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Information stored in memory influences the formation of preferences and beliefs in most everyday
decision tasks. The richness of this information, and the complexity inherent in interacting memory and
decision processes, makes the quantitative model-driven analysis of such decisions very difficult. In this
article we present a general framework that can address the theoretical and methodological barriers to
building formal models of naturalistic memory-based decision making. Our framework implements
established theories of memory search and decision making within a single integrated cognitive system,
and uses computational language models to quantify the thoughts over which memory and decision
processes operate. It can thus describe both the content of the information that is sampled from memory,
as well as the processes involved in retrieving and evaluating this information in order to make a decision.
Furthermore, our framework is tractable, and the parameters that characterize memory-based decisions
can be recovered using thought listing and choice data from existing experimental tasks, and in turn be
used to make quantitative predictions regarding choice probability, length of deliberation, retrieved
thoughts, and the effects of decision context. We showcase the power and generality of our framework by
applying it to naturalistic binary choices from domains such as risk perception, consumer behavior,
financial decision making, ethical decision making, legal decision making, food choice, and social

judgment.
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Memory is widely considered to be one of the fundamental
psychological processes at play in decision making, and a large
body of work has attempted to characterize the ways in which
memory and decision processes interact with each other to influence
behavior (Alba et al., 1991; Dougherty et al., 1999; Goldstein &
Gigerenzer, 2002; Johnson et al., 2007; Marewski & Mehlhorn,
2011; Schooler & Hertwig, 2005; Shadlen & Shohamy, 2016;
Tversky & Kahneman, 1973). This work spans numerous disci-
plines, and forms one of the main avenues through which research
on human cognition guides practical applications in the social and
behavioral sciences. Of course, the study of memory-based decision
making is not only important for its practical applications. Memory
and decision making form two of the major areas of research on the
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human mind (see recent reviews in Busemeyer et al., 2019 and
Kahana, 2020), and integrating models from these two areas within a
tractable framework is one of the major theoretical challenges in
cognitive psychology today.

Addressing this challenge has been difficult. Both memory and
decision making are highly complex. Each involves dynamic and
stochastic processes that operate over the contents of the mind.
Combining these processes within a single model whose parameters
can be fit to experimental data and be used to make quantitative
predictions is nontrivial. Moreover, naturalistic memory-based de-
cisions involve the retrieval and evaluation of complex thoughts that
reflect learnt knowledge, past experience, emotion, and intuition, as
well as sophisticated reasons. In order to model naturalistic memory
and decision processes researchers need to first observe and quantify
the informational content of these thoughts. This too poses signifi-
cant challenges.

Consider, for example, the decision prompt “is nuclear power
safe?.” In order to respond, decision makers must retrieve, from
memory, information supporting each of the two response options
(“yes” or “no”), typically in the form of natural language thoughts
(e.g., “itis difficult to dispose of nuclear waste,” “nuclear power is a
substitute for harmful energy sources like fossil fuels,” and “dis-
asters like Chernobyl are always possible”). Decision processes
must evaluate and aggregate these thoughts in order to make a
decision. Of course, the retrieval of one thought may cue the
retrieval of another, and thus memory involves nuanced dynamics
that guide and constrain the eventual decision. The goal of the
theorist is to model this complex process, but it is not currently clear
how this can be done. How can we observe and quantify the content
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of people’s thoughts, formalize the mechanisms that people use to
retrieve, evaluate, and aggregate these thoughts, and predict
response probabilities, deliberation length, thought content, and
other decision variables?

Fortunately, there have been numerous advances in psychology that
can help us solve this problem. One such advance is query theory,
which proposes that thought retrieval is sequential and susceptible to
feedback effects (Johnson et al., 2007; Weber et al., 2007). Query
theory also offers a powerful experimental paradigm for jointly
eliciting memory data (in the form of retrieved thoughts) and decision
data, in naturalistic decision settings. In this article, we use the
conceptual structure and empirical paradigm offered by query theory
as the basis for a quantitative framework for modeling memory-
based decisions, such as those discussed in the preceding paragraph.

Another insight is provided by memory models like search of
associative memory (SAM; Raaijmakers & Shiffrin, 1981), context
maintenance and retrieval (CMR; Polyn et al., 2009), and more
general cognitive architectures like adaptive control of thought-
rational (ACT-R; Anderson et al., 2004; for ACT-R models of deci-
sion making, see also Dimov et al., 2020; Fechner et al., 2018;
Gonzalez et al.,, 2003; Marewski & Mehlhorn, 2011). These
theories propose that the items retrieved from memory are used to
update a dynamic context representation (or alternatively a short-term
memory store, declarative memory or imaginal buffer, or working
memory representation), which guides subsequent retrieval and inter-
acts with other processes in the cognitive system. We assume that this
type of context also encodes all decision-relevant information, which
allows us to tractably represent the interactions between memory and
decision making processes and predict the eventual decision.

A third key insight for our framework involves the use of sentence
vectors, obtained from recent deep-learning-based language models
trained on large-scale language data (Cer et al., 2018; Devlin et al.,
2018). Sentence vectors provide a powerful contemporary extension
to word-based semantic models (see reviews in Bhatia et al., 2019;
Lenci, 2018; Mandera et al., 2017) by accommodating nuances in
meaning in natural language sentences. We illustrate the value of these
vectors by using them to quantify and cluster semantically related
thoughts, and subsequently model sequences of retrieved thoughts.

By combining the above insights, we are able to build a tractable
computational framework for studying naturalistic memory-based
decisions. Our framework integrates numerous existing models of
memory and decision making, and can be used to quantitatively
predict how people think and decide, as well as how various
contextual factors alter these thoughts and decisions. We illustrate
the power, generality, and tractability of our approach, by using it to
fit 576 distinct memory and decision models to data from multiple
experiments involving eight different psychological domains. Our
fits reveal the precise set of memory and decision mechanisms at
play in our experiments, and we illustrate the importance of these
mechanisms with a wide range of qualitative and quantitative tests.
In doing so we provide a useful computational approach for formally
specifying and testing the psychological substrates of everyday
judgment and decision making.

Theoretical Background

Judgment and decision making involve the subjective evaluation
and integration of information to generate a discrete (e.g., choice) or

continuous (e.g., rating) response. Models in this field try to char-
acterize mental processes at play in the evaluation and integration of
information (Busemeyer et al., 2019; Oppenheimer & Kelso, 2015).
Heuristic models, for example, are algorithmic rules which simplify
the evaluation and integration process (relative to rational models
that use all available information;' Gigerenzer & Gaissmaier, 2011;
Payne et al., 1988; Simon, 1956); sequential sampling models are
stochastic processes that aggregate information over time, typically
until a decision threshold is reached (e.g., Bhatia, 2013; Busemeyer &
Townsend, 1993; Lee & Cummins, 2004; Roe et al., 2001; Turner
et al., 2018; Usher & McClelland, 2004); and connectionist models
are dynamical systems that describe decision making as the outcome
of spreading activation processes in units of interconnected neurons
(Glockner & Betsch, 2008; Holyoak & Simon, 1999; Suri et al.,
2020). Many of these models also make predictions about the specific
information that is sampled and used in the decision, which can be
tested using eye-tracking, mouse-tracking, or thought listing “pro-
cess-level” data (Schulte-Mecklenbeck et al., 2011).

There is also a rich body of research in psychology that formally
models the complexities inherent in memory search (see Kahana,
2020 for arecent review). For example, models of free recall, such as
the SAM and the CMR models specify the processes at play in the
retrieval of previously presented information, and can describe
whether or not certain items are retrieved from memory, as well
as the order in which they are retrieved and how previously retrieved
items cue subsequent recall (Atkinson & Shiffrin, 1968; Hintzman,
1984; Murdock, 1982; Polyn et al., 2009; Raaijmakers & Shiffrin,
1981). Related research on semantic memory search describes
retrieval dynamics when information is not presented explicitly
prior to recall (but rather is stored in memory after years of past
experience; Abbott et al., 2015; Hills et al., 2012). Most of the
above memory models characterize representations for items in
memory using semantic spaces built on word co-occurrence statis-
tics in large-scale language data (Jones & Mewhort, 2007; Landauer &
Dumais, 1997). Such spaces specify words and concepts as high-
dimensional vectors, and quantify the semantic relatedness or associa-
tion between pairs of words or concepts using distances between words
in the semantic space (see Bhatia et al., 2019; Jones et al., 2015; Lenci,
2018; Mandera et al., 2017 for reviews).

Our goal in this article is to build a framework that can combine
models of memory search (which specify the dynamics of informa-
tion retrieval) with models of decision making (which specify the
dynamics of information integration) in order to quantitatively
model the cognitive processes and information content involved
in memory-based decision making. Although there have been many
insightful models of memory and decision making proposed previ-
ously (Bhatia, 2013; Dougherty etal., 1999; Goldstein &
Gigerenzer, 2002; Hertwig et al., 2008; Juslin & Persson, 2002;
Stewart et al., 2006; Thomas et al., 2008; von Helversen &
Rieskamp, 2008), most of these do not specify the nuances of
the retrieval dynamics involved in this process (as pure memory
models do for free recall and memory search), and do not attempt to
explain how retrieved information is dynamically aggregated by
decision makers to determine choice (as pure decision models do in
preferential choice). In addition, these models are typically applied
to abstract decision tasks, and are unable to specify the content of the

! Although of course using all available information might not be adaptive
or resource rational (Lieder & Griffiths, 2020; Payne et al., 1988).
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information that is retrieved from memory in more naturalistic
decisions.

One exception involves models within the ACT-R framework
(Anderson, 2007; Anderson et al., 2004). ACT-R provides a pow-
erful approach to (a) modeling retrieval processes that operate on
declarative memory, and (b) specifying their interactions with
control processes that determine subsequent actions. Such actions
include memory probes to obtain further information, logical rules
for reasoning, and motor actions to indicate responses. In the domain
of decision making, ACT-R based models have been used to
implement a variety of decision strategies and evaluative processes
that aggregate information in different ways, addressing different
paradigms and settings that require high-level judgment and deci-
sion making (Dimov et al., 2020; Fechner et al., 2016; Link et al.,
2016; Link & Marewski, 2015; Marewski & Mehlhorn, 2011;
Marewski & Schooler, 2011; Schooler & Hertwig, 2005). At the
core of these models is the use of intermediary cognitive buffers
(either the retrieval buffer for the declarative memory module or the
imaginal module) to represent dynamically evolving task-relevant
information. Information that is retrieved from declarative memory
is placed into these buffers, and various production rules operate on
the content of these buffers to guide deliberation. With this approach
it is possible to describe multiattribute decision heuristics like take-
the-best, (Dimov et al., 2020; Marewski & Mehlhorn, 2011) and
also specify their relationship with the decision environment and
other task-relevant variables (Marewski & Schooler, 2011;
Schooler & Hertwig, 2005). This work is also important in its
use of ecological data (e.g., natural language statistics) to model
the accessibility of items in memory—this allows for the appli-
cation of the models to certain types of naturalistic decision
problems involving real-world concepts (Marewski & Schooler,
2011; Link et al., 2016; Link & Marewski, 2015; also see
Anderson & Schooler, 1991 and Goldstein & Gigerenzer, 2002).

Another important theoretical framework relevant to this article is
query theory (Hardisty et al., 2010; Johnson et al., 2007; Weber
et al., 2007). Query theory attempts to describe the role of memory
search in naturalistic judgment and decision tasks. It proposes that
responses in these tasks are generated by sequentially querying
memory for knowledge, experience, emotions, or reasons relevant to
the decision. These queries yield a sequence of thoughts, which
determine the decision maker’s final response. Crucially, thoughts
that are retrieved earlier on influence the retrieval of subsequent
thoughts, and contextual cues (such as primes, emotions, or en-
dowments) can bias the decision by altering the thoughts that are the
first to be retrieved. The thoughts that lead up to a decision can be
observed through query theory’s experimental paradigm, which asks
decision makers to list the thoughts that come to their mind as they
deliberate, and to stop listing thoughts as soon as they have made a
decision. For example, Johnson et al. (2007) showed that, in a standard
endowment effect paradigm, sellers (as opposed to buyers) tended to
(a) list more thoughts supporting high valuation of their endowment,
and (b) list such thoughts earlier in the sequence, and (c) these
tendencies predicted higher valuations of the endowment. Similar
studies have been conducted to explain asymmetric discounting in
intertemporal choice (Weber et al., 2007), and the effects of attribute
framing on consumer choice (Hardisty et al., 2010).

This list of retrieved thoughts in the query theory paradigm is
analogous to the list of words or concepts retrieved in standard free
recall and memory search tasks.” Thus, in this article, we use

memory models of recall dynamics to describe the cognitive
processes at play in thought retrieval. We likewise apply extensions
of semantic space models that are commonly used to describe
memory search, to quantify the content of the thoughts over which
memory processes operate. We combine these memory mechanisms
with established decision models, that describe the cognitive pro-
cesses involved in integrating information provided by retrieved
thoughts into a response. We do this using a dynamically evolving
context representation of the type used in the CMR and SAM
memory models (Polyn et al., 2009; Raaijmakers & Shiffrin,
1981). As with ACT-R models of decision making (Dimov
et al., 2020; Marewski & Mehlhorn, 2011) we assume that context
holds both memory and decision-relevant information—retrieved
thoughts enter context, and influence both the retrieval of subse-
quent thoughts and the formation of decision variables used in
evaluation and response generation.

An important assumption of ours is that memory and decision
making not only interact through context, but that they interact only
through context. This allows us to model memory and decision
processes as being conditionally independent on context, and
specify these processes using distinct modeling components that
can be separately fit to data. We demonstrate the value of this
assumption, and the resulting tractability of our framework, by
fitting 576 distinct memory-based decision models to thought listing
and decision data obtained from the query theory experimental
paradigm. Our switchboard analysis (Turner et al., 2018) sheds light
on the best combination of memory and decision mechanisms for
characterizing naturalistic memory-based decisions.

Overview of Framework
Decision Task

We examine decision prompts involving eight different natural-
istic decision domains: risk perception, consumer behavior, finan-
cial decision making, ethical decision making, legal decision
making, food choice, decisions about well-being, and decisions
about society and culture. We deliberately selected questions that
were not likely to elicit homogeneous responses across participants
and questions for which individuals would not display a strong
prepotent bias (as with ideologically and politically charged ques-
tions), both of which would drastically reduce the role of online
memory search and decision dynamics.

Following query theory’s experimental paradigm (illustrated in
Figure 1), each trial presented participants with a decision prompt
(e.g., “Is nuclear power safe?”), and then asked them to list the
thoughts that came to their minds as they deliberated. Participants
were asked to use separate text boxes for separate thoughts and to list
the thoughts in the order in which they occurred. They were asked to
stop listing thoughts once they had made a decision, and proceed to a
subsequent screen in which they recorded their decision. This
decision involved selecting one of two response options (e.g., “‘yes”
or “no”) based on their subjective preference or belief. Finally, after
the decision had been made, participants were asked to rate each of
their thoughts, on a 7-point scale, based on how strongly the thought
supported one of the response options over the other.

2 Of course, while the resulting data in free recall and query theory are
structurally similar, the different tasks may lead to different retrieval
dynamics and search strategies, due to different underlying goals.



S

publishers.

>
2
<]
e}
=
4
s
g
3}
7]
%
=]
9
s}
]
S
=
»
=]

ghted by the American Psychological Association or one of its allied

article is intended solely for the personal use of the individual user

This document is copyri

This

4 ZHAO, RICHIE, AND BHATIA

Figure 1
An lllustration of the Query Theory Experimental Paradigm

Is nuclear power safe?

Please list thoughts that come to your
mind as you deliberate. When you have

made up your mind press NEXT. O
Yes

Thought 1:

Thought 2:

Is nuclear power safe?

No Strongly Supports

Please rate each of your thoughts

Strongly Supports
“No” “yas”

| ] ] | J
[thought 1]

[rex]

Note. Participants are asked to list the thoughts that come to their mind as they think about the decision (first screen/left panel). When they have made up their
minds, they are asked to stop listing thoughts and make a response (second screen/middle panel). After the decision, they are asked to rate each of their listed
thoughts in terms of support for the two response options (third screen/right panel). Note that the wording and rating scale illustrated below are simplifications of

those used in our experiments (see text for details).

Experiments la—1h elicited decisions in each of these eight
domains, without attempting to manipulate participant responses.
Experiments 2a and 2b used explicit primes to bias participant
thoughts and eventual decisions. Here, half the participants were
first asked to list a reason supporting the “yes” response (e.g., why
nuclear power is safe) and the other half were first asked to list a
reason supporting the “no” response (e.g., why nuclear power is not
safe). After listing these reasons, participants were allowed to
deliberate freely, and, as in the first eight experiments, were asked
to list their thoughts in the order in which they occurred, and select
their preferred response once they had made a decision. The decision
prompts, associated response options, number of analyzable parti-
cipants, and basic descriptive statistics of thoughts and choices in
these 10 experiments are displayed in Table 1. Overall, these 10
experiments involved 2,433 participants listing a total of 13,101
thoughts. The upcoming methods section has additional details
about experimental methods and procedures for these experiments.
The Supplemental Materials also present the results of an additional
experiment (Experiment 3), in which each participant was given all
eight questions from Experiments la—lh. This experiment was
conducted to test whether the results of Experiments 1a—1h persist
on the individual level. We do not discuss this experiment and its
results in detail in the main text.

In addition to a final decision, these experiments give us, in each
trial, a sequence of unique natural language thoughts and quantified
supports for each listed thought. We can write a thought sequence as
[q1s g2, - - -, qr], Where g, is the rth listed thought and T is the total
number of thoughts listed by the participant. The supports for these
thoughts can similarly be represented in a T length vector [sy, o, . . .,
st]. We have s, in the set {-3, =2, —1, 0, 1, 2, 3}, with larger s,
indicating that the tth thought has higher support for the first
response option.

Thought Clusters

Memory processes influence decisions by determining the
content of decision-relevant thoughts and the sequence in which
they are listed. Thus, in order to model memory search in

memory-based decision making, we need to be able to apply
memory models to predict the thought sequences, [q1, q2, - - -, g7,
generated by participants in our experiments. However, unlike
recall sequences in established memory paradigms (e.g., list
recall of words or semantic memory search of concepts in a
given category), the set of listed thoughts in our experiment is
large and unconstrained, with each thought being a unique draw
from a seemingly infinite thought space. In order to build tractable
memory models of thought sampling, we (a) use pretrained
computational language models that take string representations
of sentences and compute fixed-length real-valued vectors, and
(b) apply k-means clustering to these vector representations to
group thoughts into a smaller, finite number of discrete clusters.
As a simplifying assumption, we treat the memory process as
operations over the discrete thought clusters, and use the thought
cluster recall sequences to fit different memory models to our
data. We make this simplifying assumption because it is hard to
describe and fit stochastic processes over a high-dimensional
continuous space.3 In the discussion, we return to this issue
and related issues concerning the representation of our thoughts,
and the processes operating on these representations.

To obtain vector representations of our thoughts, our primary
analysis relies on the transformer version of Google’s Universal
Sentence Encoder (USE; Cer et al., 2018), which is a deep neural

3 It may theoretically be possible to model memory processes as operating
over the finite set of distinct thoughts listed in our experiments. Practically,
however, this is intractable, and also has various additional limitations. The
vast majority of listed thoughts are unique, and therefore we cannot estimate
base rates for each individual thought given the frequency of the thought in
our data set. It is also worth noting that our clustering solutions help us pool
semantically identical thoughts that nonetheless have slightly different
wording (e.g., “nuclear waste is hard to dispose” and “it is hard to dispose
of nuclear waste”). It will be hard to avoid this kind of issue if we consider
thoughts individually without clusters. The use of clustering also allows us to
model the behavior of new participants whose listed thoughts are not in the
set of thoughts listed by prior participants (as is the case for Experiments 2
and 3). These new thoughts can essentially be categorized into the preexist-
ing clusters, and base rates and other parameters for these preexisting clusters
can be used to predict new participants’ responses.
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network that learns to produce sentence vector representations so as
to perform multiple natural language processing tasks, from pre-
dicting arbitrary running text to question answering. We use this
model instead of alternatives, like the Deep Averaging Network
version of USE or recent models like ELMO (Peters et al., 2018)
and BERT (Devlin et al., 2018), as the transformer version of USE
achieved state-of-the-art performance on sentence similarity bench-
marks without additional fine-tuning of the USE network (at the
time of writing the manuscript). We optimize for performance on
sentence similarity so that clustering groups sentences that a human
would find similar in meaning.

Models like USE that deliver sentence vectors can be seen as an
evolution of earlier models that compute vectors for words, like LSA
(Landauer & Dumais, 1997), BEAGLE (Jones & Mewhort, 2007),
Word2Vec (Mikolov et al., 2013), or GloVe (Pennington et al.,
2014), based on the patterns of co-occurrence among words in large
corpora. The advantage of using models like USE to obtain sentence
vectors, over simply, say, averaging word vectors in a sentence, is
that models like USE will take into account the order and identity of
all words within a sentence when computing a vector. Obviously,
the order of words within a sentence, and not just their identity, is a
critical component of the meaning of the sentence (cf. “Nuclear
power is better than fossil fuel” vs. “Fossil fuel is better than
nuclear power”).

Note that our use of thought vectors and, more generally, spatial
representations of semantic content, is purely practical. Such vectors
do not (yet) offer a complete cognitive theory of language learning,
linguistic compositionality, or semantic representation. Rather,
these vectors are merely methodological tools for quantifying the
rich and unconstrained set of thoughts that are sampled from
memory in naturalistic decision tasks.

Our use of such models is also partially inspired by how semantic
space models have been used in past research in memory and
decision making. Besides modeling word similarity and relatedness
judgments, word vectors can model semantic memory search, list
recall, free association, and more (for review see Bhatia et al., 2019;
Jones et al., 2015; Lenci, 2018; Mandera et al., 2017). Though the
details of these tasks vary, generally the distance between two-word
vectors in the semantic space predicts the probability that one word
will cue the recall of a second. In much the same way, we will use the
distance between clusters of thoughts derived from sentence vectors
in the thought space to model the probability of one cluster cuing the
recall of another during thought listing.

Once we have obtained vectors for each thought via the USE, we
use thought support ratings—the ratings participants give to indicate
which answer (if any) each thought supported—to separate thoughts
into three sets, one for the first response option, one for the second,
and one for neutral thoughts that support neither response. We then
apply k-means clustering to the thoughts belonging to each set so
that we obtain separate clustering solutions for first response
thoughts, second response thoughts, and neutral thoughts. With
this methodology, we are able to transform our thought listing
data [q1, g2, . .., g7l into a corresponding list of thought clusters
[ry, ra, ..., rr]. Unlike ¢q,, r, is not a natural language sentence but
rather a categorical variable that indicates the specific cluster that
the rth thought is drawn from. In our analysis we consider k = 2,
k = 3, and k = 4 k-means clustering solutions for thoughts in the
first and second response sets (we do not cluster thoughts in the
neutral set because relatively few sentences are rated as being neutral).

This yields a total of 5, 7, or 9 thought clusters over which we
assume memory processes can operate. In the main text we will
present analysis with the k = 3 cluster solution (corresponding to
seven thought clusters), and in the Supplemental Materials we
repeat our analysis with the k = 2 and k = 4 cluster solutions.

Figure 2 contains word clouds of the words that are more
frequent in each cluster relative to all other clusters for the
experiment asking participants “Is nuclear power safe?”” (Experi-
ment 1d), for the k = 3 clustering solution. From these word
clouds, one can often infer the decision-relevant propositions or
ideas conveyed by a cluster of thoughts. For example, our cluster-
ing solution reveals a no-supporting cluster related to radiation and
nuclear disasters and another one related to arguably safer clean
energy alternatives like solar and wind power. In contrast, one yes-
supporting cluster seems to convey the notion that nuclear power
stations take lots of safety measures and other precautions, while
another seems focused on the carbon emission advantage of
nuclear power over fossil fuels.

Context

By clustering thoughts into mutually exclusive and exhaustive
groups we transform the unconstrained thought listing data obtained
from the query theory experimental paradigm into a form that can be
described using standard memory models (which are typically
applied to the recall of a small number of items). Note that there
are important quantitative relationships between thought clusters,
such as semantic congruence (the degree to which two thought
clusters have similar semantic content) and decision congruence
(whether or not two thought clusters support the same response).
Memory models are able to describe the effect of semantic similar-
ity, temporal contiguity, and source congruence on the dynamics of
word recall, and can, for this reason, also be used to characterize the
effect of semantic congruence and decision congruence on thought
cluster sampling. Likewise, decision models are commonly used to
describe discrete choice data, which is identical to the type of binary
response data we obtained in our experiments. Additionally, our
experiments also elicit lists of support ratings for the thought
sequences generated by participants. Support lists quantify the
sequence of information that is integrated by the decision maker,
and can be used to flexibly model the dynamic properties of the
decision process (as in Busemeyer & Rapoport, 1988; Lee &
Cummins, 2004; Lee et al., 2019).

Now, different memory and decision models can be built and
applied separately to thought listing or decision data, but how can
we combine these models within a single cohesive framework that
simultaneously describes memory sampling and decision making?
Our solution to this problem relies on the idea of context, taken from
the CMR family of memory models (Howard & Kahana, 2002;
Polyn et al., 2009). Particularly, we assume that all decision-
relevant information known by the decision maker at time ¢ is
stored in a dynamic context variable C,. C, evolves with each
memory sample, and determines both memory sampling and deci-
sion making. Note that we are using the term “time” to refer to the
discrete memory sampling steps that lead up to the decision, and not
the continuous response time data that memory and decision models
are sometimes fit on. Due to the complexity inherent in the thought
sampling and thought listing process, we will not be modeling
continuous response time data in this article.


https://doi.org/10.1037/rev0000318.supp

dual user and is not to be disseminated broadly.

gical Association or one of its allied publishers.

This document is copyrighted by the American Psycholo
cle is intended solely for the personal use of the ir

DECISIONS FROM MEMORY 7

Figure 2

Word Clouds of the Words that Are More Frequent in Each Cluster Relative to All Other Clusters
for the First Experiment (“Is Nuclear Power Safe?”), for the k = 3 Clustering Solution
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Note. Here we display only clusters for yes-supporting thoughts (left panels) or no-supporting thoughts
(right panels). See the online article for the color version of this figure.

The crucial feature of our data is that we are able to observe the set
of sampled thoughts and supports, and are thus able to specify C, for
any point in time during deliberation. As C, is the cognitive
intermediary between memory sampling and decision making,
we can use C, to derive the probabilities of the observed memory
sample or decision at ¢, using existing memory or decision models.
Additionally, as the memory samples and decisions do not interact
through any other cognitive variables, the probabilities of the
observed memory sample and the observed decision at 7 are
conditionally independent given C,. Conditional independence al-
lows us to separate the probabilities predicted by the memory and
decision models, and thus fit memory and decision processes to our
data individually, facilitating a tractable modeling solution.

Context is not only a practical assumption. It also offers a
theoretically principled approach to describing the effect of situa-
tional variables, such as primes, cues, emotions, choice sets, and
reference points. Such variables have been shown to bias judgments
and decisions by altering memory (see e.g., Weber & Johnson, 2009
for a review), and are easily understood through the lens of memory
context. In Experiment 2 of this article, we explicitly prime parti-
cipants with thoughts supporting or opposing a decision (as in
Johnson et al., 2007 and Weber et al., 2007). That is, we ask
subjects to first list a thought supporting one choice option, and
then allow them to list thoughts and choose of their own volition.

By assuming that these thought primes influence memory context at
the start of the decision, we can quantitatively model their effect on
thought recall, and subsequently characterize their downstream
influence on the decision.

Note again that although our implementation of this idea involves
the CMR model, and the use of the term context, a nearly identical
implementation could involve the SAM model (Raaijmakers &
Shiffrin, 1981), in which memory and decision-relevant information
would be stored in a short-term memory store. Closely related
proposals have also been made within the ACT-R framework
(Anderson et al., 2004; Dimov et al., 2020; Fechner et al., 2016;
Link et al., 2016; Link & Marewski, 2015; Marewski & Mehlhorn,
2011; Marewski & Schooler, 2011; Schooler & Hertwig, 2005). In
such models, memory and decision-relevant information are stored
in the buffers of different modules (e.g., declarative memory or
imaginal), and such an architecture could also be used to mimic our
framework. Context, more generally, can be seen as a type of short-
term storage or working memory buffer, widely used in models of
memory and related cognitive processes (see, Oberauer, 2009 for a
discussion). To keep things simple, and to ensure maximum com-
patibility between our approach and leading models of memory
dynamics, we use the terminology and modeling architecture of the
CMR rather than the more elaborate architecture of approaches such
as ACT-R.
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Illustration

Our framework uses memory models to study how participants
generate thought cluster sequences [ry, ra,..., r7], and how this
depends on previously sampled thought clusters and the semantic
and decision-congruence relationships between them. It also uses
decision models to predict the final responses, and how they depend
on the sequence of supports, [sy, S5, . . ., s7], emitted by the sampled
thoughts.

Figure 3 provides an illustration of our proposed framework,
represented as a neural network. There are three layers: The first
layer (“Memory”) contains the set of K thought clusters stored in
memory, that could be sampled during deliberation. The second
layer (“Decision”) contains the set of three decision possibilities
available at each point in time: choosing the first response option,
choosing the second response option, or continuing deliberation by
sampling another item from memory. The third layer (“Context”)
contains all sampling-relevant and decision-relevant information
stored in context. This information is divided into two separate parts,
with the first representing previously sampled thought clusters, and
the second representing the aggregated supports (i.e., preferences or
beliefs) generated through these samples. In the illustration shown in
Figure 3, decision makers are asked “is nuclear power safe?.” We
assume that they have a total of K = 5 thought clusters and that the
two response options are “yes” and “no.”

The decision begins, at t = 1, with some context C; and the
(implicit) decision to sample memory based on this context. This
results in the second thought cluster being sampled, which produces
a thought sample with supports; = +2 (indicating moderate support
in favor of the first response, “yes”). This process generates a context
representation C, that encodes the thought cluster and the degree of
support offered by the thought sample. At ¢ = 2, the decision maker
uses C, to make a decision: Choose one of the two response options
or keep deliberating. In our example, the decision maker decides to
continue deliberating. Thus, at# = 2, C, determines the next memory
sample, Cluster 3, which offers support of s, = 0 (indicating neutral
support for both responses). Once again, context updates, forming a
new representation, Cs;. C5 encodes a (potentially decayed, as they
are in Figure 3) representation of the two previously sampled
thought clusters and supports of the sampled thoughts. The updated
context determines the decision, at ¢ = 3, to continue deliberating. C5
subsequently generates the memory sample at t = 3. In our illustra-
tion, the first thought cluster is sampled, which produces a thought
sample with support s3 = +3. The context is updated to C, to encode
the cluster index and support ratings of the new thought sample. The
aggregated supports then cause the decision maker to choose the first
response option, “yes,” at t = 4, ending deliberation.

Preview of Models and Data

Memory models specify the memory-relevant information stored
in context, and how this information determines the items that are
retrieved from memory. In the settings modeled in this article, this
information takes the form of previously sampled thought clusters.
Below we will allow for sampled thought clusters to influence their
own sampling probabilities, as well as the sampling probabilities of
other semantic and decision congruent thought clusters (thought
clusters will also be allowed to have different baseline activation
strengths, which influence recall independently of context). We will

also allow for different assumptions regarding the decay of informa-
tion in context, including full decay, no decay, and partial decay.
These assumptions determine how thought clusters sampled earlier
on in the decision influence memory sampling later on in the decision.

Decision models specify the decision-relevant information that is
stored in context and how this information determines responses. In
the settings modeled in this article, this information takes the form of
aggregated supports. Below, we will allow for the representation of
separate aggregated supports for each of the two response options, or
for the representation of a single relative aggregated support favor-
ing the first option over the second. We will also allow for the
aggregation of continuous supports or discrete supports (which
indicate whether or not a response is supported by a thought, but
not the magnitude of this support). Decisions will also be allowed to
depend on internal decision thresholds or exogenous time limits.
Finally, as with the memory models, we will allow for different
assumptions regarding the decay of support information in context,
including full decay, no decay, and partial decay.

Together the above assumptions will help us explain patterns in
our experimental data, such as the finding that retrieved thought
clusters cue the retrieval of other semantically related thought
clusters as well as other thought clusters that support the same
response (findings that, to preview, are visualized in Figure 6). They
will also help us model how and when aggregated support is used to
make a decision (Figures 7 and 8; to preview, time limit models,
e.g., cannot account for the clear observed dependence of stopping
on aggregate decision support). With the correct combination of
modeling assumptions (revealed through fits of our memory and
decision models to participant data) we will be able to quantitatively
predict response probabilities, deliberation length (i.e., number of
thoughts sampled), thought content (i.e., the specific thought clus-
ters sampled), and other key memory and decision variables.
Crucially, best-fit models would also allow for the prediction of
priming effects—that is, how the manipulation of starting thoughts
alters the dynamics of retrieval and the eventual decision.

Model Specification
General Structure

At each point in time ¢ the decision maker has the choice of
selecting one of the two response options and terminating delibera-
tion, or of sampling memory and continuing deliberation. These
decisions are made based on context C, and we write the probability
that the decision made at time ¢ is x,, given context C,, as PrP[x,| C,].
If memory is sampled, the decision maker can sample one of K
thought clusters. This again depends on context, and we write the
probability that the thought cluster sampled at ¢ is r,, given context
C,, as Pr"[x,| C,]. Note that Pr”[x, | C,] is itself conditional on the
decision maker deciding to sample memory at 7, though we omit this
conditional from our notation for expositional convenience.

Now, for each subject we observe a sequence of memory
samples [ry, ra,..., r7]. We also observe a final decision. The
final decision can equivalently be seen as a sequence of T
decisions to keep sampling memory, each of which yields a
thought cluster sample, followed by a decision to end deliberation
at T + 1. This sequence can be written as [xy, X, ..., X741] where
x, is the decision to keep sampling if # < 7'+ 1, and x7,; is the
response option eventually chosen by the participant. With this
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Figure 3
AngIllustration of a Hypothetical Decision in which the Individual is Asked “Is Nuclear Power Safe?”
Question: “Is nuclear power safe?” t=1
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t=4 Response: “Yes.”
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Note.

There are five thought clusters that can be sampled sequentially from memory in this example. Thought Clusters 1-2 support the choice of “yes,” thought

Cluster 3 is neutral, and thought Clusters 4-5 support the choice of “no.” Each row corresponds to one time point in the memory-based decision. At any time
point ¢ beyond ¢ = 1, the context (C,) is updated to reflect how often (and how recent) different thought clusters have been sampled (i,), as well as (time-
weighted) aggregated supports in favor of “yes” (u}) and “no” (u?). The updated context drives decision making (middle panel of each row; see the section
Decision Mechanisms for choice probability computation) and memory sampling (right panel of each row; see the section Memory Mechanisms and Equations
2-3 for sampling probability computation). Here the hypothetical decision takes four time periods and ends with the selection of the “yes” response. KS = Keep
sampling; TC = Thought cluster.
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structure, []Z, (PrP[x, | C;] - Pr[r,| C,]) captures the probability of
observing the T thought clusters that are sampled during deliberation,
each of which follows a decision to keep sampling memory. Likewise,
PPzt | Cratl captures the probability of ending deliberation and
selecting the chosen response after the 7th thought cluster sample.
Thus together, we can write the probability of our observation as

=

(PrD[x, |C]- PrM[r, [C]) - PrD[xT+1 | Cria].

t=1

This, in turn, can be rewritten as:

T+1

T
HPrM[r,|C,} -HPrD[x,|CJ. M
=1 =1

Equation 1 describes the probability of our observation as a
function of separate memory and decision components, which
are predicted by separate memory and decision models. Specifically,
[1Z, PtM[r,| C,] is the probability of observing [ry, 72,..., 77l
predicted by a given memory model. These predictions depend on
how the memory model specifies the probability of each thought
cluster being sampled, and how context (consisting of the set of
previously sampled thoughts) influences these probabilities. Good
memory models should give high values of [[Z, Prt™[r, | C,]. Like-
wise, [[24! PrP[x, | C;] is the probability of observing a sequence of
T decisions to keep sampling memory followed by a decision to end
deliberation at 7+ 1 and select the response option eventually
chosen by the participant, predicted by a given decision model.
These predictions depend on how the decision model specifies the
probability of each choice, and how context (consisting of the set of
previously sampled supports) influences these probabilities. Good
decision models should give high values of [/ PrP[x, | C/].

Note that the above model allows for the possibility that parti-
cipants do not list any thoughts at all (i.e., they choose to end
sampling at r = 1). We did not allow participants to do this, and thus
when we fit the models, we assume that x; is the decision to continue
sampling and that PPlx, | C] = 1.

Overall, the predictions of the memory and decision models
depend only on context. Thus, memory and decision making are
conditionally independent given context. In other words, once we
know about the value of context at a given time #(C,), knowledge
about recall at that time (r;) provides no further information about
the decision at that time (x,) and vice versa. For this reason, memory
and decision models can be fit to our memory and decision data
separately, as long as they appropriately specify how context
influences memory or decision making. As these assumptions
pertain to the elements of the sampled thoughts and support that
are retained in context, our empirical paradigm allows us to observe
the context specified by a given decision model. Thus, despite C,
being a random variable (that depends on the sampled thoughts and
supports prior to f), we ultimately know the realization of C, that
guides recall, r,, and decision, x,, at time ¢. This is why we omit
Pr[C,] from the above equations.

Memory Mechanisms

We assume that context encodes a representation of previously
sampled thought clusters, and that this representation determines

subsequent memory samples. The most general way of quantifying
this representation at time ¢ is with a K X (¢ — 1) matrix M, of
indicator variables, with K specifying the total number of thought
clusters, and cell (k, /) of M, specifying whether or not the kth
thought cluster was sampled at time / (1 if it was, O otherwise). As
time progresses, columns can be added to M,, with values based on
the sampled thought clusters. As only one thought cluster can be
sampled at any given time, the values in each column must sum to 1.

Although such a general representation may be useful for im-
plementing complex memory search rules, we assume, for simplic-
ity, that the M, can be replaced with a K-length vector m, = M, - a,.
Here «, is a ¢ — 1 length vector [(1 — 8372, (1 — 80)' 2,
(1 =8y, ..., (1 = 8,)°] of decay weights, with 8, in range
[0, 1]. m, can be seen as a vector of activations reflecting how
recently a particular thought cluster was sampled. This vector
guides thought cluster sampling at time ¢ by sending feedback into
the thought layer, which determines thought cluster activation
based on decision and semantic congruence between pairs of
thoughts. Our use of this specification for context implies that
the effect of a sampled thought on subsequent memory is assumed
to increase additively with multiple samples of the same thought
cluster and weaken with time at an exponential rate.

Decision congruence captures whether or not a given pair of
thought clusters support the same response option. For a pair of
thought clusters, j and k, we write decision congruence as D(j, k),
with D(j, k) = 1 indicating that the two clusters support the same
response, or if they are both neutral; otherwise D(j, k) = 0. The set
of pairwise decision-congruence measures between the K thought
clusters are represented in the K X K matrix D. Semantic congru-
ence is the degree to which two thoughts clusters have similar
semantic content. For a pair of thought clusters, j and k, we write
semantic distance as S(j, k) = ||lc; — cil|, where ¢; and ¢ are the
vector centroids of clusters j and k. S(J, k) is the Euclidean distance
of the centers of clusters j and k and thus smaller values of S(j, k)
indicate higher semantic congruence between j and k. The set of
pairwise semantic congruence measures are represented in the
K x K matrix S. D and S are deterministically specified by our
data and by the clustering solution on our semantic space. We
assume that the context vector m, influences thought cluster activa-
tion in the memory layer based on a linear combination of D and S.
We write the K-length vector of thought cluster activation in
memory as:

Ai=y+op -m+og-S-m+op-D-m,. 2)

Here v is a vector of baseline activation strengths, which reflects a
prior distribution over the clusters (and does not update or decay
during deliberation). mg and wp, are scalar weights on semantic and
decision congruence, respectively. If wg is negative and wp is
positive, then decision makers are likely to sample thought clusters
that are semantically related or support the same responses as the
thought clusters sampled previously (note that S captures semantic
distances between thought clusters). wg specifies an additional
weight that can be directly placed on the activations captured by
m,. Intuitively g indicates the degree to which clusters stored in
context are likely to be resampled (controlling for the high degree of
semantic and decision congruence that a cluster has with itself). If
og < 0, then cluster resampling is less likely, reflecting a type of
recall inhibition or repetition suppression. Although we do observe
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recall inhibition and repetition suppression in simple memory (and
attention) tasks, our more complex tasks may also reveal wg > 0,
reflecting a tendency to fixate on a thought once it has been recalled.
Thus, we use a more general term, cluster resampling, to refer to wg.

Finally, the probability of sampling a given thought cluster is
obtained by passing A, through a softmax function, which is a link
function used in multinomial logistic regressions and neural net-
works. Thus, if the jth thought cluster is sampled at ¢ (i.e., 7, = j), we
obtain:

P, | = 3)
tlie szl eAik)

By using this formula to calculate [TZ, Prt"[r, | C,], which is the
memory component of Equation 1, we can analytically derive the
probability of observing a given sequence of thought cluster sam-
ples, [r1, 72, ..., r7]. This probability depends only on the memory
decay weight parameter, 8, the semantic and decision-congruence
parameters, mg and wp, the cluster resampling parameter, mg, and the
K baseline cluster sampling parameters y = [y1, Y2, .., Ykl

Decision Mechanisms

We assume that context encodes a representation of previously
sampled thought cluster supports, and that this representation
determines the decision made at a given point in time. The most
general way of quantifying this representation at time ¢ is with a
t — 1 length row vector of support U,, whose /th entry specifies the
support emitted by the thought cluster sampled at time /. These
supports are in the set {-3, =2, —1, 0, 1, 2, 3}, with positive values
indicating support for the first response. As time progresses, cells are
added to U,, with values based on the sampled thought clusters.

Although such a general representation may be useful for im-
plementing complex decision rules, we consider a number of
different ways of simplifying the information stored in U,. One
way is to assume that decision makers do not encode continuous
supports, but rather encode discrete supports V, = sign(U,). This
corresponds to a heuristic decision strategy that ignores the magni-
tudes of supports offered by each sampled thought.

Another way of simplifying contextual representations involves
aggregating the components of U, or V, into a single measure of the
support for a given response option. Particularly, we can assume that
decisions are made based on a scalar u, = U, - B, or a scalar v, =
V, - B,. Here P, is a t — 1 length vector [(1 — 8p) 2, (1 — &p) >,
A =8p) ™ ..., =8p)°of decay weights, with &y in range [0, 1].
u, and v, are representations of the relative support for the first response
option compared to the second response option, that additively
combines the supports emitted by all sampled thoughts, with higher
weights for recently sampled thoughts. u, and v, evolve dynamically as
thought clusters are sampled. If the support of the thought cluster
sampled at ¢ is s, then u, and v, can equivalently be written as
u, =0 —90p) - u_; +s,and v, = (1 — dp) - v,_1 + sign(s,).

A variant of the above assumption involves using separate
representations for each of the response options that only aggregate
sampled supports that are in favor of the corresponding response
option. In order to implement this assumption, we first generate
U', = max(U, 0), U% = max(=U,, 0), V', = max(V,, 0), and V*, =
max(—V,, 0). Here each maximum operator is applied to each
element of U,, V,, —U,, or —V,, and places a floor of 0 on that

element’s value. We then define u', = U', - Br W, =U'- Brs v, =
Vi, B, and v?, = V2, - B, to specify the aggregated supports in favor
of each response option. u',, for example, corresponds to the (time-
weighted) sum of all sampled supports that favor response 1. If the
support of the thought cluster sampled at ¢ is s, then u', can
equivalently be written as u', =1 = 8p) - u',_y + max(s, 0).

Finally, we need to make assumptions regarding the rules used to
make a decision at each point in time. There are two types of rules
that we consider. The first uses a threshold mechanism to select one
of the two response options if the aggregated supports (plus an
additive error) exceed a threshold value. We write this threshold
value as 7, and the normally distributed error at time ¢ as €, ~ N(0, ©).
Thus, the decision maker selects the first response option at time # if
u; + € > t(orv, + g > 7) and selects the second option at time # if
u, + g, < —t (or v, + ¢, < —7). If neither of these two conditions is
satisfied, the decision maker decides to continue deliberation and
sample another thought cluster from memory. This threshold mech-
anism can also be applied to u', and u?,, with &, ~ N(0, ) specifying
the additive noise applied to these two variables. Here the first
response option is selected if u', + ¢ >vandu? + ¢ < 7, and the
second response option is selected if u,+ e <tandu? + g > 1.
If neither of these conditions is satisfied the decision maker con-
tinues deliberation and samples another item from memory. An
analogous decision rule can be used for v', and VA

Another type of decision rule involves sampling for a fixed
number of time steps, 7, that is, sampling until a time limit 7 is
reached. We implement this time limit assumption by assuming that
there is a fixed probability of continuing deliberation, A, after each
thought sample. With this assumption, 7' follows a Geometric
distribution. At 7, the decision maker selects the first response
option if ur+ er >0 or vy + &7 > 0, and selects the second
response option if ur + €7 <0 or vy + €7 < 0. In the case of
separate support representations, the decision maker selects the first
response option if both u'z + €7 > 0 and u?r + e7 < 0 (or both
vlT + e7>0 and vzr + e < 0). It selects the second response
option if both u'; + &7 < 0 and u*; + ;> 0 (or both v'7 + &7 <
0 and v*; + &7 > 0). If these two conditions are not satisfied (i.e., if
the accumulators are both positive or both negative) then the
decision maker selects each option with a 50% probability.

Note that the assumptions regarding the noise terms above
resemble those used in standard accumulator models, like drift-
diffusion processes or leaky accumulators. However, unlike these
models, we do not aggregate the errors over time in u,, v,, and the
other decision variables. Thus u,,; does not depend on ¢, (and is
instead a deterministic function of the supports sampled prior to 7),
and g, can be interpreted as the noise in retrieving aggregate supports
(or equivalently, the noise in setting a decision threshold). This
greatly simplifies our modeling task without restricting the explana-
tory scope of our model. Overall, this and the other assumptions
discussed above allow us to analytically derive the probability of the
decision maker choosing one of the two response options, or
deciding to sample an additional thought cluster, at each point in
time. For example, if we assume decision makers aggregate contin-
uous relative supports, u,, to a threshold t, then decision probabili-
ties are simply given by the probability of u, + €, exceeding T or —7.
Specifically, if the decision maker selects the first response option at
time ¢, we obtain PrP[x, | C]1 =1 - F(t — u,;), where F is the
cumulative distribution function for a normal distribution with
standard deviation o. In contrast, if the decision maker selects
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the second response option at z, we obtain PrPx, | C] = F(—t—u,),
and if the decision maker selects neither response option (and
instead continues sampling thoughts), we obtain Pr[x, | C,] =
F(t—u,) — F(—t—u,). In the case of the accumulation of discrete
relative supports to a threshold, the above equations simply replace
u, with v,, When we have the accumulation of absolute supports,
these equations are modified to calculate the probability that one
accumulator surpasses the threshold while the other does not.
Finally, in the case that decision makers use a time limit instead
of a threshold, the decision probabilities are given by the probability
that the time limit has or has not been reached by a particular point in
time (which depends on the probability of continuing deliberation at
each time point, A), and the probability of the accumulators being in
favor of the first or second response option when the time limit is
reached (which again is given by the CDF of the normal distribution,
with threshold 0).

By using the above steps to calculate each of the probabilities that
enter [[24! PrP[x, | C,], the decision component of Equation 1, we
can analytically derive the probability of observing a sequence of T’
decisions to keep sampling memory followed by a decision to end
deliberation at 7 + 1 and select the response option chosen by the
participant, given the support ratings associated with each sampled
thought. This probability depends only on (a) the decision decay
weight parameter, 8p, (b) whether or not the decision maker
accumulates continuous supports or discrete supports, (c) whether
or not the decision maker uses a relative accumulator or a discrete
accumulator, (d) the threshold (t) or time limit (A) parameters
describing the decision rule, and (e) the standard deviation of the
noise (o) at each point in the decision.

Note that the reason why we allow different decay rates for
memory and decision making is for computational tractability. If we
constrained these decay parameters to be the same, then the condi-
tional independence assumption would no longer hold. Of course,

Table 2

by separately fitting the two decay rates we are also permitting the
special case in which they are identical. Our best-fit parameters
(shown below), however, reveal that these decay rates are not
identical, implying that our assumption is not only useful for
computational tractability, but also facilitates superior model fits.

Switchboard Analysis

In the above sections, we have introduced a number of different
mechanisms for modeling memory and decision processes. For exam-
ple, memory context can influence thought cluster sampling based on
semantic congruence or decision congruence, or both. Likewise,
decision making can involve a single representation for the relative
support of the two options or separate representations for the absolute
support for each option, as well as decisions based on a threshold or a
time limit mechanism. Both memory and decision context can be
susceptible to decay. These and other mechanisms are largely separate
from each other and can be individually added to or removed from the
models. These mechanisms are summarized in Table 2.

Our goal in this article is to analyze memory and decision models
with each different combination of underlying mechanisms. As
there are a total of 2 X 2 X 2 X 3 = 24 different memory models
generated through the combination of the four memory mechanisms,
and a total of 2 X 2 X 2 X 3 = 24 different decision models gen-
erated through the combination of the four decision mechanisms,
our article implicitly involves the analysis of 24 X 24 = 576
memory-based decision models. Each model features a unique
set of mechanisms, and generates a unique set of predictions for
our recall and decision data. By fitting these 576 models to our data
we can accurately characterize the set of memory and decision
mechanisms necessary to describe memory-based decision making.

The type of analysis we perform here is known as a switchboard
analysis and was recently used by Turner et al. (2018) to analyze the

Summary of Memory and Decision Mechanisms Used in Our Framework

Memory mechanisms

Decision mechanisms

Semantic congruence: Sampled thought clusters influence sampling
probabilities based on semantic similarity (s # 0).

No semantic congruence: Cluster sampling is independent of semantic
similarity between thought clusters (wg = 0).

Decision congruence: Sampled thought clusters influence sampling
probabilities based on whether they support the same or different
responses (op # 0).

No decision congruence: Cluster sampling is independent of decision-
congruence relations between thought clusters (wp = 0).

Cluster resampling: Sampled thought clusters influence their own
sampling probabilities, controlling for semantic and decision
congruence (wg # 0).

No cluster resampling: Sampled thought clusters do not influence their
own sampling probabilities, controlling for semantic, and decision
congruence (wg = 0).

Full context decay: d); = 1, so that only the previously sampled thought
cluster influences subsequent cluster sampling probabilities.

No context decay: 8, = 0, so that all sampled thought clusters influence
subsequent cluster sampling probabilities.

Partial context decay: 0 < 8y, < 1, so that recently sampled thought
clusters have a larger effect on subsequent cluster sampling
probabilities.

Continuous support: Accumulators aggregate continuous supports, s;, in
accumulators u, or u', and u2,.

Discrete support: Accumulators aggregate discrete supports, sign(s,), in
accumulators v, or v'; and v%,.

Relative accumulation: Decision makers use single relative
accumulators, u, or v,, encoding relative support for the two response
options.

Absolute accumulation: Decision makers use two separate accumulators,
u', and u?, or v', and v?,, encoding absolute support for each response
option.

Threshold decision rule: Decisions are based on a threshold 7 so that an
option is chosen if accumulator plus error crosses T or —T.

Time limit decision rule: Decisions are based on time limit 7' (based on
probability of continuing deliberation, A) so that the option with the
larger accumulator plus error at 7 is chosen.

Full context decay: 8p = 1, so that only the previously sampled support
is encoded by the accumulators (e.g., u, = s,).

No context decay: dp = 0, so that all sampled supports are encoded
and given the same weight by the accumulators (e.g., u, = u,_1 + $,).

Partial context decay: 0 < 8p < 1, so that all sampled supports are
encoded but recently sampled supports are given more weight by the
accumulators, for example, u, = (1 — dp) - u,_y + ;.
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set of decision mechanisms responsible for multiattribute context
effects. A switchboard analysis allows researchers to investigate not
only existing models but also hybrid models that can be generated
by combining various model mechanisms, and thus provides a more
nuanced understanding of the psychological properties at play in the
task at hand. In our case, the switchboard analysis also allows us to
pair different types of memory models with different types of
decision models, and subsequently characterize the very large set
of distinct cognitive models that could be responsible for memory-
based decision making.

Relationship With Existing Models

The model mechanisms summarized in Table 2 are inspired by
existing theories, and appropriate combinations of model mechan-
isms are capable of perfectly instantiating or closely approximating
these theories. As discussed earlier, our assumption of context as the
key cognitive intermediary guiding memory and decision making is
taken from established memory models, such as CMR, SAM, and
ACT-R (Anderson et al., 2004; Polyn et al., 2009; Raaijmakers &
Shiffrin, 1981). Subsequently allowing for semantic congruence
(ws < 0) and partial context decay (0 < §,; < 1) allows our frame-
work to mimic the semantic contiguity properties of these models.
Such models also often allow for some decay in context (CMR),
baseline or base-level activation of items in memory (SAM and
ACT-R), as well as the possibility of noisy retrieval (CMR, SAM,
and ACT-R), as is the case above. Conversely, assuming full context
decay (8), = 1) restricts the memory process so that only thought
clusters sampled at  — 1 influence cluster sampling probabilities at 7.
This is capable of mimicking the behavior generated by a random
walk in a semantic network (e.g., Abbott et al., 2015).* Decision
congruence is a key component of query theory, and thus wp > 0
allows our framework to capture the essential memory mechanisms
underlying this theory (Johnson et al., 2007; Weber et al., 2007)°.
Of course, turning all the mechanisms off and setting (g = 0p =
og = Oy = 0) generates independent sampling over time, which is
the implicit assumption in many memory-based decision making
models such as the associative accumulation model (Bhatia, 2013).

On the decision side, we assume that supports are aggregated in
either relative (i, or v,) or absolute (u', and % or v', and V%)
accumulators. When combined with the threshold decision rule
and no context decay (8p = 0), the relative accumulation assumption
yields a standard discrete relative evidence accumulator (one of the
baseline models in Busemeyer & Rapoport, 1988; Gluth et al., 2012;
Lee & Cummins, 2004) and with some modifications, a discrete
version of the popular drift-diffusion model (Ratcliff & Rouder,
1998). In the case in which we use discrete supports, v,, our framework
mimics the core assumptions of the dynamic decision-by-sampling
model (Noguchi & Stewart, 2018; also see Stewart et al., 2006).
Conversely, threshold decision making and partial context decay
(0 < dp < 1), combined with the absolute accumulation assumption,
generate a discrete leaky accumulator (such as that used in Usher &
McClelland, 2001, 2004; also see Bhatia, 2013 and Roe et al., 2001).
Note that many practical tests of these models have used an exogenous
time limit mechanism (instead of threshold decision making). These
tests can be captured by replacing the threshold decision rule with the
time limit decision rule in our framework.

If we assume full context decay (§p = 1) our models no longer
accumulate supports. Rather, at each point in time, decisions are made

based only on the support sampled in the previous time period. This is
afeature of a number of heuristic models of decision making. Thus, for
example, we obtain decision processes similar to the lexicographic
heuristic (Fishburn, 1967; Gigerenzer & Goldstein, 1996) with dis-
crete support, relative accumulation, and a very small threshold, as
long as we have full context decay. Continuous support with a slightly
larger threshold in the presence of full context decay gives us decisions
resembling the lexicographic semiorder heuristic (Tversky, 1969; see
Lee & Cummins, 2004 for an early application of this idea). Of course,
both the lexicographic and lexicographic semiorder heuristics assume
that attributes are sampled in a particular order, and thus a perfect
implementation of these heuristics within our framework would
require appropriate restrictions to the thought-generating process as
well (this could be accomplished with appropriate baseline sampling
biases and strong negative cluster resampling effects, combined with
no context decay and no semantic/decision-congruence effects).
Finally, permitting a long enough exogenous time limit or a large
enough threshold, along with no context decay, allows us to model
the weighed additive decision rule, in which the decision maker has
enough time to sample every thought (Keeney & Raiffa, 1993). Here,
using discrete supports instead of continuous support allow us to
capture simplifications of this rule, such as the tallying heuristic
(which only considers which option is better or worse on the sampled
attribute, without taking into account the strength of each piece of
evidence; Gigerenzer & Goldstein, 1996; Russo & Dosher, 1983).
Of course, we can also combine various memory and decision
mechanisms to generate combinations of existing memory and
decision models for describing memory-based decision making.
For example, allowing for semantic congruence, threshold decision
making, absolute accumulation, as well as partial memory and
decision context decay, give us a CMR-style memory model whose
output is integrated by a leaky accumulator. In contrast, allowing for
decision congruence with a threshold decision rule, no context
decay, and the relative accumulation of discrete supports, give us
a query theory memory model whose output is integrated by a
decision-by-sampling style model. Similarly, allowing for only
semantic congruence in memory, relative accumulation of discrete
supports to a threshold in decision making, and full context decay in
both memory and decision making, give us a Markov random walk
through a semantic network whose output is integrated by lexico-
graphic semiorder heuristic. Overall, our framework instantiates
these and 573 other combinations of memory and decision models,
and is capable of testing which of these combinations best describes
memory-based decision making through switchboard analysis.

“ In general, our specific specification of working memory capacity limits,
in terms of context decay, stems from our application of the CMR memory
model to memory-based decision making. Decay is also part of leaky
integration models, which we consider on the decision side of our analysis.
Thus both the memory and decision components of our model share the same
capacity limits, which we believe offers some amount of theoretical cohe-
sion. Of course alternate capacity limits, such as limitations to the number of
items in working memory as in the ACT-R or SAM frameworks, could be
feasible. We revisit this possibility in the discussion section of this article.

> We can also generate, as a special case, a memory model that samples
only based on decision congruence and does not consider the semantic
content of thoughts, by setting wg = 0. Intuitively, this would resemble a
model with only three thought clusters: one for positively supporting
thoughts, one for negatively supporting thoughts, and one for neutral
thoughts.
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Our framework is related to theories that integrate retrieval
dynamics with response dynamics in domains such as categorization
(Cox & Shiffrin, 2017; Hockley & Murdock, 1987; Nosofsky &
Palmeri, 1997; Ratcliff, 1978), as well as ACT-R-based models of
memory and decision making (Dimov et al., 2020; Fechner et al.,
2016; Link et al., 2016; Link & Marewski, 2015; Marewski &
Mehlhorn, 2011; Marewski & Schooler, 2011; Schooler & Hertwig,
2005). Theoretically, many of the high-level architectural details are
shared with these other models, though of course we do not
implement evaluation mechanisms that are more relevant to cate-
gorization than decision making (e.g., exemplar-based rules in
Nosofsky & Palmeri, 1997) or mechanisms that would be necessary
to relate our processes to other cognitive systems (e.g., production
rules that use visual data to update working memory, or use working
memory to output motor responses, as in Dimov et al., 2020).
Empirically, our evaluation of decision models is related to prior
work that systematically varies the time course of evidence (e.g.,
Trueblood et al., 2021; Tsetsos et al.,2012; Zhou et al., 2009), though
we consider a somewhat simpler set of models and additionally rely on
a memory model to control the time course of evidence. Unlike all
prior work, we attempt to characterize the retrieval and evaluation of
complex thoughts in high-level judgments and decisions, and are able
to observe (and fit) the sequence of retrieved thoughts using participant
data observed with the query theory experimental paradigm.

Method
Participants

We recruited a total of 2,433 participants (Age: M = 32 years
SD = 12, range = 18-76; 47% female) from Prolific Academic for
Experiments 1a—1h and Experiment 2. We limited our data collection to
participants who were from the U.S. and fluent in English, and had an
approval rate above 80%. Participants were only allowed to participate
once, and earned a base payment of $1.35. 50% of participants were
given a bonus worth 50% of the base payment for listing clear thoughts.
Participants received the bonus if they were in the top half of
participants listing the most thoughts, although, critically, participants
were not explicitly told that this was the criterion for bonus payment
(subjects were instead incentivized to provide clear thoughts).

Procedure

For Experiments 1a—1h, participants were randomly assigned to
two of the eight questions® such that an approximately equal number
of participants completed each question. For Experiments 2a and 2b,
participants were assigned to only one question (“Can money buy
happiness?” or “Is nuclear power safe?”’), and were randomly
assigned to first list a thought supporting Choice 1 or a thought
supporting Choice 2. See Table 1 for all eight questions and possible
responses. Figure 1 illustrates the order of tasks in our survey.
Participants first engaged in the thought listing task. They were told
to list all thoughts that came to mind as they considered a particular
question, regardless of their eventual answer. They were also told
that they should list thoughts in the order that they come to mind,
and that their thoughts be complete English sentences understand-
able to a third party. We required participants to list at least one
thought consisting of at least two words (two strings of characters
separated by a space). After this, participants made their response,

and then rated each of their listed thoughts in terms of support for the
two response options, on a 7-point Likert scale from “Supported
{choice 1} a great deal” to “Supported {choice 2} a great deal.”
Finally, participants indicated their age and gender. The experiment
instructions are provided in Appendix A.

Data Preprocessing

Due to an error in programming the survey for Experiments 1c and
1h, 13 and 10 subjects, respectively, did not record thought supports
for one or more of their thoughts in these two experiments. We
excluded all such participants (in alternative analyses we do not
report; we simply deleted such thoughts but retained the participants;
this does not qualitatively alter our results). We also excluded all
participants in Experiments 2a and 2b who did not follow the priming
instructions (e.g., first listed a thought supporting Choice 1 even
though they were told to first list a thought supporting Choice 2),
which led to 37 participants (of 252) and 37 (of 253) being dropped
from Experiments 2a and 2b, respectively.

As is standard when using USE and other sentence encoders, we
did not remove stop words, nor did we lemmatize or case standardize
the words in our thoughts. Raw thoughts were thus passed through
the transformer version of the USE to extract 512-dimensional, real-
valued vectors for each thought. For each of the eight questions in
Experiment 1, we then separated thoughts into three groups, one each
for those supporting the first choice, the second choice, and neither
choice. We performed separate k-means clustering on thoughts
supporting the first choice, and thoughts supporting the second
choice, using Scikit-learn (Pedregosa et al., 2011). Thus, if & = 2,
we have five clusters (two for thoughts supporting the first Choice 1,
two for the second choice, and one for neutral thoughts).7 These
clustering solutions obtained from Experiment 1 were reused in
Experiment 2 (and Experiment 3; see Supplemental Materials).
Additionally, to enable us to quantify the effect of semantic congru-
ence in memory sampling, for a given question and value of k, we
calculated the Euclidean distance between every pair of cluster
centroids. The centroids were extracted through functionality pro-
vided by Scikit-learn. In general, the centroid of a cluster should of
course simply be the mean of all the thought vectors assigned to that
cluster (with minor differences between the mean and the centroid if
the clustering algorithm stops before fully converging).

Qualitative Analysis
Overview of Data

The choice probabilities of the first option are summarized in
Table 1. Participant responses were evenly distributed across the
two responses options (the most uneven distribution is in Experi-
ment le, in which 67% of participants chose a burger over salad).

© Note that although we obtained two responses per participant in Experi-
ment 1, this is too little data to appropriately model individual heterogeneity.
Thus, our analysis of Experiment 1 involves only group-level fits. To
examine the issue of individual-level variance we conducted Experiment
3 (which is reported in Supplemental Materials).

7 Note that in this article, we use k to represent the number of clusters that
support the choice of an option (obtained using k-means clustering). On the
other hand, K is the total number of clusters. Because there are k clusters
supporting the first choice, k supporting the second choice, and one support-
ing neither, K = 2k + 1.
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Note that in Experiments 2a and 2b participants were randomly
assigned to one of two conditions. In Condition 1, participants were
asked to begin by listing a thought supporting the first option,
whereas in Condition 2, participants were asked to start with a
thought supporting the second option. We combined participants of
both priming conditions for most of the following analyses, except
for the last result section, where we report results regarding priming
effects.

Each participant listed as many thoughts as they wished before a
decision was made (although participants were forced to list at least
one thought). Distributions of the total number of thoughts sampled
by a participant are illustrated in the top row of Figure 4. Each panel
corresponds to an experiment. The median participant listed
between 4 and 6 thoughts, and the modal number of thoughts
ranged from 3 to 6, depending on the experiment. We elaborate
on the model results visualized in Figure 4 in the section Describing
Data. For now, we just point out that the primary model assumes
absolute accumulation toward a threshold with partial context
decay, the relative model assumes relative accumulation toward a
threshold with partial context decay, the time limit model assumes a
time limit mechanism instead of threshold accumulation, the full
decay model assumes absolute accumulation with full context
decay, and the no decay model assumes absolute accumulation
with no context decay.

Thoughts generated by all participants in an experiment were
clustered based on their semantic similarity and supporting response

Figure 4

type. Here we report the results of the k = 3 clustering solution (in
the Supplemental Materials we repeat our analysis with the k = 2
and k = 4 cluster solutions). With three clusters for thoughts in the
first option set, three clusters for thoughts in the second option set,
and one cluster for all neutral thoughts in an experiment, this
solution leads to seven clusters in total for each experiment. The
top row of Figure 5 illustrates the proportion of each thought
cluster, with panels corresponding to different experiments. There
was some variability in the shares of the seven thought clusters.
Some clusters were highly infrequent, making up less than 10% of
the data, whereas other clusters described more than 25% of
participant thoughts (if each cluster was equally likely to be
sampled, we would observe cluster frequencies of 1/7 = 14.3%
in our data). Again, we save greater discussion of the model results
in Figure 5 for the section Describing Data, and for now just point
out that the primary model is one with semantic and decision
congruence and partial context decay but no cluster resampling,
and the others are the same but with one or both of semantic and
decision congruence turned off.

Memory Patterns

The memory models described above predict a number of
different qualitative patterns in thought cluster recall. For exam-
ple, nonzero values of g ®p (and wg) yield thought sampling that
is non-IID (independent and identically distributed) over time;

Distribution of Total Number of Thoughts Sampled Across Participants
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Each panel corresponds to an experiment. The solid vertical lines represent medians. Across 10 experiments, the primary

model, assuming absolute accumulation of discrete supports toward a threshold with partial context decay, provides the closest
predictions regarding the median and mode of the observed thought lengths. We also display the predictions of a model with
relative accumulation, a model with a time limit mechanism instead of threshold accumulation, a model with full decay, and a
model with no decay. See the online article for the color version of this figure.
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Figure 5

Distributions of Thought Clusters From the k = 3 Clustering Solution in the 10 Experiments
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Here O1-C1, O1-C2, O1-C3 represent clusters for thoughts supporting the first option. Neutral-C1 represents the cluster for all neutral thoughts.

02-C1, 02-C2, O2-C3 represent clusters for thoughts supporting the second option. The primary model, with semantic and decision congruence and partial
context decay but no cluster resampling, provides almost perfect predictions of the observed cluster proportions. However, so do models that turn decision and
semantic congruence off. Note that all models have flexible baseline cluster activation parameters, allowing them to accommodate aggregate thought cluster

distributions. See the online article for the color version of this figure.

thought clusters that are congruent with the previously sampled
thought, semantically or decision-wise, are more/less likely to be
recalled. If g = wp = 0 (and wz = 0) then we would not observe
the memory dynamics predicted by these models. Note that
semantic congruence is a feature of many previous memory
models, such as CMR, SAM, and ACT-R, as well as models
that describe memory search as a random walk in a semantic
network. Likewise, decision congruence is a feature of query
theory. Our experiments test for the magnitude of these effects in
a memory-based judgment task.

Figure 6 illustrates how sampled thought clusters at time # relate
to the clusters sampled at 7 — 1. Again, these figures use the k = 3
k-means thought clustering solutions for each experiment. In the left
panel, the asterisks describe the mean Euclidean distance between
the cluster centroids of two sequentially sampled thought clusters in
our observed data, averaged across participants. In the right panel,
the asterisks describe the probability of sampling a thought that
supported the same response option as the previously sampled
thought, averaged across participants. These are our measures of
semantic and decision congruence, respectively.

Did participants sample congruent clusters at an above-chance
level? To answer this question, we need to control for participant
heterogeneity, that is, the possibility that thoughts generated by a
participant may be more congruent with each other, compared to
those generated by different participants. Participant heterogene-
ity can lead to the appearance of semantic and decision congru-
ence on the aggregate level, and it needs to be controlled using

permutation analysis. For our permutation analysis, we randomly
reordered the thought clusters retrieved by each participant and
computed the average of the mean Euclidean distance between
two sequentially sampled clusters among participants. We
repeated this 10,000 times to calculate the average semantic
congruence measures, and 95% confidence intervals, that would
be observed if participant heterogeneity was the sole determinant
of semantic congruence. We performed a similar analysis for
decision congruence. The solid dots and error bars in Figure 6
illustrate these statistics. As can be seen, most asterisks lie below
the 95% confidence intervals around the average permuted seman-
tic congruence statistic, indicating that on a participant level,
thought clusters sampled next to each other were more semanti-
cally related (had less semantic distance) than thought clusters
sampled with longer time in between. Likewise, most asterisks lie
above both the error bars for the average permuted semantic
decision-congruence statistic, indicating that, with individual
heterogeneity controlled for, contiguously sampled thoughts
were more likely to support the same option, compared to
thoughts sampled further apart.

Note that the above patterns also emerge withthe k = 2and k = 4
cluster solutions, as shown in the Supplemental Materials.

Decision Patterns

The decision models discussed in the previous section also predict
a number of different qualitative patterns in our support rating and
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Figure 6

Permutation Analyses for Semantic Congruence and Decision Congruence Effects
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Note. The asterisks represent observed mean Euclidean distance between the cluster centroids of contiguously sampled thought
clusters (the left panel), and observed probabilities of sampling a thought supporting the same option as the previously sampled
thought (the right panel). Solid dots and error bars are means and 95% confidence interval based on 10,000 permutations in which
we randomly reordered thought clusters generated by each participant so that individual heterogeneity in cluster base rates was
preserved but sequential effects were broken. These figures display significant semantic and decision-congruence effects in most
experiments. See the online article for the color version of this figure.

decision data. For example, models that assume that decision
makers use threshold decision rules predict that the probability of
terminating the decision and choosing a given option increases as
the accumulated (absolute or relative) support for that option
increases. Conversely, models that assume that decision makers
accumulate information until a time limit is reached predict that the
probability of terminating the decision is insensitive to the accumu-
lated support (though the response option that is eventually selected
does depend on accumulated support). Models that do not assume
any accumulation at all (i.e., have full context decay), such as the
lexicographic semiorder heuristic, would predict that response
probabilities depend only on the support sampled in the previous
time period (and not on the supports sampled in earlier time periods).

Some of the above patterns can be observed in Figures 7 and 8.
Figure 7 shows the probability of continuing deliberation (upper
panel) or selecting the first option (lower panel), as a function of
the cumulative support for the first relative to the second option
until that point in time. Here we can see that the probability of
continuing deliberation decreases in the magnitude of cumulative
support, consistent with the predicted patterns of threshold models
and contrary to the predicted patterns of time limit models.
Likewise, the probability of selecting the first response option
also depends on cumulative support, even as cumulative support
increases above +3 (which is the maximum support that can be
emitted by a single thought sample). This suggests that decision
makers are aggregating support over time, contrary to the pre-
dicted patterns of models that assume full context decay (these
models would predict that cumulative support beyond +3 would
not influence response probabilities, as decision makers cannot
aggregate the supports emitted by more than a single thought
cluster).

Figure 8 shows the probabilities of these decisions as a func-
tion of the number of thoughts generated. That is, we calculated
participants’ probability of continuing deliberation (upper panel),

or choosing the first option (lower panel), after sampling a certain
number of thoughts. Again, we see that the probability of con-
tinuing deliberation decreases, and the probability of selecting an
option increases, as the number of generated thoughts increases
(the bottom panel of Figure 8 shows that the probability of
selecting the first option increases, but note that the probability
of selecting the second option increases as well, since the
probability of continuing deliberation declines). This pattern
contradicts the simulated patterns of full context decay models.
Without accumulating supports, the probability of making any
decision should be independent of the number of thoughts
previously sampled.

Quantitative Analysis
Best-Fit Models

The qualitative patterns in Figures 6—8 do provide some evidence
for semantic congruence and decision congruence in memory, and
the accumulation of supports to a threshold in decision making with
partial or no context decay. To rigorously understand these patterns
in our data, and to disentangle the above mechanisms from other
related mechanisms that could be responsible for the observed
patterns, we fit 576 distinct memory-based decision making models
(24 memory models X 24 decision models) to the data from each of
the 10 experiments using Bayesian model fitting. Because of the
conditional independence hypothesis, we were able to separately fit
the 24 memory models to thought listing data and the 24 decision
models to decision data. As outlined above, these models are
obtained by combining different memory and decision mechanisms,
and a switchboard analysis comparing each of these models against
each other can shed light on the combination of memory and
decision mechanisms necessary to describe the data. Note that as
in the qualitative analysis above, we pool the data from each of the
two conditions in Experiments 2a and 2b. However, as these
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Figure 7
Probability of Continuing Sampling (i.e., One Minus the Probability of Ending Deliberation; Upper Panel), and Probability
of Selecting the First Response (Lower Panel), as a Function of the Cumulative Support for the First Relative to the Second

Option, in the 10 Experiments
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Note. The probability of continuing sampling thoughts decreases in absolute values of relative support, whereas the probability of choosing
the first option increases in cumulative support. These patterns are consistent with the predictions of threshold models with partial or no
context decay, such as the primary model that assumes absolute accumulation of discrete supports toward a threshold with partial context
decay, and a similar variant that assumes relative accumulation toward a threshold. On the contrary, the pattern cannot be captured by the
model variant that assumes full decay or a model that assumes an external time limit mechanism instead of threshold accumulation. See the
online article for the color version of this figure.

experiments asked participants to begin the thought listing task by
retrieving a thought that supports either the first or the second
response option, we constrained the sampling probabilities of
neutral and opposite thought clusters to be O (in the next section

we analyze the effects of the experimental manipulation in these two
experiments in detail). Also note that as we did not elicit multiple
decisions from each subject in Experiments 1 and 2, all our fits were
performed on the group level. Additional details regarding model
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fitting, such as parameter priors and model convergence, are pro-
vided in Appendix B. The Supplemental Materials repeat our
analysis for the data from Experiment 3, which allows for the
hierarchical modeling of participant heterogeneity.
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Figure 8
Probability of Continue Sampling (Upper Panel), and Probability of Selecting the First Response (Lower Panel), as a Function
of the Number of Thoughts Generated, for the Ten Experiments
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Note. The probability of continuing sampling decreases, and the probability of selecting an option increases, as the number of generated
thoughts increases. Our primary model, which assumes absolute accumulation of discrete supports toward a threshold with partial decay, predicts
the observed pattern better than a similar model with relative accumulation. Model variants assuming a time limit instead of threshold
accumulation, or assuming full context decay, do not capture behavioral patterns. See the online article for the color version of this figure.
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In Table 3 we show which of these mechanisms are present in the
best-fit model in each of our 10 experiments, evaluated based on
Watanabe—Akaike information criteria (WAIC; Watanabe, 2010) of
the joint thought listing and decision data. On the memory side, we
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Table 3
Memory and Decision Mechanisms in Best-Fit Model (Based on WAIC) in Each Experiment
Experiment la 1b Ic 1d le If 1g 1h 2a 2b # Best fit
Memory mechanisms
Cluster resampling On X v v X v v X v X X 5
Off v X X v X X v X v v 5
Semantic congruence On v v v v X v v v v v 9
Off X X X X v X X X X X 1
Decision congruence On v v v v v v v v v v 10
Off X X X X X X X X X X 0
Context decay in memory  Full X X X X X X X X X X 0
Partial v v v v v v v v v v 10
None X X X X X X X X X X 0
Model WAIC 3,637 4,187 3,600 3,733 4251 4,045 4,047 3816 3,899 4461
Decision mechanisms
Support Continuous X v X X X X v v X X 3
Discrete v X v v v v X X v v 7
Accumulation Relative X X X X X X X X X X 0
Absolute v v v v v v v v v v 10
Decision rule Threshold v v v v v v v v v v 10
Time Limit X X X X X X X X X X 0
Context decay in decision  Full X X X X X X X X X X 0
Partial v v v X v X v v v v 8
None X X X v X v X X X X 2
Model WAIC 1,271 1,130 1433 1,284 1,232 1,267 1,234 1,511 1,404 1,281

Note. Memory and decision mechanisms that are present in a majority of experiments are bolded. The memory models and decision models were fit to data

separately. WAIC = Watanabe—Akaike information criteria.

can see that the best-fit models display both semantic and decision
congruence in memory, except in Experiment le, whose best-fit
model has semantic congruence turned off (og = 0).3 All the best
performing models display partial context decay. We do not find
consistent evidence of cluster resampling. On the decision side, all
the best-fit models exhibit absolute accumulation of evidence to a
threshold, with context maintenance (eight have partial context
decay and two have no decay).” There is no consistent evidence
of the use of continuous versus discrete supports across the
experiments.

The above results persist with the k = 2 and k = 4 cluster solu-
tions, as shown in the Supplemental Materials. Note that the results
reported in the main text do not account for heterogeneity across
individuals and/or across questions. Again, in the Supplemental
Materials, we report the methods and results of an additional experi-
ment (Experiment 3), in which 51 participants each responded to all
eight decision prompts. We conducted our switchboard analyses
using hierarchical memory models and hierarchical decision models,
and obtained similar conclusions. The Supplemental Materials also
provide results of parameter recovery analyses showing that the
parameters of the models can be adequately recovered from data.

Importance of Mechanisms

In Table 4 we show the overall importance of the different mechan-
isms in our experiments by displaying the mechanisms present in the
top-10 models based on aggregate WAIC, that is, the sum of the
WAIC:s for the 10 experiments. The best-fit memory model, in terms of
aggregate WAIC, displays cluster resampling, semantic and decision
congruence, as well as partial context decay. The second, third,
and fourth best-fit models retain partial context decay, but turn off
cluster resampling, decision congruence, or semantic congruence,

respectively. Notably, turning off cluster resampling leads to a very
small WAIC increase (AWAIC = 86, aggregated over 10 experi-
ments), demonstrating that this nested (and thus more parsimonious)
model actually fits data almost as well as the best-fit full model. This is
not surprising, as the effect of cluster resampling overlaps with that of
semantic and decision congruence (resampling from a same thought
cluster corresponds to sampling from a decision-congruent cluster with
zero semantic distance). In fact, all the qualitative memory patterns we
identified in previous sections can be generated by the more parsimo-
nious, nested model without cluster resampling. Henceforth we refer to
this model, with semantic and decision congruence and partial context
decay but no cluster resampling, as the primary memory model.

As Table 4 shows, the best-fit decision model displays absolute
accumulation of discrete support to a threshold in decision making,
with partial context decay. Here, accumulation toward a threshold is
an important feature, shared by all the top-eight decision models.
Absolute, rather than relative, accumulation is favored by all models
ranked in the top-four. Partial or no context decay, rather than full
context decay, is exhibited by all the top-10 models. There is no
consistent evidence regarding discrete versus continuous support
accumulation: The best model has a discrete support accumulation,
whereas the close-performing 2nd best model has a continuous
support accumulation (AWAIC = 62, aggregated over 10

8 The decision prompt for Experiment le is “Would you prefer to eat a
salad or a burger for dinner?” In our experiments, participants display weaker
semantic congruence in questions regarding consumer preferences, com-
pared to other decision domains. For detailed discussions, please refer to the
section on Parameters in the Hierarchical Modeling and Participant Hetero-
geneity section of the Supplemental Materials.

¢ Overall, the magnitude of context decay parameters in the decision
models are much smaller (closer to 0), compared to those in the memory
models in all experiments. We elaborate on this point in the Parameters
section below in the main text.
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Table 4
Top-10 Memory and Decision Models Based on Aggregate WAICs Across All 10 Experiments
Model rank 1 2 3 4 5 6 7 8 9 10
Memory mechanisms
Cluster resampling On v X v v v v X X v X
Off X v X X X X v v X v
Semantic congruence On v v v X v v v v X v
Off X X X v X X X X v X
Decision congruence On v v X v v v v v X X
Off X X v X X X X X v v
Context decay in memory  Full X X X X v X v X X X
Partial v v v v X X X X v v
None X X X X X v X v X X
Aggregate model WAIC 39,685 39,770 40,179 40,264 40,403 40,480 40,519 40,551 40,573 40,643
Decision mechanisms
Support Continuous X v X v v v X X v X
Discrete v X v X X X v v X v
Accumulation Relative X X X X v v v v v v
Absolute v v v v X X X X X X
Decision rule Threshold v v v v v v v v X X
Time limit X X X X X X X X v v
Context decay in decision  Full X X X X X X X X X X
Partial v v X X v X v X v v
None X X v v X v X v X X
Aggregate model WAIC 13,065 13,127 13,248 13,264 13,629 13,702 13,759 13,828 14,036 14,133

Note.

The model mechanisms that are present in the best model are bolded. Here Rank 1 corresponds to the best performing model. The memory models and

decision models were fit to data separately. WAIC = Watanabe—Akaike information criteria.

experiments). Out of the top-10 models, half of them integrate
supports in a discrete manner whereas the others integrate supports
in a continuous manner. In the following analyses, we consider the
model with absolute accumulation of discrete supports to a thresh-
old, with partial context decay, as the primary decision model.

In Figure 9 we display changes in WAICs in the 10 experiments as
each of the mechanisms in the primary memory and decision models
are altered. The top-left panel shows that turning cluster resampling has
anegligible effect on WAIC. The remaining panels on the top row show
that turning semantic congruence, decision congruence or partial decay
off leads to notable increases in WAICs. The bottom-left panel shows
how WAICs change when we assume discrete support rather than
continuous support in the primary model. Depending on different
experiments, discrete or continuous support results in better model
fits, but overall, the impact of this mechanism is very small. The
remaining panels on the bottom row illustrate the effects of switching
the accumulation rule (from absolute to relative), the decision rule (from
threshold based to time limit), and the context decay (from partial or no
decay to full decay): These changes all lead to much worse model fits.

Figure 9 also shows that altering the different mechanisms has a
different effect on fits across our 10 experiments. Thus, for example,
turning off decision congruence increases the WAIC by almost 200 in
Experiment 1a but increases WAIC by only 16 in Experiment 1c. In
contrast, replacing absolute accumulation with relative accumulation
increases the WAIC by 102 in Experiment 1f, but only 39 in
Experiment 1h. Thus, even though all decision settings display
semantic and decision congruence in memory, the absolute accumu-
lation of evidence to a threshold in decision making, and context
maintenance in both memory and decision making, not all settings
require these mechanisms to the same extent.

The above results persist with the k =2 and k =4 cluster
solutions, as shown in the Supplemental Materials. All the results

are replicated using hierarchical model analyses of Experiment 3
data (which are reported in the Supplemental Materials), except that
the best-fit hierarchical decision model exhibits no context decay in
decision making (rather than partial context decay).

Parameters

Finally, Figure 10 displays the best fitting parameter values in our
models. The first row shows posterior means and 95% credible
intervals of parameters from the best-fit, full memory model. Most
of the 10 experiments have small negative values of wg, large negative
values of wyg, large positive values of wp and moderate values of 8,
except for Experiment 1b and 1e, which have positive wg and positive
ws. These parameters again show that most experiments display small
(nonsignificant amounts of) recall inhibition and repetition suppres-
sion, and large (significant) amounts of decision and semantic
congruence, as well as partial context decay. The second row shows
parameters from the primary decision model. Here we see that the
decision decay parameters (3p) are closer to O and are smaller than the
memory decay parameters (5y,). This suggests that memory and
decision making have different degrees of decay in context.'® The
observed patterns in best-fit parameters persist with the £k = 2 and

' The inconsistency between estimated decay rates in the memory and
decision models requires some justification at the level of cognitive proces-
sing. Assuming context decay in both memory and decision making offers a
theoretically cohesive perspective on capacity limits in our article (in
addition to integrating the assumptions of CMR memory models and leaky
integration decision models), however differences in parameters between the
two decays indicate that despite their architectural similarities, memory and
decision context may involve separate implementations. This could be due to
differences in the types of evidence that these mechanisms store, and the
types of computational goals that these mechanisms optimize or adapt to.
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Figure 9
WAIC Changes as We Alter the Primary Model Mechanisms in the 10 Experiments

Cluster resampling
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The primary memory model assumes semantic and decision congruence and partial context decay but no cluster resampling. Turning cluster resampling on

does not change WAICs much; turning the other three mechanisms off increases WAICs substantially. The primary decision model assumes absolute accumulation of
discrete supports toward thresholds, with partial context decay. Switching to continuous supports does not influence WAICs much; switching the other three
mechanisms leads to large WAIC increases. WAIC = Watanabe—Akaike information criteria. See the online article for the color version of this figure.

k = 4 cluster solutions, as well as the hierarchical model analyses, as
shown in the Supplemental Materials.

Describing Data
Choice Probability

Our framework provides quantitative descriptions regarding
participant responses in the types of naturalistic memory-based
decision tasks in Experiments la—1h and 2a-2b. We begin by
examining choice probability. Here we used the posterior distribu-
tions of the decision parameters, as well as the support ratings
generated by each participant. Note that we do not have support
ratings for the thoughts that would have been generated by
participants had they continued deliberating past their decision,
and thus cannot model the dynamics of the (hypothetical) decision
process past the point of choice. We address this limitation by
considering our predicted posterior probability of the participant’s
choice at the time of choice. If this probability is greater than .5, we
say that our model predicts that the corresponding option is chosen.
If not, then we predict a 50-50 choice of the two options. Figure 11
displays the accuracy rates of our model predictions with this
assumption. In the upper panel, it displays the accuracy rate for the
first option and in the lower panel it displays the accuracy rate for
the second option.

Across the 10 experiments, our primary decision model, which
assumes absolute accumulation of discrete supports toward a
threshold with partial context decay, achieved an averaged accuracy
rate of 84.6% (minimum accuracy of 74.7% and maximum accuracy
of 93.4%) when predicting the choices of participants that selected
the first option. We compared these accuracy rates to those gener-
ated by four model variants. The first variant assumes relative
accumulation toward a threshold, the second assumes relative
accumulation with time limits (this model variant fits observed
data better than a model that assumes absolute accumulation with
time limits as shown in Table 4), the third assumes full context
decay, and the fourth assumes no context decay. The remaining
assumptions of these models are identical to those of the primary
decision model. The accuracy rates of these models are 84.5%,
84.0%, 79.8%, and 86.1%, respectively. Likewise, for participants
that selected Option 2, our primary model achieved an accuracy rate
of 74.7% (minimum 59.3%, maximum 87.9%), and the four model
variants achieved accuracy rates of 75.3%, 75.4%, 72.8%, and
73.1%, respectively. Note that accuracy rates are slightly lower
for participants that selected the second option, because a small
portion of participants selected the second option without listing any
thoughts supporting that option. We speculate that this may be due
to a combination of order effects that influence thought listing
(i.e., by cuing thoughts that support the first option) and decision
noise (that subsequently cause the second option to be chosen).


https://doi.org/10.1037/rev0000318.supp

publishers.

ghted by the American Psychological Association or one of its allied
article is intended solely for the personal use of the individual user

This document is copyri

This

and is not to be disseminated broadly.

DECISIONS FROM MEMORY 23

0.6

Figure 10
Parameter Values for the Full Memory Model and the Full Decision Model for the 10 Experiments
Cluster resampling (og) Semantic congruence (ws) Decision congruence (wp) Decay (8y)
# 0.6 1
1.0 + " ¢ 0.9 + %
051 + 041 + %’ + +

t
oty R RIE AR

0.2 1

Parameter Values (95% ClI)

0.3 1
051 ! ?
— 4t e = s = - e e s o
1a 1b 1c 1d 1e 1f 1g 1h 2a 2b 1a 1b 1c 1d 1e 1f 1g 1h 2a 2b 1a 1b 1c 1d 1e 1f 1g 1h 2a 2b 1a 1b 1c 1d 1e 1f 1g 1h 2a 2b
Questions
Threshold (<) Noise (o) Decay (8p)

4

i Ty

0.01

Parameter Values (95% CI)

1a 1b 1c 1d 1e 1f 1g 1h 2a 2b

1a 1b 1c 1d 1e 1f 1g 1h 2a 2b

1a 1b 1c 1d 1e 1f 1g 1h 2a 2b

Questions

Note.

The full memory model (first row) assumes flexible cluster resampling, semantic congruence, and decision congruence with partial context decay. The

full decision model (second row) assumes absolute accumulation toward threshold with partial context decay. The dots represent posterior means, and the error
bars indicate 95% credible intervals. See the online article for the color version of this figure.

Number of Thoughts

Figure 4 displays the posterior predictive distribution of the number
of thoughts generated by each participant in each experiment, based on
our model fits. Note that to simulate the number of thoughts sampled
before a decision, we need parameter values from both the memory
model and the decision model. Here we used posterior distributions of
the primary memory model parameters to simulate the cluster sampling
process. At Time 1, the primary memory model samples a thought
according to the baseline activation strengths of the seven clusters (y); at
Time 2 onwards, it samples a thought cluster according to the baseline
activations, as well as decision and semantic congruence parameters
(wp and wg), and context decay parameters (5,,). At each time point, we
simulate a decision (select one of the two options or continue sampling)
based on the primary decision model parameters. This way, our
memory model and decision model, when combined together, can
simulate human-like memory search and decision. Here we present
results based on 12,000 rounds of simulations using posterior distribu-
tions of parameters. Like before, we compare the performance of our
primary decision model, to four other model variants. Recall that these
variants are the same as the primary model, except that they assume
relative accumulation toward a threshold, relative accumulation with a
time limit decision rule, full context decay, or no context decay,
respectively.

From Figure 4 we can see that the predicted density plots from the
primary model resemble the observed plots rather closely, showing that
our primary model is able to capture not only choice probabilities but
length of deliberation (analogous to response time measures in cognitive
decision research) as well. Across the 10 experiments, the primary model
makes the most accurate description of modal number of thoughts, as
evaluated by mean absolute deviation across experiments (MAD;
primary: 0.9; relative: 3; time limit: 3.2; full decay: 3.2; no decay:

1.3). Compared to the other variants, the primary model also provides
more accurate description of the median, as evaluated by MAD (primary:
0.2; relative: 0.6; time limit: 1.0; full decay: 1.1; no decay: 0.3). Overall,
the models with relative accumulation or no decay provide slightly
worse descriptions than the primary decision model; whereas the models
with time limits or full decay provide substantially worse descriptions
(these models are likely to underpredict the total number of thoughts
when decision makers sample both positive and negative supports and
thus do not accumulate strong enough preferences to make a decision).

Thought Clusters

Using simulated decisions from the combined memory-decision
model, we can predict the distribution of thought clusters for each
experiment. For this, we used the parameter values estimated from
the primary decision model, and compared the performance of four
memory models, including the primary memory model, a con-
strained model with semantic congruence turned off, one with
decision congruence turned off, and the final one with both turned
off. Cluster distributions based on 12,000 simulated decisions are
presented in Figure 5. Here we observe that the simulated cluster
distributions of the primary memory model closely match observa-
tions; the MAD of the proportions of clusters is only 0.002 over our
10 experiments. However, models without decision congruence,
semantic congruence, or any congruence effects also do very well at
predicting thought cluster distribution (MAD of 0.004, 0.003, 0.005,
respectively). This is likely due to the fact that these models all
permit flexible baseline cluster sampling probabilities, y = [y,
Yas - - -, ¥7), which can adjust to capture cluster sampling frequencies
even when decision and semantic congruence are turned off. We
obtain similar results with the kK = 2 and k = 4 cluster solutions, as
shown in the Supplemental Materials.
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Figure 11

Choice Prediction Accuracy for Participants Selecting the First Response Option (Upper Panel) and the Second Response Option (Lower

Panel), for the 10 Experiments
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Note that the y-axis starts from 50%, which is the chance level of prediction accuracy. The primary model assumes absolute accumulation of discrete supports

toward a threshold with partial context decay, though most other models achieve a similar degree of accuracy. See the online article for the color version of this figure.

Memory Patterns

The results in Figure 5 suggest that semantic and decision-
congruence assumptions of the models may not be needed for
capturing observed qualitative patterns of thought cluster distribu-
tions. However, in Figure 12 we show that this conclusion is
premature—a full memory model which permits semantic and
decision congruence is necessary for describing dynamic dependen-
cies in thought cluster sampling. Such a model predicts the proba-
bility of sampling a semantic or decision congruent cluster to be
higher than that generated by an IID sampling model, a pattern
reflected in human data. We simulated 12,000 rounds of the decision
process using parameter posterior distributions from the primary
decision model and the four memory models mentioned above. Our
primary memory model, with both semantic and decision congruence
on, achieves a MAD of 0.004 for predicting the mean semantic
distance between contiguous thoughts (upper panel), and a MAD of

0.010 for predicting the probability of sampling a decision-congruent
thought (lower panel). In contrast, a model without semantic con-
gruence has a MAD of 0.073 for predicting the semantic congruence
pattern and a MAD of 0.010 for predicting the decision-congruence
pattern. Likewise, a model without decision congruence has a MAD
of 0.006 for predicting the semantic congruence pattern but a MAD
of 0.116 for predicting the decision-congruence pattern. Finally, a
model without any congruence effects fails to predict both patterns,
with a MAD of 0.095 for semantic congruence and a MAD of 0.177
for decision congruence. We obtain similar results with the k = 2 and
k = 4 cluster solutions, as shown in the Supplemental Materials.

Decision Patterns

In Figures 7 and 8 we show that the assumptions in our primary
decision model are also necessary for describing the qualitative
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Figure 12

Dynamic Dependencies in Thought Cluster Sampling Across the 10 Experiments
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Note that the primary model has both semantic and decision congruence turned on. All the models presented here have cluster resampling

off and partial context decay on. Models without semantic congruence parameters overpredict semantic distances between neighboring thoughts
(upper panel). Models without decision-congruence parameters underpredict the probability of sampling a thought supporting the same option as
the previous thought (lower panel). Error bars indicate standard errors across participants. See the online article for the color version of this figure.

patterns in our decision data. Specifically, Figure 7 shows the
predicted response probabilities (keep deliberating, top panel, or
choosing the first option, bottom panel) as a function of the
cumulative support for the first option. Here the predicted response
probabilities were computed using the posterior distributions of the
decision parameters, as well as observed support ratings generated
by participants. We can see that the predicted probabilities from the
primary decision model reflect the qualitative patterns in our data,
with the probability of continuing deliberation decreasing as the
magnitude of cumulative support increases, and the probability of
selecting a response increasing as its support increases. Here the

primary decision model achieves a (MAD of 0.083 for predicting
continuation probabilities, and a MAD of 0.050 for predicting
probabilities of selecting the first option. Performance for the models
that replace absolute accumulation with relative accumulation is
almost the same as our primary model (MAD continuation: 0.080;
MAD first option choice: 0.050). The models that force context
decay to be completely off are comparatively worse (MAD contin-
uation: 0.091; MAD first option choice: 0.057). The models that
replace threshold decision making with a time limit, or force context
decay to be completely on, are especially bad (MAD continuation:
0.130 and 0.128; MAD first option choice: 0.079 and 0.096), as they
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are unable to capture the effect of cumulative support on the
probability of sampling.

Figure 8 shows the predicted probabilities of choice as a function
of the number of thoughts generated. Here our primary model
simulations capture the observed data pattern, in which the proba-
bilities of continuing deliberation decrease and the probabilities of
selecting an option increase, as the number of generated thoughts
increase. Across all the models, our primary model achieved the
smallest MAD for predicting probabilities of continuing delibera-
tion (0.081) and probabilities of selecting the first option (0.054).
The models that switch context decay completely off perform almost
equally well (MAD continuation: 0.086; MAD first option chosen:
0.054). Choice simulations of the models with relative accumulation
are less sensitive to the number of thoughts (as reflected by flatter
slopes in Figure 8) and result in larger MADs (MAD continuation:
0.147; MAD first option chosen: 0.079). Again, the models that
replace threshold decision making with a time limit, or force context
decay to be completely on, are especially bad (MAD continuation:
0.184 and 0.185; MAD first option chosen: 0.092 and 0.093).

Predicting Manipulation Effects

If the parameters of our best-fit model capture underlying memory
and decision processes, then these parameters should be able to
predict the effects of experimental manipulations that alter partici-
pant thoughts at the start of the experiment. Inspired by previous
experimental research using such a methodology (e.g., Johnson
et al., 2007; Weber et al., 2007), we attempted such manipulations
in Experiments 2a and 2b. These experiments used the decision
prompts from Experiment 1c (“Can money buy happiness?”’) and
Experiment 1d (“Is nuclear power safe?”), but asked half the
participants to begin deliberation by listing a thought that supports
the first option (“yes”) and asked the other half of the participants to
begin deliberation by listing a thought that supports the second
option (“no”). By using the same decision prompts from Experi-
ments 1c and 1d, we were able to evaluate the generalizability of our
model, by testing whether it can make accurate out-of-sample
predictions for new data sets.

As expected, our manipulations did bias choices in favor of the
prime, with participants asked to list a “yes”-supporting thought
being more likely to respond with “yes,” and participants asked to
list a “no”-supporting thought being more likely to respond with
“no.” In Experiment 2a, the choice probability of “yes” is 60.7% in
Condition 1, and 40.8% in Condition 2, X2(1) = 7.65, p = .006.
Similar priming effects can also be observed in Experiment 2b,
choice probability for “yes” in condition 1: 72.3%; condition 2:
39.4%; ¥*(1) = 22.43, p = .001.

Can our memory and decision models make out-of-sample pre-
dictions regarding the choice probability change between the two
priming conditions? To test this, we used the posterior samples of
parameters from Experiments lc and 1d and predicted choice
probabilities for trials in which the first thought cluster supported
“yes” (Condition 1) and “no” (Condition 2). The point estimations
for choice probability differences were based on 12,000 posterior
predictive samples from Experiments 1c and 1d.

As shown in Figure 13, the primary memory model, the model
with semantic congruence turned off, and the model with decision
congruence turned off, predict choice probability differences
between the two conditions in a manner that is very similar to

the observed differences. In Experiment 2a, where the observed
choice probability difference is 19.9%, the three models predict
choice probability differences of 24.5%, 26.5%, and 22.1%, respec-
tively. Similarly, in Experiment 2b, where the observed choice
probability difference is 32.9%, the predicted choice probability
differences are 35.7%, 38.9%, and 24.6%, respectively. The model
with both decision and semantic congruence turned off under-
predicts the differences between conditions, with predictions of
13.7% in Experiment 2a, and predictions of 23.4% in Experiment
2b. Consistent with query theory, our modeling results illustrate two
mechanisms responsible for the effect of thought priming on deci-
sion: (a) the manipulated first thought; (b) congruence effects, which
reinforce the manipulation by further activating thoughts congruent
with the prime.

In Figure 14 we further illustrate the congruence effects on
thought sampling in Experiments 2a and 2b. Here, after excluding
the first thoughts (which were exogenously manipulated), we still
observe higher sampling proportions for thought clusters supporting
the first response option for participants in Condition 1, and higher
sampling proportions for thought clusters supporting the second
response option for participants in Condition 2. We then used the
parameters estimated from Experiments 1c and 1d to predict this
effect. Crucially, our primary models closely capture these thought
sampling biases. Overall, there is a MAD of 0.027 between the
predictions of the primary model and observed thought cluster
proportions. The predictions of the other memory model variants
have larger MADs (decision congruence only: 0.029; semantic
congruence only 0.039; no congruence effects: 0.071). Overall,
these results show that our memory and decision models predict
both the change in choice probabilities and the change in thought
sampling probabilities, between the two priming conditions. These
conclusions are unchanged if we use the k = 2 and k = 4 cluster
solutions, instead of the k = 3 solutions, as shown in the Supple-
mental Materials.

The results in Figures 13 and 14 were based on out-of-sample
predictions (parameters estimated using Experiments 1c and 1d and
predictions made for Experiments 2a and 2b). We obtained similar
conclusions using within-sample predictions (parameters estimated
using Experiments 2a and 2b). The results are shown in Figures 17S
and 18S.

Discussion
A Tractable Framework

We have presented a framework for modeling naturalistic
memory-based decision making, in the empirical paradigm intro-
duced by query theory. Our approach uses computational language
models to preprocess and quantify the content of thoughts retrieved
from memory. These thoughts are combined into discrete clusters,
and a context-dependent memory process specifies the retrieval of
thoughts from these clusters. Context-dependent decision processes
are similarly used to model how retrieved thoughts guide final
responses.

Overall, our framework is highly general as it subsumes numer-
ous existing memory and decision models within a single computa-
tional system. It is also highly tractable, as the parameters of these
models can be retrieved from participant data. We illustrate the
generality and tractability of our model by fitting 576 memory and
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Figure 13

Difference in Probability of Choosing the First Option for Condition 1 Versus 2, in Experiments 2a—2b
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In Condition 1 (2) participants were asked to list a thought supporting the choice of the first (second) option first. In both

experiments, participants in Condition 1 are more likely to indicate the first option as their final answer. The model with both
semantic and decision congruence turned off cannot capture this pattern as well as the other models. All the models presented here
have cluster resampling off and partial context decay on. Posterior samples of parameters from Experiments 1c—1d (where the
same decision prompts are shown to participants as in Experiments 2a—2b) are used to simulate model predictions. Error bars

indicate standard errors. See the online article for the color version of this figure.

decision models to participant thought retrieval and decision data
from multiple experiments in domains such as risk perception,
consumer behavior, financial decision making, ethical decision
making, legal decision making, food choice, and well-being, soci-
ety, and culture.

The models fit data in our switchboard analysis (Turner et al.,
2018) include variants of the CMR, Markov random walk, query
theory, relative accumulation to threshold, decision-by-sampling,
leaky accumulation to threshold, lexicographic heuristic, lexico-
graphic semiorder heuristic, tallying heuristic, and the weighted
additive models. We are also able to fit hybrid models generated by
combining the distinct mechanisms assumed in the above models.
Likewise, we are able to pair the various memory models with the
various decision models, in order to comprehensively examine the
very large set of distinct memory-based decision models. In doing
so0, our work adds precision and a deeper understanding of cognitive
mechanisms underlying behavior in naturalistic decisions elicited
through the query theory experimental paradigm.

Dynamics of Memory and Decision Making

Our fits reveal that memory processes typically display semantic
and decision congruence, and decision processes typically display
the accumulation of absolute evidence to a threshold. Memory
displays moderate context decay (rather than full or no decay),
and we find mixed evidence for the role of context decay in decision
making (our fits to group-level data show moderate decay, whereas

our fits to individual-level data show weak or no decay). Overall,
retrieved thoughts increase the retrieval probability of other seman-
tically related thoughts and thoughts that support the same response
option, with recently retrieved thoughts playing a larger role in
thought retrieval. Additionally, as thoughts are retrieved, their
supports are aggregated in separate decision variables (one for
each response option), which evolve dynamically until one of the
variables reaches a threshold value.

Models equipped with the above mechanisms are able to quanti-
tatively predict the likelihood of listing different thought clusters,
observed thought cluster transitions, total length of deliberation
(i.e., number of retrieved thoughts), and response probabilities.
Such models are also necessary to account for core qualitative
patterns in these memory and decision variables, such as the
relationship between choice probability and the set of sampled
thoughts, as well as the effect of sampled thoughts on subsequent
thoughts. Finally, models with the above mechanisms are able to
quantitatively predict the effect of experimental manipulations on
thought listing and choice behavior. Thus, in line with human data,
these models predict that priming a thought that supports one
response option increases the likelihood of sampling other thoughts
supporting that option (due to decision congruence), and in turn,
increases the choice probability of that option. Some of the above
patterns have been documented in memory research and decision
research, but we are the first to quantitatively model the emergence of
these patterns in memory-based decisions, and use these patterns to
evaluate a large number of distinct models proposed in prior work.
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Figure 14

Distributions of Thought Clusters Supporting Different Options in Experiments 2a and 2b, After

Excluding the First Thought
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Note. We observe higher sampling proportions for thought clusters supporting first option for participants in

Condition 1 (start with a thought supporting the first option; top panel). The opposite is true for participants in
Condition 2 (start with a thought supporting the second option; bottom panel). This pattern is best captured by
models with decision congruence on. Note that the primary model has both semantic and decision congruence turned
on. All the models presented here have cluster resampling off and partial context decay on. Posterior samples of
parameters from Experiments 1c—1d (where the same decision prompts are shown to participants as in Experiments

2a-2b) are used to simulate model predictions. See the online article for the color version of this figure.

Note that these successes depend on the joint modeling of both
memory and decision making. In particular, by specifying a full
memory-based decision model, we are able to use the model to
simulate human-like decisions without relying on experimental data
like thought support ratings. At each time point, we can use the
memory model to generate a thought, and use (discrete/binary)
ratings of the thought cluster to update the decision accumulators,
allowing us to predict, out of sample, the behavior of participants on
the group level (as we do in Experiments 2a and 2b).

Conditional Independence and Thought Vectors as
Useful Modeling Tools

Our approach can accommodate nuanced memory search and
decision dynamics, as memory and decision processes are assumed
to interact only via context. Thus, these processes are conditionally
independent on context, and can be fit separately to thought listing or
decision making data. Of course, this assumption can also be applied to
other types of process data, such as eye-tracking or mouse-tracking

data (see e.g., Schulte-Mecklenbeck et al.,2011). As with the memory
search task modeled here, these kinds of data involve the sequential
sampling of discrete pieces of information, which guide the formation
of beliefs and preferences. If we assume that the processes governing
attentional dynamics in eye-tracking and mouse-tracking tasks interact
with decision making through context (and only through context), we
can formulate and test joint models of attention and decision making
for which attention and decision processes are conditionally indepen-
dent on context. These models could involve complex search dynam-
ics as well as complex decision rules, but would be tractable given the
conditional independence property.''

! Intuitively, such models would retain the decision components of our
approach, but would replace the memory components with assumptions
better suited to modeling attentional dynamics. In such implementations,
context would keep track of the regions of the display (rather than individual
thoughts) that have been previously sampled. Likewise, eye-movement
transitions could be sensitive to physical proximity rather than semantic
congruence, and baseline activation biases could be due to item positioning
on the display.
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Another crucial component of our modeling framework is our
ability to quantify thought content using sentence vectors (Cer et al.,
2018), and more generally, to model the types of knowledge
representations that influence decisions. It is clear that a complete
model of decision making needs access to what people know about
judgment and decision targets, and thus needs to be equipped with
realistic knowledge representations about the world. In recent work,
we have argued that such representations can be approximated using
vector semantic models trained on large-scale natural language data
(Bhatia & Walasek, 2019; Bhatia, 2019; Bhatia et al., 2019; Richie
et al., 2019). In this article we further illustrate the value of semantic
vectors by showing how they can be used to model the content of
thoughts during naturalistic decision making. We are especially
excited about novel technical advances in this area that facilitate the
development of more sophisticated models of judgment and deci-
sion making, that are equipped with both human-like knowledge
representations as well as human-like cognitive processes for aggre-
gating knowledge representations to form beliefs and preferences.

Further Work on Complex Mental Processes

For the sake of tractability, we have made simplifying assump-
tions about the representation or content of thoughts, as well as the
memory search processes that operate over them. For example,
inspired by the context and maintenance retrieval model (Polyn
et al., 2009) in list recall research, we have assumed that limits in
working memory capacity derive from decay in context. Of course,
this is not the only way to implement limits in working memory.
SAM (Raaijmakers & Shiffrin, 1981), for example, assumes that
working memory is limited due to probabilistic deletion of older
items. Interference-based mechanisms are also possible and may
actually best explain capacity limits in certain settings (Oberauer
et al., 2016). We expect that our framework can be modified to
accommodate such alternative implementations of working memory
capacity limits.' It may ultimately be that such alternative mechan-
isms better account for capacity limits in the present kinds of
memory-based decision making.

Moreover, we have assumed that every thought belonged to one
of a handful of discrete clusters—even though this discards some of
the power of distributed vector representations—and that thoughts
influenced search of other thoughts only through cluster resampling,
decision congruence, and semantic congruence. Although thoughts
for a given question may tend to revolve around a limited number of
themes or topics represented by our clusters, in reality, thoughts—
and the sentences we use to communicate them—do not belong to a
finite number of clusters. Rather, there is an infinite number of
thoughts and sentences we can express, and moreover, there is a
discrete, compositional structure to these thoughts and sentences
(Fodor, 1975; Fodor & Pylyshyn, 1988), and it is this structure
which licenses more complex forms of (logical) reasoning than
those modeled here. Finally, thought vectors are likely to vary from
subject to subject, something that we cannot address in the article
(even with our fits to individual-level data). This is, of course, a
limitation of all distributional semantics models, which are unable to
capture heterogeneity in participant representations. Accommodat-
ing participant heterogeneity and more complex forms of thinking
and reasoning using quantitative representations is an important
topic for future work.

It is also possible that the act of listing thoughts (as in our
experiments) alters deliberation processes, so that our models do
not capture memory-based decision making without the thought
listing protocol. Fortunately, previous work on the query theory
paradigm has found that eliciting thoughts does not alter choice
frequencies (see e.g., Johnson et al., 2007), though future work
could attempt to rigorously test this using the modeling framework
introduced in this article. It is also possible that decisions rely on
information not revealed during thought listing. For example,
people may have certain strong (negative) affective associations
with nuclear power that they are not entirely aware of and thus do
not explicitly list in their thoughts. This is certainly possible and
perhaps even likely, and it should be possible for at least some of
these sorts of biases to show up in future decision models as a
starting point effect, which we did not account for here. Of course, it
is possible that participants do explicitly retrieve and evaluate
certain decision-relevant thoughts during deliberation, but choose
to omit these in their listed thoughts for various reasons, including
social desirability. However, we suspect that few, if any, of our
questions are so controversial that subjects feel pressure to censor
themselves.

The decision prompt or type of decision being made may also
alter certain properties of memory search and decision making. In
particular, our second and fifth questions—which entail choices
between gift certificate purchases and dinner options, respectively—
differ from the remaining questions on the memory side. These two
questions have a more positive cluster resampling parameter than
other questions, and have positive semantic congruence parameters
where other questions have negative semantic congruence parame-
ters (see Figure 10). Interestingly, when we fit the hierarchical
models to the data collected in Experiment 3, we replicated these
results (see Figure 10S in the Supplemental Materials), indicating
that these patterns are not spurious, but rather systematic. We
suspect that these two questions are different because of the nature
of their decision domain, as they are the only two questions on
preferential decision making. We are unsure why preferential deci-
sion making would involve these differences, and therefore suggest
that this is a topic for future work (which could, for example,
systematically compare model parameters across many variants of
the questions used in the current article). More generally, Experi-
ment 3 in the Supplemental Materials largely replicated the results of
Experiment 1, with the exception of decision decay: Our group-level
fits support moderate decision decay, but decision decay is close to
zero in our hierarchical fits. We speculate on the source of this
discrepancy in the Supplemental Materials, but better understanding
this difference in the group-level and hierarchical fits could be a
direction for future work.

There are also certain processes of memory search in word recall
and semantic fluency tasks that we have not extended to the present
setting, which may still be applicable. Perhaps chief among these are
optimal foraging processes (Hills et al., 2012; see also Abbott et al.,
2015) which have been shown to operate in semantic memory
search. A similar process may operate when searching for thoughts

12 Although certain implementations of capacity limits, such as probabi-
listic forgetting, may make the likelihood function no longer analytically
tractable, meaning that the Hamiltonian Monte Carlo algorithm used to fit our
models no longer apply, and other Bayesian computation methods may be
necessary (e.g., Turner et al., 2016).
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relevant to the present kinds of naturalistic decisions, and future
work should attempt to model optimal foraging in the context of
memory-based decision making. Additionally, memory could also
involve more superficial verbatim representations of information (in
addition to the more abstract gist representations we have attempted
to model), which could be integrated into the current framework by
adapting some of the insights of fuzzy-trace theory (see e.g., Reyna,
2012 for a discussion).

There may also be additional processes operating on the decision
side. For example, decision makers may decrease their decision
threshold as they sample more thoughts (often captured by collaps-
ing boundaries in the sequential sampling model literature, e.g.,
Hawkins et al., 2015). They may adopt a hybrid decision rule that
combines threshold-based and time limit elements (e.g., Reutskaja
et al., 2011), or make choice with nonnormally distributed noise
(e.g., Voss et al., 2019). Additionally, a fuller understanding of the
priming manipulation in Experiment 2 may require including a
flexible starting point parameter in the decision model (e.g., Mulder
et al., 2012)."® Given the complexity of these decision mechanisms,
and possible heterogeneity across individuals, we leave it to future
studies to design experiments and expand our modeling framework
to better capture the nuances in the decision process. We suspect
asking subjects to complete multiple primed questions may lead to
an unnatural decision setting, and that multiple primes may not have
persistent effects.

We have also assumed that memory and decision processes do not
directly interact. Thus, even though retrieved thoughts influence
decisions, they do so only via the support ratings (which we are able
to observe through our experimental paradigm). Conversely, the
state of the decision context variables (e.g., accumulated evidence
favoring the two response options) does not influence thought
retrieval. By separating memory and decision processes in this
manner we have gained considerable tractability, yet evidence in
reasoning and decision making research suggests that accumulated
preferences can have a direct influence on thought activation and
retrieval. Specifically, decision makers have been shown to reason
through coherence-maximizing processes that result in thought
activation that is consistent with the evolving decision variables
(Bhatia, 2016; Glockner & Betsch, 2008; Holyoak & Simon, 1999;
Simon et al., 2004). Such mechanisms could also be a product of
goal-directed deliberation processes. Despite these computational
concerns, such a specification is worth testing in future work, as
coherence-based reasoning and goal-based decision making is a
crucial component of naturalistic decision processes.

Perhaps many of the extensions of our approach, from accounting
for additional outcome and process measures like response times or
eye- and mouse-tracking data, to adding additional memory and
decision processes like logical reasoning, could be implemented by
joining our models with mechanisms implemented in ACT-R’s
modules (Anderson, 2007; Anderson et al., 2004; Dimov et al.,
2020; Marewski & Mehlhorn, 2011). One advantage of this
approach would be that additional free parameters might not be
necessary, and instead one could use ACT-R’s default parameters
that have been validated across many paradigms and tasks of
varying complexity. Given the architectural similarities between
our frameworks—for example, context in our framework is akin to
the module buffers in ACT-R—we believe such a union of ap-
proaches would be both natural and fruitful.

Ultimately, memory-based decision making is likely to contain a
mix of complex thinking, reasoning, and decision processes. Some
will likely be those we have modeled, like similarity and decision
congruence in memory and absolute accumulation to threshold in
decision making, and some we have not, like logical reasoning,
optimal search, and coherence-based reasoning in memory, and
starting point biases in decision making. Although our framework is
by no means complete, we believe it offers a valuable statistical tool
for describing the underlying dynamics of many of these more
complex thought processes. By vectorizing thoughts to quantify
their content, and by placing these thoughts into a context repre-
sentation that guides decisions, we allow for a model capable of
displaying complex transitions between thoughts, as well as pre-
dicting choice probabilities and lengths of deliberation. Attempting
to integrate more complex forms of memory and decision making
into such a model will likely drive our research for many years
to come.

'3 Currently such a starting point effect is hard to empirically distinguish
from the decision congruence effect of our memory model, and cannot be
parametrically recovered without many repetitions of the same question for
an individual.
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Appendix A

Experiment Instructions

In this study, we are interested in what people think about when
making their decisions. In the subsequent screens you will be presented
with {Expl: two; Exp2: one Exp3: eight} question{s} which present
two options (e.g., yes or no, or cake or pie). For each question you will:

1. List the thoughts that come to your mind as you decide
your answer to the question. Please report your thoughts
as complete sentences, in English. Your listed thoughts
should be understandable by a third party. You can list
thoughts supporting both choices (yes or no, cake or pie),
regardless of your eventual choice. For example, if the
question was “Are school uniforms a good idea?,” you
could write “Self-expression is important but limited by
school uniforms” and/or “Uniforms can prevent bullying
of less rich kids who can not afford as nice clothes.” You
would not write just “student expression” or “bullying,”
or just “yes” or “no.” NOTE: The top 50% of participants

with the clearest thoughts will be given a 50% bonus
(e.g., a $2 study would pay a bonus of $1).

2. Provide your answer to the question. The questions you
will be asked were designed to be subjective and poten-
tially difficult to answer. You may not feel that your
answer easily fits into either choice, but please neverthe-
less select one answer.

3. For each thought you listed in (1), indicate which choice
(e.g., yes/no, cake/pie) the thought supported.

At the end you will be asked a couple of questions about
your background.

Thank you for participating! When you are ready, click next. A
blank page will momentarily appear, and then the first thought
listing page will appear.

Appendix B
Model Fitting Details

The decision and memory models were fit to data using RStan
(Stan Development Team, 2020). We generated four chains of 3,500
samples, where the first 500 samples of each chain were burn-ins.
The results were based on the combined 12,000 samples for each
model. Overall, we used weakly informative prior distributions for
the parameters. The prior distributions for the baseline activation
strengths of the clusters (y) and the scalar weights in the memory
models (wg, ws, and @p) were Normal(0, 2%) and Normal(0, 5%),

respectively. To avoid nonidentifiability, we constrained the acti-
vation strength of the last cluster to be 0 in all the memory models.

On the decision side, the prior distribution used for the threshold
value (1) was Half-Normal(0, 352). Instead of fitting the standard
deviation parameter (o) of the normally distributed error at time #(g;)
directly, we fit o/t in the model. The prior for this parameter is Half-
Normal(0, 0.5%). In the time limit models, the probability of
continuing deliberation (M) is the same after each thought cluster
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sample, and thus the deliberation time 7 follows a Geometric
distribution. The prior distribution used for A was Uniform(0, 1).
The prior distribution used for the standard deviation parameter ()
of the normally distributed error at time #(g,) is Half-Normal(0, 35%).
In both the memory and the decision models, the prior distribution
for the decay parameters (5,;, 6p) was Uniform(0, 1).

To assess model convergence, R parameters were calculated
for each model. Among all the parameters of all the models,
the largest R was 1.010, indicating successful convergence of
the chains. The smallest number of effective sample size was

1,082. In the article, when reporting results regarding the memory
models, we use the k = 3 k-means thought clustering solutions
(i.e., seven distinct thought clusters) for each experiment. Results
for k= 2 and k =4 k-means clustering are provided in the
Supplemental Materials).
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