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Transcranial electrical stimulation (tES) technology and neuroimaging are
increasingly coupled in basic and applied science. This synergy has enabled
individualized tES therapy and facilitated causal inferences in functional
neuroimaging. However, traditional tES paradigms have been stymied by
relatively small changes in neural activity and high inter-subject variability in
cognitive effects. In this perspective, we propose a tES framework to treat
these issues which is grounded in dynamical systems and control theory.
The proposed paradigm involves a tight coupling of tES and neuroimaging
in which M/EEG is used to parameterize generative brain models as well
as control tES delivery in a hybrid closed-loop fashion. We also present a
novel quantitative framework for cognitive enhancement driven by a new
computational objective: shaping how the brain reacts to potential “inputs”
(e.g., task contexts) rather than enforcing a fixed pattern of brain activity.

KEYWORDS

neurostimulation, transcranial electric stimulation, control theory and control
engineering, cognitive enhancement, brain dynamics

1. Introduction

Non-invasive neurostimulation techniques are more frequently being combined
with neuroimaging (e.g., Bergmann et al., 2012; Garcia-Cossio et al., 2016; Reinhart
and Nguyen, 2019), as an effective way to integrate perturbation and monitoring
approaches in cognitive neuroscience studies. The term non-invasive neurostimulation
refers to a range of techniques, including transcranial magnetic stimulation (TMS),
transcranial electrical stimuluation (tES), and transcranial focused ultrasound (tFUS).
In this perspective, we focus primarily on tES and how it might be integrated with high
temporal-resolution neuroimaging techniques such as magnetoencephalography (MEG)
and electroencephalography (EEG).

Transcranial electrical stimulation (tES) involves the use of stimulating scalp
electrodes to generate small electric fields throughout the head (Paulus, 2011). The
strength of tES is typically described in terms of electric current (mAs) for experimental
purposes, while the induced neuronal effects are typically reported as voltage gradients
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(e.g., Antonenko et al., 2021). Unlike transcranial magnetic
stimulation (TMS), tES induces relatively small changes in
neuronal membrane potential, but is potentially more versatile
due to its ease of construction, small profile (e.g., portability),
more mild side-effects, and support for a large number of
channels. Despite this promise, several lines of evidence indicate
that neurostimulation has not yet reached its full potential,
including issues of high inter-subject variability (Lopez-Alonso
et al., 2014) and inconsistent/weak effects (Horvath et al,
2015a,b).

tES protocols are broadly grouped into those that employ
a constant, DC voltage (tDCS) and those that involve some
form of alternating current (tACS), which need not be periodic.
Although the majority of existing literature concerns tDCS
(which was the earliest form of tES), increasing emphasis is
being placed upon the potential of dynamic stimulation (i.e.,
tACS). Here, we discuss the potential for deriving (near)-optimal
stimulation protocols which, depending upon the objective,
may be constant (DC), periodic, or neither. We also note the
existence of transcranial random noise stimulation (tRNS) in
which high-frequency random electric currents are used (Terney
et al., 2008).

In this tutorial, we describe how formal analyses of control-
theory can be used to optimize neurostimulation designs and to
develop new stimulation objectives. Control theory is a branch
of engineering that treats the problem of producing desired
behavior in (“controlling”) dynamical systems by manipulating
inputs to the system. The methods and objectives of control
theory are broad, and we do not seek to provide a self-contained
introduction to control (interested readers should see, e.g.,
Kirk, 2004; Schiff, 2010). Rather, we present this tutorial with
two goals.

1. To describe control-theoretic concepts that can inform
the design and implementation of neuroimaging+tES
experiments (both heuristically and formally).

2. To advocate for control-theoretic measures (reachability) as a
means to bridge between microscale neural computation and
macroscale tES.

Both goals leverage a tight integration of neuroimaging and
tES. Neuroimaging data is essential for identifying models of
underlying brain activity (see Section 7.2) and for monitoring
ongoing brain activity to guide tES delivery. We particularly
emphasize that the state of a non-linear system (like the
brain) determines its response to additional inputs (Section 4)
and knowing this state is essential for achieving the desired
downstream effects. Previous studies have demonstrated how
online monitoring of brain activity (via neuroimaging) benefits
neurostimulation design and delivery (Bergmann et al., 2012;
Reinhart and Nguyen, 2019).

We first present some fundamental insights from control
theory and, using case-problems, illustrate the potential of
such approaches to advance neurostimulation. We then present
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control-theory as an integrative perspective for understanding
the neural processes that give rise to adaptive behavior. This
perspective leads to a new formulation of neurostimulation
objectives as control-theoretic (reachability) conditions to
enhance cognitive control. Our objectives are particularly
relevant for cognitive enhancement of individuals who have not
suffered additional brain injury or cognitive decline, including
healthy subjects, as it does require identifying specific etiology.

2. Control principles

A central insight of control theory is that, under suitable
conditions, spatial and temporal degrees of freedom may be
interchanged so that a system with more internal states than
inputs may still be controllable via the temporal structure
of inputs. The auditory system is a prime example of this
phenomenon in neuroscience. A single actuator to the cochlea
(movement of the stapes) controls thousands of spatial degrees
of freedom (hair cells). This control is realized by internal
dynamics of the basilar membrane whose varying thickness
produces a spatial gradient of mechanical resonances (often
compared to a Fourier decomposition). Thus, asymmetric
dynamics enable a conversion from temporal to spatial degrees
of freedom (or vice-versa). This notion is formalized via Lie
Algebras in geometric control theory (Brockett, 1973).

In a dynamical system, the future state (e.g., spatial activity
pattern) of a system is a function of its current state plus any
additional inputs:

% = f(xt) + Buy (n)

Here, x is an n-element vector of brain state-variables
(e.g., xi is the activity of the i population) and f is the
dynamical systems model. The k-element vector u; describes
the applied current (each element representing an independent
stimulation channel) and the n x k matrix B contains the
relative gains between stimulation channels and brain state-
variables, analogous to a lead-field matrix. In this setup, we treat
the instantaneous impact of tES as additive (i.e., an additional
current source to Ohmic models). This assumption is justified
when f is a detailed biophysical neuron model, but future
study is needed to test whether the same assumptions hold for
reduced population-level models. For instance, at population
level, the modulation of voltage-gated channels might be better
approximated by a change in connection strength rather than
direct modulation of population-level activity. However, we
use this formulation, at present, as it is the most common,
parsimonious, and accessible.

The internal dynamics of this system alter multiple aspects
of how the system responds to an input signal (u). For
example, in a linear system with periodic forcing, these effects
may be fully decomposed into two components: frequency-
dependent amplification and frequency-dependent phase-shifts.
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Frequency dependent gains and phase-shifts for a pair of linear leaky-integrators. (A) Bode-plot of gains (top) and phase-shifts (bottom). (B)
Heterogeneous dynamics enable reversal of relative amplitudes for two integrators (“brain regions”) based upon input frequency. The left-half of
each timeseries shows a low-frequency input which is magnified by region 1, while the right-half shows the effect of a high-frequency input
which results in greater power for region 2). (C) Using control to induce a target wave in two brain areas. (C.1) The target is composed of two
sinusoidal components. (C.2) Applying the same wave to each node results in desynchronization and temporal distortion. (C.3) Control theory
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These properties are depicted graphically as a “Bode plot”
(e.g., Figure 1A) and a recent study empirically estimated
these functions for neurostimulation of macaques (Yang et al.,
2021). Frequencies with the highest gain are referred to as
“resonant”. In humans, a study by Reinhart and Nguyen
(2019) demonstrated the heuristic power of applying tACS at
frequencies likely to be near-resonant (those dominant at rest).
Component-wise differences in these properties (e.g., regional
heterogeneity; Demirtas et al., 2019; Wang et al., 2019; Singh
etal., 2020) can be exploited for control. We expound upon these
implications in two illustrative cases.

3. Control concepts I: Time-domain

Throughout this section, we will use cartoon models of
brain dynamics to demonstrate underlying ideas while retaining
analytic, visually-compact solutions. Unlike the non-linear
brain, all (stable) linear dynamical systems can be reduced to the
action of convolving the input timeseries with a system-specific
kernel. For example, the simple integrator system below (x(t))

acts equivalently to convolving inputs (u(t)) with be™%:

x = —ax + bu(t) (2)

with % denoting the temporal derivative (the instantaneous
rate of change in x per unit time). For oscillating inputs (i.e.,
tACS) linear systems act as filters amplifying/attenuating certain
frequencies and generating frequency-specific phase-shifts. For
pure sinusoidal input (0-phase) and a frequency of @ in terms of
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radians (u(t) = sin(wt)), this system has the analytic solution:

x(t) = c(w, t) + sin(wt — ¢p(w)) (3)

b

with phase shift: ¢ = tan~!(w/a) and transient exponential
component: c(w, t) (xo + bsin(¢))e*. The frequency
dependent gain is thus inversely proportional to vw? + a?.
Thus, both the phase and amplitude of induced oscillations

(e.g., via tACS) depend upon the input frequency (w) and
the local dynamics (a). We explore these properties in two
empirically-relevant case problems using the simple integrator
model for pedagogy (more realistic, non-linear models may
be necessary for application and are treated later) and use
generic numbers rather than empirical values. In non-linear
systems, such characterizations become more nuanced and
depend upon the input magnitude and the current state of
the system (i.e., ongoing brain activity). However, as we will
demonstrate, even the simplest linear systems do not identically
reproduce the temporal properties of their inputs. This feature
has significant implications for input design and researchers may
thus benefit from using formal methods (i.e., control theory)
to identify effective neurostimulation protocols. In large, non-
linear systems such as the brain, such imperatives are doubly
important.

3.1. Case 1: Independent amplitude
control

Suppose that an experimenter wishes to selectively modulate

the relative magnitude of two regions using a single stimulation
channel (one anode + one cathode). Thus, at certain times,
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she desires that power(region 1)>power(region 2) and at
other-times vice-versa (e.g., linked to different stages of neural
processing). This problem contains two components: how
electrodes should be placed and the stimulation waveform.
Without loss of generality, we'll suppose that the first region
has a slower decay rate (a; = 0.2,ap = 0.5) and fix by = 1.
Using Equation (3), we have that the gain for region 1 (the longer
integrator) is always greater than for region 2 when by < by,
hence achieving greater power in the second region requires
by > by (e.g., electrodes are placed closer to region 2). For
demonstration we choose by = 2. We solve for the maximal
difference in gains by setting the derivative equal zero:

d 1

by
— - =0 4)
do \/a)z—}—a% \/a)z—{—a%
which gives the solution:
2 12/3 2
a — by ay (5)
b -1

for maximizing the difference of region 2 gain vs. region 1
gain. By contrast, region 1 has greatest relative gain for very low-
frequency inputs due to its longer time constant. Thus, using
very low-frequency (or DC) inputs will differentially engage
region 1 (see Figure 1B).

3.2. Case 2: Synchronization to a target
wave

We now consider the task of creating synchronized periodic
behavior in two regions using separate inputs to each region
(they are sufficiently distal that we ignore electrical conduction
between the two sites). Conventionally, researchers have
approached this task by delivering synchronous transcranial
alternating-current stimulation (tACS) at the two stimulation
sites. However, by Equation (3), it is clear that input currents
generate a phase-offset (¢) in the state-variables. As with gain
(see Case 1), the phase-offset is a function of the intrinsic
dynamics and the stimulation frequency (Figure 1A). This
means that, even for the cartoon model, synchronously applied
stimulation does not (generally) result in synchronous responses
due to region-specific phase-offsets in the response. For a simple
sine-wave, synchronous responses thus require that input phases
differ by the difference of phase-offsets so as to cancel this shift.
In the more general case of inducing a multi-component wave
(the “target”), a different phase offset applies to each frequency-
component of tES (i.e., considering each sine-wave separately),
since the phase-offsets are a function of frequency. Likewise,
the amplitude of each component must also be rescaled from
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the target to counteract frequency-dependent gains (see Case 1).
More generally, for a target of the form:

x(t) = Z cisin(wit + v;) (6)

the matching tACS waveform (ignoring the initial transient)
is given by

. 1< . 1| wi
u(t) = 3 ;ci,/aZ + w%szn(w,-t + v; + tan [j:|> (7)

Thus, in general, the optimal input waveform differs
substantially from the induced effect even in simple models as
evidenced by the 2-component target-wave in Figure 1C. These
distortions differ between regions and, in non-linear systems,
are subject to further interactions with ongoing activity. Brain
dynamics are thus a critical consideration for ensuring that
stimulation protocols achieve the desired neural effects.

4. Control concepts Il: Non-linear
interactions

The general motivation for control extends to non-linear
systems as well: dynamics generate temporal asymmetries
which can be leveraged for control; note however that non-
linear control analysis generally requires numerical methods
(simulation and optimization) as opposed to deriving closed-
form solutions. These algebraic asymmetries arise due to local
regional heterogeneity (e.g., the degree of recurrent connections)
and the structured nature of brain connectivity (i.e., connections
are not all-to-all). These factors lead to region-specific dynamics
which can be exploited for control. As a very basic example, we
provide the frequency-dependent gain of simulated sinusoidal
tACS applied to a brain model estimated from single-subject
MEG data (see Larson-Prior et al.,, 2013; Singh et al., 2022b)
for several brain regions (Figure 2A). Since the models are non-
linear, this characterization is purely statistical and represents
the average signal power (sum-of-squares) of the response
across many noisy simulations. For this specific case, we find
that, on average, the greatest change in amplitude results from
stimulation in the alpha and/or beta bands (which are dominant
at rest) and the specific relationship differs markedly between
brain regions. However, this characterization, while useful, does
not fully capture the behavior of a non-linear system. A key
distinction is that in non-linear systems, it is not possible to
separate the system’s initial state from the influence of input:
long-term effects reflect an interaction between the input signal
and ongoing activity.
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Human MEG Model

expansion. See Supplementary material for details.
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Frequency sensitivity and state-dependence of responses in a single-subject’s non-linear model (fit to MEG data; see Singh et al., 2022b. (A)
Statistical Bode plot showing the average power of responses to simulated tACS input (averaged over many initial conditions, noise realizations).
Note the different frequency-sensitivity profiles of illustrated brain regions (regions/networks from the 17-network 100-parcel Schaefer atlas;
Schaefer et al., 2017). (B) Different initial conditions (phase on a limit cycle) change the response profile of non-linear systems. (C) State-space
visualization of the limit cycle and some trajectories converging onto it. Control was modeled as two independent stimulation input channels
uniformly targeting left Frontoparietal Network and left Default Mode Network (1 degree-of-freedom each). Ellipsoids indicate the reach sets for
input after 1/3 period and with L, bounds (root-sum-of-squares) |ull2 < 4. Initial conditions are marked by “X" in the corresponding color. Note
that the size/orientation of reach sets differ based upon initial condition. *For visualization purposes, reach sets are approximated by first-order

4.1. State/phase dependence

To illustrate this dependence, we consider the same subject’s
model initialized at different points (phases) along a stable
oscillation (a “limit cycle”; Figure 2C). We simulated the model
(without noise) starting at each phase and with sinusoidal
input. Results (Figure 2B) indicate that the frequency-sensitivity
depends strongly upon the initial conditions which, when
activity is confined to a limit cycle, can be interpreted as phases.
We also note that this sensitivity should not be confused with
interference. Interference refers to when separable in-phase
signals sum and anti-phase signals cancel. However, the system’s
response is in terms of the difference between with-control
vs. without-control activity. For a linear system, the response
is therefore independent of how the system is initialized
(e.g., its phase). The dependence upon initial conditions for
a non-linear control system is thus distinct from notions of
superimposing waves.

5. Control concepts lll: State-space

For controlling systems with many components and/or non-
linearities (both of which apply to the brain), it is also helpful
to view the system through a state-space framework. This
involves identifying how the system evolves at each time-step
as a function of the current state. Each point in state-space
corresponds to one pattern of brain activity and a sequence of
brain-states (a spatiotemporal pattern) corresponds to a path in
state-space (see, e.g., Figure 2C). In the state-space framework,
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the goal is to find a sequence of inputs that move the system to
a desired state (static spatial activity pattern) or along a specified
path (spatiotemporal activity pattern). Dynamics determine how
the system moves at each step. An optimal control law thus
corresponds to a rule that, when followed, eventually drives
the system to a desired stopping-place while minimizing costs
along the way (e.g., the time taken or the energy used). State-
space analysis is particularly central to non-linear systems which
generally lack concise, analytic solutions (as opposed to, e.g.,
Equation 3).

5.1. Reachability

Viewing a dynamical system from this perspective (a
sequence of paths), a natural question is which portions of
the state space (brain activity patterns) may be accessed by an
appropriate control? In practice, only limited values of the input
signal are allowed [e.g., u(t) is bounded by safety limits]. The set
of allowable inputs are referred to as “admissible”. For a given
starting point (xp), we define the “k-reach set” as the collection
of all states that can be reached using an admissible control of
length k. In other words, the “reach set” consists of all outcomes
at time k that can be achieved starting at xo. The reachable set
consists of all outcomes that can be eventually reached. In other
words, reachable sets are the union of reach sets. For a linear
system, the initial condition shifts the location of reach-sets but
does not alter their shape as the effects of initial conditions and
inputs are additive (the “superposition principal”). By contrast,
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Figure and captions reproduced with permission from Singh et al. (2022a). k denotes the horizon length (i.e., how long since stimulation started).

the reach-sets of a non-linear system depend greatly upon the
starting position. In the previous simulation of a human MEG
model (confined to a limit cycle), the size and orientation of
reach-sets is a function of the starting point on the cycle (i.e.,
the phase; Figure 2C).

We further explore reachability via a simulation of two
reciprocally inhibiting “neurons” (Figure 3A). We assume that
inputs to this system are bounded. In the absence of control,
(almost) all initial conditions end at one of two equilibria
corresponding to neuron 1 or neuron 2 becoming dominant
(Figure 3B). For initial conditions near a (locally) stable
equilibrium, the reachable space is small with all solutions
eventually getting trapped close to that equilibrium for any
admissible controller (Figure 3C top-left and bottom-right) By
contrast, initial conditions near an unstable region of state
space are able to reach either equilibrium depending upon the
controller’s input (Figure 3C).

5.2. Cognitive interpretation of reachable
sets

We now explore how control-theoretic methods relate
to cognition by modeling the task environment and stimuli
as additional inputs to the brain. In this context, the
reachable sets describe which patterns of brain activity can
be elicited by a class of task stimuli. Too illustrate these
concepts, we consider their deployment in a canonical cognitive
task: the Stroop task (Stroop, 1935). In the Stroop task,
participants are presented with color-words (e.g., the word
“BLUE”) and asked to report either the word or the font-
color. Thus, each stimulus contains multiple dimensions
(word and font-color), and previous instructions dictate which
dimension is to be reported. For the present purposes,
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we are not concerned with asymmetries within the Stroop
effect (i.e., the bias toward “word” over “color”). A simple,
but influential, model of the task proposes that previous
instructions prime which attributes should be attended and
thereby “guide” activation in response to future stimuli
(Figure 4A). Treating this model as a 6-dimensional dynamical
system (2 rule-units + 4 attribute-units), task instructions
move the system’s initial conditions along the “attend-
word” vs. “attend-letter” axis. These initial conditions reshape
how subsequent inputs propagate through the network (see
Supplementary material for details) by distorting the reachable-
set geometry (Figures 4B,C). Previous instructions dilate the
reachable set geometry along the cued attribute dimensions:
between words (Wr minus Wb) or between colors (Cr
minus Cb). This is signified by the central rectangle flipping
to be longer on the y-axis for following word reading
instructions, but longer on the x-axis following color naming
instructions, which signify a larger reachable set on the
respective axes. Thus, reachable sets provide a geometric
framework for understanding how the initial state of a
system constrains its response to subsequent inputs. In this
example, the effects are relatively straightforward and easy to
understand in conventional terms. However, these effects are
less intuitive for larger networks or time-varying inputs. In the
next section, we propose leveraging this concept to identify
computational properties of brain states and to formulate new
neurostimulation objectives.

6. Reachability as a control objective

Historically, neurostimulation protocols have been
motivated by previous neurophysiology-behavior correlates.
This typically takes the form of increasing region-specific

brain activity, spectral power, or synchronization between
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FIGURE 4

corresponding attribute (color or word).
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Reachability concept illustrated in the Stroop Task. (A) Neural-network model of the Stroop Task (without bias) based on MacLeod and Dunbar
(1988) and Cohen et al. (1990), figure adapted with permission from Singh et al. (2022a). Nodes are named according to attribute and value
(Cr=color-red, W, =word-blue). Sigmoids indicate the activation function: how the activity of a node is converted to its response. (B) Simulated
trajectories of the model in the “attend word" condition, in response to different word/color combinations. Coordinate axes represent the
difference in output between nodes (i.e., C, — Cp is the difference in output between color-red and color-blue nodes). The black line indicates
the decision boundary for responding “red” vs. “blue”. *For pedagogy, reachable sets are conceptually illustrated by their convex hull. (C)
Analogous figure for “attend color”. Note that previous instructions (initial conditions in the model) dilate the reachable set along the

brain areas. Such characterizations are well-documented and
concretely-specified. However, there may be some limitations
to this framework. Namely, the underlying logic states that

« »

because neuro-cognitive process “x” (e.g., working memory

«_»

«_»

Yy~ via neuros

maintenance) is associated with signal-feature (e.g., theta-

power; Onton et al., 2005); inducing timulation

«_»

will enhance “x”. However, this inference does not necessarily

«_» «_»

hold, even when the relationship is causal; i.e., “x” causes “y”.
This asymmetry emerges from the difference in spatial scales
between the generative neuronal processes and the macroscopic
resolution of M/EEG and tES.

As an analogy, consider short-term memory storage in a
computer. This process generates a spatially-localized electrical
signature: greater current usage by RAM (Random Access
Memory). Thus, the relationship between electrical usage and
(volatile) memory storage is causal and the former is a
necessary condition for the latter. However, uniformly injecting
additional current into RAM will not improve its memory
capacity (or any other function) as information content is
only manifest at microscale (RAM memory cells). Uniformly
adding current cannot add new information (other than
setting all of the memory cells to “1”). As an aside, we
note that the above-referenced limitations concern the ability
to enhance cognition beyond what was naturally possible
and does not proscribe against conventional methods to
restore lost functions. In the computing analogy, for instance,
applying a macroscopic current could be useful if the device
is unplugged (i.e., by providing a power source) but it can’t
improve performance beyond the standard operating range (see
above arguments).
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the
summation of microscale neuronal activity and many cognitive

Likewise, neurophysiological signatures reflect
operations (such as those involving working memory) are
inseparable from this scale. For instance, brain regions encoding
semantic categories are not easily divided anatomically based
upon individual categories (i.e., separating neurons sensitive
to the mammal category vs. bird category). Thus, there
are significant challenges in determining how macroscale
stimulation could enhance higher-cognitive functions in healthy
subjects. We suggest that these scales might be bridged through
control theory.

Our proposal is founded upon the idea that, for cognitive
enhancement, stimulation must be enabling: it improves the
brain’s ability to find the correct answer to a problem/task, but
cannot explicitly move the brain toward the correct answer
because (1) the “correct” response is determined by task contexts
which are independent of the control law (i.e., the controller
cannot perform the task for the subject); and (2) the neural
computations involved in higher cognition occur at spatial scales
which are inaccessible to the tES input. Instead, we propose to
treat the brain as a dynamical system controlled by both tES and

the environment, e.g., we write:

(®)

X =f(x» Zeny) + Bugtim

Treating the environment as a controller-input (zeny) we
define the reachable-sets under z.;, as the values of x which,
from a given initial condition, can be produced by admissible
values of z¢;y. Admissible values of z are constrained by known
anatomy (the spatial structure of task-evoked activity) and
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Conceptual demonstration of reachability in a modeled delayed-response task. (A) Schematic of the delayed-response task in which three
distractors are presented during the delay period. (B) Integrated tES+task model. Task stimuli directly interface with microscale neural circuitry:
the "neurons” in a leaky-competing-accumulator model. By contrast, the closed-loop controller measures the (macroscale) summed activity
(analogous to M/EEG) and stimulates the population as a whole (as opposed to selecting neurons). For simplicity, the controller was modeled as
affine-feedback with saturation [i.e., u; = tanh(a(}_;[x:;) + b)]. The triangle denotes feedback gain/amplification (by a), while b is an additive bias
signal. Separate values of a, b are used during the cue vs. delay phases (hence the dependence on time) and a; = by = 0 during the inter-trial
period. (C) State-space plots of network dynamics (reduced to two neurons for display). Attractors in the model correspond to stable memory
representations. (C.1) Original dynamics and reach-sets when initialized at baseline (red) or near an attractor (magenta). (C.2) Pseudo-optimal
settings for a, b during the cue-phase increase the reachable space from baseline. (C.3) Pseudo-optimal modeled tES settings during delay
contract the reachable space so that new inputs (distractors) have less influence.

reasonable bounds on magnitude. This reachable set under ze;y
thus corresponds to how task conditions can affect microscale
brain activity. As noted before, the reachable sets depend upon
the initial conditions of x and the system’s dynamics (including
any tES feedback). One pathway to cognitive enhancement may
be shaping the brain’s reachable sets (due to task) by modifying
pre-task activity in a proactive manner (setting the brain into
an optimal start-point; see Figure 3) or by altering the closed-
loop (brain+tES) dynamics. In the next section, we illustrate
these ideas in a closed-loop simulation in which macroscale
stimulation is used to widen the microscale reachable-sets.

6.1. lllustration of concept

Clearly the above ideas need to be validated in both
simulations and real-world experiments. As a proof-of-concept,
we illustrate the potential of tES to alter reachability and improve
behavior in silico by modeling a continuously performed
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delayed-response task in which subjects are presented with an
item to memorize and report after a delay period with distractors
(Figure 5A). To model this process, we use a standard recurrent
network model of decision-making with one recurrent unit
for each possible item (see Supplementary material; Usher and
McClelland, 2001; Wong and Wang, 2006). As each stimulus
(cue or distractor) is presented, it excites the corresponding
memory unit. Units reciprocally inhibit each-other leading to
competition between outcomes. For simplicity, we modeled the
behavioral response as the memory unit with greatest activation
at the start of the response segment.

In this task, the information processing demands differ
between the cue/encoding period and the delay/distractor
period. Information accrual is beneficial during the encoding
period (when stimuli are goal-relevant) but not during the
distractor/delay period. The reachability construct provides
a means to manipulate these properties through macroscale
interventions while remaining agnostic to the information
content itself (i.e., independent of which cue was presented).
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As a simple demonstration, we explored whether a tES
controller, added to this model (Figure5B), could alter
reachability and improve simulated performance. We found
that the most effective controller (best task performance) used
feedback to increase reachability during the cue/encoding period
and decrease reachability during the delay/distractor period
(Figure 5C). Thus, the best controller increased reachability for
periods in which stimuli were task-relevant (cue/encoding) and
decreased reachability during the delay (thereby stabilizing the
“memories”). These findings indicate that altering reachability
may be one path to improving behavioral accuracy with
macroscale stimulation. Ultimately enacting this form of control
remains an ongoing endeavor for which technical aspects are still
being developed. However, we hope that these ideas demonstrate
the relevance of control theory in both the engineering and
cognitive aspects of tES design.

7. Hurdles to applications in practice

The above ideas demonstrate the ways in which control-
theoretic concepts and analyses can benefit brain stimulation
paradigms, but clearly several hurdles remain to applying
this method in practice. Implementing real-time control often
involves several non-trivial steps such as estimating a model
of the underlying system, identifying control algorithms, and
building the infrastructure to link EEG and tES.

7.1. Controller design

The methods and objectives of control theory are broad,
but can be largely grouped into closed-loop methods which
provide ongoing feedback and open-loop methods in which
control is designed and applied independent of ongoing
measurements. Closed-loop control (of-varying degrees) is
almost always superior but often requires the ability to both
measure and manipulate a system simultaneously. This setup
is notoriously challenging for non-invasive neurostimulation
due to the difficulty of removing stimulation artifact from
M/EEG signals.

One path to circumventing artifact contamination is to
instead use a hybrid closed-loop approach in which tES is
delivered in pulses interleaved with (artifact-free) M/EEG
recordings. During active tES, the closed-loop algorithm relies
upon simulated values of the expected brain activity at
each time step with these values being periodically corrected
during the tES-free phases. Several recent EEG+ES studies
have already demonstrated the feasibility of an alternating
approach by delivering intermittent phase-locked tES (i.e.,
using intermittently measured EEG to determine the onset of
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each tACS round; e.g., Reinhart and Nguyen, 2019). A high-
level illustration of this idea, combined with the Non-linear
Model-Predictive Control (NMPC) algorithm is depicted in
Algorithm 1. The NMPC algorithm (see Rawlings, 2000 for
an introduction) simplifies the problem of identifying long
control sequences by instead only optimizing over short moving
horizons into the future at each time-step. This approach thus
involves solving a sequence of short optimization problems
(one per time-step). The benefit of NMPC is that it efficiently
handles constraints (i.e., safety limits on tES current) and
does not require concurrent measurements (unlike traditional
feedback), while still enabling the controller to adapt when new
information is acquired.

k
U(k) %) = argmin Z Qt+j+1 |:fj(5€t) Mt~--ut+j)]

U, t+k—1] j=1
if Hy=Stim then
i< Uk, %)

Administer i
Xy <—f(5€r,f4t)
else
Record y
X < State Update given (y,%—1) (e.g.,
Kalman Filter)

end if

Algorithm 1. Generic k-step NMPC Algorithm with alternating
stimulation/recording intervals. H; indicates either a stimulation or
recording period. The control-objective at each time-step is denoted
by Q. The j-step iteration of f is denoted f/

7.2. System identification

An additional challenge for control relates to obtaining
sufficiently accurate models of the brain activity patterns
observed in M/EEG (referred to as “system identification”
in control-terminology). This step is non-trivial and an area
of active research. Because the models must forecast future
brain activity, they will almost certainly need to be estimated
from timeseries data as opposed to, say, functional/structural
connectivity (Honey et al., 2007, 2009). There are several generic
approaches for system identification including non-linear
autoregressive models, volterra-kernels, and neural networks
(Hagan et al., 2002). Additionally, some system identification
methods have been specifically developed for neuroscience
like Dynamic Causal Modeling (Friston et al., 2003; Kiebel
et al., 2008). Most recently, we have presented a new, scalable
identification algorithm for large brain models, that we term
MINDy (Mesoscale Individualized NeuroDynamic Modeling;
Singh et al, 2020, 2022b). Critically, MINDy models are
estimated using single-subject M/EEG data based upon the
Kalman Filter (Singh et al., 2022b). However, it is clear
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that there is also significant impetus to improve data-driven
model estimation, particularly given the unique challenges (e.g.,
volume conduction) of M/EEG data.

8. Conclusion

In this note, we have advocated for control-theory as a
useful framework for the design and analysis of combined
neuroimaging+tES experiments. This process can take multiple
forms, from using control-theoretic principals to understand
previous observations (e.g., frequency selectivity) to optimizing
tES using quantitative brain models. We have also identified
a mismatch between spatial scales (microscale computation vs.
macroscale tES) as a clear hurdle in directly linking neural
computation, task conditions/stimuli, and macroscopic fields in
a coherent optimization problem. We proposed that control-
theoretic measures such as reachability may be able to bridge
these scales by shaping the response properties of microscale
neurocircuitry without ever accessing or measuring individual
circuit components (which are inaccessible). The full integration
of closed-loop control and reachability-optimization with tES
is surely a multi-step endeavor. However, we hope that, at a
minimum, readers will be motivated to further explore control-
theory and neuroengineering (see e.g., Schiff, 2011 for an
introduction), given the promise of such approaches within
this domain.
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