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THEORETICAL NOTE

Free Association in a Neural Network
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Free association among words is a fundamental and ubiquitous memory task. Although distributed semantics
(DS) models can predict the association between pairs of words, and semantic network (SN)models can describe
transition probabilities in free association data, there have been few attempts to apply established cognitive
process models ofmemory search to free association data. Thus, researchers are currently unable to explain the
dynamics of free association using memory mechanisms known to be at play in other retrieval tasks, such as
free recall from lists. We address this issue using a popular neural network model of free recall, the context
maintenance and retrieval (CMR)model, which we fit using stochastic gradient descent on a large data set of free
association norms. Special cases of CMRmimic existing DS and SNmodels of free association, and we find that
CMR outperforms these models on out-of-sample free association data. We also show that training CMR on free
association data generates improved predictions for free recall from lists, demonstrating the value of free
association for the study of many different types of memory phenomena. Overall, our analysis provides a new
account of the dynamics of free association, predicts free association with increased accuracy, integrates theories
of free associationwith establishedmodels of memory, and shows how large data sets and neural network training
methods can be used to model complex cognitive processes that operate over thousands of representations.
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In free association, subjects are asked to generate one or more
words that come to mind in response to a cue word. For example,
given the cue stork, a subject might respond baby, egg, and
mother, in that order. Due to its simplicity, free association has
been one of the most popular tasks in psychology for over a
century. Francis Galton used this task as early as 1880, to better
understand the nature of his own mental associations (Galton, 1880).
William Wundt and his collaborators built on Galton’s ideas to study
response times and underlying cognitive operations in experimental
participants (Cattell, 1887). Of course, free association is itself
most associated with Sigmund Freud, who used the task to
examine patients’ thoughts free of censorship (Freud, 1913/
1958). More recently, free association has emerged as a leading
method in cognitive psychology and cognitive science, particu-
larly in the study of mental representation and memory, and its

relationship with language (Clark, 1970; Deese, 1959, 1962). In
the 21st century, psychologists have collected large data sets of
lexical free association norms (De Deyne et al., 2019; Nelson et al.,
2004) and have used these norms to study phenomena such
semantic organization (Steyvers&Tenenbaum, 2005), lexical access
(De Deyne et al., 2013), similarity judgment (De Deyne et al., 2016),
semantic memory search (Abbott et al., 2015), cued recall (Nelson et
al., 1997), recognition memory (Nelson et al., 1998), visual word
recognition (Balota et al., 2004), creativity (Kenett et al., 2014),
cognitive development and aging (Dubossarsky et al., 2017), and
much more.

While free association data have been useful in understanding
various cognitive phenomena, free association is itself fundamen-
tal and ubiquitous, arguably underlying much of cognition and
behavior in the wild. For this reason, free association deserves an
explanation of its own (see Nelson et al., 2000, for a compelling
argument). That is, free association needs a model, ideally specific
enough to be implemented computationally and trained on free
association data, and general enough to predict participant re-
sponses to novel cues (i.e., cues for which there are no training
data). However, modeling free association presents some difficult
challenges, as free association involves complex memory pro-
cesses operating over thousands of semantically rich words and
concepts. Thus, a computational model of free association requires
specifying (a) representations for the many words and concepts
that people may know about and (b) retrieval processes which
operate over these representations to generate responses in free
association tasks.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Sudeep Bhatia https://orcid.org/0000-0001-6068-684X
Funding was received from the National Science Foundation Grant

SES-1847794. Versions of this article were presented at the Psychonomic
Society Conference and the Context in Episodic Memory Symposium.
Code and trained weights can be downloaded from https://osf.io/as26x/.
This study was not preregistered.
Correspondence concerning this article should be addressed to

Sudeep Bhatia, Department of Psychology, University of Pennsylvania,
3720 Walnut Street, Philadelphia, PA 19104, United States. Email:
bhatiasu@sas.upenn.edu

Psychological Review

© 2022 American Psychological Association
ISSN: 0033-295X https://doi.org/10.1037/rev0000396

1

https://doi.org/10.1037/a0038693
https://doi.org/10.1037/xlm0000964
https://doi.org/10.1037/a0016261
https://doi.org/10.1162/tacl_a_00106
https://doi.org/10.1016/S0079-7421(08)60422-3


Researchers have made progress on (a) by using distributed
semantics (DS) models (illustrated in Figure 1A), which exploit
statistics of word use in large collections of text to derive semantic
representations of words in the form of real-valued vectors (Howard
et al., 2011; Jones & Mewhort, 2007; Landauer & Dumais, 1997;
Mikolov et al., 2013; Pennington et al., 2014; for reviews, see Bhatia
et al., 2019; Lenci, 2018; or Günther et al., 2019). These, and related
models based on corpus statistics (e.g., Chaudhari et al., 2011; Ji
et al., 2008; Matusevych & Stevenson, 2018; Peirsman &Geeraerts,
2009), can predict associations between pairs of words (e.g., stork
and baby) by using the co-occurrence frequencies and the absolute
frequencies of the words in language (Griffiths et al., 2007; Jones
et al., 2018; Nematzadeh et al., 2017; Pereira et al., 2016). However,
the combination of these representations with cognitive process
models of memory—that is, requirement (b) from above—has been
limited. This is why such models are unable to describe continued-
response dynamics in free association and cannot easily predict how
later responses (e.g., mother) depend on the combined effect of the
cue (e.g., stork) and responses recalled earlier in the trial (e.g., baby
and egg).
Researchers have also made progress on (b) by using semantic

network (SN) models (Abbott et al., 2015; De Deyne & Storms, 2008;
De Deyne et al., 2013, 2016, 2019; Dubossarsky et al., 2017; Kenett
et al., 2014; Kumar et al., 2019; Steyvers & Tenenbaum, 2005;

illustrated in Figure 1B). Typically, SN models of free association
measure the connection strengths between pairs of words using
response frequencies in empirical free association data. Randomwalks
on these networks (with transition probabilities proportional to con-
nection strength) are subsequently used to describe retrieval processes,
and sometimes describe asymmetry, clustering, and response se-
quences in free association data. Again, however, SN models leave
some gaps in our understanding of free association. First, since their
transition probabilities are based entirely on observed free association
data, these networks cannot be easily used to make out-of-sample
predictions (e.g., predictions for trials with new cues). In this way,
these networks fail to solve requirement (a) outlined above, that is they
do not provide (a priori) representations for the thousands ofwords and
concepts over which free association processes can operate. Second,
random walks on semantic networks typically satisfy the Markov
property and assume that the retrieval probability of a word depends
only on the previously recalled word. Although Markov models can
generate long sequences of semantically related words (stork can
activate baby which can activate egg, which can activate mother), the
Markov property implies that once we know the word retrieved at time
t− 1 (in our example, egg) no further improvements in our predictions
of the word retrieved at t (mother) can bemade by knowing theword at
t − 2 (baby) or the cue word (stork). This property has been shown to
be violated in human memory, as the cue and the previously retrieved
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Figure 1
Models of Free Association

Note. Free association modeled using distributed semantics (A) or as a randomwalk on a semantic network (B). Architecture of the conventional CMRmodel
for free recall from lists (C) and our modified CMR model for free association (D).MWC andMCW describe word-to-context and context-to-word connection
weights, respectively, δ is a context feedback term, and γ captures the persistent effect of the cue. Our modified CMR model mimics distributed semantics
models when MWC = MCW and γ = 1, random walk models when γ = δ = 0, and the CMR model for free recall from lists when γ = 0. CMR = context
maintenance and retrieval.
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responses have a significant effect on subsequent recall (Kahana &
Caplan, 2002; Lohnas & Kahana, 2014; Posnansky, 1972). Note that
some researchers have combined DS and SN models by equipping
semantic networks with measures of association strength obtained
from distributed semantic representations (Gruenenfelder et al., 2016;
Rotaru et al., 2018; Utsumi, 2014). Random walks on these networks
can predict out-of-sample participant responses in free association
(Kumar et al., 2020), though they cannot capture violations of the
Markov property in response chaining.
To help address these issues, we draw inspiration from models

developed for a task closely related to free association: free recall from
lists. In this task, subjects are given a list of words to study, and then
asked to recall as many words from the list as they can, in any order
that comes to mind. Due to its simplicity, the free recall from lists
task is widely used to study memory retrieval and search (e.g.,
Atkinson & Shiffrin, 1968; Bousfield, 1953; Deese, 1959; Murdock,
1962; Tulving, 1962). Subjects in this task consistently demonstrate a
range of effects, the most relevant for us being semantic clustering
(adjacent recalled words tend to be semantically related; Bousfield,
1953; Romney et al., 1993), asymmetric response probabilities (words
are more likely to cue the retrieval of following, rather than preceding,
words in the list; Kahana, 1996), and compound cueing (retrieval
probabilities of words depend on words recalled much earlier, a
violation of the Markov property; Lohnas & Kahana, 2014).
A host of computational models have been developed to account

for these dynamics (see Kahana, 2020, for review), but we take
special interest inmodels based on retrieved context theory. This class
of models, best exemplified by the temporal context model (TCM;
Howard & Kahana, 1999) and context maintenance and retrieval
model (CMR; Polyn et al., 2009), are recurrent neural networkswith a
layer for words and a layer for an evolving “context” representation
(see Figure 1C). Recalling a word activates its corresponding node
on the word layer, which sends activation to the context layer (i.e.,
retrieves the state of context at the time the word was studied), and
the context layer in turn sends activation back to the word layer,
cuing the next word for recall. Because the context-to-word and
word-to-context weights are initialized with semantic similarity mea-
surements from DS models, this process tends to produce a chain of
semantically related words during retrieval. Further, the context-to-
wordweights can be different to theword-to-context weights, allowing
for both temporal and semantic asymmetries in recall. Finally, the
context encodes a (potentially decayed) representation of previously
retrieved words as well as task-related variables such as cue words,
allowing the CMRmodel to capture dynamics in free recall from lists,
including cue-dependence and violations of the Markov property.
In this article, we develop a variant of the CMR model (illustrated

in Figure 1D), which uses existing DS representations to specify
word-to-context weights, but fits context-to-word weights flexibly to
free association data. We train our network using stochastic gradient
descent on a large free association data set (De Deyne et al., 2019) and
test its ability to predict out-of-sample response sequences in free
association.

Theoretical Background

Cognitive Process Models of Recall

Many influential cognitive models of memory search have
been developed using the free recall from lists paradigm (see

Kahana, 2020, for a review). In this task, participants study a list of
words and later attempt to remember as many words as they can.
There are numerous reliable empirical patterns in free recall from lists.
These include serial position effects such as the primacy and recency
effect (Murdock, 1962), as well as temporal contiguity effects, in
which subjects cluster recalls based on their temporal encoding
order (Kahana, 1996). Temporal contiguity effects involve asym-
metric retrieval probabilities, as words usually cue the retrieval of
following, rather than preceding, words in the presented list.
Semantic similarity has also been shown to influence the output
order and latency of recalled words (Bousfield, 1953; Romney et al.,
1993). Words that are semantically similar to one another are more
likely to be recalled in neighboring positions, generating semantic
clustering in recall data. Finally, free recall from lists involves
long-term retrieval dynamics, with retrieved words influencing
many subsequent recalls (Kahana & Caplan, 2002; Lohnas & Kahana,
2014; Posnansky, 1972).

The earliest models of free recall assumed that participants
associated words with neighboring positions in the list, resulting
in a network representation of the list. Recall in these “associative
chain” models took the form of a random walk over the network
(Ladd &Woodworth, 1911). Associative chain models of free recall
are closely related to the semantic network models discussed below,
but have fallen out of favor due to their inability to account for
empirical findings, such as error and intrusion patterns in serial recall
(Kahana, 2020; Osth & Hurlstone, 2022). Instead, modelers have
favored more complex models that make nuanced assumptions
about storage, retrieval, as well as semantic and episodic context.
For example, dual-store memory search models distinguish between
two separate memory stores, the limited-capacity short-term store
(STS) and the long-term store (LTS; Atkinson & Shiffrin, 1968;
Raaijmakers & Shiffrin, 1981). According to the search of associa-
tive memory (SAM) model, a leading dual-store memory model,
words in the STS are readily available for recall, whereas LTS is
searched with the cue, and words are probabilistically sampled
based on the strength of association between the cue and the target
word.

Retrieved context theory (Howard & Kahana, 1999, 2002a) is
another approach to modeling memory, that is built on ideas initially
introduced by dual-store models. According to retrieved context
theory, remembering a word brings back its encoding context, which
in turn serves as a retrieval cue for subsequent recalls. Here, we will
concentrate on a particular model, the CMR (Polyn et al., 2009), a
generalized version of earlier retrieved context models. The CMR
model includes two representational structures: a word layer and a
context layer (Figure 1C). Two sets of weights connect these layers
and characterize the strengths of the word-to-context and the
context-to-word associations. If a new word is activated, the acti-
vation on the word layer is used to update the context layer and
update the existing information in context. The new context activa-
tion is a linear combination of the previous context activation and
the input from the word layer, which depends on the word-to-
context connection weights. During the retrieval phase, context
serves as a retrieval cue, so that the context activation determines
the new word activation based on the context-to-word connection
weights.

The connection weights are updated through a Hebbian learning
process, the details of which are too complex to be described here,
and are largely irrelevant to our own implementation of CMR,
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which models only associative retrieval, and not learning. However,
it is important to note that this updating process allows for (pre-
experimental) semantic similarity relationships to influence associa-
tions. Typically, this is done by initializing the connection weights
with word vector representations from latent semantic analysis
(Landauer & Dumais, 1997) or other similar distributed semantics
models. This allows CMR to explain semantic clustering effects in
free recall from lists, as words in context cue the retrieval of other
semantically related words (Healey & Uitvlugt, 2019; Howard &
Kahana, 2002b; Morton & Polyn, 2016; Polyn et al., 2009; Socher
et al., 2009). Additionally, the Hebbian learning process responsible
for updating the connection weights causes items presented in nearby
positions during learning to be more strongly associated with each
other, thus explaining temporal contiguity effects. Importantly,
these effects are asymmetric, with recall transitions in the forward
direction being more likely compared to those in the backward
direction. In other words, the degree to which word i cues word j is
not the same as the degree to which word j cues word i (see Howard
& Kahana, 2002a; Kahana, 1996; and Polyn et al., 2009, for more
details).
The retrieval mechanisms of CMR also allow for complex

response dynamics. As discussed above, activating a word updates
context. This updating combines the previous context activation
with the new word activation. In this way, context evolves as new
words are activated, and the effect of previously recalled words
decays over time. However, this decay is partial, implying that
words activated or recalled at t can influence context at t + 2 or later,
violating the Markov property. Indeed, observed recall dynamics in
free recall from lists have been shown to violate this property in
the manner predicted by the CMR model (Kahana & Caplan, 2002;
Lohnas & Kahana, 2014; Posnansky, 1972).
Overall, the CMR model successfully captures many patterns in

free recall from lists. Thus, it is possible that this model could also be
useful for describing free association. The tasks of course share an
essential similarity—in both tasks subjects provide unstructured
sequences of lexical responses drawn frommemory and cued by one
or more words presented or recalled earlier in the trial. Models of
free association may therefore benefit from elements of free recall
models, like CMR’s asymmetry between word-to-context and
context-to-word connection weights, and in the case of continued
free responding, an evolving context layer reflecting recent and
older responses.
However, while it is easy to see the similarities between the free

recall from lists and free association, the two tasks do differ in key
aspects. First, the responses participants give in free association
tasks are much less constrained, being drawn from more or less
the entire lexicon, while in free recall from lists participants attempt
to remember a small set of studied items. Thus, unlike previous
applications of CMR, in which the set of recallable items is limited
to an experimenter-specified list, a model of free association must
allow for nearly arbitrary responses. This poses several technical
challenges, due to the complexity in the underlying structure of
CMR, as well as the complex dynamics known to be at play in free
association. Second, the continued free association task directs
subjects to continue responding to a cue, whereas the free recall
task asks participants to recall as many words as they can, in any
order that comes to mind. In free association then, early responses
and later responses may both be semantically related to the cue in
some way. This necessitates modifications to CMR’s context

representation that can allow for a persistent effect of the cue
word (in addition to the effect of the cue word at the start of
retrieval).

Previously, Howard et al. (2011; also see Shankar et al., 2009)
have attempted to address the first challenge by fitting a variant of
the CMR model, the predictive temporal context model (pTCM),
on natural language data. They have shown that pTCM can recover
word-to-context and context-to-word associations for thousands of
words that exceed the predictive accuracy of some distributed
semantics models (discussed in the section below) for a variety of
tasks, including free association. Another closely related model,
the syntagmatic paradigmatic (SP) model, has been put forth by
Dennis (2005). The SP model is a general account of verbal
cognition based on associations that reflect both direct word co-
occurrence as well as relational similarity. Crucially, it is capable
of being trained on natural language data and has been shown to
account for several findings in free recall. To our knowledge, the
pTCM and SP models have not been used to explain nuanced
dynamics of free association, such as asymmetric retrieval proba-
bilities and response chaining effects. However, the results of
Howard et al. (2011) and Dennis (2005) do demonstrate the
promise of combining memory models (like CMR) with word
representations obtained from language, for modeling free associa-
tion. In this way, these models serve as theoretical steppingstones for
our own work. In the discussion section of this article, we examine
how the assumptions of these models can be used to extend our
framework to more realistically capture the processes at play in
word learning, sentence processing, and reasoning.

Distributed Semantics Models

While computational models of free recall from lists provide
inspiration for a model of the operations or processes at play in
free association, we still require a model of the representations over
which those operations work. For this, we turn to distributed seman-
tics (DS) models, which are a class of models that derive vector
representations for the meanings of words, based on statistics of
word–document or word–word co-occurrence in large collections of
texts (Griffiths et al., 2007; Jones & Mewhort, 2007; Landauer &
Dumais, 1997; Mikolov et al., 2013; Pennington et al., 2014; for
reviews, see Lenci, 2018; Bhatia et al., 2019; or Günther et al.,
2019). Perhaps the most well-known method in this class (at least
to psychologists) is latent semantic analysis (LSA), in which a
word–document co-occurrence matrix is built, and then reduced
with singular value decomposition (Landauer & Dumais, 1997).
Words with similar distributions in text end up with similar vectors
through LSA, and thus similarity or relatedness judgments between
words can be captured reasonably well through distance metrics like
cosine between pairs of word vectors. Other methods for building
word vectors include BEAGLE (Jones & Mewhort, 2007), GloVe
(Pennington et al., 2014), Word2Vec (Mikolov et al., 2013), as
well as the predictive TCM (Howard et al., 2011) described above.
Whatever the approach, such vectors have proven quite successful
in psychological applications beyond just similarity and related-
ness judgments. Distance metrics like cosine predict strength of
semantic priming in, for example, the lexical decision task, as
measured by reaction times (Jones et al., 2006; Mandera et al.,
2017), and have been used in models like CMR to account for
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semantic clustering in free recall from lists (Howard & Kahana,
2002b; Polyn et al., 2009).
Semantic judgments about words (e.g., the tastiness of a food) can

also be approximated by calculating the relative vector similarity of
a judgment target (e.g., apple) to words high (e.g., delicious, tasty)
and low (e.g., disgusting) on a judgment dimension (Grand et al.,
2022; Richie et al., 2019). However, even better (out-of-sample)
approximations of semantic judgments can be made by directly
regressing human ratings for a semantic dimension onto the vectors
for judgment targets (Bhatia, 2019; Bhatia et al., in press; Gandhi
et al., 2022; Hollis et al., 2017; Richie et al., 2019; Utsumi, 2020;
Zou & Bhatia, 2021; see Snefjella & Blank, 2020, for a comprehen-
sive list of “semantic norm extrapolation” studies, as well as caveats
thereof). The advantage of this approach is that it allows for human
data to directly supervise the setting of flexible weights on the
attributes of the target representation. These weights, in a sense,
provide a better model of the relationship between the judgment
target and the judgment dimension than do hand-selected words for
the judgment dimension.We will suggest taking a similar approach
in the next section when building models of free association.
Further, because DS models exploit co-occurrence information in

text, they can proxy the associations between words. For this reason,
DS models have been used to study associations in probability
judgment (Bhatia, 2017a) and social judgment (Bhatia, 2017b;
Bhatia et al., 2018; Caliskan et al., 2017). Finally, as mentioned
in the opening of this article, free association can and has been
modeled with DS models. Perhaps the most straightforward way to
model free association would be to simply correlate the probability
of recalling one word (R) given another (C), p(R|C), with a measure
of similarity, like cosine similarity, between the word vectors for the
response and the cue (Figure 1A). However, as many have pointed
out over the years (e.g., Griffiths et al., 2007; Jones et al., 2018;
Tversky, 1977; but also see Kintsch, 2014), cosine and related
distance metrics are inherently symmetric, and thus cannot account
for asymmetric associations, which by some estimates constitute
over 85% of all pairs of associated words in norms (Griffiths et al.,
2007). Instead, researchers have evaluated DS models on free
association data in various ways that can handle asymmetries.
For example, Pereira et al. (2016), who evaluated a variety of
DS models ranging from LSA to Word2Vec on the well-known
University of South Florida (USF) free association norms (Nelson et
al., 2004), calculated the percentage overlap between the top 50
most frequent responses to a cue, and the top 50 most similar words
to the cue by cosine similarity. Such an approach can handle
asymmetry between words when they have neighborhoods of
varying semantic density. For example, baby could be closer to
stork than most other words, but the opposite may not be true if
words such as infant and mother are in the immediate neighborhood
of baby. Thus p(baby|stork) can be higher than p(stork|baby).
Note that Pereira et al. (2016) were not building a cognitive model

of free association (nor did they claim to). This is important, because
as Jones et al. (2018, p. 2) put it, “a cosine is not what people do in a
task.” In other words, cosine is not a process model of how people
use representations (modeled with word vectors) to respond in a task
like free association. To build such a process model, Jones et al.
(2018) combined cosine similarity of word vectors with a version of
the Luce (1959) choice rule, to simulate the probability of a target
response to a cue. Crucially, Jones et al. assumed a minimum
similarity threshold parameter, such that only words exceeding

this minimum (i.e., within a certain radius of the cue vector) are
considered during response generation. This model of choice can
also account for asymmetries in recall when words have semantic
neighborhoods of varying density. Consider again the case of stork-
baby. When baby is the cue, there are many competitors to stork
whose similarity is higher than the minimum threshold (e.g., words
like infant or mother), leading to a low p(stork|baby). On the other
hand, when stork is the cue, there are far fewer words whose
similarity is higher than the minimum threshold, leading to a
high value of p(baby|stork).

While Jones et al. (2018) did not directly assess their model of
p(R|C) on empirical data, they did evaluate the ability of the choice
rule to correctly predict the direction of asymmetry in word pairs in
the USF norms (Nelson et al., 2004) whose asymmetry ratio p(R|C)/
p(C|R) was greater than 10 or less than .1. Selecting the similarity
threshold leading to the best performance, they found that the
choice rule applied to BEAGLE vectors could predict 80% of the
asymmetries.

A similar approach was taken by Nematzadeh et al. (2017), work
we pay special attention to as our models can be viewed as more
general cases of theirs, and some of our evaluation metrics are based
on theirs. Following work that provides a probabilistic interpretation
of Word2Vec (Arora et al., 2016; Levy & Goldberg, 2014),
Nematzadeh et al. (2017) computed p(R|C) with a softmax trans-
formation of the dot products of the cue and response word vectors.
Thus, responses with a higher dot product with the cue, relative to
other responses, were more likely to be recalled. As with the
approaches in the previous two paragraphs, Nematzadeh et al.’s
model can generate asymmetric response probabilities for words
with neighborhoods of varying semantic density, as the calculation
of relative exponentiated dot products in the softmax transformation
leads to a nonlinear penalty for relatively dissimilar responses.
Again, consider the case of stork-baby. There are many competitors
to stork which have high dot products with baby, but few compe-
titors to baby which have high dot products with stork, leading to a
higher p(baby|stork) than p(stork|baby).

Nematzadeh et al. (2017) combined this model withWord2Vec or
GloVe embeddings trained on one of three corpora of varying size
and used three metrics to evaluate performance of this model. First,
they simply calculated the Spearman correlation between their
model’s prediction of p(R|C) with the empirical p(R|C) in the
USF norms, finding that GloVe trained on the largest available
corpus achieved the highest correlation, of r = .27. Second, for each
cue, they calculated the median rank of its most common response in
a choice model’s predicted top responses (and likewise for the
second- and third-most common responses). Once again, GloVe
trained on the largest corpus outperformed other models, with
median ranks of 11, 25, and 40.5 for the first, second, and third
associates (which is impressive given that the number of possible
responses they considered was 3,951). Finally, to assess their model’s
ability to capture asymmetries in association, they first calculated the
empirical asymmetry ratio p(R|C)/p(C|R) and their model’s predicted
asymmetry ratio, for each (cue, response) pair in the USF norms. They
then computed the correlation between empirical and predicted
asymmetry ratios across all (cue, response) pairs. GloVe trained
on the largest corpus again performed well with r = .48. Following
Nematzadeh et al. (2017), we will hereafter refer to these metrics
as “p(R|C) correlation,” “median rank of true associates,” and
“asymmetry ratio correlation.” Note that Nematzadeh et al. (2017)
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also evaluated topic models of free association (Griffiths et al., 2007).
They found that topic models were outperformed by GloVe on the
first two metrics, though they did marginally better than GloVe on the
asymmetry ratio correlation metric (r = .49). Topic models are not as
related to our CMR-based modeling framework, which is why we do
not discuss them in detail here. However, we do introduce these
models and analyze their predictions in our Supplemental Materials.

Semantic Network Models

There is another type of model that is relevant to the study of free
association: the semantic network (Collins & Loftus, 1975; Collins &
Quillian, 1969). In free association, nodes in semantic networks
correspond to words and (directed or undirected) edges represent
association strength (Figure 1B). As discussed above, similar
“associative chaining” models were popular early theories of
free recall from lists (Ladd & Woodworth, 1911), though they
were later supplanted by more complex process models that were
better able to describe nuanced retrieval dynamics observed in
experimental research. Despite (or perhaps because of) their simplic-
ity, semantic network models have remained popular in the study of
free association, where they are often used to formally characterize
response patterns in the empirical data (De Deyne et al., 2019).
Semantic networks fit on free association data have also been used to
study semantic organization (De Deyne & Storms, 2008; Steyvers &
Tenenbaum, 2005) as well as differences in semantic organization as
a function of development (Dubossarsky et al., 2017). Other research-
ers have used distancemeasures on variants of these networks (trained
on free association data) to predict semantic similarity and lexical
processing (De Deyne et al., 2013, 2016, 2019; Kenett et al., 2017;
Kumar et al., 2019). More relevant to this article is work that uses
random walks on semantic networks to describe memory search
dynamics in semantic fluency tasks (Abbott et al., 2015). This
approach derives transition probabilities between words from free
association data, and uses these probabilities to make predictions
for recall sequences composed of multiple words (see also Hills
et al., 2012; Zemla & Austerweil, 2018; Zemla et al., 2020, for
related applications).

Connections in semantic networks can also be obtained from DS
models, using, for example, the cue–response probability formulas
proposed by Jones et al. (2018) and Nematzadeh et al. (2017). A
number of papers have used this approach to better understand the
implications of distributed semantic models for semantic organization
(Gruenenfelder et al., 2016; Rotaru et al., 2018; Utsumi, 2014). Most
recently, Kumar et al. (2020) have applied these types of semantic
networks to free association and have shown how the combination
of DS and SN modeling allows for both accuracy and generaliz-
ability in predicting cue–response probabilities. We will be adopt-
ing a similar approach below, though we will embed word vectors
in a richer cognitive process model of memory and additionally
modify word vector representations based on free association data.

Modeling Framework

Overview

Our goal is to use a leading model of memory search in free recall,
the CMR model (Howard & Kahana, 1999, 2002a; Polyn et al.,
2009), to characterize retrieval dynamics in free association. There

are two reasons whywe believe this is necessary. First, as we discuss
in the introduction, existing distributed semantics and semantic
network models are unable to describe complex dynamics of free
association, particularly in continued free association. A model of
memory search that has been shown to be successful in capturing
the dynamics of free recall from lists may be able to address these
limitations. Second, we believe that it is desirable to have a single
general model of memory search that can be applied across domains
(i.e., to both free recall from lists and to free association). The
development of such a model can facilitate theoretical cohesion
and potentially lead to new insights regarding the cognitive processes
at play in memory search. This has the potential to improve our
understanding of free association, as well as our understanding of free
recall from lists. In fact, we will also be testing our model of free
association on free recall data to evaluate its capacity for cross-domain
predictions.

To develop a single general model, however, we will have to
introduce a generalization of CMR that, under certain parameter-
izations, can handle idiosyncrasies of free association, particularly
the possibility of a persistent, nondecaying effect of the cue on
recall. In particular, in conventional CMR (Figure 1C), there are
two directly interacting layers: a word layer, w, and a context layer,
c. In our modified CMR (Figure 1D), however, w does not directly
influence c. Instead, c depends on earlier layers ccue and crecall,
which represent the cue and the previously recalled responses
respectively. It is crecall that is directly influenced by w. We focus
below on describing this version of CMR and refer readers to Polyn
et al. (2009) for more in-depth description of conventional CMR.

Recall Dynamics

We first assume a word layer, w, which represents words using
individual nodes (i.e., implements localist or one-hot coding). In a
setting with N recallable words, the word layer thus consists of N
nodes. We write theN × 1 dimensional activation vector of the word
layer at time t as wt with wi,t describing the activation of word i at t.
By contrast, we assume that the context layer implements a distrib-
uted representation, with dimensionality M. We write the M × 1
dimensional activation vector in the context layer at time t as ct.

The context layer determines activation on the word layer through
an N × M dimensional matrix of connection weights MCW. We
assume that activation is linear, so that:

wt = MCW · ct: (1)

Activation, in turn, drives recall. We assume, for simplicity, that
this happens via a softmax transformation of activation. Thus, the
probability of recalling word i at time t is:

pi; t =
exp ðwi; tÞP
N
j=1 exp ðwj; tÞ

: (2)

We specify the specific response recalled at time t using brecallt ,
which is anNx1 dimensional binary vector with brecalli;t = 1 if word i is
recalled at t, and brecalli;t = 0 if not. In this way, brecallt is a random
variable drawn from the categorial distribution with probabilities pt.

Activation on the context layer at time t, ct, depends on both the
cue, as well as the set of items recalled prior to t. For simplicity, we
separate these two sets of variables into two context vectors, ccue and
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crecallt , which are combined additively, with parameter γ to determine
ct. Thus, we have the following:

ct = γ · ccue + ð1 − γÞ · crecallt : (3)

crecallt is a dynamically evolving context vector that updates after
each recall. Following CMR, we assume that this update is a linear
combination of the context at t − 1 and the input generated by the
word recalled at t − 1 via the M × N dimensional matrix of
connection weightsMWC. The weight used in this linear combination
is proportional to self-feedback δ. Thus:

crecallt = δ · crecallt−1 + MWC · brecallt−1 : (4)

ccue captures the persistent effect of the cue on context. We assume,
for simplicity, that ccue also depends on the connection weights
MWC. We can write the cue in a given trial as bcue, which is an N × 1
dimensional binary vector with bcuei = 1 if word i is the cue and bcuei = 0
if not. This implies that:

ccue = MWC · bcue: (5)

Finally, so that we can distinguish a persistent effect of the cue
from an initial, possibly decaying effect of the cue, we assume that
brecall0 (the implicit zeroth recall) is simply bcue, which implies that
the context vector at the start of the trial is equal to the cue vector,
that is c1 = ccue. In other words, the first recall is determined only by
the cue (though subsequent recalls do depend on retrieved words).

Connection Weights

The above equations provide us with a model of recall dynamics
in free association, in which the cue initiates recall, and combines
with retrieved words to guide subsequent recall. The words that are
recalled in a given trial depend on the matrix of connection weights,
MWC and MCW. In the application of CMR to free recall from lists,
these connection weights are initialized using word vector models.
Thus, for example, a word vector model with 300-dimensional
representations for words would involve an M = 300 dimensional
context layer, with the rows ofMWC and columns ofMCW based on
the word vector representations of theN recallable words. Of course,
to accommodate list-specific effects on recall, these matrices are
further updated based on presented words in each list learning trial.
The only flexible parameters in this approach (besides the parame-
ters at play in recall) are those that determine the effect of the
presented list on the connection weights (e.g., learning rates in
Hebbian updating; see Polyn et al., 2009, for further details).
Our application of CMR to free association adopts a similar

approach, by initializing MWC and MCW using word vectors, but in
the absence of a presented list, updatesMCW based on observed free
association data. In this way, it considers theMCW weights to be free
parameters. Of course, unlike the parameters of the original CMR
model, successfully updating the tens of thousands of entries in
MCW requires a very large data set. Fortunately, the Small World of
Words project (De Deyne et al., 2019) offers such data set. It
contains over one million trials in which participants provide
continued responses to over 10,000 cues. We fit MCW to these
trials using stochastic gradient decent. Note that such a modeling
exercise involves considerable flexibility, and for this reason, we
evaluate our fits using cross validation. In particular, we train MCW

on a subset of cues in the SWOW data set, and test it on the held out
cues. Doing so allows us to evaluate the generalizability of our best-
fitMCW and ensure that high accuracy rates are not a product of our
model’s flexibility. Of course, readers should be cautious in extrap-
olating our model to other tasks and data sets, as our best-fit model
could reflect the peculiarities of the free association task, and the
SWOWdata set in particular. It is also worth noting here that despite
our use of cross validation, our model is more flexible than previous
distributed semantics approaches (e.g., those in Nematzadeh et al.,
2017), which do not use any free association data to specify and
constrain their representations.

Although it is theoretically possible for free association data to
fully supervise the learning of weights and biases in our model (i.e.,
update MCW as well as MWC), this would require an extraordinary
amount of data (and computation time), given the large number of
parameters in this model. Thus, as a practical matter, it is useful to
initialize the weights from the cue layer to the response layer with
pretrained word vector representations and then let free association
data guide departures from these already useful initial estimates.
Additionally, although we choose to update MCW, and keep MWC

fixed during our training exercise, we could do the opposite, with
little effect on model performance.

Implementational Details

We use GloVe vectors to initializeMWC andMCW. GloVe builds a
global word–word co-occurrence matrix whose entries encode the
frequency with which words co-occur with one another in a given
corpus. Vectors are then learned such that their dot product equals
the logarithm of words’ probability of co-occurrence. The GloVe
vectors used in our analysis were pretrained on 6 billion tokens
of a 2014 dump of Wikipedia as well as the GigaWord corpus
(Pennington et al., 2014) and were shown to perform well in
Nematzadeh et al.’s (2017) study of free association.

We fit two variants of the above model to data. Our first variant
predicts the first word generated in response to a cue. In this setting,
there are no previous recalls to influence context, and thus response
probabilities are given entirely by the cue. The output of this model
is a softmax transformation of activations w1 = MCW·ccue·ccue is
given by the initializedMWC and is simply the GloVe vector for the
cue.MCW is initialized using GloVe and is further updated based on
observed cue–response pairs. This updating process is implemented
using gradient descent.

Our second variant predicts a K-length sequence of words
generated in response to a cue. In a trial with K = 3 (as with the
data set introduced below), there are three outputs generated by the
model. The first output is the probability vector for the first response,
contingent on the cue, and (as in the above paragraph) is a softmax
transformation of activations w1 = MCW·ccue generated by the cue.
The second output is the probability vector for the second response,
contingent on the cue and the observed first response. This is a
softmax transformation of activations w2 = MCW·c2, with c2 given
by c2 = γ · ccue + ð1 − γÞ · crecall2 and crecall2 given by MWC · brecall1 .
Here brecall1 is not a random variable, but rather the known outcome
of the first recall. Finally, the third output is the probability vector for
the third response, contingent on the cue and the observed first and
second responses. This is a softmax transformation of activations
w3 = MCW·c3, with c3 given by c3 = γ · ccue + ð1 − γÞ · crecall3 , crecall3
given by ð1 − δÞ · crecall2 + MWC · brecall2 , and crecall2 given by MWC ·
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brecall1 . Again brecall1 and brecall2 are not random variables, but rather the
known outcomes of the first two recalls. To ensure context cmaintains
constant magnitude over time, we L2 normalize ccue and crecallt after
each time step, and L2 normalize all GloVe vectors before training
(see Polyn et al., 2009, for a more complex normalization scheme
in CMR). Note that we do not apply any L2 normalization in the
first-response variant, as it does not involve a changing context
representation over time.
MCW is initialized using GloVe and is further updated using

stochastic gradient descent on observed data. Note that before
updating, the data is transformed by separating the three observed
responses in each trial into three separate observations: (R1|C),
(R2|C, R1) and (R3|C, R1, R2), so that the total number of observa-
tions used to train the model is K·T where T is the total number of
trials (and K is, again, the number of responses generated to each
trial). Also note that this updating process also involves flexible
parameters γ and δ, which interact with MCW. To ensure that
gradient descent operates on a linear model, we manually search
through values of γ and δ in the set {0, .1 : : : .9, 1}, and fit MCW

separately for each γ and δ combination. Thus, for example, we
start by setting γ = 0 and δ = 0 and use gradient descent to find the
best-fitting MCW for these values of γ and δ. We then repeat this
with γ = 0 and δ = .1, γ = 0 and δ = .2, and so forth, until we have
evaluated all 121 of the possible combinations of γ and δ.
The above steps are repeated for a constrained model that sets

MCW to be identical to (the transpose of) MWC, and whose weights
do not need to be trained. We refer henceforth to the unconstrained
model as the model with asymmetric weights and the constrained
model as the model with symmetric weights. Both the first-response
and continued-response models (and their constrained counterparts)
are evaluated on held out cues, that is, cues that are completely absent
from the training data. Finally, all models are trained in Keras (Chollet,
2015), using used stochastic gradient descent with a categorical cross-
entropy loss function, andwith a learning rate of .01, decay of 10−6, and
(Nesterov) momentum of .9.We do not fine-tune any hyperparameters,
and it is likely that model performance will improve with alternate
training procedures. Training is subject to early stopping if 10 epochs
pass with no improvement. Because participants only very rarely
respond to a cue with itself, we disallow self-cuing in all our models.
To do this, after all models have been trained and predictions
generated, we set the probability of responding to a cue with the
same cue to 0 (and rescale the remaining response probabilities to
sum to one).

Training and Test Data

We trained and tested our models on free association data from
the English Small World of Words project (SWOW-EN, De Deyne
et al., 2019). This is the largest set of English free association norms
collected to date, with 12,292 unique cues and 100 trials per cue, from
over 90,000 participants varying in age (M = 36 years, SD = 16),
gender (62% female), level of education (81% with bachelor’s
degree), and country of origin (e.g., 58% from the U.S., 13% from
the U.K., 8% from Canada). In contrast to the currently most-cited
free association norms from Nelson et al. (2004, USF Norms), De
Deyne et al. (2019) asked participants to provide three responses
to a given cue, so that weaker associations could be detected.
With over one million trials, SWOW-EN is a massive data set by

the standards of cognitive modeling. Importantly, the number of

unique responses generated by participants in this data set (over
130,000) is extremely large. Most of these responses are generated
very infrequently, making the recall data quite sparse. We wish
to predict participant-generated recall sequences by fitting 300
dimensional connection weights for each response word. To make
achieving this goal computationally feasible, we subsetted the data
for training and evaluating our models. To select data for the first-
response model variant, we excluded all trials whose cues or first
responseswere not in our GloVemodel’s vocabulary and excluded all
first responses that occurred in fewer than 100 trials across all of
SWOW-EN. Thismeant that about 750,000 trials were retained. From
these trials, we sampled a training set of about 100,000 trials and a test
set of about 10,000 trials. To ensure that train and test sets were
disjoint in terms of the sets of cues, we randomly selected cues and all
their associated trials (of cue–response pairs) until ∼100,000 training
trials were selected. From the remaining cues, we used the same
procedure to select ∼10,000 test trials. In the general discussion
section, we consider ways of using our trained model to make
predictions for highly infrequent responses (on which our model
has not been trained).

To select data for the continued-response model, we excluded all
trials for which the cue or any of the three generated responses
were missing from our GloVe model’s vocabulary and excluded all
responses that occurred in fewer than 300 trials (in any response
slot) across all of SWOW-EN. This left us with about 250,000
trials. We used the same procedure to construct train and test sets as
above, except now we only selected 30,000 trials for the training set,
and 3,000 trials for the test set, since each “trial” from SWOW-EN
contains three responses. Each trial was “unpacked” into three new
observations, as discussed in the previous section. Thus, after un-
packing these trials, we were left with 90,000 training observations
and 9,000 test observations.

To calculate response asymmetries p(R|C)/p(C|R), every training
or test cue must also be an allowable response in our models. Thus,
the above data led to a first-response model with N = 3,616 nodes in
the word layer (2,221 response words and 1,395 cue words) and a
continued-response model with N = 2,154 nodes in the word layer
(2,030 response words and 124 cue words). These values of N also
characterize the dimensionality of the output probability vectors of
these models. The response layer is bigger in the single response
model as, for this model, we ensured all training and test cues (total
1,395 cues) were in the response layer, so we could calculate cue–
response asymmetry ratios for both the training set and the test set.
But in the continued-response model, we only added the test set cues
(total 124 cues) in the response layer, as calculating asymmetry ratios
for the training set was not part of our analysis plan. Finally, both
models had context layers with M = 300 nodes (corresponding to
the dimensionality of the GloVe model). Code and trained weights
can be downloaded from https://osf.io/as26x/. This study was not
preregistered.

Free Recall Data

Although our primary interest in this article lies in free association,
it is also possible that one ormore of the above variants trained on free
association data generalize effectively to free recall data, owing to the
similarities in the tasks. If this turned out to be the case, it would
possibly provide the basis for a unified cognitivemodeling framework
for these (and maybe other) related tasks in memory and semantic
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cognition. Therefore, after training onmodels on free association data
from SWOW-EN, we evaluated them on the Penn Electrophysiology
of Encoding and Retrieval Study (PEERS) data set of free recall from
lists. PEERS is a publicly available, large-scale, multisessionmemory
study that aims to understand the correlates of memory encoding and
retrieval. While the PEERS data set consists of multiple experiments
with slightly varying paradigms, we concentrate on free recall data
from Experiment 4, which has been previously reported in Kahana
et al. (2018) and Aka et al. (2021). In this experiment, participants
performed a delayed free recall task consisting of 23 experimental
sessions. In each of the sessions, participants completed 24 trials, with
each trial containing a list of 24 words. For our analyses, we
concatenated all subjects and lists into a single data set. Every single
word in Experiment 4 of PEERS had an embedding in our GloVe
model, but only 249,523 of the 618,859 responses generated by
participants were in the set of SWOW-EN responses we retained for
modeling first responses, as explained above. We used only these
responses for our modeling purposes. Similar to our training and
testing on free association data, we simply attempted to predict the
next recalled word given the previously recalled word in the PEERS
data. To keep things simple, we did not model list-presentation effects
(e.g., primacy, recency, and temporal contiguity).

Relationship With Existing Models

Before continuing to our results section, it is useful to briefly note
the similarities between our model and prior work. Our model is of
course most closely related to CMR, from which it is derived.
Indeed, we retain all of the retrieval dynamics of CMR, with two
minor exceptions. First, our model allows for a persistent cue effect
on context, parameterized with γ. Setting γ = 0 removes this effect,
and results in a model whose context representation is largely
identical to that of CMR, as it has been previously applied to free
recall from lists. Second, we assume that recall probabilities depend
on a softmax transformation of activations, rather than an accumula-
tion process. This assumption is necessary to keep our modeling
tractable. We do not expect it to alter any of the core properties of
our model.
Our model is also related to other process models of free recall,

like the search of associative memory (SAM)model (Raaijmakers &
Shiffrin, 1981; see also Kahana, 2020). Most of the free association
effects we wish to describe would have likely emerged if we had
chosen to implement a variant of SAM. We decided to use CMR’s
architecture because of its neural network interpretation, which
allows for the easy application of deep learning libraries (like Keras)
to fit free association data. We also used CMR because its separate
context-to-word and word-to-context weight matrices potentially
allow for a better account of asymmetric response probabilities in
free association. (See also Asr et al., 2018, for related evidence that
modeling free association benefits from using both word and context
vectors).
Relatedly, our approach to initializing connection weights using

the GloVe model, and then updating a subset of these weights based
on empirical free association data is essentially the “pre-train, then
fine-tune” paradigm (also known as transfer learning) that has driven
many of the recent successes in natural language processing (e.g.,
Devlin et al., 2019; Pan&Yang, 2009). In this paradigm, a (language)
model is trained on a very generic objective on a large data set (e.g.,
word or sentence prediction on a corpus of billions of words), and

then (some of) its parameters are fine tuned in a supervised fashion on
amore specific task that has less labeled data available. The advantage
of this approach is that it has the best of both worlds: the scale that
comes from optimizing a generic objective on a large data set as well
as the specificity and task appropriateness that comes from optimizing
on a particular objective on a potentially smaller data set. In prior
work, we have used this approach to predict human judgments and
decisions (Bhatia, 2019; Bhatia et al., in press; Gandhi et al., 2022;
Richie & Bhatia, 2021; Richie et al., 2019; Zou & Bhatia, 2021). We
believe this approach is also suitable for the present application to free
association, for which we have labeled data for only a few hundred
thousand trials.

Finally, and most importantly, our model has similarities to ex-
isting distributed semantics and semantic network models of free
association. In particular, our first-response model reduces to the dot
product model of Nematzadeh et al. (2017) when we have symmetric
weights, that is, when we setMCW equal to (the transpose of)MWC. In
this case, the activation of a word given a cue is simply the dot product
of the word vector and the cue vector, and the retrieval probability is
the softmax transformation of the vector of dot products. This model
also emerges in the continued-response case when we set γ= 1. Here,
retrieval probabilities depend only on the cue (and not on previously
retrieved responses) and are thus independently and identically
distributed over time, with probabilities given by the Nematzadeh
et al. dot product model. Conversely, values of γ = δ = 0 lead to a
Markov random walk over a semantic network, in which the cue
initiates memory search and each jump leads to a new recall. The
transition probabilities in this model depend on the connection
weights and are closely related (though not strictly identical to) prior
applications of semantic networks that specify node connections
using distributed semantics models (Gruenenfelder et al., 2016;
Kumar et al., 2020; Rotaru et al., 2018; Utsumi, 2014). Below, we
will be comparing our most flexible model against various con-
strained models to measure the predictive and explanatory gains
offered by asymmetric connection weights, persistent cue effects, and
recurrent context representations.

Results

First Responses

We first examined our models’ abilities to predict the first response
(R1) generated for each cue (C). Table 1 contains results on the training
and test sets for negative log likelihood (NLL), the three metrics
from Nematzadeh et al. (2017), and accuracy in predicting direc-
tion of asymmetry, for our main model (asymmetric weights) and
the constrained model that constrains MCW to be equal to (the
transpose of) MWC (symmetric weights). It also contains the results
Nematzadeh et al. (2017) for their best-performing (largest) GloVe
model. As discussed above, the symmetric weights model is
identical to the dot product model of Nematzadeh et al. (2017).
Note that although the test set has ∼10,000 trials, the three
Nematzadeh et al. metrics are calculated at the level of unique
cues or unique cue–response pairs in the test set.

A few results are worth highlighting. First, the model with
symmetric weights performed comparably to what Nematzadeh
et al. (2017) report (although our median ranks are a bit worse),
but our CMR model, with asymmetric weights, outperformed this
constrained model, for all metrics and on both the training and test
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sets. It also did better than Nematzadeh et al.’s best performing
GloVe model on all metrics (except for the median rank of the 3rd
associate). In the test set, our model achieved a correlation between
empirical and model p(R1|C) of .37, and the median ranks of the
1st, 2nd, and 3rd strongest associates in the model’s predicted top
associates were 5, 11, and 46, respectively. Finally, this model’s
predicted asymmetry ratios correlated with empirical asymmetry
ratios at r = .59 and predicted the direction of asymmetry with 79%
accuracy.
As a more detailed analysis of these models’ abilities to capture

free association, we conducted the following analysis, visualized
in Figure 2. We binned all the empirically observed cue and first
response (C, R1) pairs from all of SWOW-EN into 10 equally sized
sets of increasing relative frequency, f(R1|C)/f(R1|∼C), and also
computed the log relative likelihood, log[p(R1|C)/p(R1|∼C)], for
each (C, R1) pair according to our main model with asymmetric
weights, and according to the constrained model with symmetric
weights. Figure 2 shows that both models’ log relative likelihoods
tracked empirical relative frequency. In other words, both models
predicted which responses are relatively more likely given a cue.
However, relative likelihoods were always higher in the model with
asymmetric weights, consistent with this model’s lower negative log
likelihood on the training and test sets (see Table 1). Interestingly, this
advantage persisted for cue–response pairs with high empirical
frequencies, as well as cue–response pairs with low empirical
frequencies, indicating that allowing for asymmetric weights improves
predictions uniformly for strong and weak associations.
Finally, we also examined the performance of these two models

on Experiment 4 of the PEERS data set of free recall from lists. In
particular, we evaluated each model’s ability to predict the next
recalled word, given only the previous recalled word. Table 1 shows
the resulting negative log likelihoods of both models. Our model
once again outperformed the constrained model, showing that fine-
tuning the CMR model on free association data improves predic-
tions for free recall from lists.
In Table 2, we present the results of a learning curve analysis in

which we test the asymmetric model’s performance on the above
metrics after training on a random sample of 75%, 50%, and 25% of
the training data set. As expected, model performance drops mono-
tonically as the size of the training data set is reduced. Additionally,
performance is bounded on the upper-end by the full asymmetric
model (trained on 100% of the training data set) and on the lower-end
by the symmetric weights model (which is implicitly the asymmetric
model trained on 0% of the training data set). Somewhat surprisingly,
reducing the size of the training data set does not have a large effect
on metrics like p(R1|C) correlation, asymmetry ratio correlation, or
asymmetry direction accuracy. Thus, it seems that even a small
amount of training data is enough to achieve good results for these
behavioral patterns (of course, to achieve the highest log-likelihood, it
is necessary to train the model on the full data set).
Note that we have also applied topic models (Griffiths et al.,

2007; Nematzadeh et al., 2017) to the analysis in this section.
These models are important theories of free association, however,
we found that our fits of these models were quite poor. These
models are also less related to the CMR and its variants (whose
connection weights correspond to vector representations for words
and not probabilistic distributions over topics). For this reason, we
present the results of our topic model analysis in the Supplemental
Materials.
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Continued Responses

We also tested whether our models were able to describe the
(3-length) sequences of words generated in response to each cue.
For this purpose, we not only allowed for models with asymmetric
weights, but also models with varying values of δ and γ (which
control the effect of the cue and previously recalled words on
subsequent recall). The underlined rows of Table 3 show the values
of δ and γ which gave the symmetric and asymmetric model
variants the best performance on the training set and the test set,
as well as the negative log-likelihoods of those best-fitting values of δ
and γ on the training set and test set. As can be seen, the model with
asymmetric weights improved over the model with symmetric
weights, on both the training set and on the test set. Thus, the benefits
of fine-tuning CMR on free association extend to continued-response
modeling.
How does performance of each model vary as a function of γ and δ?

That is, what balance of a persistent effect of ccue and previously
recalled words on crecall (controlled by γ), and how much self-
feedback in crecall (controlled by δ), are needed for modeling
continued free association? Figure 3 contains heatmaps of the
negative log likelihoods of both models on the training set and the
test set, as a function of γ and δ. Most apparent in this figure are
the downward sloping dark bands, representing a trade-off between γ
and δ, which implies that models must find some way of representing
the cue in the context layer, c. This can happen with either a high γ
(reflecting strong, persistent contribution of ccue to context c), or with
a high δ (reflecting strong maintenance of the cue’s initial impact on
crecall and therefore on context c). However, careful examination of
these bands also shows that darker cells, that is, lower negative log
likelihoods, tend to be in the bottom right, suggesting the best models
had low values of γ and high values of δ, reflecting small persistent

effects of the cue and strong influence of all previously recalled
responses (including the cue).

Table 3 also contains negative log likelihoods with one or both of
γ and δ constrained to key values (bolded values represent flexible
values of γ and δ). For example, the first row of this table reports the
negative log likelihood of the model with symmetric weights and
with δ = γ = 0, which is essentially a Markov random walk model,
where responses are purely driven by the most recent response. The
seventh row likewise reports the performance of a symmetric weight
model in which γ = 1 (and δ is subsequently inconsequential). This
model is identical to that proposed by Nematzadeh et al. (2017).
Both the Markov randomwalk and the Nematzadeh et al. models are
outperformed by an asymmetric weight model with flexible γ and δ.
Overall, Table 3 shows that models with flexible γ and δ are always
superior over constrained counterparts. All of the differences in log
likelihoods are significant (ps< .05 by likelihood ratio rests), except
for the symmetric weights model on the test set when comparing the
fully flexible model to one with δ constrained to 1.

That the best models had (in addition to asymmetric weights) both
δ> 0 and γ> 0, suggests that continued free association in response to
a cue is described with the combination of (a) representations of
previously recalled words in crecallt , but also (b) a persistent effect of
the cue from ccue. To intuitively understand this result, we examined,
for each observation in our test data, the prediction of our best-fitting
asymmetric weight model with flexible γ and δ, as well as the
predictions of a Markov random walk model with δ = γ = 0 and
a cue-only model with γ = 1. In Table 4, we illustrate the five
observations in our test data for which the ratio of predicted
probability (equivalent to the difference in the log likelihood) of
our flexible model and ourMarkov randomwalkmodel is the highest.
Here, we see that the flexible model can make better predictions
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Figure 2
Model Predictions of First Responses

Note. Log of model-predicted relative likelihood p(R1|C)/p(R1|∼C) for each (C, R1) pair,
according to the models with symmetric weights (black) or asymmetric weights (gray), as a
function of empirical relative likelihood f(R1|C)/f(R1|∼C). X-ticks represent the left edge of each
bin of empirical relative likelihood. Error bars represent 95% confidence intervals.
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because it keeps track of the cue. Thus, for example, the flexible
model predicts a high probability of R2 = pee when R1 = small and
C=wee. TheMarkov randomwalkmodel, by contrast, predicts a low
probability of R2= pee following R1= small, as it does not remember
the cue (i.e., it sets δ= γ= 0). Table 4 also shows five observations in
our test data for which the ratio of predicted probability of our flexible
model and our cue-only model is the highest. In this setting, the
flexible model can make better predictions because it keeps track of
the previously recalled responses. Thus, for example, the flexible
model predicts a high probability of R3 = shoes when R2 = under-
wear, R1 = jeans and C = recognition. The cue-only model, by
contrast, predicts a low probability of R3 = shoes in response to
C = recognition, as it does not remember the intervening responses
(i.e., it sets γ = 1).

Finally, the best value γ = .3 on the training set suggests that
representations of previously recalled words (and the cue) in crecall

dominates the persistent effect of the cue from ccue. Likewise, the
best-fitting value of δ = 1 suggests that decay on crecall is minimal,
that is, that later responses are driven by more recent responses just
as much as by older responses (including the cue as it initially
influences crecallt ). This could be due to the relatively small number of
responses generated in our free association data (three) versus more
than twenty in standard free recall from lists tasks, that is, decay
could be minimal (or perhaps imperceptible) with such short
response sequences (see also Oberauer et al., 2016, for a discussion
of the possible sources of working memory limits).

Response Chaining Effects

To further analyze the properties of our best-fitting models, we
used a binning analysis like that for the first response model. First,
we examined response chaining effects by binning all the empiri-
cally observed (C, R1, R2) triples into five equally sized sets of
increasing relative frequency, f(R2|C, R1)/f(R2|C, ∼R1). Intuitively,
this measure captures the frequency of R2 in response to the cue
when it is preceded by R1 relative to when it is not preceded by R1.
Triplets with high values on this measure involve R2s that are
especially likely to occur after the R1s (keeping the effect of the
Cs constant).

We also computed the predicted log relative likelihood, log[p(R2|
C,R1)/p(R2|C, ∼R1)] for each triplet according to various models.
These are our models’ predictions for this relative frequency
measure. We considered the best-performing asymmetric weights
CMR model (with δ = 1 and γ = .3) as well as constrained versions
of this model with δ = γ = 0 (corresponding to a Markov random
walk model) and γ = 1 (corresponding to a persistent effect of the
cue, and no effect of previously recalled responses). The (C, R1, R2)
triplet with the highest predicted log relative likelihood by our CMR
model is (gorge, eat, food), whereas the (empirically observed)
triplet with the lowest predicted log relative likelihood by this model
is (cylinder, maths, water). These two triplets show how CMR
constrains its predictions of R2 by attaching a positive weight to R1.
In the former case, CMR attaches a high probability to food when it
is preceded by eat relative to when it is not (in which case, the model
predicts an R2 that is semantically related to canyon or river,
reflecting the alternate meaning of gorge as a narrow valley between
mountains). Likewise, in the latter case, the model expects maths
(when cued by cylinder) to be followed by mathematical or geo-
metrical concepts, rather than by water (which is more likely when
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R1 is can or cup). The Markov random walk model makes similar
predictions, whereas the cue-only model is unable to distinguish
such cases (matching the patterns shown in Table 3).
Are our model’s predictions accurate? As can be seen in Figure 4,

the CMR model with flexible δ and γ, as well as the Markov model
with δ = γ = 0, generated higher predicted likelihoods for cue–
response triplets (C, R1, R2) with higher empirical likelihoods. In
other words, both models predicted which R2 are relatively more
likely given R1 (keeping the effect of the cue constant). As expected,
the model with the effect of only the cue (γ = 1) failed to capture the
effect of R1 on the recall probability of R2 as it did not allow
feedback from recalled words to context. Additionally, the like-
lihoods predicted by the Markov model, which did not allow for a
persistent effect of the cue, were higher than those of the flexible
CMR model. This was due to the fact that our analysis in this figure
controlled for the effect of the cue and tried to model only the effect
of R1 on R2. The Markov model is best suited for capturing this
effect and thus makes very good predictions.

Persistent Cue Effects

If the Markov model was indeed the best-performing model, we
would not expect to observe an effect of C on R2 controlling for R1.

To test for this type of persistent cue effect, we performed a third
binning analysis in which we binned all the empirically observed (C,
R1, R2) triples into five equally sized sets of increasing relative
frequency, f(R2|C, R1)/f(R2|∼C, R1). Intuitively, this measure cap-
tures the frequency of R2 following R1 when C is the cue relative to
when C is not the cue. Triplets with high values on this measure
involve R2s that are especially likely to occur in response to the Cs
(keeping the effect of the R1s constant).
We also computed log[p(R2|C, R1)/p(R2|∼C, R1)] for each triplet

according to various models. Note that the denominator of this
term cannot be calculated because our models do not define p(∼C).
We therefore approximated the denominator by simply averaging

p(R2|C’, R1) for all C′ ≠ C (for consistency, we calculated the
denominator of f(R2|C, R1)/f(R2|∼C, R1) in the same way). This is
why we call this measure the model-predicted pseudorelative
likelihood. Again, we considered the best-performing CMR model
with flexible δ and γ, and versions with δ = γ = 0 (corresponding
to a Markov random walk model) and γ = 1 (corresponding to an
effect of only the cue). The (C, R1, R2) triplet with the highest
predicted pseudorelative likelihood by our CMR model is (taxes,
death, money), whereas the (empirically observed) triplet with the
lowest predicted likelihood by this model is (cd, music, money).
These two triplets show how CMR constrains its predictions of
R2 by placing a positive weight on C. In the former case, CMR
attaches a high probability of death being followed by money,
when the cue is taxes, relative to when the cue is not taxes (in which
case, the model predicts an R2 that is more directly associated with
death, like murder or funeral). Likewise, in the latter case, the
model expects music (when cued by cd) to be followed by another
music-related term, rather than by money. The cue-only model
makes similar predictions, whereas the Markov model is unable to
distinguish such cases (matching the patterns shown in Table 3).

Are our model’s predictions accurate? Yes. Figure 5 shows that
the models with flexible δ and γ, as well as the model with γ = 1,
generated higher predicted likelihoods for cue–response triplets (C,
R1, R2) with higher empirical likelihoods. In other words, both
models predicted which R2s are relatively more likely given C
(controlling for the effect of R1). The Markov model with δ = γ = 0
failed to capture the effect of C on the relative likelihood of R2 as it
did not allow for a persistent effect of the cue on context. Finally, the
likelihoods predicted by the cue-only model, which did not allow for
feedback from recalled words to context, were often higher than
those of the flexible CMR model. This was due to the fact that our
analysis in this figure controlled for the effect of R1 and tried to
model only the effect of C on R2. The cue-only model is best suited
for capturing this effect and thus makes very good predictions,
though of course it fails at capturing the effect of R1 on R2 shown
in Figure 4. The only model that can capture both the response
chaining effect shown in Figure 4 and the persistent cue effect
shown in Figure 5 is the CMR model with flexible δ and γ.

Predicting Second and Third Responses

As another test to understand the necessity of the dynamic
properties of our CMR variant for modeling continued responding,
we performed likelihood ratio tests comparing asymmetric weight
models with flexible γ and δ to asymmetric weight models with
constrained γ and δ. In particular, we compared (a) models with γ
and δ that optimized performance on only the first, second, or third
response of each trial in the training or test set, to (b) a model with
γ = 1 when only evaluating on the first, second, or third response of
each trial in the training set or test set. For each model (a), which
flexibly fits γ and δ to only first, second, or third responses on either
the training or test set, we calculated the log likelihood of the data
(first, second, or third responses) under that model. For (b) we
calculated the log likelihood of the data under a comparable model
with γ= 1.We then calculated the ratio of the two likelihoods, where
a ratio above one indicates that the data are more likely under the
flexible model. Statistical significance was calculated by conducting
chi-squared tests on the likelihood ratio with two degrees of freedom
(as the flexible model varies both γ and δ). Results are in Table 5.
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Table 3
Model Fits

Training set Test set

δ γ NLL δ γ NLL

Symmetric
0.0 0.0 675,945 0.0 0.0 68,061
1.0 0.0 672,509 1.0 0.0 67,725
1.0 0.0 672,509 1.0 0.0 67,725
0.0 0.6 672,494 0.0 0.6 67,733
1.0 0.3 672,219 0.9 0.3 67,704
1.0 0.3 672,219 1.0 0.3 67,704
n/a 1.0 673,855 n/a 1.0 67,897

Asymmetric
0.0 0.0 634,292 0.0 0.0 64,898
1.0 0.0 617,793 1.0 0.0 63,718
1.0 0.0 617,793 1.0 0.0 63,718
0.0 0.6 617,745 0.0 0.5 63,899
1.0 0.3 616,169 1.0 0.1 63,701
1.0 0.3 616,169 1.0 0.1 63,701
n/a 1.0 624,007 n/a 1.0 64,921

Note. Total negative log likelihoods of the symmetric and asymmetric
weights models with various constraints on γ and δ. NLL = negative log
likelihood. Bolded numbers indicate parameters that were fit freely.
Italicized rows identify best-performing parameter configurations.
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Here, for example, the left side of the first row shows that the model
with γ= .6, and δ= .9 had a significantly better log likelihood than a
comparable model with γ = 1, when evaluated on the first response
of every trial in the training set. Note that the value of δ is irrelevant
when γ = 1, as the cue is the sole determinant of context and recall.
Our intention with this analysis was to show that the CMR-style

dynamics, which arise when γ < 1 and δ > 0, are necessary to
account for the second and third response but not the first response,
since only second and third responses in a trial provide the oppor-
tunity for response chaining. Interestingly, this turned out not to be
the case. Models with asymmetric weights always favored γ< 1 and
were better than models with γ= 1 (all likelihood ratio tests have p<
.0001), even for the first response in the training or test set. Our
explanation for this finding is that the asymmetric weights model
with γ = 1 fitsMCW to predict not just the first response, but also the
next two responses. However, the second and third responses tend to
be less prepotent responses and less likely to appear in the first
response slot (De Deyne et al., 2019), and so by optimizingMCW to
predict these less prepotent responses, the model with γ= 1 becomes
worse at predicting the first, prepotent responses. This is why having
flexible γ and δ leads to better fits for the first response (as well as
the second and third responses). The results of this analysis are

consistent with the idea that free association models benefit from the
inclusion of CMR-style dynamics. This is the case even if the goal of
the model is to predict only the first response.

The Effects of Fine Tuning

The above sections have shown that the asymmetric weight
model, which fine tunes MCW on free association data, consistently
outperforms the symmetric weight model, which constrainsMCW to
be identical to (the transpose of) MWC. We have argued above that
this is due to the benefits conferred by transfer learning, which allow
pretrained models to be modified to better predict a given data set.
Here, we wish to examine what it is about our free association
data set that necessitates modifications to the distributed seman-
tics representations obtained from text. For this purpose, we first
examine the distribution of the dot products of the MCW and MWC

vectors for our symmetric and asymmetric first response models, that
is, the distribution of MWC

i · MCW
j for each i and j (where i indexes a

column ofMWC and j indexes a row ofMCW).MWC
i ·MCW

j measures
the degree to which a word i cues word j. In the symmetric case
(shown in Figure 6A),MWC

i ·MCW
j is merely the dot product of one

GloVe vector with another GloVe vector. In the asymmetric case
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Figure 3
Model Fits

Note. Heatmaps of negative log-likelihood of the models with symmetric (Panels A and B) or asymmetric (Panels C and D) weights, on the training set
(Panels A and C) and the test set (Panels B and D), as a function of γ and δ.
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(shown in Figure 6B),MWC
i ·MCW

j is the dot product of an original
GloVe MWC vector with a fine-tuned MCW vector. Figure 6A shows
that the distribution of dot products is very similar in the symmetric
and asymmetric models. Both have the samemean (μ= 2.71), though
the symmetric model has a slightly higher standard deviation (σ =
4.61) than the asymmetric model (σ = 4.29). This indicates that fine
tuning does not have a large effect on the aggregate strength of
associations.
It is also the case that the symmetric weight model has symmetric

dot products, that is the degree to which a word i activates a word j is
identical to the degree to which a word j activates word i (though of
course response probabilities could be asymmetric for the reasons

discussed above). The asymmetric weight model, however, allows
for asymmetries in cuing. In Figure 6C, we show the extent of these
asymmetries by plotting the distribution of differences in the dot
product ofMWC withMCW vectors andMCW withMWC vectors, that
is, the distribution of MWC

i · MCW
j –MWC

j · MCW
i . Here, we see that

the majority of differences are near zero, though some differences
can be very large, indicating that fine tuning leads to strong asymme-
tries in a minority of associations in the model.

Finally, Figure 6D plots the distribution of the cosine similarity of
vectors in MCW with their corresponding vectors in MWC, that is
COSSIM (MWC

i , MCW
i ). Intuitively, this cosine similarity measure

captures the degree to which the representation of a word is modified
during fine tuning. Here, we can again see that most words have a
cosine similarity that is very close to 1, indicating that most word
representations have not been changed. Some words do, however,
see large shifts in their representation after fine tuning.

Table 6 presents the twenty response words with the largest
shifts in their representation after fine tuning, that is words that
have the lowest cosine similarity between their vectors inMCW and
their vectors in MWC. Table 6 also presents the three cues with the
highest cosine similarity to these response words for both the
asymmetric weight model and the symmetric weight model. These
cue words track the effect of fine tuning on the representations of
the response words. Table 6 suggests that there are many reasons
why the asymmetric model outperforms the symmetric model. First,
as with CMR’s application to free recall from lists, the asymmetric
model is better able to capture asymmetries in response probabilities
between pairs of words. While such asymmetries usually occur due to
asymmetric positive and negative temporal lag effects in free recall
from lists, in the case of free association, they are likely to occur
because of common phrases or idioms in language. For example, as
discussed in Clark (1970), white strongly cues house but house is
less likely to cue white, as white house is a common phrase in
English (other examples provided by Clark are cottage cheese and
ham eggs). In Table 6, we see such an effect for the word bee, likely
because of the common phrase busy bee, and for the word game,
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Table 4
Model Predictions of Continued Responses

Observation Cue
Prev.

Responses
Target

Response
Prob.
Ratio

Flexible versus Markov random walk
1 wee small pee 1.64
2 swimmer water athlete 1.62
3 horrendous awful, mean terrible 1.56
4 loneliness alone sadness 1.55
5 blond stupid hair 1.52

Flexible versus cue-only
1 recognition jeans, underwear shoes 1.65
2 jeep family, mother father 1.64
3 diary cheese, milk cream 1.64
4 repression sex, men women 1.53
5 repulsive odor, teacher student 1.51

Note. The five observations in the test data for which the ratio of
predicted probabilities of our flexible model (δ = 1 and γ = .3) and our
Markov random walk model (δ = γ = 0) is the highest, and the five
observations in the test data for which the ratio of predicted probabilities
of our flexible model and our cue-only model (γ = 1) is the highest. In all
cases, our models attempt to predict the target response using the cue and
sequence of previous responses.

Figure 4
Model Predictions for Response Chaining

Note. Log of model-predicted relative likelihood p(R2|C, R1)/p(R2|C, ∼R1) for each (C, R1, R2) triplet, according to CMR (δ = 1 and γ = .3) (A), a Markov
random walk (δ = γ = 0) (B), and a cue-only model (γ = 1) (C), as a function of empirical relative frequency f(R2|C, R1)/f(R2|C, ∼R1). X-ticks represent the left
edge of each bin of empirical relative likelihood. Error bars represent 95% confidence intervals. CMR = context maintenance and retrieval.
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likely because of the common phrase football game. In the
symmetric model, bee is associated with honey, hive, and bumble,
and game is associated with play, player, and match. Although
such associations persist in the asymmetric model, we see also see
that this model modifies the representation of bee to give it a strong
association with the word busy and modifies the representation of
game to give it a stronger association with the word football. Thus, in
the asymmetric model, busy is highly likely to cue bee and football is
highly likely to cue game (though bee is not as likely to cue busy and
game is not as likely to cue football).
Another benefit of fine tuning is disambiguation. Several words

have multiple meanings, but in some cases, one of these meanings
may be more privileged in free association than in distributed vector
representations obtained from text. This is something that a flexible
asymmetric weight model can capture, but that a constrained
symmetric weights model cannot. Table 6 shows several examples
of such disambiguation problems: plant is more associated with
grow in the asymmetric weights model and more associated with

factory in the symmetric weights model. Likewise, rose is more
associated with flower in the asymmetric weights and more associ-
ated with fell in the symmetric weights model. A related effect
involves perceptual or experiential qualities that are more prominent
in free association than in text. Standard distributed semantics
models, which proxy co-occurrence or synonymy in text have
difficulty modeling these associations (see De Deyne et al., 2019,
for a discussion of this issue; as well as Andrews et al., 2009 for an
alternate solution), whereas flexible weight models can be fine tuned
to accommodate these perceptual and experimental associations,
giving them superior predictive power. For example, in Table 6, we
see that the asymmetric weights model associates rich with adjec-
tives like luxurious and elegant, and objects like mansion, but that
the symmetric weights model associates rich with synonyms like
wealthy. Likewise, the asymmetric weights model associates cry
with onion, whereas the symmetric weights model associates cry
with nearly synonymous verbs like scream and shout.

The flexibility of the asymmetric weights model also allows it to
capture population-level idiosyncrasies. GloVe and other distributed
semantics models are trained on large data sets of English language
text, which consist primarily of American English. By contrast, a
substantial proportion of the SWOW participants spoke British
(11%) or Australian (5%) English. Words like bum, which are
more likely to be generated by the latter group, are more associated
with words like buttocks in the asymmetric weights model. By
contrast, the primary associations of bum in the symmetric weights
model involve rap and thug.

The explanation provided for the patterns in Table 6 is fairly
speculative, as it is difficult to provide a systematic characterization
of how fine tuning on free association data changes the hundreds of
thousands of weights in our flexible model. In order to attempt a more
quantitative approach, we regressed the cosine similarity of word
vectors inMCW andMWC on four important psycholinguistic variables
that have been shown to influence lexical access in general or free
association in particular: age of acquisition (Kuperman et al., 2012),
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Figure 5
Model Prediction of Persistent Cue Effects

Note. Log of model-predicted pseudorelative likelihood p(R2|C, R1)/p(R2|∼C, R1) for each (C, R1, R2) triplet, according to CMR (δ = 1 and γ = .3) (A), a
Markov random walk (δ = γ = 0) (B), and a cue-only model (γ = 1) (C), as a function of empirical relative frequency f(R2|C, R1)/f(R2|∼C, R1). X-ticks represent
the left edge of each bin of empirical relative likelihood. Error bars represent 95% confidence intervals. CMR = context maintenance and retrieval.

Table 5
Predicting Second and Third Responses

Training set Test set

Response slot δ γ LLR Response slot δ γ LLR

First 0.9 0.6 1,200 First 0.8 0.4 210
Second 0.9 0.3 6,700 Second 1 0 1,000
Third 1 0.3 8,400 Third 1 0.1 1,200

Note. Likelihood ratios (LLR’s) between (a) asymmetric weight models
with γ and δ that optimized performance on only the first, second, or third
response in the training or test set, and (b) an asymmetric weight model
with γ = 1, when only evaluating on the first, second, or third response of
each trial in the training set or test set. A LLR over 1 indicates that
observed data are more likely under the flexible model (a) than under a
comparable constrained model (b). All LLR values are statistically
significant at p < .0001, according to chi-squared tests with two degrees
of freedom.
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concreteness, and (log) frequency (Brysbaert et al., 2014), and number
of word senses according to the Wordsmyth online dictionary. As our
dependent variable, cosine similarity, was not distributed normally, we
used the ranked cosine similarity (with a high rank for words like bum,
which differed substantially between MCW and MWC).
The results of our regression analysis are provided in Table 7. Here,

we can see that words with greater frequency of use in language and
words with more word senses were more likely to have different
representations in MCW and MWC. The first of these effects is likely
due to the fact that high frequency words are more likely to be
generated as responses in free association and thus are more likely to
have training data for our fine-tuning exercise. All else equal, more
data lead to more changes in representation. The second of these
effects can be explained by the disambiguation interpretation outlined
above. Additionally, we found that words with an older age of
acquisition were less likely to have similar representations in MCW

and MWC. This is again likely caused by the fact that words that are
acquired later in life are less likely to be generated as responses in free
association (Matusevych & Stevenson, 2018) and thus have fewer
observations in our training data. We did not find an effect of word
concreteness in our data. Overall, the simple pairwise correlations of

ranked cosine similarity with age of acquisition, concreteness, (log)
frequency, and number of word senses are −.49, 0, .55, and .29
respectively (with all correlations except those for concreteness being
significant at p < .05).

Discussion

Free association among words is fundamental to cognition and
behavior. Yet, free association has largely eluded satisfying and
scalable cognitive modeling, as it involves complex memory
processes operating over thousands of semantically rich words.
To address this, we combined distributed semantics (DS) models
of word meaning (Howard et al., 2011; Jones & Mewhort, 2007;
Landauer & Dumais, 1997; Mikolov et al., 2013; Pennington et al.,
2014) with recurrent neural networks based on the CMR model for
free recall (Howard & Kahana, 2002a; Polyn et al., 2009). We
trained our models on large-scale free association norms (SWOW-EN;
DeDeyne et al., 2019) and found that borrowing CMR’s assumption
of asymmetric representations for cues and responses (i.e., asymmetric
word-context weights MWC and MCW) improved upon previous
DS-based models of free association (Jones et al., 2018;
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Figure 6
Effects of Fine-Tuning

Note. Histogram of the dot products of the MCW and MWC vectors for our symmetric (A) and asymmetric (B) first response models. Histogram of the
distribution of differences in the dot products ofMWC withMCW vectors andMCW withMWC vectors for the asymmetric model (C). Distribution of the cosine
similarity of vectors in MCW with their corresponding vectors in MWC for the asymmetric model (D).
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Nematzadeh et al., 2017; Pereira et al., 2016). We also found that
responses in continued free association were best modeled by a
variant of CMR with context feedback as well as a persistent
input from the cue. Thus, while classic Markov models (Abbott
et al., 2015; De Deyne & Storms, 2008; De Deyne et al., 2013,
2016, 2019; Dubossarsky et al., 2017; Kenett et al., 2017; Kumar
et al., 2019; Steyvers & Tenenbaum, 2005) can account for some
response chaining effects in free association, our full model was
quantitatively superior in predicting violations of the Markov
property in continued free association.
Our work shows the power of combining semantically rich

representations from DS models, with process theories of how
such representations are used for a particular task. While some past
work has questioned the applicability of DS models (Griffiths
et al., 2007) or spatial representations more generally (Tversky,
1977) to the study of semantic memory, our work emphasizes

Jones et al.’s (2018) point that many apparent flaws of DS models
arise from confusing a (dis)similarity metric like cosine similarity
for a model of what people do with a semantic vector representa-
tion. When DS models are combined with an appropriate cognitive
theory of choice, judgment, categorization, or in our case, memory
retrieval, they can provide accurate and scalable models of behav-
ior (see Bhatia & Stewart, 2018; Hills et al., 2012; Lu et al., 2019;
Richie & Bhatia, 2021; Zou & Bhatia, 2021, for similar demon-
strations; also see Bhatia & Aka, 2022, for a review).

We believe several directions for future research will be fruitful.
First, the choice model we used might be modified or extended in
various ways. For example, following previous suggestions (e.g.,
Jones et al., 2018), we initially tried including response-specific biases
wb at the word layer, such that wt = wb + MCW · ct. Intuitively, these
biases capture a response word’s baseline activation (with biaswi,b for
word i). We attempted to fit these biases alongside the other parame-
ters of our model, but found that the resulting models made poor out-
of-sample predictions (likely due to overfitting of the bias weights to
response frequencies in the training data). Instead of adjusting our
model implementation to downscale these biases, which would
arguably constitute leakage from our test set, we opted to simply
drop biases from our models altogether. Future work might therefore
investigate better ways of incorporating biases, possibly based on
word frequency statistics, into modeling of free association.

Second, future work might also investigate how individual hetero-
geneity is reflected in model parameters. For example, age-related
changes in memory capacity may be reflected in both γ and δ in our
continued-response model: those with poorer memory might have
both lower δ, reflecting less memory for previously recalled items,
and lower γ, reflecting less memory that the current trial involves
responding to the cue, and not themost recent response(s). This can be
tested by separately fitting our models on different populations, like
older and younger adults. Prior research on free recall from lists and
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Table 7
Predictors of Word Representation Shifts

Variable Coef. t 95% CI Correlation

Age of acquisition −116.13 −12.80 [−133.92, −98.34] −0.49
Concreteness −14.39 −0.89 [−46.16, 17.37] 0
Log word frequency 449.22 16.98 [397.35, 501.08] 0.55
Number of word
senses

7.73 2.01 [0.17, 15.28] 0.29

Note. Output of regression of ranked cosine similarity between response
words’ vectors in MCW and MWC on age of acquisition, concreteness,
(log) word frequency, and number of word senses. Higher ranked cosine
similarity corresponds to words whose representations were changed
greatly through fine-tuning MCW on free association data. The fifth
column presents the simple pairwise correlation between the ranked
cosine similarity and each of the variables. CI = confidence interval.

Table 6
Effects of Fine-Tuning

Word Similarity

Top 3 associates—Asymmetric Top 3 associates—Symmetric

1 2 3 1 2 3

bum 0.42 buttocks homeless breasts ok rap thug
money 0.44 cash pay payment funds cash fund
plant 0.52 grow fruit seeds factory facility produce
bee 0.52 busy buzz hive honey hive bumble
bend 0.53 flexible flex squat curves bow horseshoe
game 0.53 football play player play player match
rich 0.54 luxurious elegant mansion wealthy wealth vast
computer 0.57 software user keyboard software pc technology
weight 0.57 heavy amount tons load pounds height
words 0.58 language writing written phrase meaning language
police 0.58 arrest fbi criminal arrested policeman arrest
pen 0.58 writer written sharpie pencil ink quill
rose 0.59 flower petals pink fell percent slipped
tire 0.59 wheel spare pump wheel automobile brake
cry 0.60 onion crying stir crying scream shout
cut 0.60 scissors snip chop slash reduce would
tooth 0.60 filling cavity teeth teeth jaw enamel
spider 0.61 web online internet monkey snake frog
dead 0.61 probably death killed killed wounded killing
end 0.61 beginning start finish ending ended beginning

Note. Twenty words with the lowest cosine similarity between their vectors in MCW and MWC, along with the three most associated cues in the asymmetric
and symmetric models.
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semantic fluency has analyzed age-related differences in a similar
manner, and has found that aging affects both the structure of
associations between words (e.g., Dubossarsky et al., 2017; Zemla &
Austerweil, 2019; also see Ramscar et al., 2017 for a related result)
and the retrieval processes that operate on these representations (e.g.,
Healey&Kahana, 2016; Hills et al., 2013). Themethods in this article
show how this type of modeling can be scaled up to unconstrained
free-association tasks. Fine-tuningMCWmay also be able to shed light
on differences in underlying response representations across groups,
and by doing so, better predict differences in free associations across
groups. We believe that this could be a valuable tool for studying
cultural, developmental, and ideological differences in mental repre-
sentations (e.g., Bhatia et al., 2018; DeFranza et al., 2020; Holtzman
et al., 2011).
Third, in the present work, we have only focused on modeling

responses in free association, largely for the sake of simplicity. Of
course, behavior in this task unfolds over time and so a more
comprehensive model of free association ought to account for the
time each response takes. The SWOW-EN group has also collected
response times but is currently (at the time of writing) preparing
these for publication (De Deyne, personal communication). When
these become available, extending our framework to predict response
times will be a natural, if challenging, direction. Models that account
for response times as well as choices, like the Drift Diffusion Model
(Ratcliff & McKoon, 2008) or the latching attractor network for
semantic priming (Lerner et al., 2012), may be useful here, as might
CMR, which models choice and response times in free recall as a
competitive leaky accumulation process (Usher &McClelland, 2001).
Other models include the linear ballistic accumulator (Brown &
Heathcote, 2008) which can provide a more tractable account of
free recall dynamics in the presence of multiple possible response
words, as the case with free association (Osth & Farrell, 2019).
One major limitation of our approach is that the fine-tuning

exercise can only adapt MCW weights to response words with
sufficient training data. This is why we have had to exclude highly
infrequent response words from our analysis. We believe that it is
vital for researchers to develop methods that address such data
sparsity problems if they are to extend cognitive models to uncon-
strained tasks such as free association. One approach would be to
simply assume that response vectors for infrequent words are the
same in MCW as in MWC. This would allow us to make predictions
over words in the full GloVe vocabulary. A more complex approach
would be to try to model how fine-tuning transformsMWC intoMCW,
and by doing so, modify vector representations for infrequent words
in MWC into analogous representations in MCW. Identical methods
(based on the observation that similar words in different languages
have similar relative positions in their corresponding semantic spaces)
have already been proposed for machine translation (Lample et al.,
2018; Zou et al., 2013) and could potentially be extended to the
problem of free association.
Our work also shows how the transfer learning approach that has

driven success in machine learning and artificial intelligence
applications (e.g., Devlin et al., 2019; Pan & Yang, 2009) holds
great promise for cognitive modeling. By initializing our model’s
response vectors with pretrained word embeddings, we were able
to train effective models using far less data than would have been
necessary if we had trained these parameters from scratch.We have
previously proposed related techniques for modeling judgments of
words on various dimensions (Bhatia, 2019; Bhatia et al., in press;

Gandhi et al., 2022; Richie et al., 2019; Zou & Bhatia, 2021; also
see Hollis et al., 2017; Van Rensbergen et al., 2016; Sedoc et al.,
2017). Other work, including ours, has also shown the applicability
of such methods for the study of concept knowledge (Bhatia &
Richie, in press; Derby et al., 2019; Lu et al., 2019; Richie &
Bhatia, 2021). In fact, our training exercise can be seen as a type of
multinomial regression that learns word-specific weights for map-
ping cue and context vectors into response probabilities, making it
almost identical to the approach proposed in this prior work.

Given the flexibility inherent in this approach, readers may be
concerned that our model may have overfit the data, or may have
been able to simply mimic the data without uncovering any funda-
mental truths about free association. We believe that this is not the
case. First, we have evaluated our models through cross validation,
and our tests have shown that our trained model is able to generalize
to new cues with a high degree of accuracy. Second, despite flexibly
fine tuning a large set of weights, the CMR model used in our tests
places strict constraints on the types of dynamics that we may
observe in the free association task. In particular, CMR describes the
effect of previously retrieved words using a linear function with a
single decay parameter. This forces response chaining effects to take
on a very narrow functional form. Likewise, our implementation of
cue effects as additive limits the ways in which cues and previous
responses can combine to determine subsequent retrieval. One
implication of this is that our model cannot capture the complexities
of language. Thus, for example, our model would predict that the
sequence of retrievals (my, house, is, made, of) would be followed
by a word that is weighted average (in semantic space) of this set,
with a higher weight on more recent words. It would not be able to
predict the retrieval of words like wood or bricks. In this way, our
CMR model is much more constrained than leading deep neural
network models of language like BERT and GPT3 (Brown et al.,
2020; Devlin et al., 2019), which are equipped with multiple layers
of representation and are able to process basic types of linguistic
structure, and (unlike our model) compose the vectors of words in
complex and nonlinear ways. Of course, our model’s additive
constraint is what allows us to efficiently learn weights from free
association data, and subsequently predict free association with
accuracy. One could, in this sense, interpret CMR’s constraints as
inductive priors for modeling free association in neural language
models. These priors (which propose that response dynamics are
linear) are realistic and lead to good performance. More flexible
models like BERT and GPT3 could eventually replicate our perfor-
mance levels but it is likely that these models would need much
more training data than we have (and would thus perform poorly in
the tests that we have conducted).

Of course, the CMRmodel is not the most constrained model that
we have considered. The symmetric case (which sets both sets of
weights to be identical) is far more restrictive. We have shown that
this model performs poorly. In this sense, the asymmetry in the
CMR model is the right level of complexity for describing behavior
in our task. In a similar vein, we have shown that a model with full
decay (the Markov model) or a model without a persistent cue effect
perform poorly. Thus, our assumptions of decay and cue context are
the right assumptions for capturing the dynamics of our task.
However, despite these successes, we believe that further progress
depends on the development of psychologically and developmen-
tally plausible algorithms for learning the weights at play in free
association. Our approach currently does not describe how people
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actually learn these weights. Rather, it assumes that these weights
are free parameters that can be fit on free association data, similar to
how cognitive modelers fit relevant model parameters to participant
data. Perhaps the most promising approach to modeling realistic
learning processes is the pTCM proposed by Howard et al. (2011;
see also Shankar et al., 2009), and discussed in previous sections.
Although pTCM has been shown to predict cue–response probabili-
ties in free association data, it is also able to extract word-to-context
and context-to-word associations from natural language, using learn-
ing mechanisms adapted from the original CMR model. In this way,
associations obtained from pTCM can replace the starting GloVe
weights in our modeling framework. This would provide a much
more cohesive account of the learning and retrieval processes at play
in free association. Note that there have, until recently, been practical
constraints to applying pTCM to large vocabularies, as the algorithm
involvesmultiplying severalNxNmatrices (whereN is the vocabulary
size). However, newly developed deep learning libraries, such as
those used in the current article, may solve such constraints, as they
come equipped with specialized tools for large matrix multiplication.
Another direction for theoretical development involves the com-

bination of CMR-based retrieval dynamics with additional cognitive
processes to enable more sophisticated types of verbal cognition.
CMR provides a theory of how sequences of words come to mind in
unconstrained memory tasks, but in its current form, it lacks a
mechanism for using these association-based sequences for sentence
processing or relational reasoning. The syntagmatic paradigmatic
(SP) model (Dennis, 2005) provides one account of how associative
recall is modulated and controlled in verbal cognition, and future
work could consider applying its assumptions to the associations
possessed by CMR.
Finally, one major advance of our work is that it presents a

framework that generalizes theories for related tasks previously
studied and modeled separately. Our approach suggests that, faced
with a particular task (e.g., free recall from lists or free association),
participants may modulate their cognition and behavior in task-
dependent ways (which we can capture with adjustments in param-
eters like γ and δ), while keeping the underlying representations
(MCW and MWC) fixed. In particular, in the free association setting
we studied, we found both feedback from previously recalled items
(δ > 0), and a persistent effect of the cue (γ > 0). However, the same
system can be deployed in free recall from lists, and can mimic (a
simplified version of) CMR when γ = 0 (which eliminates the
persistent cue effect), as is appropriate for that task. Additionally,
our tests showed that a CMR model fit to free association data
provided superior predictions for semantic clustering effects in free
recall from lists.
That said, the assumptions of our model are insufficient for

describing the full range of memory tasks studied in the literature.
For example, by itself, our framework would be unable to describe
the learning of paired associates, or, more generally, episodic
associations that exist alongside the semantic associations possessed
by our model. There have been several attempts to build general
memory models that describe the interplay between (and in many
cases, the interference between) episodic and semantic memory
(e.g., Humphreys et al., 1989; Murdock, 1993; Nelson, Thomas,
et al., 1998; see also Cox et al., 2018). Many of these models posit
episodic representations that can be combined with the semantic
representations of our model to generate realistic responses in tasks
with episodic learning. Further developing the modeling framework

we have presented here, and deploying it on a variety of related tasks
involving the recall of words, is likely to be a fruitful area of research
for years to come.
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