measure
that is monotonically increasing in dGF� is used. We obtained
NMDS representations by minimizing the stress of the low-
dimensional configurations (Kruskal, 1964b). To ensure that the
global minimum stress was reached, the optimization procedure
was repeated 100,000 times with random starting configurations.

Two-dimensional representations of the space of risky and in-
tertemporal models, obtained through the above methods applied
to the logit stochastic specification and the main experimental
design, are shown in Figures 1a and 2a, respectively. Analogous
figures for alternative stochastic specifications and designs are
provided in Figures S1 and S3 of the online supplemental mate-
rials, and the relationships between model spaces derived using
different stochastic specifications and experimental designs is

Figure 1. Ontology of risky decision models. (a) Two-dimensional model space from non-metric multidimen-
sional scaling, with a black cross representing the centroid of the space. (b) Directed graph representation, with
node size corresponding to the total connectedness of a model (i.e., the sum of indegree and outdegree
centralities). The full list of risky models is provided at the bottom of Figure 1. See the online article for the color
version of this figure.
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summarized in Tables S1 and S2 of the online supplemental
materials. The figures also show the centroid of the spaces using
black crosses. Here we represent different categories of our risky
models (SEUT, risk-as-value, counterfactual, heuristic) and inter-
temporal models (delay discounting, interval discounting, time-as-
attribute) using different colors.

The model space in Figure 1a illustrates the latent structure of
risky decision models, and can be used to identify theoretical
distinctions that result in diverging model predictions and sub-
sequently large model distances. For example, SEUT models
tend to cluster with each other in the central region of the model
space. This is likely due to the fact that subjective transforma-
tions to payoffs and probabilities are among the earliest and
most influential assumptions in modeling risky choice. We
observe some clustering within the risk-as-value category and
the counterfactual category, whose models occupy most of the
left region of the model space in Figure 1a. The proximity of
these two sets of models may be due to the fact that some
disappointment-based counterfactual models closely resemble
risk-as-value models, as they implicitly place a penalty on high
variance gambles. We can also see that heuristic models are
mostly located at the periphery of the space. These models

make extreme predictions that diverge sharply from those made
through utility maximization.

There are also interesting types of variation within each cate-
gory of models. For example, although most SEUT models are
located at the center of the space, a few are located at the periph-
ery. These include expected value maximization (#1), subjective
expected money (#4), certainty equivalence theory (#5), and dual
theory (#8 and #9). Note that the number in the parentheses
indicates the model ID as in Figure 1. None of these peripheral
models involve transformations to payoffs; they all assume linear
value functions.

Likewise, although all risk-as-value models share a similar
model structure (which aggregates the moments of the gamble’s
distribution), some have very idiosyncratic predictions, such as the
mean-variance-skewness model (#27). In contrast, others, such as
the alpha-target model (#28), the below-target model (#29), the
below-mean semivariance model (#31), and the coefficient-of-
variation model (#37), are very similar to expected value maximi-
zation. These differences are likely the result of the ways in which
gamble moments enter the utility function, and how this relates to
the design choices in our analysis.

Figure 2. Ontology of intertemporal decision models. (a) Two-dimensional model space from nonmetric
multidimensional scaling, with a black cross representing the centroid of the space. (b) Directed graph
representation, with node size corresponding to the total connectedness of a model (i.e., the sum of indegree and
outdegree centralities). The full list of intertemporal models is provided at the bottom of Figure 2. See the online
article for the color version of this figure.
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There is a fair amount of spread in the locations of counterfac-
tual models. These locations appear to rely more on whether a
payoff transformation is applied in the model, rather than the
mechanism the model represents (e.g., regret vs. disappointment).
This is why, for example, regret theory with expected value
evaluation and disappointment theory with expected value evalu-
ation (#39 and #42) are located close to each other and to the
expected value maximization model (#1), whereas regret theory
with expected utility evaluation and disappointment theory with
expected utility evaluation (#40 and #43) are located close to the
expected utility maximization model (#2).

Finally, there is a significant amount of variability in the loca-
tion of the heuristic models. A few heuristic models with opera-
tions that involve utility-based calculation, such as the low ex-
pected payoff elimination heuristic (#50), the relative expected
loss immunization heuristic (#58) and the similarity heuristic with
expected utility evaluation (#60), are located closer to the cluster
of utility-based models. Generally, however, there are many im-
portant differences in the types of predictions made by different
heuristics, which is why the heuristics are spread out over a
relatively large region.

We can also examine the structure of the model space by
categorizing models based on their specific mathematical assump-
tions rather than their broad theoretical interpretations. This is
done in Figure S2 of the online supplemental materials, which
categorizes risky models based on whether they involve nonlinear
payoff transformations, probability transformations, both, or nei-
ther. This figure suggests that nonlinear transformations, espe-
cially payoff transformation, play a key role in determining the
similarities and differences between risky choice models. Models
that apply both payoff and probability transformations are located
close to each other and to the center of the model space. Models
with payoff transformations (but without probability transforma-
tions) are nearby. By contrast, models without these transforma-
tions are located at the periphery of the space. We return to this
point in the next section of this article.

In intertemporal choice, we observe a large distinction between
discounting models and time-as-attribute models (Figure 2a), as
they involve fundamental differences in the representation and
valuation of time. We also observe a distinction between delay
discounting and interval discounting models, though all discount-
ing models are relatively close to each other, and clustered near the
center of the model space. In fact, contrary to prior work that
focuses on distinctions between exponential and hyperbolic dis-
counting, we find that these two model classes are quite similar to
each other. For example, the one-parameter hyperbolic discounting
model (#2) is closer to the (one-parameter) exponential discount-
ing model (#1), than it is to other hyperbolic discounting models.
This is not to say that exponential and hyperbolic models are
identical; they can of course be distinguished by manually crafting
an appropriate stimulus set (Green, Myerson, & Macaux, 2005;
Read, 2001; Scholten & Read, 2006) or algorithmically sampling
the most discriminative stimuli (e.g., Cavagnaro, Aranovich, Mc-
Clure, Pitt, & Myung, 2016). However, with randomly generated
stimuli, as in the current analysis, these two classes of models
make quite similar predictions.

Time-as-attribute models, in contrast, are spread over a large
area in the periphery of the model space, reflecting their idiosyn-
cratic predictions and properties. Indeed, some of these models are

considered heuristics and heuristics in risky choice are also often
spread out over the periphery of the model space. Note that among
time-as-attribute models, Intertemporal Choice Heuristics (ITCH,
#26) produces qualitative predictions similar to tradeoff models
(see discussion in Ericson et al., 2015). However, our landscaping
analysis suggests that its quantitative predictions can be quite
distinct from the latter’s (#22, #24, and #25). These three tradeoff
models are all located close to each other, and are also relatively
close to discounting models, indicating that some time-as-attribute
models can approximate discounting (see discussion in Scholten et
al., 2014).

Property Cohesion

The high degree of clustering observed for SEUT models in
Figure 1a suggests that using a multiplicative combination of
(often transformed) payoffs and probabilities plays an important
role in the models’ predictions. In this sense, belonging or not
belonging to the SEUT category is a critical property of a decision
model, and determines the model’s position in our ontology. Pairs
of models that both belong to the SEUT category can mimic each
other and are positioned close to each other. If one model belongs
to the SEUT category and the other doesn’t, the models are
unlikely to be able to mimic each other or be near each other in our
space. Figure 2a shows a similar degree of proximity for models
that fall within the delay discounting category, suggesting that
delay discounting is a similarly critical property.

These claims can be made more rigorously by measuring the
cohesion of each category, or, more generally, each property
associated with a model. For each model property p, we define its
cohesion coefficient cp as the difference between the average
dissimilarity across all models and the average dissimilarity be-
tween models sharing the property:

cp�AVE�dGF |G,F� MAll and G
F�

�AVE�dGF |G,F� Mp and G
F�,

where MAll represents the full set of decision models within a
choice domain and Mp represents the subset of models that have
property p. This cohesion coefficient is larger for model properties
that, if shared by two models, are likely to result in proximate
positions in the model space (with the two models making similar
predictions and being able to closely mimic each other’s predic-
tions). Intuitively these are properties that have the strongest
effects on model predictions, and play the largest role in differen-
tiating model predictions from each other.

We calculated the above cohesion coefficients for the various
model properties discussed in the Methods section, including
model category (e.g., SEUT, risk-as-value, etc.) and underlying
mathematical assumptions of the model (e.g., payoff transforma-
tions, probability transformations, etc.). We also estimated confi-
dence bounds of the cohesion coefficients via permutation. In this
calculation, we randomly selected a set of models of the same size
as the set size of Mp, and calculated a hypothetical cohesion
coefficient for the set. This was repeated 100,000 times to estimate
the two-tail 95% confidence bounds on the distribution of the
permutation-based cohesion coefficients. Cohesion coefficients
that lie above or below these bounds can be seen to be significantly
positive or negative, that is, unlikely to arise by chance.
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Cohesion coefficients and confidence bounds are displayed in
Figure 3a for risky models and Figure 3b for intertemporal models.
A positive cohesion coefficient indicates that sharing the corre-
sponding property results in convergent model predictions while a
negative cohesion coefficient indicates divergent model predic-
tions. As in Figures 1a and 2a, we can see that SEUT and delay
discounting models are highly coherent categories, with signifi-
cantly positive cohesion coefficients. Risk-as-value, counterfac-
tual, and interval discounting models are also somewhat coherent.
Heuristic risky models and time-as-attribute models, in contrast,
are highly incoherent categories, containing dissimilar models that
yield diverging predictions.

We likewise see that the mathematical assumptions that has the
largest positive cohesion coefficients is payoff transformation for
risky models and delay transformation for intertemporal models. For
risky models, probability transformation also seems to produce high
cohesion coefficients. In contrast, assumptions about the interactions
between various choice components have nonsignificant (and some-
times negative) cohesion coefficients. Thus, it seems that nonlinear
transformations of payoffs and probabilities for risky models and
delays for intertemporal models play a crucial role in determining a
model’s predictions. Models that share these assumptions are likely to
be able to closely mimic each other. In this sense, these transforma-
tions are essential properties of the models—they determine the
positions of the models in the model ontology.

Additionally, different disciplines and different historical time
periods may have different degrees of coherence, capturing his-
torical patterns of paradigm development, and an analysis of
cohesion coefficients for models belonging to different disciplines
and time periods can provide a valuable metascientific perspective
on decision modeling. For risky models, we observe consistently
positive and significant cohesion coefficients in management and
economics, suggesting that risky models published within these
disciplines are often highly similar to each other (perhaps a con-
sequence of paradigm consensus in these fields). Psychology mod-
els, in contrast, are significantly dissimilar to each other, with
cohesion coefficients below the negative confidence bound. This
could be due to the fact that psychology admits numerous, often

divergent perspectives, and that many nonutility models (such as
heuristics and cognitive computational models) are published in
psychology journals. We do not observe obvious historical trends
in model cohesion, though the 1980s appear to be significantly
incoherent and the 1990s appear to be significantly coherent. We
speculate that these trends could be due to publication of many
heuristics in the 1980s, and the publication of many SEUT models
(including numerous variants of prospect theory) in the 1990s.

For intertemporal models, we also observe positive cohesion
coefficients for models published in management and neurosci-
ence journals, although these properties do not reach the signifi-
cance threshold. This is likely due to the fact that there are only a
few models from these two disciplines, resulting in wide confi-
dence bounds. Conversely, models published in economics and
psychology journals have coherence coefficients around zero. This
could be because these disciplines have seen the publication of a
variety of different types of intertemporal models. Finally, we
observe significantly positive cohesion coefficients for models
published in 1990s and earlier, indicating that early intertemporal
decision models are similar to each other. In contrast, we observe
negative or low cohesion coefficients for models published in
2000s and 2010s. The decline in model cohesion over time is likely
driven by the surging interest in the attribute-based views of
intertemporal choice in recent decades.

The property cohesion coefficients shown in Figure 3 can be
influenced by the choice of models used in the analysis. For
example, there may be changes to these coefficients if we removed
multiple variants of prospect theory from our model space. How-
ever, we believe that the use of all models (including multiple
variants of prospect theory) is more informative, as these variants
are typically proposed by different researchers, and published in
different articles at different points in time. The multiplicity of
prospect theory models is, in this sense, part of the status quo in
risky decision modeling, and thus should be reflected in the results
of our analysis.

Finally, note that Figure 3 shows property cohesion coefficients
for the analysis involving logit stochastic specifications applied to
the main experimental design. Analogous results with alternate

Figure 3. Cohesion coefficients for model properties. Error bars represent the permutation-based 95% confi-
dence bounds at chance level. (a) Risky decision models and (b) intertemporal decision models. See the online
article for the color version of this figure.
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stochastic specifications and experimental designs are provided in
Figures S4 and S5 of the online supplemental materials.

Directed Graphs

Another representation for our model ontology involves directed
graphs (Chartrand, 1977). Unlike the spaces analyzed above,
graphs have the benefit of accommodating asymmetries in model
dissimilarities, which are measures of model hierarchy (if one
model can mimic another, but not vice versa, the second model can
be seen as a restricted version of the first). To obtain such graphs,
we discretized model dissimilarities, so that model F has a con-
nection to model G (i.e., fits the data generated by G), if dGF is
smaller than some threshold value. We visualize these graphs in
Figure 1b for risky models, and Figure 2b for intertemporal mod-
els, using a threshold of dGF � 0.011 (which from an information-
theoretic perspective corresponds to F’s best-fit predictions having
at least 95% overlap with G’s generated choice probabilities (for
an illustration, see Broomell & Bhatia, 2014, as well as our
discussion in the online supplementary materials). Again these
graphs involve only the analysis using the logit stochastic speci-
fication applied to the main experimental design. Analogous
graphs with alternate stochastic specifications and experimental
designs are provided in Figures S6 and S7 of the online supple-
mental materials. Table S2 in the online supplemental materials
summarizes the relationship between the graphs in Figures 1 and 2
and those in Figures S6 and S7.

Figures 1b and 2b allow us to examine the relationships between
pairs of models to test if the behavior of one model can be
described by another. The node size in the graphs is proportional
to the model’s total connectedness to other models (i.e., the sum of
outgoing and incoming connections). These figures reveal a num-
ber of interesting relationships between models. Expected value
and expected utility theories are the most connected models in
risky choice, and exponential discounting is the most connected
model in intertemporal choice. These models are mimicked by a
number of different types of models, including models in other
categories (e.g., exponential discounting is mimicked by some
interval discounting models). Prominent behavioral models like
cumulative prospect theory are also capable of mimicking the
behavior of other types of models, such as the minimax heuristic,
which assumes that people choose gambles that offer the highest
minimum payoffs.

We also observe a number of cliques in our graphs. Cliques are
sets of models that are all mutually connected to each other, and
thus all give similar predictions to each other. The largest such
clique involves expected value maximization and four risk-as-
value models, which all appear to mimic expected value maximi-
zation in our tests. Other cliques involve sets of prospect theory
variants and sets of heuristic models in risky choice, and sets of
hyperbolic models in intertemporal choice (see online supplemen-
tary material Tables S3–S6 for details of model cliques).

Model Generality and Uniqueness

Graphs also allow us to study the overall generality and unique-
ness of models. Specifically, the number of outgoing connections,
or outdegree centrality, of a target model corresponds to the
number of other models that can be mimicked by the target model,

and is thus a measure of the generality of the target model.
Likewise, the number of incoming connections, or indegree cen-
trality, of a target model corresponds to the number of other
models that are capable of mimicking data generated by the target
model, and is thus a measure of the (inverse) uniqueness or
idiosyncrasy of the target model. The degree centralities of the
models in our analysis are provided in Tables S7 and S8 of the
online supplemental materials.

Generality (in the form of outdegree centrality) measures a
model’s ability to predict data generated by other models and
uniqueness (in the form of the inverse of indegree centrality)
measures its ability to generate data that other models cannot
predict. For this reason, generality and uniqueness are two mani-
festations of relative model flexibility. As expected, these two
measures depend on the number of parameters in the model, so that
models with more parameters have higher outdegree centralities
and lower indegree centralities. In risky choice, we observe rank
correlations of 0.74 (p � .001) and �0.22 (p � .08) between the
number of parameters and outdegree and indegree centrality, re-
spectively.

The number of parameters in a model is not the only determi-
nant of its place in the model hierarchy. For example, models with
the highest outdegree centrality in risky choice are three SEUT
models, which include two variants of cumulative prospect theory
(#12 and #17). These models have only four total parameters each
(there are a total of nine risky decision models with more than four
parameters). The high outdegree centrality of these models, despite
their relatively small number of parameters, likely reflects the
central role of this framework in guiding theoretical risky choice
research: Subjective expected utility models are among the earliest
behavioral models of risky choice, and many subsequent models
are variants or special cases of subjective expected utility.

Correspondingly, we find that the models with the highest
indegree centralities are expected value maximization (#1) and
expected utility maximization (#2). Most of these models have two
or more parameters, and again are not the least parameterized
models (there are 16 risky models with only one free parameter).
The high indegree centrality of expected value and expected utility
reflects the fact that they have served as benchmark models in
risky choice research, with many more complex models subsuming
expected value and expected utility as special cases.

In intertemporal models, outdegree centrality depends on the
number of parameters with a rank correlation of 0.60 (p � .001).
The models with the highest outdegree centrality are an interval
discounting model and three hyperbolic discounting models. The
former has a very large number of parameters, and allows for
delays and payoffs to be combined in many different ways. The
latter, like their subjective expected utility counterparts, were some
of the earliest behavioral models of intertemporal choice. Indegree
centrality depends on the number of parameters to a lesser extent,
with a rank correlation of �0.12 (p � .55). The exponential
discounting model (#1), for example, has the highest indegree
centrality but is not among the models with the fewest number of
parameters. Once again, this reflects the fact that exponential
discounting has served as a benchmark model for intertemporal
choice research.

Note that the measures of model flexibility analyzed here are
relative measures that hold between different models. They are
thus somewhat distinct from the (absolute) measure of model
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flexibility in the statistical model comparison framework, which
defines model flexibility in terms of a model’s ability to capture
regions of the data space (see, e.g., Pitt, Myung, & Zhang, 2002).
Of course, as in the standard statistical model comparison frame-
work, high flexibility within our framework is not a desirable
feature of a model. Although it does indicate that a given model
can mimic others, this is likely due to the ability of the model to
predict a broad range of data. Thus models with high relative
flexibility (i.e., high generality and low uniqueness) are also likely
models with high absolute flexibility as defined in the statistical
model comparison framework.

Discussion

Our article has showcased a metatheoretical analysis, which is
capable of quantifying the relationships between different decision
models, and can be used to derive a model ontology in the form of
low-dimensional spaces and directed graphs of decision models.
Our ontology sheds light on the theoretical assumptions of deci-
sion models that have the strongest effects on model predictions,
and which play the largest role in distinguishing models from each
other. Our ontology also identifies prototypical models of choice
behavior. These are models which closely resemble other models,
and which subsequently lie at the centers of our spaces and graphs.
Finally, our ontology allows us to characterize the hierarchical
structure of models, which offers precise measurements of model
generality and uniqueness.

Perhaps the most important contribution of our article is in
synthesizing mathematical and computational research on choice
behavior across academic disciplines over the past 70 years. De-
spite its fundamental role in science and society, we currently do
not have a unified computational theory of human choice behavior.
In fact, the vast interdisciplinary scope and long history of decision
research have resulted in over 80 different models of simple risky
and intertemporal choice alone. By building an ontology of deci-
sion models, we provide a single framework within which different
decision models can be represented. Such a representational frame-
work does not only help researchers better understand the theoret-
ical properties of and relationships between models, but also
allows for the generalization of theoretical and empirical insights
across research programs and academic disciplines. Thus, for
example, brain regions that have been found to encode preferences
corresponding to a particular model can also be assumed to encode
preferences corresponding to the model’s neighbors, which likely
include numerous decision models not studied by neuroscientists.
Likewise, socioeconomic or demographic variables that have been
shown to influence the parameters of a given economic model
likely also influence the parameters of proximate models, which
may have been proposed by psychologists. The converse is true for
affective, cognitive, and clinical variables studied using psycho-
logical models.

By analyzing the relationships between different decision mod-
els and the core features of the space of decision models, our
approach complements more established techniques in decision
research such as axiomatic analysis (Fishburn, 1970; Luce &
Marley, 2005; von Neumann & Morgenstern, 1947). Axiomatic
analysis identifies critical qualitative conditions that give rise to
general functional representations of decision models, and in turn,
differentiate different decision models from each other. In contrast

to this, our approach measures the relationships between different
decision models based on how well they can mimic each other.
Unlike axiomatic analysis, our approach can be applied to nearly
any decision model, including models that do not have easily
discernable axiomatic properties. It is useful to note that the two
approaches do not always yield the same results. For example,
Figure 3 shows that models that have interoption interaction in
risky choice (and thus violate the transitivity axiom) do not nec-
essarily occupy neighboring positions in our model ontology.
Understanding these divergences is a promising topic for future
work.

Our approach is also closely related to the information geomet-
ric approach to functional form analysis in statistics (Amari, 1985).
The information geometric approach sees a model as a geometric
object, with each point in the object representing a distribution of
model predictions. For a binary decision model G, each point in
the geometric object represents the vector of choice probabilities
over the set of decision stimuli given parameters �G, that is,
fG(Q | �G). This approach has been applied to evaluate model
complexity by estimating the volume of the geometric object that
represents the model and can therefore be used for model selection
(Grünwald, 2007; Myung, Balasubramanian, & Pitt, 2000; Pitt et
al., 2002). Instead of estimating the volume of the geometric
objects that represent models’ predictions, our landscaping analy-
sis focuses on the interaction between different models’ predic-
tions that is, the relationship between G’s prediction fG(Q | �G) and
F’s predictions fF(Q | �F).

Of course, our specific results depend on the set of experimental
stimuli we use for the landscaping analysis. We have considered
two different designs for generating stimuli, and for each design,
have generated choice pairs using random draws from probability
distributions over payoffs, probabilities, and time delays. This is a
common approach to generating stimuli in decision modeling as it
ensures a diverse array of stimuli combinations (Erev, Ert, Plon-
sky, Cohen, & Cohen, 2017; Rieskamp, 2008), and thus leads to
high levels of parameter identifiability (Broomell & Bhatia, 2014).
Interestingly we find a high degree of consistency between the
model ontologies generated using our two different experimental
designs. This may, in part, be due to the use of random sampling
in our stimuli generation process, which ensures that our stimuli
vary across each sample in our Monte Carlo tests, thereby giving
our tests a degree of generality not possible using a single fixed set
of stimuli.

Randomly generated stimuli may not offer a good approxima-
tion to the types of choice questions decision makers encounter in
the world (Pleskac & Hertwig, 2014), and, alternate experimental
designs may be preferable. In fact, by quantifying model relation-
ships, our approach allows for a formal analysis of the effect of
design choice on model behavior (see Navarro et al., 2004 and
Wagenmakers et al., 2004 for additional discussions of this issue;
also see Cavagnaro et al., 2016; Cavagnaro, Pitt, Gonzalez, &
Myung, 2013; Myung & Pitt, 2009). Thus, it is possible to use
variants of the landscaping approach to algorithmically uncover
the types of decision problems for which a given model makes
unique predictions.

One example of this application is provided in our online
supplemental materials, where we analyze model ontologies gen-
erated with mixed gambles (see, e.g., Figure S8). Here we find that
models that explicitly distinguish between gains and losses are
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closer to each other, and further away from related models that do
not explicitly distinguish between gains and losses. We are cau-
tious about interpreting differences between these mixed-gamble
ontologies and the (gain gamble) ontologies in the main text, as our
mixed-gamble implementations exclude a number of models, and
make important modifications to the rest. Our results may also
change if we allow all models to have separate parameters for
positive and negative payoffs (as is the case for the probability
weighting functions in prospect theory models). In any case, the
results of these preliminary tests illustrate a new type of applica-
tion for the computational approach presented in this paper, and
future work could extend these tests to more rigorously compare
model spaces generated using gain gambles and mixed gambles.
This work could also examine the effects of other common design
choices, such as the exclusion of easy choices involving dominated
gambles or gambles with large differences in expected value, or
the oversampling of gambles with very small or very large prob-
abilities (see, e.g., Erev, Roth, Slonim, & Barron, 2002; Rieskamp,
2008). A similar type of analysis could also of course be applied
to the intertemporal choice domain.

Finally, our analysis relates to recent research on theory inte-
gration in risky choice. For example, Pachur et al. (2017; see also
Pachur, Schulte-Mecklenbeck, Murphy, & Hertwig, 2018) have
shown that the parameters governing payoff and probability trans-
formations in the cumulative prospect theory (CPT) can be used to
mimic the predictions of decision heuristics, such as the minimax.
This close link between CPT and minimax is also reflected in
Figure 1b, which indicates that our approach is able to replicate
Pachur et al.’s (2017) core results. Figure 1b also displays con-
nections between minmax and many other risky models. In fact,
there are a total of 291 connections between 53 unique models in
this figure. This suggests that theory integration is possible on a
much larger scale than that attempted by Pachur et al. (2017).

To aid this type of theory integration, we have released our set
of computed pairwise model dissimilarities, two-dimensional
model spaces, and directed model graphs, in the online supple-
mental materials. We envision researchers using the model rela-
tionships derived as part of our ontology to extend theoretical and
empirical claims made using individual models, to the diverse
array of models that are currently studied in the behavioral sci-
ences. We also expect future work to build off the ideas outlined
in this paper, so as to advance the representational frameworks for
describing theories of choice behavior. Such an endeavor could
utilize actual empirical data to constrain model parameters, try to
combine our model ontologies for risky and intertemporal choice,
relate our ontology to decision theoretic axioms satisfied by dif-
ferent models, or study the effects of experimental design on the
resulting ontology. Ultimately, an ontology of decision models
offers a powerful theoretical framework for interpreting the nu-
merous psychological, economic, and neurobiological correlates of
choice, and is necessary for a cumulative, transdisciplinary science
of human choice behavior.
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Appendix A

Summary of Risky Decision Models

ID Model Category Authors Year Source (Journal or Book)

1 Expected value maximization SEUT
2 Expected utility maximization SEUT Bernoulli 1738 Papers of the Imperial Academy of

Sciences in Petersburg
3 Subjective expected utility SEUT Savage 1954 The Foundations of Statistics
4 Subjective expected money SEUT Edwards 1955 Journal of Experimental Psychology
5 Certainty equivalence theory SEUT Handa 1977 Journal of Political Economy
6 Odds-based subjective

weighted utility
SEUT Karmarkar 1978 Organizational Behavior and

Human Performance
7 Prospect theory SEUT Kahneman and Tversky 1979 Econometrica
8 Dual theory w/ hyperbolic

weighting
SEUT Yaari 1987 Econometrica

9 Dual theory w/ quadratic
weighting

SEUT Yaari 1987 Econometrica

10 Prospective reference theory SEUT Viscusi 1989 Journal of Risk and Uncertainty
11 Venture theory SEUT Hogarth and Einhorn 1990 Management Science
12 Cumulative prospect theory SEUT Tversky and Kahneman 1992 Journal of Risk and Uncertainty
13 Cumulative prospect theory

w/ Lattimore et al.’s
weighting

SEUT Lattimore et al. 1992 Journal of Economic Behavior and
Organization

14 Decision field theory SEUT Busemeyer and
Townsend

1993 Psychological Review

15 Rank affected multiplicative
weighting

SEUT Birnbaum 1997 Choice, Decision, and
Measurement: Essays in Honor of
R. Duncan Luce

16 Cumulative prospect theory
w/ Prelec’s weighting

SEUT Prelec 1998 Econometrica

17 Cumulative prospect theory
w/ Gonzalez and Wu’s
weighting

SEUT Gonzalez and Wu 1999 Cognitive Psychology

18 Prospect theory w/ Wu et
al.’s editing rule

SEUT Wu et al. 2005 Journal of Risk and Uncertainty

19 Transfer of attention
exchange

SEUT Birnbaum 2008 Psychological Review

20 Dual systems w/ expected
value evaluation

SEUT Mukherjee 2010 Psychological Review

21 Salience theory SEUT Bordalo et al. 2012 Quarterly Journal of Economics
22 Distracted decision field

theory
SEUT Bhatia 2014 Psychonomic Bulletin & Review

23 Dual systems w/ expected
utility evaluation

SEUT Loewenstein et al. 2015 Decision

24 Noisy retrieval SEUT Marchiori et al. 2015 Decision
25 Utility-weighted sampling SEUT Lieder et al. 2018 Psychological Review
26 Portfolio theory w/ variance Risk-as-value Markowitz 1952 Journal of Finance
27 Mean, variance and skewness Risk-as-value Coombs and Pruitt 1960 Journal of Experimental Psychology
28 Alpha target model Risk-as-value Fishburn 1977 American Economic Review
29 Below target model Risk-as-value Fishburn 1977 American Economic Review
30 Portfolio theory w/ standard

deviation
Risk-as-value Fishburn 1977 American Economic Review

31 Below-mean semivariance Risk-as-value Fishburn 1977 American Economic Review
32 Below-target semivariance Risk-as-value Fishburn 1977 American Economic Review
33 Relative risk-value model w/

general power
Risk-as-value Dyer and Jia 1997 European Journal of Operational

Research
34 Relative risk-value model w/

linear plus power
Risk-as-value Dyer and Jia 1997 European Journal of Operational

Research
35 Relative risk-value model w/

logarithmic
Risk-as-value Dyer and Jia 1997 European Journal of Operational

Research
36 Relative risk-value model w/

multiplicative power
Risk-as-value Dyer and Jia 1997 European Journal of Operational

Research
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Appendix A (continued)

ID Model Category Authors Year Source (Journal or Book)

37 Coefficient of variation Risk-as-value Weber 2004 Psychological Review
38 Aspiration-level theory Risk-as-value Diecidue and van de

Ven
2008 International Economic Review

39 Regret theory w/ expected
value evaluation

Counterfactual Bell 1982 Operations Research

40 Regret theory w/ expected
utility evaluation

Counterfactual Loomes and Sugden 1982 Economic Journal

41 Disappointment theory w/o
rescaling

Counterfactual Bell 1985 Operations Research

42 Disappointment theory w/
expected value evaluation

Counterfactual Loomes and Sugden 1986 Review of Economic Studies

43 Disappointment theory w/
expected utility evaluation

Counterfactual Loomes and Sugden 1986 Review of Economic Studies

44 Subjective expected pleasure Counterfactual Mellers et al. 1999 Journal of Experimental
Psychology: General

45 Generalized disappointment
theory w/ expected value
evaluation

Counterfactual Delquié and Cillo 2006 Journal of Risk and Uncertainty

46 Generalized disappointment
theory w/ expected utility
evaluation

Counterfactual Delquié and Cillo 2006 Journal of Risk and Uncertainty

47 Better than average Heuristics Thorgate 1980 Behavioral Science
48 Consequence count Heuristics Thorgate 1980 Behavioral Science
49 Equiprobable Heuristics Thorgate 1980 Behavioral Science
50 Low expected payoff

elimination
Heuristics Thorgate 1980 Behavioral Science

51 Least likely Heuristics Thorgate 1980 Behavioral Science
52 Low-payoff elimination Heuristics Thorgate 1980 Behavioral Science
53 Maximax Heuristics Thorgate 1980 Behavioral Science
54 Minimax Heuristics Thorgate 1980 Behavioral Science
55 Minimax Regret Heuristics Thorgate 1980 Behavioral Science
56 Most likely Heuristics Thorgate 1980 Behavioral Science
57 Most probable winner Heuristics Thorgate 1980 Behavioral Science
58 Relative expected loss

minimization
Heuristics Thorgate 1980 Behavioral Science

59 Similarity Heuristics Rubinstein 1988 Journal of Economic Theory
60 Similarity w/ expected utility

evaluation
Heuristics Leland 1994 Journal of Risk and Uncertainty

61 Priority heuristic Heuristics Brandstatter et al. 2006 Psychological Review
62 Perceived relative argument

model
Heuristics Loomes 2010 Psychological Review

Note. SEUT � subjective expected utility theories.

(Appendices continue)
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Appendix B

Functional Forms of Risky Decision Models

ID Model Function
Stochastic

specificationa

1 Expected value maximization U�X� � �i�1
2 pixi logit, probit or

constant-error
2 Expected utility maximization U�X� � �i�1

2 piu�xi� logit, probit or
constant-error

3 Subjective expected utility U�X� � �i�1
2 wLBW�pi�u�xi� logit, probit, or

constant-error
4 Subjective expected money U�X� � �i�1

2 wK�pi�xi logit, probit, or
constant-error

5 Certainty equivalence theory U�X� � �i�1
2 �pixi logit, probit, or

constant-error
6 Odds-based subjective

weighted utility U�X� � �i�1
2 wK�pi�u�xi�

�j�1
2 wK�pj�

logit, probit, or
constant-error

7 Prospect theory
U�X� � �wTK

� �p1��uPT�x1� � uPT�x2�� � uPT�x2�, if x1 � 0

uPT�x1� � wTK
� �p2��uPT�x2� � uPT�x1��, if x1 � 0

logit, probit, or
constant-error

8 Dual theory w/ hyperbolic
weighting

U�X� � x2 �
p1

2 � p1
�x1 � x2�

logit, probit, or
constant-error

9 Dual theory w/ quadratic
weighting

U�X� � x2 � p1
2�x1 � x2� logit, probit, or

constant-error
10 Prospective reference theory U�X� � �i�1

2 ��1 � ��pi �
�
2 �u�xi�

logit, probit, or
constant-error

11 Venture theory U�X� � �i�1
2 wV�pi�u�xi� logit, probit, or

constant-error

12 Cumulative prospect theory

U�X� � 

wTK
� �p1�uPT�x1� � �1 � wTK

� �p1��uPT�x2�, if 0 � x2 � x1

wTK
� �p1�uPT�x1� � wTK

� �p2�uPT�x2�, if x2 � 0 � x1

�1 � wTK
� �p2��uPT�x1� � wTK

� �p2�uPT�x2�, if x2 � x1 � 0

logit, probit, or
constant-error

13 Cumulative prospect theory
w/ Lattimore et al.’s
weighting

U�X� � 

wLBW
� �p1�uPT�x1� � �1 � wLBW

� �p1��uPT�x2�, if 0 � x2 � x1

wLBW
� �p1�uPT�x1� � wLBW

� �p2�uPT�x2�, if x2 � 0 � x1

�1 � wLBW
� �p2��uPT�x1� � wLBW

� �p2�uPT�x2�, if x2 � x1 � 0

logit, probit, or
constant-error

14 Decision field theory p�X; Y� � 1
1 � exp��
 · d�

, where NA

d �
2��i�1

2 piu�xi� ��j�1
2 qju�yj��

p1p2�u�x1� � u�x2��2 � q1q2�u�y1� � u�y2��2

15 Rank affected multiplicative
weighting U�X� � �i�1

2 i pi
�

�j�1
2 j pj

�
u�xi�

logit, probit, or
constant-error

16 Cumulative prospect theory
w/ Prelec’s weighting U�X� � 


wP
��p1�uPT�x1� � �1 � wP

��p1��uPT�x2�, if 0 � x2 � x1

wP
��p1�uPT�x1� � wP

��p2�uPT�x2�, if x2 � 0 � x1

�1 � wP
��p2��uPT�x1� � wP

��p2�uPT�x2�, if x2 � x1 � 0

logit, probit, or
constant-error

17 Cumulative prospect theory
w/ Gonzalez and Wu’s
weighting

U�X� � 

wGW
� �p1�uPT�x1� � �1 � wGW

� �p1��uPT�x2�, if 0 � x2 � x1

wGW
� �p1�uPT�x1� � wGW

� �p2�uPT�x2�, if x2�0�x1

�1 � wGW
� �p2��uPT�x1� � wGW

� �p2�uPT�x2�, if x2 � x1 � 0

logit, probit, or
constant-error

18 Prospect theory w/ Wu et
al.’s editing rule U�X� � �wTK

� �p1�uPT�x1 � x2� � uPT�x2�, if 0 � x1

uPT�x1� � wTK
� �p2�uPT�x2 � x1�, if x1 � 0

logit, probit, or
constant-error

19 Transfer of attention
exchangeb U�X� �

�p1
� � �

3p2
��u�x1� � �p2

� � �
3p1

��u�x2�
p1
� � p2

�

logit, probit, or
constant-error

20 Dual systems w/ expected
value evaluation U�X� � �1 � ���i�1

2 pixi � �
�i�1

2 u�xi�
2

logit, probit, or
constant-error

(Appendices continue)
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Appendix B (continued)

ID Model Function
Stochastic

specificationa

21 Salience theory
U�X� � �i�1

2 �j�1
2 �rijpiqj

�k�1
2 �l�1

2 �rklpkql
u�xi�, where rij corresponds to the rank order of the

four pairwise salience values sij �
|xi � yj|

xi � yj � � � � · I�xi � yj � 0�
.

logit, probit, or
constant-error

22 Distracted decision field
theory

p�X; Y� � 1
1 � exp��
 · d�

, where

d � 2	�i�1
2 		�1 � ��pi �

�
2 


� u�xi�
 � �j�1
2 		�1 � ��qj �

�
2 
u�yj�

 � 		�

i�1

2 	�1 � ��pi �
�
2 



� �u�x1� � u�x2��2 � �
j�1

2 	�1 � ��qj �
�
2 
�u�y1� � u�y2��2


NA

23 Dual systems w/ expected
utility evaluation

U�X� � �i�1
2 piu�xi� � ��i�1

2 �� � �1 � ��pi�u�xi� logit, probit, or
constant-error

24 Noisy retrieval U�X� � �i�1
2 ��1 � ��pi �

�
2 �u�xi�

logit, probit, or
constant-error

25 Utility-weighted samplingc

p�X; Y� � �1 � ���Pr�k � �
2; r, �� � 1

2Pr�k � �
2; r, ��� � �

2 , where

r � �i�1
2 �j�1

2 I�uR�xi� � uR�yj�� |uR�xi� � uR�yj�| piqj
�i�1

2 �j�1
2 |uR�xi� � uR�yj�| piqj

is the probability

of sampling X from {X, Y} and Pr�·� is the binomial probability mass function of
sampling X for k times out of the total � times, the latter of which is a free parameter for
the model.

NA

26 Portfolio theory w/ variance U�X� � �i�1
2 pixi � � p1p2 �x1 � x2�2 logit, probit, or

constant-error

27 Mean, variance and skewness
U�X� � �i�1

2 pixi � � p1p2 �x1 � x2�2 � �
p2 � p1

�p1p2

logit, probit, or
constant-error

28 Alpha target modeld U�X� � �i�1
2 pixi � ��i�1

2 I�xi � 100�� pi�100� � xi�� logit, probit, or
constant-error

29 Below target model U�X� � �i�1
2 pixi � ��i�1

2 I�xi � 100�� pi�100� � xi� logit, probit, or
constant-error

30 Portfolio theory w/ standard
deviation

U�X� � �i�1
2 pixi � � �p1p2 �x1 � x2� logit, probit, or

constant-error

31 Below-mean semivariance U�X� � �i�1
2 pixi � � p2��i�1

2 pixi � x2�2 logit, probit, or
constant-error

32 Below-target semivariance U�X� � �i�1
2 pixi � ��i�1

2 I�xi � 100��pi�100� � xi�2 logit, probit, or
constant-error

33 Relative risk-value model w/
general power U�X� � ��i�1

2 pixi�� � ���i�1
2 pixi�1��	�j�1

2 pj	 xj

�i�1
2 pixi


	 � 1
 logit, probit, or
constant-error

34 Relative risk-value model w/
linear plus power U�X� � �i�1

2 pixi � ���i�1
2 pixi�1��	�j�1

2 pj	 xj

�i�1
2 pixi


1��

� �
 logit, probit, or
constant-error

35 Relative risk-value model w/
logarithmic U�X� � 1

�
log�1 � ��i�1

2 pixi� �
�
��j�1

2 pjlog	1 � �
xj

�i�1
2 pixi


 logit, probit, or
constant-error

36 Relative risk-value model w/
multiplicative power U�X� � ��i�1

2 pixi���j�1
2 pj	 xj

�i�1
2 pixi


	 logit, probit, or
constant-error

37 Coefficient of variation
U�X� � �i�1

2 pixi � �
�p1p2 �x1�x2�
100 �i�1

2 pixi

logit, probit, or
constant-error

38 Aspiration-level theory U�X� � �i�1
2 piu�xi� � ��i�1

2 pi I�xi � k� � ��i�1
2 pi I�xi � k�, where k � min�x2, y2� �

��max�x1, y1� � min�x2, y2�� is the aspiration level.
logit, probit, or

constant-error
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Appendix B (continued)

ID Model Function
Stochastic

specificationa

39 Regret theory w/ expected
value evaluation

U�X� � �i�1
2 pixi � �i�1

2 �j�1
2 piqjR�xi � yj� logit, probit, or

constant-error

40 Regret theory w/ expected
utility evaluation

U�X� � �i�1
2 piu�xi� � �i�1

2 �j�1
2 piqjR�u�xi� � u�yj�� logit or probit

41 Disappointment theory w/o
rescaling

U�X� � �i�1
2 pixi � � p1p2�x1 � x2� logit, probit, or

constant-error

42 Disappointment theory w/
expected value evaluation

U�X� � �i�1
2 pixi � ��j�1

2 pi sign�xj � �i�1
2 pixi� | xj � �i�1

2 pixi |� logit, probit, or
constant-error

43 Disappointment theory w/
expected utility evaluation

U�X� � �i�1
2 piu�xi� � ��j�1

2 pj sign�u�xj� � �i�1
2 piu�xi�� | u�xj� � �i�1

2 piu�xi� |� logit, probit, or
constant-error

44 Subjective expected pleasure U�X� � �i�1
2 pixi � p1p2���x1 � x2�� � ��x1 � x2��� � �i�1

2 �j�1
2 piqjR�u�xi� � u�yj�� logit, probit, or

constant-error

45 Generalized disappointment
theory w/ expected value
evaluation

U�X� � �i�1
2 pixi � p1p2���x1 � x2�� � ��x1 � x2��� logit, probit, or

constant-error

46 Generalized disappointment
theory w/ expected utility
evaluation

U�X� � �i�1
2 piu�xi� � p1p2���u�x1� � u�x2��� � ��u�x1� � u�x2���� logit, probit, or

constant-error

47 Better than average A�X� � �i�1
2 I�xi � 1

4�x1 � x2 � y1 � y2�� constant-error

48 Consequence count A�X� � �i�1
2 sign�xi � yi� constant-error

49 Equiprobable A�X� � 1
2�i�1

2 xi
constant-error

50 Low expected payoff
elimination

A�X� � 2 sign�p1x1 � q1y1� � sign�p2x2 � q2y2� constant-error

51 Least likely A�X� � p1 constant-error

52 Low-payoff elimination A�X� � 2 sign�x1 � y1� � sign�x2 � y2� constant-error

53 Maximax A�X� � sign�x1 � y1� constant-error

54 Minimax A�X� � sign�x2 � y2� constant-error

55 Minimax regret A�X� � min�x1 � y1, x2 � y2� constant-error

56 Most likely A�X� � �i�1
2 �1

2 � 1
2 sign�pi � 1

2��xi constant-error

57 Most probable winner A�X� � �i�1
2 �j�1

2 piqjI�xi � yj� constant-error

58 Relative expected loss
minimization p�X; Y� � 1

2 � �
2�A�X� � A�Y��
A�X� � A�Y�

, where A�X� � �i�1
2 �j�1

2 piqjmin�xi � yj, 0� NA

59 Similarity
A�X� � sign�x1 � y1� I	min�x1, y1�

max�x1, y1�
� �
 � sign�p1 � q1�

I	min�p1, q1�
max�p1, q1�

� �

constant-error

(Appendices continue)
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Appendix B (continued)

ID Model Function
Stochastic

specificationa

60 Similarity w/ expected utility
evaluation

A�X� � �I��i�1
2 piu�xi� � �j�1

2 qju�yj� � ��
� I��j�1

2 qju�yj� � �i�1
2 piu�xi� � ��� � 4

� sign�sign�x2 � y2� � I�x2 � y2�sign�q2 � p2�
� I�x1 � y1�I�p1 � q1� � I�x1 � y1�I�p1 � q1�� � 2

� sign�I�x2 � y2 � �� � I�y2 � x2 � ��
� I��x2 � y2� � �� sign�q2 � p2� I��q2 � p2� �

ä
2�

� I�x1 � y1 � � â� I�p1 � q1 � � ä
2�

� I�x1 � y1 � â� I�p1 � q1 �
ä
2�)

61 Priority heuristic
A�X� � sign�x2 � y2� I	�x2 � y2� �

max�x1, y1�
10


 � 4 � sign�p1 � q1� I��p1 � q1� �
0.1� � 2 � sign�x1 � y1�

constant-error

62 Perceived relative argument
model U�X� � I�x1 � y1�	x1

y1

� � I�y1 � x1�	p1

q1

�p1�q1�� logit, probit, or

constant-error

Note. The notations are designed for choices between X � ($x1, p1; $x2, p2) and Y � ($y1, q1; $y2, q2), where x1 	 x2, y1 	 y2, p1 
 p2 � 1 and q1 

q2 � 1. U(X) denotes the utility or choice propensity of X and U(Y) denotes the utility or choice propensity of Y. If not given, U(Y) can be obtained by
replacing xi and pi with yi and qi, respectively in U(X). When U(X) involves interactions with yi or qi, the corresponding U(Y) replaces yi and qi in U(X)
with xi and pi, respectively. For heuristic models, A(X) denotes the argument for Option X and A(Y) denotes the argument for Option Y. If not given, A(Y),
can be obtained by replacing xi and pi with yi and qi, respectively. When A(X) involves interactions with yi or qi, the corresponding A(Y) should replace
yi and qi with xi and pi, respectively. Free parameters are denoted by Greek letters, with corresponding domains and prior distributions shown in Appendix
E. In order to ensure that the KL divergence between two series of model predictions is tractable, choice probabilities p[X; Y] for all models are bounded
within the interval [0.001, 0.999]. The following additional functions are used in Supplementary Table 4.

• sign(·) is a sign function that returns 1 if the argument is positive, �1 if negative and 0 if zero.
• I(·) is an indicator function that returns 1 if the argument is true, 0 otherwise.

• Power value function: u�x� � sign�x� · | x |�
• Prospect theory value function: uPT�x� � sign�x� · �I�x�0� · |x |�

• Relative value function for the utility-weighted sampling model: uR�x� � x
max�x1, y1� � min�x2, y2�

• Tversky and Kahneman’s (1992) probability weighting function: wTK
� �p� �

p�

�p� � �1 � p���1⁄� and wTK
� �p� �

p	

�p	 � �1 � p�	�1⁄	

• Karmarkar’s (1978) probability weighting function: wK�p� �
p�

p� � �1 � p��

• Lattimore et al.’s (1992) probability weighting function: wLBW
� �p� �

�p�

�p� � �1 � p��
and wLBW

� �p� �
�p	

�p	 � �1 � p�	

• Gonzalez and Wu’s (1999) probability weighting function: wGW
� �p� �

�p�

�p� � �1 � p��
and wGW

� �p� �
�p	

�p	 � �1 � p�	

• Prelec’s (1998) probability weighting function: wP
��p� � exp�����ln�p�� �� and wP

��p� � exp�����ln�p�	��
• Venture theory’s payoff-dependent probability weighting function (Hogarth and Einhorn, 1990): wV�p, x� � exp�� b�� ln�p�t ��, with t �


1 � � · | x
max�x�,y�� | if x � 0

1 � 	 · | x
min�x�,y�� | if x � 0

and b � 
1 � � · | x
max�x�, y�� | if x � 0

1 � � · | x
min�x�, y�� | if x � 0

. max�x�, y�� is the largest payoff in the design and min�x�, y�� is the

smallest payoff in the design.

• Regret (or rejoice) function: R�d� � I�d � 0�� · |d |� � �d � 0�� · |d |�
a NA is the abbreviation of “not applicable,” meaning that the model itself involves a stochastic specification. b This is a “special” TAX model assuming
that all weight transfers are the same fixed proportion of the branch giving up weight (Birnbaum, 2008; p. 470, Eq. 8a). c This is a simplification of the
original (simulation based) utility-weighted sampling theory. d 100 � (with 0 � � � 1) represents the target value in this model and other target-related
models.
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Appendix C

Summary of Intertemporal Decision Models

ID Model Category Authors Year Source (Journal or Book)

1 Exponential Delay discounting Samuelson 1937 Review of Economic Studies
2 Hyperbolic Delay discounting Mazur 1987 The Effect of Delay and Intervening Events on

Reinforcement Value
3 Hyperbolic w/ power time (Mazur) Delay discounting Mazur 1987 The Effect of Delay and Intervening Events on

Reinforcement Value
4 Generalized hyperbolic Delay discounting Loewenstein and

Prelec
1992 Quarterly Journal of Economics

5 Exponential time Delay discounting Roelofsma 1996 Acta Psychologica
6 Quasihyperbolic Delay discounting Laibson 1997 Quarterly Journal of Economics
7 Hyperbolic w/ power denominator Delay discounting Green and Myerson 2004 Psychological Bulletin
8 Hyperbolic w/ power time

(Rachlin)
Delay discounting Rachlin 2006 Journal of the Experimental Analysis of

Behavior
9 Constant sensitivity Delay discounting Ebert and Prelec 2007 Management Science

10 Double exponential Delay discounting McClure et al. 2007 Journal of Neuroscience
11 Fixed cost Delay discounting Benhabib et al. 2010 Games and Economic Behavior
12 Generalized hyperbolic w/

increasing elasticity
Delay discounting Scholten et al. 2014 Cognitive Science

13 Dual systems Delay discounting Loewenstein et al. 2015 Decision
14 Interval Interval

discounting
Read 2001 Journal of Risk and Uncertainty

15 Common aspect attenuation Interval
discounting

Green et al. 2005 Journal of Experimental Psychology:
Learning, Memory & Cognition

16 Generalized interval Interval
discounting

Scholten and Read 2006 Management Science

17 As-soon-as-possible Interval
discounting

Kable and
Glimcher

2010 Journal of Neurophysiology

18 Generalized interval w/ increasing
elasticity

Interval
discounting

Scholten et al. 2014 Cognitive Science

19 Similarity w/ difference Time-as-attribute Leland 2002 Economic Inquiry
20 Similarity w/ ratio Time-as-attribute Leland 2002 Economic Inquiry
21 Additive utility Time-as-attribute Killeen 2009 Psychological Review
22 Tradeoff model Time-as-attribute Scholten and Read 2010 Psychological Review
23 DRIFT Time-as-attribute Read et al. 2013 Journal of Experimental Psychology:

Learning, Memory & Cognition
24 Attribute-based model w/ power

transformations
Time-as-attribute Dai and Busemeyer 2014 Journal of Experimental Psychology: General

25 Generalized tradeoff model Time-as-attribute Scholten et al. 2014 Cognitive Science
26 Intertemporal choice heuristics Time-as-attribute Ericson et al. 2015 Psychological Science
27 Proportional difference Time-as-attribute Cheng and

González-Vallejo
2016 Decision

(Appendices continue)
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Appendix D

Functional Forms of Intertemporal Decision Models

ID Model Function
Stochastic

specification

1 Exponential U�X� � �tu�x� logit, probit, or
constant-error

2 Hyperbolic
U�X� �

u�x�
1 � �t

logit, probit, or
constant-error

3 Hyperbolic w/ power time (Mazur)
U�X� �

u�x�
1 � �t�

logit, probit, or
constant-error

4 Generalized hyperbolic
U�X� �

u�x�
�1 � �t�� ⁄�

logit, probit, or
constant-error

5 Exponential timea
U�X� � e��· 1

�
log�1��t�u�x� logit, probit, or

constant-error

6 Quasi-hyperbolic
U�X� � ��tu�x� � u�x�, when t � 0

��tu�x�, when t � 0

logit, probit, or
constant-error

7 Hyperbolic w/ power denominator
U�X� �

u�x�
�1 � �t��

logit, probit, or
constant-error

8 Hyperbolic w/ power time
(Rachlin) U�X� �

u�x�
1 � �t�

logit, probit, or
constant-error

9 Constant sensitivity U�X� � e���t��u�x� logit, probit, or
constant-error

10 Double exponential U�X� � � �t � �1 �  ��t�u�x� logit, probit, or
constant-error

11 Fixed cost
U�X� � ��tu�x� � u�x�, when t � 0

�tu�x � �x�, when t � 0

logit, probit, or
constant-error

12 Generalized hyperbolic w/
increasing elasticity U�X� �

uSRS�x�
�1 � �t�� ⁄�

logit, probit, or
constant-error

13 Dual systems U�X� � � �t � �1 �  ��t�u�x� logit, probit, or
constant-error

14 Interval U�X� � u�x��t
�

U�Y� � u�y��t
���s�t��

logit, probit, or
constant-error

15 Common aspect attenuation
U�X� �

u�x�
1 � ��t

U�Y� �
u�y�

1 � ���t � �s � t��

logit, probit, or
constant-error

16 Generalized interval
U�X� �

u�x�
�1 � �t���� ⁄�

U�Y� �
u�y�

��1 � �t����1 � ��s� � t������ ⁄�

logit, probit, or
constant-error

17 As-soon-as-possible
U�X� �

u�x�
1 � �t

U�Y� �
u�y�

�1 � �t� · �1 � ��s � t��

logit, probit, or
constant-error
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Appendix D (continued)

ID Model Function
Stochastic

specification

18 Generalized interval w/ increasing
elasticity U�X� �

uSRS�x�
�1 � �t���� ⁄�

U�Y� �
uSRS�y�

��1 � �t����1 � ��s� � t������ ⁄�

logit, probit, or
constant-error

19 Similarity w/ difference A�X� � I�s � t � ��
A�Y� � I�y � x � ��

constant-error

20 Similarity w/ ratio A�X� � I� ts � ��
A�Y� � I�xy � ��

constant-error

21 Additive utility U�X� � x� � �t�

U�Y� � y� � �s�
logit, probit, or

constant-error

22 Tradeoff model U�X� � �
�

�log�1 � �s� � log�1 � �t��

U�Y� � 1
�

�log�1 � �y� � log�1 � �x��

logit, probit, or
constant-error

23 DRIFT U�X� � ��s � t�

U�Y� � �		yx

1

s�t
� 1
 � �1 � ���

y�x
x � �1 � ���1 � ���y � x�

logit, probit, or
constant-error

24 Attribute-based model w/ power
transformations

U�X� � ��s� � t��
U�Y� � y� � x�

logit, probit, or
constant-error

25 Generalized tradeoff model
U�X� � �

�
log	1 � �	 1

�
�log�1 � �s� � log�1 � �t��

�

�


U�Y� � 1
�

�log�1 � �y� � log�1 � �x��

logit, probit, or
constant-error

26 Intertemporal choice heuristics
U�X� � ����s � t� � �1 � ��

2�s � t�
s � t �

U�Y� � ��y � x� � �1 � ��
2�y � x�
y � x

logit, probit, or
constant-error

27 Proportional difference U�X� � s�t
s � !

U�Y� �
y � x
y

logit, probit, or
constant-error

Note. The notations are designed for choices between X � ($x, t) and Y � ($y, s), where y 	 x 	 0, s 	 t� 0. U(X) denotes the utility or choice propensity
of X and U(Y) denotes the utility or choice propensity of Y. For delay discounting models, U(Y) is not presented but can be obtained by replacing x and
t in U(X) with y and s. For time-as-attribute models that represent options’ advantages on an ordinal scale, A(X) denotes the argument for Option X and
A(Y) denotes the argument for Option Y. Free parameters are denoted by Greek letters, with corresponding domains and prior distributions shown in
Appendix E. In order to ensure that the KL divergence between two series of model predictions is tractable, choice probabilities p[X; Y] for all models are
bounded within the interval [0.001, 0.999]. The following additional functions are used in Supplementary Table 4.

• I(·) is an indicator function that returns 1 if the argument is true, and 0 otherwise.
• Power value function: u(x) � x�.
• Increasingly elastic value function as in Scholten, Read, and Sanborn (2014): uSRS�x� � �1 �  �x1� � � x .

a The original exponential time discounting model uses log(t) to transform delay t. Since this function cannot adequately accommodate t � 0, we have

replaced it with · 1
�

log�1 � �t� in line with the specification of Scholten et al. (2014). This revision has made this model mathematically equivalent to

Loewenstein and Prelec’s (1992) generalized hyperbolic discounting model because e�� · 1
�

log�1��t� � 1
�1 � �t�� ⁄�.
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Appendix E

Parameter Bounds and Prior Distributions for Both Risky and Intertemporal Decision Models

Parameter Domain Prior distribution


, �, ε, �, �, �, �, �, �, (� � 1) [0, 
�) Exponential (rate � 1)
�, �, �, �, � [0, 1] U(0, 1)
� [0.5, 1] U(0.5, 1)
� [�2, 2] U(�2, 2)
�, � (��, 
�) N(0, 1)
(� � 1) Integer [0, 49] Binomial (49, 0.5)

Note. (� � 1) has the domain of [0, 
�), meaning that the domain of � is [1, 
�). Similarly, (� � 1) has the domain of
[0, 49] (integer), meaning that the domain of � is [0, 49] (integer).
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