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ABSTRACT

We consider the problem of extracting randomness from sumset
sources, a general class of weak sources introduced by Chattopad-
hyay and Li (STOC, 2016). An (n, k, C)-sumset source X is a distri-
bution on {0, 1}" of the form X; + X2 +... + X, where X;’s are
independent sources on n bits with min-entropy at least k. Prior
extractors either required the number of sources C to be a large
constant or the min-entropy k to be at least 0.51n.

As our main result, we construct an explicit extractor for sumset
sources in the setting of C = 2 for min-entropy poly(logn) and
polynomially small error. We can further improve the min-entropy
requirement to (logn) - (loglog n)1+o() at the expense of worse
error parameter of our extractor. We find applications of our sumset
extractor for extracting randomness from other well-studied models
of weak sources such as affine sources, small-space sources, and
interleaved sources.

Interestingly, it is unknown if a random function is an extractor
for sumset sources. We use techniques from additive combinatorics
to show that it is a disperser, and further prove that an affine ex-
tractor works for an interesting subclass of sumset sources which
informally corresponds to the “low doubling” case (i.e., the support
of X1 + X3 is not much larger than 2k).
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« Theory of computation — Expander graphs and random-
ness extractors.
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1 INTRODUCTION

Randomness is a powerful resource in computer science, and has
been widely used in areas such as algorithm design, cryptography,
distributed computing, etc. Most of the applications assume the
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access to perfect randomness, i.e. a stream of uniform and indepen-
dent random bits. However, natural sources of randomness often
generate biased and correlated random bits, and in cryptographic
applications there are many scenarios where the adversary learns
some information about the random bits we use. This motivates the
area of randomness extraction, which aims to construct randomness
extractors, which are deterministic algorithms that can convert an
imperfect random source into a uniform random string.

Formally, the amount of randomness in an imperfect random
source X is captured by its min-entropy, defined as Heo (X) =
miny esupp(x) (— log (Pr [X = x])).! We call X € {0,1}" a (n,k)-
source if it satisfies Hoo (X) > k. Ideally we want a deterministic
function Ext with entropy requirement k < n, i.e. for every (n, k)-
source X the output Ext(X) is close to a uniform string. Unfortu-
nately, a folklore result shows that it is impossible to construct such
a function even when k =n — 1.

To bypass the impossibility result, researchers have explored
two different approaches. The first one is based on the notion of
seeded extraction, introduced by Nisan and Zuckerman [38]. This
approach assumes that the extractor has access to a short indepen-
dent uniform random seed, and the extractor needs to convert the
given source X into a uniform string with high probability over the
seed. Through a successful line of research we now have seeded
extractors with almost optimal parameters [23, 25, 35]. In this paper,
we focus on the second approach, called deterministic extraction,
which assumes some structure in the given source. Formally, a
deterministic extractor is defined as follows.

DEFINITION 1.1. Let X be a family of distribution over {0, 1}". We
say a deterministic function Ext : {0, 1}" — {0, 1} is a deterministic
extractor for X with error ¢ if for every distribution X € X,

Ext(X) =¢ Up,.

We say Ext is explicit if Ext is computable by a polynomial-time
algorithm.

The most well-studied deterministic extractors are multi-source
extractors, which assume that the extractor is given C indepen-
dent (n, k)-sources X1, Xy, ..., Xc. This model was first introduced
by Chor and Goldreich [14]. They constructed explicit two-source
extractors with error 2~ for entropy 0.51n, and proved that
there exists a two-source extractor for entropy k = O(log(n)) with
error 2~2(0) Significant progress was made by Chattopadhyay and
Zuckerman [13], who showed how to construct an extractor for
two sources with entropy k = polylog(n), after a long line of suc-
cessful work on independent source extractors (see the references
in [13]). The output length was later improved to Q(k) by Li [32].
Furthermore, Ben-Aroya, Doron and Ta-Shma [3] showed how to
improve the entropy requirement to O(log“'”(l) (n)) for constant

ISupp(X) denotes the support of X. We use log to denote the base-2 logarithm in the
rest of this paper.
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error and 1-bit output. The entropy requirement was further im-
proved in subsequent works [19, 33], and the state-of-the-art result

is by Li [34], which requires k = O(log(n) - %). For a
more elaborate discussion, see the survey by Chattopadhyay [4].

Apart from independent sources, many other classes of sources
have been studied for deterministic extraction. We briefly introduce
some of these research directions here. A well-studied class is obliv-
ious bit-fixing sources [15, 24, 27, 39], where some unknown coordi-
nates are uniform and independent (and the remaining coordinates
are fixed). Extractors for such sources have found applications in
cryptography [15, 27]. A natural generalization of bit-fixing sources
is the class of affine sources, which are uniform distributions over
some affine subspaces and have been widely studied in literature
(see [6] and references therein). Another important line of work fo-
cuses on the class of samplable sources, which are sources sampled
by a “low-complexity procedure" such as efficient algorithms [43],
small-space algorithms [26] or constant-depth circuits [44]. Re-
searchers have also studied interleaved sources [9, 10, 12, 40], which
is a generalization of independent sources such that the bits from
different independent sources are permuted in an unknown order.

In this paper, we consider a very general class of sources called
sumset sources, which was first studied by Chattopadhyay and Li [9].
A sumset source is the sum (XOR) of multiple independent sources,
which we formally define as follows.

DEFINITION 1.2. A source X is a (n, k, C)-sumset source if there
exist C independent (n, k)-sources {Xi};c[c] such that X = ZiC:l X;.
If the parameters n, k are clear from the context, we simply say X is a
C-sumset source.

Chattopadhyay and Li [9] showed that the class of sumset sources
generalize many different classes we mentioned above, including
oblivious bit-fixing sources, independent sources, affine sources
and small-space sources. They constructed an explicit extractor
for (n, k, C)-sumset sources where k = polylog(n) and C is a large
enough constant, and used the extractor to obtain improved extrac-
tors for small-space sources and interleaved sources. It is left as
an open question in [9] to obtain explicit extractors for small C,
and with the most interesting question being whether it is possible
to construct an explicit extractor for 2-sumset sources with low
min-entropy.

Note that the model of weak sources, that is the sum of two
independent sources, captures and generalizes two central settings
in seedless extraction: (i) 2-independent sources setting: given ac-
cess to independent sources X; and X, clearly X = X; + Xy is a
2-sumset source (ii) affine source setting: an affine source X with
min-entropy k can be written as the sum of two independent affine
sources X1, Xy, each with min-entropy k.2 Thus, an extractor for
the sum of two sources directly gives a two-source extractor as well
as an affine extractor. As we discuss in Section 1.1, such an extrac-
tor yields further improved extractors for interleaved sources and
small-space sources as well.

However, it has been challenging to construct extractors for 2-
sumset sources with low min-entropy. The only known extractor
for the sum of two sources before this work is the Paley graph
extractor [14], which requires one source to have entropy 0.51n

2For example, we can pick any b € Supp(X) and take X; = X and Xy = b + X.
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and the other to have entropy O(log(n)), based on character sum
estimates obtained by Karatsuba [28, 29] (see also [12, Theorem
4.2]). In fact, unlike other sources we discussed above, it is not clear
whether a random function is an extractor for sumset sources. (See
Section 1.3 for more discussion.)

In this paper, we give a positive answer to the question above.
Formally, we prove the following theorem.

THEOREM 1. There exists a universal constant C such that for ev-
eryk > logc(n), there exists an explicit extractor Ext : {0,1}" —

{0, 1}™ for (n, k, 2)-sumset source with errorn=2() gnd output length
m = k80

We can further lower the entropy requirement to almost loga-
rithmic at the expense of worse error parameter of the extractor.

THEOREM 2. For every constant ¢ > 0, there exists a constant C
such that there exists an explicit extractor Ext : {0,1}" — {0, 1} with
error ¢ for (n, k, 2)-sumset source where

k = C, log(n) loglog(n) loglog log® (n).

As we noted above, a sumset source extractor is also an affine ex-
tractor, and hence Theorem 2 also gives an affine extractor with en-
tropy O(log(n) log log(n) log log log® (n)), which slightly improves
upon the O(log(n) loglog(n) log Ioglogé(n)) bound in [6]. This im-
provement comes from a new construction of an “affine correlation
breaker", which we discuss in Section 1.2.

1.1 Applications

Next we discuss some applications of our sumset extractors in
obtaining improved extractors for other well-studied models of
weak sources.

1.1.1  Extractors for Interleaved Sources. Interleaved sources are a
natural generalization of independent sources, introduced by Raz
and Yehudayoff [40] where they called it as “mixed sources". The
formal definition of interleaved sources is as follows. For a n-bit
string w and a permutation o : [n] — [n], we use ws to denote
the string such that the o(i)-th bit of wy is exactly the i-th bit of w.
For two strings x, y, we use x o y to denote the concatenation of x
and y.

DEFINITION 1.3. Let X; be an (n, ky)-source, Xo be an (n, k3)-
source independent of X1 and o : [2n] — [2n] be a permutation.
Then (X1 o X3)s is an (n, k1, ky)-interleaved sources, or an (n, k1)-
interleaved sources if k1 = kj.

Such sources naturally arise in a scenario that the bits of the
input source are communicated remotely to the extractor from
two independent sources in an unknown (but fixed) order. Raz and
Yehudayoff [40] observed that an explicit extractor for such sources
yeilds a lower bound in best-partition communication complexity
model.

Raz and Yehudayoff [40] constructed an extractor for (n, (1-f)n)-
interleaved sources with 272(") error for a small constant B> 0.
Subsequently, Chattopadhyay and Zuckerman [12] constructed an
extractor for (n, (1—y)n, O(log(n)))-interleaved sources with error
n~2W for a small constant Y > 0. A recent work by Chattopadhay
and Li [10] gave an extractor for (n, (2/3+ §)n)-interleaved sources
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with error 2_”9(1), where § is an arbitrarily small constant. In sum-
mary, all prior work required at least one of the sources to have
min-entropy at least 0.66n.

Observe that interleaved sources is a special case of sumset
sources, as (X1 0X2)g = (X100™)5+(0"0X3),. With our extractors
for sum of two sources, we obtain the first extractors for interleaved
two sources with polylogarithmic entropy.

COROLLARY 1.4. There exists a universal constant C such that for
everyk > logc(n), there exists an explicit extractor Ext : {0,1}" —
{0, 1}™ for (n, k)-interleaved sources with error n=

COROLLARY 1.5. For every constant € > 0, there exists a constant
Ce¢ and an explicit extractor Ext : {0,1}" — {0, 1} with error ¢ for
(n, k)-interleaved sources where

k = C, log(n) loglog(n) log log log®(n).

We note that the above results easily extend to the setting when
the two interleaved sources are of different lengths. In particular,
this captures the following natural setting of “somewhere indepen-
dence": suppose we have a source X on n bits such that for some
(unknown) i, the sources X<; (first i bits of X) and X ; (the last
n — i bits of X) are independent and each have entropy at least k. As
long as k > poly(log n), we can use our sumset extractor to extract
from such sources.

1.1.2  Extractors for Small-space Sources. Kamp, Rao, Vadhan and
Zuckerman [26] first studied extractors for sources sampled by al-
gorithms with limited memory. We define such small-space sources
more formally as follows.

DEFINITION 1.6. A space-s sampling procedure A with n-bit out-
put is defined as follows. For every (i, j) s.t.i € Z,0 < i < n and
j € {0,1}°, let D; ; be a distribution over {0,1} x {0,1}*. Then A
maintains an internal state state € {0, 1}°, which is initially 0, and
runs the following steps for time step i from 0 ton — 1:

(1) Sample (xi+1, nextstate) € {0, 1} x {0, 1}* from D; state-

(2) Output xi41, and assign state = nextstate.
Furthermore, the distribution X of the output (x1, .
space-s source.

.., Xp) is called a

Equivalently, a space-s source is sampled by a branching pro-
gram of width 2° (see Section 3.4 for the formal definition). In
[26], they constructed an extractor for space-s source with entropy
k > CnlYs with error 27" for a large enough constant C and
a small constant y > 0. Chattopadhyay and Li [9] then constructed
an extractor with error n=%W for space-s source with entropy
k > s112108"" () based on their sumset source extractor construc-
tion. Recently, based on a new reduction to affine extractors, Chat-
topadhyay and Goodman [5] improved the entropy requirement
to k > s - polylog(n) (or k > s10g2+°(1)(n) in the constant error
setting).3

With our new extractors for the sum of two sources, we can
use the reduction in [9] to get extractors for space-s source with
entropy slog(n) + polylog(n), which is already an improvement

3Here we focus on the small-space extractors which minimize the entropy requirement.
For small-space extractors with negligible error, the best known extractor roughly

requires min-entropy n%>!s%4° [5].
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over the result in [5]. In this work, we further improve the reduction
and obtain the following results.

THEOREM 3. There exists a universal constant C such that for
every s and every k > 2s +log® (n), there exists an explicit extractor
Ext : {0,1}" — {0,1}™ with error n=%() and output length m =
(k = 25)2() for space-s sources with min-entropy k.

THEOREM 4. For every constant ¢ > 0, there exists a constant C
such that there exists an explicit extractor Ext : {0,1}" — {0, 1} with
error ¢ for space-s sources with min-entropy

2s + C, log(n) log log(n) log log log® (n).

Interestingly, the entropy requirement of our extractors have
optimal dependence on the space s, as Kamp, Rao, Vadhan and Zuck-
erman [26] showed that it is impossible to construct an extractor for
space-s source with min-entropy < 2s. Moreover, the min-entropy
requirement in Theorem 4 almost matches the non-constructive
extractor in [26] that requires min-entropy at least 2s + O(log(n)).

1.2 Affine Correlation Breakers

An important building blocks in our sumset source extractor con-
struction is an affine correlation breaker. While such an object has
been constructed in previous works [6, 9, 32], in this paper we
give a new construction with slightly better parameters. The main
benefit of our new construction is that it is based on a black-box
reduction from affine correlation breakers to (standard) correlation
breakers, which are simpler and more well-studied. We believe this
result is of independent interest.

First we define a (standard) correlation breaker. Roughly speak-
ing, a correlation breaker takes a source X and a uniform seed
Y, while an adversary controls a “tampered source" X’ correlated
with X and a “tampered seed" Y’ correlated with Y. The goal of
the correlation breaker is to “break the correlation" between (X,Y)
and (X’,Y’), with the help of some “advice" @, a’. One can also
consider the “multi-tampering" variant where there are many tam-
pered sources and seeds, but in this paper we only need the single-
tampering version which is defined as follows.

DEFINITION 1.7. CB: {0,1}" X {0,1}9 x {0,1}% — {0,1}" is a
correlation breaker for entropy k with error ¢ (or a (k, €)-correlation
breaker for short) if for every X, X" € {0, 1}, Y, Y € {0, 1}d, a,a’ €
{0, 1}2 such that
e X isan (n,k) source andY is uniform
o (X,X’) is independent of (Y,Y’)
e a#a,

it holds that

(CB(X,Y,a),CB(X,Y’,a")) ~¢ (Um, CB(X, Y, "))

The first correlation breaker was constructed implicitly by Li [30]
as an important building block of his independent-source extractor.
Cohen [16] then formally defined and strengthened this object, and
showed other interesting applications. Chattopadhyay, Goyal and
Li [7] then used this object to construct the first non-malleable
extractor with polylogarithmic entropy, which became a key in-
gredient for the two-source extractor in [13]. Correlation breakers
have received a lot of attention and many new techniques were
introduced to improve the construction [8, 17-20, 33, 34].
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Affine correlation breakers were first introduced by Li in his
construction of affine extractors [32], and were later used in [9] to
construct sumset source extractors. An affine correlation breaker is
similar to a (standard) correlation breaker, with the main difference
being that it allows X and Y to have an “affine" correlation, i.e.
X can be written as A + B where A is independent of Y and B is
correlated with Y. The formal definition is as follows.

DEFINITION 1.8. AffCB : {0,1}" x {0,1}4 x {0,1}% — {0, 1} is

a t-affine correlation breaker for entropy k with error ¢ (or a (t,k, ¢€)-
affine correlation breaker for short) if for every distributions X, A,B €
{0,1}", Y,Y!,...,)Y! € {O,I}d and strings aal,...,at € {0,1}°
such that

e X=A+B

e Ho(A) > k and Y is uniform

e A is independent of (B, Y, YL ... ,Y[t])

e Vie[t],a#d,
it holds that

(AfICB(X, ¥, @), {ARCB(X, Y, @)} e
~y (Um, (AfFCB(X, Y., ai)}ie[;]) :
We say AffCB is strong if
(AffCB(x, Y, @), Y, {ACB(X, Y', &), Y'} [,])
~y (U Y (ABCBOC Y, ), Y e )

The first affine correlation breaker in [32] was constructed by
adapting techniques from the correlation breaker construction in
[30] to the affine setting. Chattopadhyay, Goodman and Liao [6]
then constructed an affine correlation breaker with better parame-
ters based on new techniques developed in more recent works on
correlation breakers [8, 16, 20, 33].

While the techniques for standard correlation breakers can be
(usually) made to work for affine correlation breakers, it generally
requires non-trivial modifications. Further, it is not clear whether
the ideas in the standard setting can always be adapted to the
affine setting. For example, the parameters of the affine correlation
breaker in [6] do not match the parameters of the state-of-the-art
standard correlation breaker by Li [34], because adapting the ideas
in [34] to the affine setting (without loss in parameters) seems to
be difficult. It is also likely that more improvements will be made
in the easier setting of standard correlation breakers. Thus, we
believe that a black-box reduction from affine correlation breakers
to standard correlation breakers without loss in parameters will be
useful. In this work, we provide such a reduction.

THEOREM 5. Let C be a large enough constant. Suppose that there
exists an explicit (dy, €)-strong correlation breaker CB : {0, 1M x
{0,1}% x {0,1}% - {0, 1}CI°g2(t+1) log(n/e) for somen, t € N. Then
there exists an explicit strong t-affine correlation breaker AffCB :
{0,137 x {0, 1}9 x {0,1}% — {0, 1} with error O(t¢) for entropy

k = O(tdy + tm + t* log(n/e)),

where
d = O(tdy + m + tlog®(t + 1) log(n/¢)).

1587

Eshan Chattopadhyay and Jyun-Jie Liao

As a corollary, by applying this black-box reduction on Li’s cor-
relation breaker [34], we get an affine correlation breaker with
parameters slightly better than those of [6]. (See Theorem 5.5 for
more details.) With the new affine correlation breaker, our extrac-
tor in Theorem 2 only requires O(log(n) loglog(n) logloglog®(n))
entropy, while using the affine correlation breaker in [6] would
require O(log(n) loglog(n) logloglog®(n)) entropy.

In fact, if one can construct an “optimal” standard correlation
breaker with entropy requirement and seed length O(log(n)) (when
t = 0(1),a = O(log(n)),e = n~=2(), which would imply a two-
source extractor for entropy O(log(n)), by Theorem 5 this also
implies a sumset source extractor for entropy O(log(n)) (which is
also an affine extractor for entropy O(log(n)).)

1.3 On Sumset Sources with Small Doubling

Finally we briefly discuss why a standard probabilistic method
cannot be used to prove the existence of extractors for sumset
sources, and show some partial results in this direction.

Suppose we want to extract from a source A + B, where A and
B are independent (n, k)-sources. Without loss of generality we
can assume that A is uniform over a set A, and B is uniform over
another set B, such that |A| = |B| = K, where K = 2k A simple
calculation shows that there are at most 22X choices of sources.
In a standard probabilistic argument, we would like to show that
a random function? is an extractor for A + B with probability at
least 1 — 8, where § < 272"K_and then we could use union bound
to show that a random function is an extractor for (n, k, 2)-sources.
However, this is not always true. For example, when A = Bis a
linear subspace, then A + B is exactly A, which has support size K.
In this case we can only guarantee that a random function is an
extractor for A + B with probability 1 — 27PK for some ff < 1.In
general, if the “entropy"” of A + B is not greater than k by too much,
then the probabilistic argument above does not work.

REMARK 1.9. Note that the “bad case" is not an uncommon case
that can be neglected: if we take A, B to be subsets of a linear space of
dimension k + 1, then |Supp(A + B)| < 2k+1 \hich means a random
function is an extractor for A + B with probability at most 1 — 272K
However, there are roughly 2*K choices of A and B, so even if we
consider the bad cases separately the union bound still does not work.

Nevertheless, we can use techniques from additive combinatorics
to prove that the bad cases can be approximated with affine sources.
With this result we can show that a random function is in fact a
disperser® for sumset sources. To formally define the bad cases, first
we recall the definition of sumsets from additive combinatorics (cf.

[42]).

DEeFINITION 1.10. For A,B C Fg define A+ B ={a+b:ac¢€
A,b € B}. For A, B s.t. |A| = |B| we say (A, B) has doubling constant
rif|A+B| < rlAl.

It is not hard to see that a random function is a disperser for A+B
with probability exactly 1 — 2714*BI*1_ Therefore we can use union
bound to show that a random function is a disperser with high
4 A random function is sampled uniformly at random from all the possible choices of
Boolean functions on n input bits.

S A disperser for a class of source X is a boolean function f which has non-constant
output on the support of every X € X.
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probability for every sumset source A + B which satisfies |A + B| >
3n|A|. When |A + B| < 3n|A|, a celebrated result by Sanders [41]
shows that A + B must contain 90% of an affine subspace with
dimension log(|A|) — O(log?(n)). With the well-known fact that
a random function is an extractor for affine sources with entropy
O(log(n)), we can conclude that a random function is a disperser
for sumset source with entropy O(log?(n)).

Note that Sanders’ result only guarantees that A+B almost covers
a large affine subspace, but this affine subspace might only be a
negligible fraction of A + B. Therefore, while a random function is
an extractor for affine sources, Sanders’ result only implies that it is
a disperser for sumset source with small doubling constant. In this
paper, we prove a “distributional variant" of Sanders’ result. That
is, a sumset source A + B with small doubling constant is actually
statistically close to a convex combination of affine sources.

THEOREM 6. Let A,B be uniform distribution over A,B C Fg
st |Al = |B| = 2* and |[A+B| < r|A|. Then A + B is e-close

to a convex combination of affine sources with min-entropy k —
O(e % log(r) log>(r/¢)).

Then we get the following corollary which says that an affine
extractor is also an extractor for sumset source with small doubling.

COROLLARY 1.11. Let A, B be uniform distribution over A, B C IP‘;’
st |Al = |B| = 2X and |A + B| < r|A|. IfAfExt : {0,1}"* — {0, 1}™
is an extractor for affine sources with min-entropy k — log*(r), then
AfTExt(A + B) is O(1)-close to Up,.

We remark that while Corollary 1.11 implies that a random
function is an extractor for sumset sources with small doubling,
this does not mean a random function is an extractor for sumset
sources in general. This is because a lower bound on |A + B is not
sufficient for us to show that a random function is an extractor by
probabilistic argument. (See the full version [11, Appendix B] for
more discussions.)

1.4 Open Problems

In this paper we construct improved extractors for interleaved
two sources and small-space sources based on our extractors for
sum of two sources. Can we use our construction to get improved
extractors for other classes of sources? More specifically, both of the
applications require only an extractor for interleaved two sources,
which is only a special case of sumset sources. Can we further
exploit the generality of sumset sources?

Another natural open problem is whether we can construct
sumset source extractors for k = o(n) entropy with negligible error.
Note that a special case of this problem, constructing low-error
two-source extractors for o(n) entropy, has been open for decades.
We can also relax this problem and try to construct a low-error
extractor for sum of C > 2 sources. This seems more achievable with
current techniques, as Li [31] has already shown how to construct
low-error 3-source extractors for polylogarithmic entropy. If one
can solve this relaxed problem for min-entropy k = n%%?, then it
would also imply new results for affine extractors, because an affine
source can be written as the sum of infinitely many independent
sources.

Finally, it’s also interesting to see whether a random function
is an extractor for sum of two sources. In this paper we prove that
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sumset sources have a “structure vs randomness dichotomy": the
sumset source is either close to an affine source, or has high enough
entropy. In both cases a random function is a disperser. However
our result does not seem strong enough to show that a random
function is an extractor for sum of two sources.

Organization. In Section 2, we give an overview of the proofs for
all our results. In Section 3, we introduce some necessary prelimi-
naries and prior works. We use Section 4 to show a new reduction
from small-space sources to sum of two sources which has optimal
dependence on the space parameter, and prove Theorem 3 and
Theorem 4. In Section 5, we show how to construct the extractors
for sum of two sources in Theorem 1 and Theorem 2, assuming
access to an affine correlation breaker based on Theorem 5. The
formal proofs of Theorem 5 and Theorem 6 can be found in the full
version [11, Section 6 and 7].

2 OVERVIEW OF PROOFS

In this section we give a high-level overview of our proofs. The
overview includes some standard notations which can be found in
Section 3.

2.1 Construction of Sumset Extractors

In this section we give an overview of construction of our sumset
source extractors. Similar to [9], our extractor follows the two-step
framework in [13]. First, we convert the sumset source into a non-
oblivious bit-fixing (NOBF) source. Roughly speaking, a t-NOBF
source is a string such that most of the bits are ¢-wise independent.
(See Definition 3.19 for the formal definition.) Second, we apply
known extractors for NOBF sources [13, 32, 37, 44] to get the output.
In the rest of this section, we focus on the first step, which is the
main contribution of this work.

2.1.1  Reduction from Two Sources. To see how our reduction works,
first we recall the transformation from two independent sources
to NOBF sources in [13]. Given two (n, k)-source Xj, Xy, first take
a t-non-malleable extractor nmExt : {0,1}" x {0,1}% — {0,1}
with error €1, enumerate all the seeds and output a string Ry :
{nmExt(Xl,s)}Se{O’l}d1 with D; = 29 bits. We do not give the
exact definition of non-malleable extractors here, but we need the
following property proved in [13]: except for /e fraction of “bad
bits", every (¢ + 1) “good bits" in R; are +/e1-close to uniform. With
this property it might seem like R; is close to a (¢ +1)-NOBF source,
but unfortunately this is not true. While R; is guaranteed to be
Di“x/a-close to a NOBF source by a result in [1], this bound is
trivial since D1 = poly(1/e1). To get around this problem, [13] used
the second source X3 to sample D, < Dj bits from R; and get Ry.
Now R; is guaranteed to be Dé“ +/e1-close to a NOBF source, and
the error bound D§+1\/H can be very small since D is decoupled
from ¢;. We note that Li [31] also showed a reduction from two
independent sources to NOBF sources, and the sampling step is
also crucial in Li’s reduction.

Chattopadhyay and Li [9] conjectured that a similar construction
should work for sumset sources. However, in the setting of sumset
sources, it is not clear how to perform the sampling step. For exam-
ple, if one replaces both X; and X3 in the above construction with a
sumset source X = X; + X3, then the sampling step might not work
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because the randomness we use for sampling is now correlated
with Ry. Therefore, they adopted an idea in [30] which requires the
given source X to be the sum of C independent sources, for some
large enough constant C. In this paper, we show that we can actu-
ally make the sampling step work with a (n, polylog(n), 2)-sumset
source. As a result we get an extractor for sum of two independent
sources.

2.1.2  Sampling with Sumset Source. As a warm up, first we assume
that we are sampling from the output of a “0-non-malleable extrac-
tor", i.e. a strong seeded extractor. Let Ext : {0,1}" x {0, 114
{0, 1} be a strong seeded extractor with error &;. First observe that
the sampling method has the following equivalent interpretation.
Note that Ext and the source X; together define a set of “good
seeds” such that a seed s is good if Ext(Xj, s) is 4/¢1-close to uni-
form. Since Ext is a strong seeded extractor, (1 — 4/¢1) of the seeds
should be good. In the sampling step we apply a sampler Samp on
X3 to get some samples of seeds {Samp(Xz,i)};¢ (g 1}4,- Then we
can apply the function Ext(Xj, -) on these sampled seeds to get the
output Ry = {Ext(X, Samp(X, i))}ie{o’l}d2 which is 2% y/e1-close
to a 1-NOBEF source.

Now we move to the setting of sumset sources and replace both
Xj, X3z in the above steps with X = X; + Xj. Our goal is to show
that we can still view this reduction as if we were sampling good
seeds with X and using these seeds to extract from X;. Consider
the i-th output bit, Ext(X, Samp(X, i)). Our main observation is, if
Samp(-, i) is a linear function, then we can assume that we compute
Ext(X, Samp(X, i)) in the following steps:

(1) First sample x2 ~ Xs.

(2) Use x; as the randomness of Samp to sample a “seed" s :=
Samp(Xy, i).

(3) Output EXt;Z,,-(Xla s) := Ext(X1 + x3, s + Samp(Xy, i)).

First we claim that Ext;z,i is also a strong seeded extractor. To
see why this is true, observe that if we fix Samp(Xj, i) = A, then
Ext)’%i(Xl, U) = Ext(Xj +x2,U+A). As long as X still has enough
entropy after fixing Samp(Xj, i), Ext works properly since X; + x2
is independent of U+ A, X1 + x3 still has enough entropy and U+ A
is also uniform. Therefore, we can use Ext)’(z’l. and X; to define a
set of good seeds s which make Ext;Z’i(Xl, s) close to uniform, and
most of the seeds should be good. Then we can equivalently view
the sampling step as if we were sampling good seeds for Ext)’(z,i
using Xz as the randomness.

There are still two problems left. First, the definition of Ext;z’i
depends on x3, which is the randomness we use for sampling. To
solve this problem, we take Ext to be linear, and prove that (1—+/ey)
fraction of the seeds s are good in the sense that Ext;zyi(Xb s) is
close to uniform for every x2. Second, Ext’_ . depends on i, which is
the index of our samples. Similarly we chan’ge the definition of good
seeds so that a seed s is good if EXt;Z’,-(XL s) is good for every x;
and i, and by union bound we can show that (1 — 22 e1) fraction
of the seeds are good. As long as &1 < 2_2d2, most of the seeds
should be good. Now the definition of good seeds is decoupled from
the sampling step, and hence we can show that most of the sampled
seeds are good.
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2.1.3  Sampling with Correlation Breakers. Next we turn to the
case of t-non-malleable extractors. Similar to how we changed the
definition of good seeds for a strong seeded extractor, we need to
generalize the definition of good seeds for a non-malleable extractor
in [13] to the sumset source setting. The main difference between
non-malleable extractors and strong seeded extractors is, for strong
seeded extractors we want a good seed to generate a uniform bit,
but for t-non-malleable extractors we want a good seed to generate
a bit which is uniform even when conditioned on every ¢ other bits.
Therefore the definition of good seeds for non-malleable extractors
should be with respect to every possible “(¢ + 1)-local view". For-
mally, we say a seed s is good with respect to x2 and a set of indices
T ={i1,...,ir+1} if for every sl ste {0, l}dl,

(nmExt(X; + x3, s + Samp(Xy, i1)) ~ya U1
conditioned on
{nmExt(Xj + x2, s/ + Samp (X1, ij+1))}je[r]-

Based on the proofin [13] and the arguments in the previous section,
if X; has enough entropy when conditioned on {Samp(Xj, i)}ier,
then 1 — 4/e7 of the seeds are good with respect to xp and T. If we
can prove that most of the seeds we sample using x; ~ X are
good with respect to xz and every set of indices T, then the we can
conclude that the output Rz = {nmExt(X, Samp(X, i))};. (0,1}42 1
DE*y/e1-close to a NOBF source.

Next we need to show that most of the seeds are good with
respect to every xp and T, so that the sampling step is decoupled
from the definition of good seeds. To deal with the dependence on
T, we take the union bound over T, and we can still guarantee that
1- Dé“ +/e1 of the seeds are good. To deal with the dependency on
X2, it suffices to replace the non-malleable extractor with a strong
affine correlation breaker. Although the correlation breaker needs
an additional advice string to work, here we can simply use the
indices of the samples as the advice. Our final construction would
be {AffCB(X, Samp(X, «), a)}ae{O,l}dZ .

Finally, we note that in order to make the extractor work for
almost logarithmic entropy (Theorem 2), we need to replace the
sampler with a “somewhere random sampler” based on the tech-
niques in [3], and the construction and analysis should be changed
correspondingly. We present the details in Section 5.

2.2 Reduction from Small-Space Sources to
Sumset Sources

In this section we give an overview of our new reduction from
small-space sources to sumset sources. As in all the previous works
on small-space source extractors, our reduction is based on a simple
fact: conditioned on the event that the sampling procedure is in
state j at time i, the small-space source X can be divided into two
independent sources X; € {0,1},,X; € {0,1}"7¢, such that X;
contains the bits generated before time i, and X, contains the bits
generated after time i. Kamp, Rao, Vadhan and Zuckerman [26]
proved that if we pick some equally distant time steps iy, ..., ip—1
and condition on the states visited at these time steps, we can divide
the small-space source into ¢ independent blocks such that some
of them have enough entropy. However, such a reduction does not
work for entropy smaller than y/n (cf. [5]). Chattopadhyay and Li [9]
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observed that with a sumset source extractor we can extract from
the concatenation of independent sources with unknown and uneven
length. They then showed that with a sumset source extractor, we
can “adaptively” pick which time steps to condition on and break the
/n barrier. Chattopadhyay and Goodman [5] further refined this
reduction and showed how to improve the entropy requirement by
reducing to a convex combination of affine sources. The reductions
in [9] and [5] can be viewed as “binary searching" the correct
time steps to condition on, so that the given source X becomes
the concatenation of independent blocks (X1, . .., Xo(10g(n))) such
that some of them have enough entropy. However, even though
with our extractors for sum of two sources we only need two of the
blocks to have enough entropy, the “binary search-based" reduction
would condition on at least log(n) time steps and waste s log(n)
entropy.

A possible way to improve this reduction is by directly choosing
the “correct" time step to condition on so that we only get two
blocks X1 0 X3 both of which have enough entropy. However this is
not always possible. For example, consider a distribution which is a
convex combination of Uy, /5 0 0"/2 and 0"/%0U,, /2- This distribution
is a space-1 source and has entropy n/2, but no matter which time
step we choose to condition on, one of the two blocks would have
zero entropy.

To resolve these problems, we carefully define the event to con-
dition on as follows. For ease of explanation we view the space-s
sampling procedure as a branching program of width 25. (Unfa-
miliar readers can consult Section 3.4.) First, we define a vertex
v = (i, j) to be a “stopping vertex" if the bits generated after vis-
iting v has entropy less than some threshold. Then we condition
on a random variable V which is the first stopping vertex visited
by the sampling process. Note that V is well-defined since every
state at time n is a stopping vertex. Besides, conditioning on V only
costs roughly s + log(n) entropy since there are only n - 2% possible
outcomes.

Now observe that the event V = (i, j) means the sampling pro-
cess visits (i, j) but does not visit any stopping vertex before time
i. We call the bits generated before time i the “first block" and the
bits generated after time i the “second block". It is not hard to see
that the two blocks are still independent conditioned on V = o.
Then observe that the first block has enough entropy because the
second block does not contain too much entropy (by our definition
of stopping vertex). Next we show that the second block also has
enough entropy. For every vertex u, let X;, denote the bits generated
after visiting u. The main observation is, if there is an edge from
a vertex u to a vertex v, then unless u — v is a “bad edge" which
is taken by u with probability < e, the entropy of X, can only be
lower than X,, by at most log(1/¢). If we take ¢ < 275n~!, then by
union bound the probability that any bad edge is traversed in the
sampling procedure is < 1. Since we take V to be the first vertex
such that Xy has entropy lower than some threshold, the entropy
of Xy can only be log(1/¢) ~ s+log(n) lower than the threshold. In
conclusion, if we start with a space-s source with entropy roughly
2s+2log(n)+2k, and pick the entropy threshold of the second block
to be roughly k + s + log(n), we can get two blocks both having
entropy at least k.
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2.3 From Affine to Standard Correlation Breaker

Next we briefly discuss our black-box reduction from affine cor-
relation breakers to standard correlation breakers. To reduce an
affine correlation breaker to a standard correlation breaker, our
main idea is similar to that of [6]: to adapt the construction of
a correlation breaker from the independent-source setting to the
affine setting, we only need to make sure that every function on X
is linear, and every function on Y works properly when Y is a weak
source. However, instead of applying this idea step-by-step on ex-
isting constructions, we observe that every correlation breaker can
be converted into a “two-step” construction which is easily adapt-
able to the affine setting. First, we take a prefix of Y as the seed
to extract a string Z from X. Next, we apply a correlation breaker
which treats Y as the source and Z as the seed. This construction
only computes one function on X, which is a seeded extractor and
can be replaced with a linear one. Furthermore, the remaining step
(i.e. the correlation breaker) is a function on Y, which does not
need to be linear. Finally, we note that if the underlying standard
correlation breaker is strong, we can use the output as the seed to
extract from X linearly and get a strong affine correlation breaker.

A drawback of this simple reduction is that the resulting affine
correlation breaker has a worse dependence on the number of tam-
pering t. To solve this problem, we only apply this reduction when
constructing a 1-affine correlation breaker based on a 1-correlation
breaker. To construct a t-affine correlation breaker, we show how
to strengthen a 1-affine correlation breaker to a t-affine correla-
tion breaker based on the “independence-merging lemma" in [6].
Roughly speaking, we observe that even in the ¢t-tampering setting,
a 1-affine correlation breaker can still guarantee that the output
bit is uniform when conditioned on every single tampered output
(note that this is not true when conditioned on multiple tampered
outputs simultaneously.) Therefore we apply log(¢) rounds of alter-
nating extractions to “merge the independence of the output bit
with itself". A more detailed discussion and the formal proof can
be found in the full version of this paper [11].

2.4 Sumset Sources with Small Doubling

Finally we briefly sketch how to prove that a sumset source with
small doubling is close to a convex combination of affine sources. Let
ABC Fg be sets of size K = 2% and let A, B be uniform distributions
over A, Brespectively. A seminal result by Sanders [41] showed that
there exists a large affine subspace V such that at least 1 — ¢ fraction
of V is in A + B. We adapt Sanders’ proof to show that for every
distinguisher with output range [0, 1], the sumset source A + B
is indistinguishable from a convex combination of affine sources
(with large entropy). Then by an application of von Neumann’s
minimax theorem we can find a universal convex combination of
affine sources which is statistically close to A + B.

To describe the proof in more details, we first briefly recall
the outline of Sanders’ proof. Consider A’, B’ C Fj' such that
|A’],|B’| = |IF’;"| /r, and let A’, B’ be uniform distributions over
A’, B’ respectively. Let 1 4.5 denote the indicator function for
A’ + B’. Based on the Croot-Sisask lemma [21] and Fourier analysis,
Sanders showed that for arbitrarily small constant ¢ > 0 there exists
a distribution T C F7* and a linear subspace V of co-dimension
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O(log(r)) s.t.
E[1a4p (A" +B')| 2 E[Layp (T+V)],

where V is the uniform distribution over V. Then Sanders’ orig-
inal result follows directly by taking T = t which maximizes
E[La+p (t+V)].

A closer inspection at Sanders’ proof shows that 1 44p can
be replaced with any function f : F}* — [0,1]. (Note that the
distributions T,V depend on the function f.) This implies that
A’ + B’ is indistinguishable from a convex combination of affine
sources by f. With our minimax argument we can conclude that
A’+B’ is statistically close to a convex combination of affine sources.

However, the result above only works for dense sets A’, B’. To
generalize the result to sets A, B with small doubling, a standard
trick in additive combinatorics is to consider a linear Freiman ho-
momorphism ¢ : Fj — F7?, which is a linear injective function on
tA + B for some constant ¢, and consider A’ = ¢(A), B’ = ¢(B).
By considering the function f o ¢! we can still show that

E[f(A+B)] =E[f(¢ (A" +B)| ~E[f(¢ (T+V))].

However, it is not clear whether ¢~!(T + V) is a also a convex
combination of affine sources in F?. To solve this problem, we
adapt Sanders’ proof to show that there exist T, V which satisfy

E[1asp (A" +B")] 2 E[1ayp (T+V)] (1)

and
E[f(¢7"(A"+B)] » E[f(¢”(T+V))] ()

simultaneously. This relies on a variant of the Croot-Sisask lemma
which shows that there exists a large set of “common almost period"
for 1 44p and f o ¢~1. Then (1) guarantees that with probability
at least 1 — 2¢ over t ~ T, ¢~1(t + V) is an affine source in F}
with entropy k — O(log?(r)). Therefore ¢~ (T + V) is 2¢-close to a
convex combination of affine sources. Finally (2) shows that A + B
is indistinguishable from ¢~ (T + V) by f, which implies our claim.

3 PRELIMINARIES

In this section we introduce some preliminaries.

3.1 Notations

Basic notations. The logarithm in this paper is always base 2. For
every n € N, define [n] = {1,2,...,n}. In this paper, {0,1}" and F}
are interchangeable, and so are {0, 1}" and [2"]. We use x o y to
denote the concatenation of two strings x and y. We say a function
is explicit if it is computable by a polynomial time algorithm. For
x,y € R we use x =, y to denote |x — y| < ¢ and x #, y to denote
|x —y| > e. For every function f : X — Y and set A C X, define
f(A) ={f(x):x e A}.Foraset AC Xweusely: X — {0,1} to
denote the indicator function of A such that 1 4(x) = 1 if and only
ifx € A

Distributions and random variables. We sometimes abuse nota-
tion and treat distributions and random variables as the same. We
always write a random variable/distribution in boldface font. We
use Supp(X) to denote the support of a distribution. We use U,
to denote the uniform distribution on {0, 1}". When U,, appears
with other random variables in the same joint distribution, Uy, is
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considered to be independent of other random variables. Sometimes
we omit the subscript n of U, if the length is less relevant and is
clear in the context.

Throughout this paper, “entropy” means min-entropy, unless
specified differently.

When there is a sequence of random variables X1, Xy, ..., X;
in the context, for every set S C [t] we use Xg to denote the
sequence of random variables which use indices in S as subscript,
ie. Xs = {Xj}ies. We also use similar notation for indices on
superscript.

3.2 Statistical Distance
DEFINITION 3.1. Let D1, Dy be two distributions on the same uni-
verse Q. The statistical distance between D1 and D is

A (Dy;Dg) = max (Pr [D; e T] -Pr[D; € T])

=2 2D = Do)l
sEQ

We say Dj is e-close to Dy if A(D1;D2) < ¢, which is also denoted

by D1 =, Dgj. Specifically, when there are two joint distributions

(X,Z) and (XY,Z) such that (X,Z) ~. (Y,Z), we sometimes write

(X =,Y) | Z for short.

We frequently use the following standard properties.

LEMMA 3.2. For every distribution D1, D2, D3 on the same universe,
the following properties hold:

e For any distribution Z,
A((D1,2): (D2, 2)) = E [A(D1lz=z:D2lz=2)] -

e For every function f, A (f(D1); f(Dz2)) < A (D1;Dy).
o (Triangle inequality) A (D1;D3) < A (D1;D2) + A (Dg; D3).

3.3 Conditional Min-entropy

DEFINTTION 3.3 ([22]). For a joint distribution (X, Z), the average
conditional min-entropy of X given Z is

Ao (X | Z) = —log( B, [m;?x(Pr [X=x|Z= z])]) .

The following lemma, usually referred to as the chain rule, is
frequently used in this paper.

LEMMA 3.4 ([22]). Let X,Y,Z be (correlated) random variables.
Then _ _
Hoo (X [ (Y,Z)) 2 Hoo(X | Z) — log(Supp(Y)).

When we need to consider worst-case conditional min-entropy,
we use the following lemma.

LeEMMA 3.5 ([22]). Let X, Z be (correlated) random variables. For
everye > 0,

PrZ [Hoo (X|z=z) = Hoo(X | Z) —log(1/e)] = 1 —e.

Note that the above two lemmas imply the following:

LeMMA 3.6 ([36]). Let X, Z be (correlated) random variables. For
every e > 0,

Pr [Hoo (X|z=z) 2 Hoo(X) —log(Supp(Z)) - log(1/)] = 1 -e.
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Lemma 3.7 ([22]). Lete, 6 > 0 and X, Z be a random variables such
thatHeo(X | Z) > k+log(1/8). LetExt : {0,1}"x{0,1}¢ — {0,1}""
be a (k, ¢)-seeded extractor. Then

(Ext(X,Ug) %es Um) | Z.

3.4 Branching Programs

The following definition is equivalent to Definition 1.6 in the sense
that each layer corresponds to a time step and each vertex in a layer
corresponds to a state in a certain time step.

DEFINITION 3.8. A branching program B of width w and length
n (for sampling) is a directed (multi)-graph with (n + 1) layers
Lo, L1, ..., Ly and has at most w vertices in each layer. The first layer
(indexed by 0) has only one vertex called the start vertex, and every
vertex in L, has no outgoing edge. For every vertex v in layeri < n,
the set of outgoing edges from v, denoted by E,, satisfies the following.

o Every edge e € Ey is connected to a vertex in Lj,1.

e Each edge e € E, is labeled with a probability, denoted by
Pr [e], so that 3ecp, Pr [e] = 1.

e Each edge e € Ey is labeled with a bit b, € {0, 1}, and if two
distinct edges e1, ez € E, are connected to the same vertex
w € Liyq then be, # be,. (Note that this implies |Ey| < 2w.)

The output of B is a n-bit string generated by the following process.
Let vy be the start vertex. Repeat the following fori from 1 to n: sample
an edge e; € Ey,_| with probability Pr [e;], output b, and let v; be
the vertex which is connected by e;. We say (v, €1,01, . . ., €n, Up) is
the computation path of B. We say a random variable X € {0,1}" is
a space-s source if it is generated by a branching program of width
2% and length n.

We also consider the subprograms of a branching program.

DEFINITION 3.9. Let B = (Lo, Ly, ...,Ly) be a branching program
of width w and length n and let v be a vertex in layer i of B. Then the
subprogram of B starting at v, denoted by By, is the induced subgraph
of B which consists of ({0}, Li+1, - - ., Ln). Note that B, is a branching
program of width w and length n — i which takes v as the start vertex.

We need the following simple fact from [26].

LEmMA 3.10 ([26]). Let X be a space-s source sampled by a branch-
ing program B, and let v be a vertex in layer i of B. Then condi-
tioned on the event that the computation path of X passes v, X is
the concatenation of two independent random variables X; € {0, 1}i,
Xz € {0,1}*"L. Moreover Xy is exactly the source generated by the
subprogram By.

3.5 Seeded Extractors

DEFINITION 3.11. Ext : {0,1}" % {0,1}¢ — {0,1}™ is a seeded
extractor for entropy k with error ¢ (or (k, ¢€)-seeded extractor for
short) if for every (n, k) source X, and every Y = Uy,

Ext(X,Y) ~ Up,.

We call d the seed length of Ext. We say Ext is linear if Ext(-,y) is a
linear function for everyy € {0, 1}4. We say Ext is strong if

(Ext(X,Y) ~¢ Up) | Y.
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LEMMA 3.12 ([25]). There exists a constant c3.12 and a constant
B > 0 such that for every e > 27 and everyk, there exists an explicit
(k, €)-strong seeded extractor Ext : {0, 1} x {0, 1} = {0,1}™ s.t.
d =c3.12log(n/e) and m = k/2.

We also need the following extractor from [6] which is linear
but has worse parameters.

LEMMA 3.13. There exists a constant c3 13 such that for everyt,m €
N and ¢ > 0, there exists an explicit (c3.13(m + log(1/¢)), €)-linear
strong seeded extractor LExt : {0, 1}" x {0, 14 5 0,1} st. d =
O( +log(n/e) +log?(t) log(m/e)).

Note that when m = tlog(n/¢) the seed length is bounded by
0 ((logZ(t) + 1) log(n/s))).

3.6 Samplers

First we define a sampler. Note that the definition here is differ-
ent from the standard definition of averaging samplers [2] in the
following sense: first, we need the sampler to work even when
the given randomness is only a weak source. Second, we only care
about “small tests".

DEFINITION 3.14. Samp : {0,1}" x [D] — {0, 1} is an (¢, )-
sampler for entropy k if for every set T C {0,1}™ s.t. |T| < 2™ and
every (n, k)-source X,

Pr

[Samp(x,y) € T] > 2¢| < 6.
x~X

Pr
y~[D]
We say Samp is linear if Samp(-, y) is linear for everyy € [D].

Zuckerman [45] showed that one can use a seeded extractor as
a sampler for weak sources.

LEmMA 3.15 ([45]). A (k +1log(1/9), ¢)-seeded extractor is also an
(&, 8)-sampler for entropy k.

The following is a relaxation of a sampler, which is called a
somewhere random sampler.

DEFINITION 3.16. Samp : {0,1}" x [D] x [C] — {0,1}™ is
an (&, §)-somewhere random sampler for entropy k if for every set
T C {0,1}" s.t. |T| < €2™ and every (n, k)-source X,

Pr Pr

x~X |y~[D] [Vz € [C] Samp(x,y.2) € T] > 2¢| < 6.

We say Samp is linear if Samp(+, y, z) is linear for everyy € [D],z €
[C].

The following lemma is implicit in [3]. For completeness we
include a proof in the full version [11, Appendix A].

LEMMA 3.17 ([3]). If there exists an explicit (&, §)-sampler Samp :
{0,1}" x [Dg] — {0,1}™ for entropy k, then for every constant
Y < 1 there exists an explicit (DY, §)-somewhere random sampler
Samp’ : {0, 1}"* X [D]x[C] — {0, 1} for entropy k withD = pPW

0
andC =0 (i)gg((_lD/og)))' Furthermore if Samp is linear then Samp’ is
also linear.

By Lemma 3.13, Lemma 3.15 and Lemma 3.17 we can get the
following explicit somewhere random smapler.
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LEMMA 3.18. For every constant y < 1, and every § > 0,t <
2V10e() there exists an explicit (D7Y, §)-linear somewhere random
sampler Samp : {0,1}" x [D] x [C] — {0, 1}t 1og(n) for entropy
O(tlog(n)) +log(1/6), where D = nPW gndC = O(log?(1)).

Proor. By Lemma 3.13 and Lemma 3.15, there exists an explicit
(¢, 8)-linear sampler Samp’ : {0,1}" x [Dy] — {0,1}108(") for
entropy O(tlog(n)) +log(1/8) where ¢ = 2~ log(n) /log” (1) anq Dy =
n°W  The claim follows by applying Lemma 3.17 on Samp’. O

3.7 Non-Oblivious Bit-Fixing Sources

DEFINITION 3.19. A distribution X = (X1, X2, ...,Xn) on {0,1}"
is called t-wise independent if for every subset S C [n] of size t we
have Xs = Ug.

LeEmMmA 3.20 ([1]). Let X = (X1, Xa, ..
{0,1}*. If for every S C [n] s.t. |S| < t,

@Xi ~y Uy,

ieS

., Xp) be a distribution on

then X is 2n'y-close to a t-wise independent distribution.

DEFINITION 3.21. A distribution X = (X1, Xa, ..., Xp) on {0, 1}"
is called a (g, t)-non-oblivious bit-fixing (NOBF) source if there exists
asetQ s.t. |Q] < qandX[,)\ is t-wise independent.

In this paper we need the following extractors for NOBF sources.

LEMMA 3.22 ([13, 32]). There exists an explicit function BFExt :
{0,1}" — {0, 1}™ for (q, t)-NOBF sources with error n=2() \here
m = n2), g =n% andt = (mlog(n))22 for some constant Cs 2.

LEmMA 3.23 ([44]). For every e > 0, the majority function Maj :

{0,1}" — {0, 1} is an extractor for (g, t)-NOBF sources with error
£+ 0(n~%) where g = n®* and t = O(e % log?(1/¢)).

3.8 Markov Chain

In this paper we usually consider the scenario that we have two
sources X, Y which are independent conditioned on a collection of
random variables Z. We use Markov chain as a shorthand for this.

DEFINITION 3.24. Let X, Y, Z be random variables. We say X <
Z <Y is a Markov chain if X and Y are independent conditioned on

any fixing of Z.

We frequently use the following fact.

LEmMMA 3.25. If X <& Z < Y is a Markov chain, then for every
deterministic function f, let W = f(X,Z). Then

o (X,W) & Z & Y is a Markov chain.
e X & (W,Z) & Y is a Markov chain.

We use “W is a deterministic function of X (conditioned on Z)" to
refer to the first item, and “fix W" to refer to the second item.

4 IMPROVED REDUCTION FOR SMALL-SPACE
SOURCES

Our improved small-space extractor results are based on the fol-
lowing key lemma.
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LEMMA 4.1. For every integer C > 2, every space-s source on n-bit
with min-entropy

k' > Ck+(C—-1) (25 +2log(n/e))
is (3Ce)-close to a convex combination of (n, k, C)-sumset sources.

Note that by taking C = 2 in Lemma 4.1, we get that the sumset
source extractor in Theorem 1 and Theorem 2 are also small-space
source extractors which satisfy the parameters in Theorem 3 and
Theorem 4 respectively. In the rest of this section we focus on
proving Lemma 4.1. First we show how to derive Lemma 4.1 based
on the following lemma.

LEMMA 4.2. Every space-s source X € {0, 1}" with entropy at least
k = ki +ky + 2s + 2log(n/¢) is 3e-close to a convex combination of
sources of the form X; o Xy which satisfy the following properties:
o X is independent of Xy
o Hoo(X1) > k1, Hoo(X2) > ko
o Xy is a space-s source

Proor oF LEMMA 4.1. By induction, Lemma 4.2 implies that a
space-s source with entropy Ck + (C — 1)(2s + 2log(n/¢)) is 3Ce-
close to a convex combination of sources of the form X; o Xj o
-+- 0 X¢ where Xj, ..., X¢ are independent, and for every i € [C],
Hoo(X;) > k. Let 1, £2, . . ., £c denote the length of X;,Xa, ..., Xc
respectively and define p; Z;:l tiands; = Z;‘:i +1 {j (note that
p1 =0 and s¢ = 0). Then observe that

C
X O"'OXC:ZOPi 0 X; 0 0%,
i=1
which implies that X = Xj 0- - -0X¢ isa (n, k, C)-sumset source. 0O
To prove Lemma 4.2, first we need the following lemma.

LEMMA 4.3. Let B be a branching program of width 2° and lengthn
for sampling. Let e be an edge in B connected from u tov and let Xy, X,
be the output distributions of the subprograms By, By respectively.
Then Heo (Xy) = Hoo(Xy,) — log(1/Pr [e]).

ProoOF. Let x* = arg maxy Pr [X, = x]. Note that
Heo(Xo) = —log(Pr [Xy = x*])
by definition. Observe that
Pr Xy = be o x*| > Pr[e] - Pr Xy =x*|.
Therefore,
Heo (Xu)

IA

—log (Pr [Xu =b, ox*])

IA

—log (Pr [e] - Pr [Xl, = x*])
= He (Xp) + log(1/Pr [e]).

Next we prove Lemma 4.2.

ProOF OoF LEMMA 4.2. Let B denote the branching program that
samples X. For every v, define X, to be the source generated by the
subprogram B,. Define v to be a stopping vertex if

Hoo (Xy) < ko + 5 +1og(n/e).
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Observe that every vertex u in the last layer is a stopping vertex
since Hoo (Xy,) = 0. Therefore there is always a stopping vertex in
the computation path. We define an edge e in B to be a bad edge if

Prle] <¢/(n-2%).

Now define a random variable V as follows:

e V = 1 if the computation path of X visits a bad edge before
visiting any stopping vertex,
e otherwise, V = v where v is the first stopping vertex in the
computation path.
Observe that Pr [V = 1] < 2¢, since in each step of B there are at
most 25t edges starting from the current vertex, and there are n
steps in total. Define

BAD = {v € Supp(V) : Heo (X|v=y) < k —s —log(n/e)}.

Then Pr [V € BAD] < ¢ by Lemma 3.6. We claim that if v ¢ BAD
and v # L, then conditioned on V = v, the source X can be written
as Xj o Xy which satisfies the properties stated in Lemma 4.2. The
claim directly implies Lemma 4.2 because Pr [v € BAD Vo = 1] <
3¢ by union bound. Next we prove the claim. Let E; denote the
event “the computation path contains 0", and E; denote the event
“the computation path does not contain any bad edge or stopping
vertex before the layer of v". Observe that V = v is equivalent to
E1 A E;. Conditioned on Ej, by Lemma 3.10, X can be written as
X1 o X3 where X is independent of X3 and X3 = X,,. Now observe
that E3 only involves layers before v, so conditioned on Eq, X3 is
independent of E,. Therefore, conditioned on V = v, we still have
X2 = Xy, which is a space-s source, and Xj is still independent of
Xs. Next observe that

Heo(X1) = Hoo (X|v=o) — Heo (X2)
> (k—s—log(n/e)) — (ko + s +log(n/e))
> k.
It remains to prove that Hoo (X2) > k2. Assume for contradiction
that Heo (Xy) < k2. Let e be the edge in the computation path which

connects to v, and suppose e is from u. Now consider the following
two cases.

e If e is not a bad edge, then
Heo (Xy) < Hoo(Xy) +log(1/Pr [e]) < ka + s +log(n/e),

which means u is also a stopping vertex. Therefore v cannot
be the first stopping vertex.

o Ifeisabad edge, then either there is a stopping vertex before
eorV=_1.

In both cases V # v, which is a contradiction. In conclusion we
must have Heo (X2) > ko. O

5 EXTRACTORS FOR SUM OF TWO SOURCES

In this section we formally prove our main sumset extractor results
(Theorem 1 and Theorem 2). The construction of our extractors
relies on the following lemma:

LEMMA 5.1 (MAIN LEMMA). For every constant y < 1 and every
t € N, there exists N = n°() and an explicit function Reduce :
{0,1}" — {0, 1}N s.t. for every (n, k, 2)-sumset source X, where

k=0 (ﬁ log (n) - ( loglog(n)

—2 2 7 tlog?(#)] - (logloglog* log* (¢
logloglog(n)+0g(> (logloglog® (n) +log* (1)) |,
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Reduce(X) is N™Y-close to a (N7, t)-NOBF source.

Before we prove Lemma 5.1, first we show how to prove Theo-
rem 1 and Theorem 2 based on Lemma 5.1.

ProoF oF THEOREM 1. Let Reduce : {0,1}" — {0,1}" be the
function from Lemma 5.1 by taking y = 0.1. Note that N = poly(n).
Let BFExt : {0, 1} — {0, 1}™ be the NOBF-source extractor from
Lemma 3.22. Let X be a (n, k, 2)-source, where k is defined later.
If Reduce(X) is N~ _close to a (N9, +)-NOBF source where
t = (mlog(N))©22, then

Ext(X) := BFExt(Reduce(X))

is 1~ _close to uniform. By Lemma 5.1 it suffices to take k =
O(3 log (1) log(n)) < (mlog(n))'+*22, g

PrOOF OF THEOREM 2. Let Reduce : {0,1}" — {0,1}V be the
function from Lemma 5.1 by taking y = 0.6. Note that N = poly(n).
Let Maj : {0,1}N — {0,1} be the NOBF-source extractor from
Lemma 3.23, i.e. the majority function. Let X be a (n, k, 2)-source,
where k is defined later. If Reduce(X) is (¢/2)-close to a (N4, t)-
NOBF source where t = O(¢ % log?(1/¢)) = O(1), then

Ext(X) := Maj(Reduce(X))
is e-close to uniform. By Lemma 5.1 it suffices to take
k = O(log(n) loglog(n) loglog log3 (n)).
[m]
Next we prove Lemma 5.1. First we recall the definition of a
strong affine correlation breaker. To simplify our proof of Lemma 5.1,

here we use a definition which is slightly more general than Defini-
tion 1.8.

DEFINITION 5.2. AffCB : {0,1}" x {0,1}4 x {0,1}% — {0,1}™ is
a (t, k, y)-affine correlation breaker if for every distribution X,A,B €
{0,13", Y, Y[l € {0,1}¢, Z and string «a, altl € {0,1}% s.t.

e X=A+B
e Ho(A|Z) 2 k
e (Y,Z)=(UyZ)

Ao Z e (B, Y,Y[t]) is a Markov chain
Vie[t],a#a
It holds that

(AICB(X, Y, @) ~y Up) | ({AffCB(X,Y", ai)}ie[t],Z).

We say AffCB is strong if
(AfCB(X, Y, @) ~y Up) | ({AHCB(X,Y", ai)}ie[t],Y,Y[t],Z).

To prove Lemma 5.1, we need the following lemma, which is an
analog of [13, Lemma 2.17]. Roughly speaking, we show that even
if the seeds of the correlation breaker are added by some leakage
from the source, most of the seeds are still good.

LEMMA 5.3. For every error parameter y > 0 the following holds.
Let
o AffCB : {0,1}" x {0,1}9 x {0,1}% — {0,1}™ be a (t,k, ¢)-
strong affine correlation breaker
o L:{0,1}"x{0,1}% — {0,1} be any deterministic function,
which we call the leakage function
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o a,alt] be any a-bit advice s.t. @ # ' for everyi € [t]
e A bean (n k+ (t+1)f)-source

Foreveryb € {0,1}",y € {0, l}d, define
Rb’y = AffCB(A+b,y+L(A a),a)
and for every i € [t] define
Rz’y := AITCB(A + b,y + L(A, &), a").
Let BAD,, 4111 be the set of “bad seeds, which is defined as

fye 0193051 st Ry 2, Un) | (R dicpal -

Then

Pr
y~Ug

|y BAD, 410 | <

I )

ProoF. Define deterministic functions f 1o, ft : {0, l}d —
{0,139 and g : {0,1}4 — {0,1}" st. for every y € BAD,, 4111,

(Rown.y % Um) 1 (RS, iy bieinn) -

Fory ¢ BAD, ,is the values of f1(y), fF2(y), ..., f1(y),g(y) are
defined arbitrarily. Note that the existence of f1,..., f!, g is guar-
anteed by the definition of BAD, ,i/]. Let W := Uy and § :=

Pr [W € BADa’a[,]]. Observe that

(Rg(W),W ;ﬁyé Un) | ({R;(w)!fi(w)}ie[t]’w)-

Now define Y := W + L(A, @), Y} := W + L(A, &') for every i € [t]
and B := g(W). Let Z := (L(A,),L(A,a!),...,L(A, a")). Note
that Z € {0, 1}(**D! is a deterministic function of A. With these
new definitions the above equation can be rewritten as

(AffICB(A+B,Y,a) #,5 Un) | ({AfICB(A +B, Y, ai}ie[t],W).
®3)

Next, observe that the following conditions hold:

e Hoo(A | Z) > k (by Lemma 3.4)

e (Y,Z) = (Uy, 2).

e A & Z & (B,Y,Y[*]) is a Markov chain.
Note that the last condition holds because Z is a deterministic
function of A, which implies A & Z < (B,W), and Y,Y[t 1 are
deterministic functions of (Z, W). By the definition of AffCB we
have

(AffCB(A +B,Y, @) ~¢ Up) | ({AfCB(A +B,Y', o' };c[4]. Y. Z)
which implies
(AffCB(A+B.Y, @) ~¢ Up) | ({AfFCB(A+B, Y, o' }ic(]. W) (4)

since W =Y — L(A, @) and L(A, a) is a part of Z. By (3) and (4) we
getd < ¢fy. ]

Next we prove the following result, which will directly imply
Lemma 5.1 by plugging in proper choices of somewhere random
samplers and affine correlation breakers.

LEMMA 5.4. For every ¢,6 > 0 the following holds. Let AffCB :
{0,1}"x{0, 1}9%x[AC] — {0,1} bea (Ct—1)-strong affine correlation
breaker for entropy kq with error A" C71¢8, and let Samp : {0, 1} x
[A] x [C] = {0,1}9 be a (e, 8)-somewhere random sampler for
entropy ky. Then for every n-bit source X = X1 + Xy such that X;
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is independent of X, Hoo(X1) = ki + Ctd and He (X2) > ko, the
source

Reduce(X) = @ AffCB (X, Samp(X, @, z), (@, 2))

z€[C] aclA]

is 38-close to a convex combination of (2¢A, t)-NOBF source.

Proor. Consider Lemma 5.3 by taking X as the source, A~/ as
the error parameter and L(x, (@, z)) := Samp(x, «, z) as the leakage
function. For every non-empty subset T C [A] of size at most ¢ and
every z* € [C], define a set BAD'T,Z* as follows. Let «* denote the
first element in T. Let § = (a*, z*) and

B ={(.2)}geT zec) \{B}-

Note that 8’ contains at most 2°t — 1 advice which are all different
from f. Then we define

BAD/ . := BADj .,

where BADg g is defined as in Lemma 5.3. Observe that by def-
inition of BAD’T - for every x; € {0,1}", if Samp(xy, a*, z*) ¢
BAD%’Z*, then

@ @ AffCB (X1 + x2, Samp(X1, @, z) + Samp(xz, ¢, z), (@, 2))
a€T ze[C]

is A75-close to Uj. By the linearity of Samp, we know that for

every fixing Xy = xp, if Samp(xy, a*, z*) ¢ BAD’T o then

@ @ AffCB (X, Samp(X, a, z), (&, 2)) | ®4-t5 Ur.  (5)

a€T ze[C]

By Lemma 5.3 we know that Pry.y, [y € BAD/ Z*] <ATICT e,
Now define BAD’ to be the union of BAD;. . for all possible choices
of T, z*. Since there are at most A’ choices of T and C choices of z*,
by union bound we know that Pry.y, [y € BAD’] < ¢. Therefore,
by definition of somewhere random sampler,

Pg{ [|{a € [A] : Vz Samp(xy, a,2) € BAD'}l < ZEA] >1-90.

Xo~X2
In other words, with probability at least 1 — § over the fixing
X3 = xy, there exists a set Q C [A] of size at most 2¢éA which
satisfies the following: for every a € [A]\Q, there exists z, such
that Samp(x2, @, zo) ¢ BAD’, which also implies Samp(xz, @, zo) ¢
BADY., .By Equation (5), for every T C [A]\Q's.t. 1 < |T| < ¢,

@ @ AffCB(X, Samp(X, , z), (&, 2)) | ®4-t5 Uy.

a€T ze{0,1}¢

By Lemma 3.20 this implies that with probability 1 — § over the

fixing of X,
Reduce(X) = @ AffCB(X, Samp(X, a, 2), (@, z))

z€{0,1}¢ ac[A]

is 20-close to a (2¢A, t)-NOBF source. Therefore Reduce(X) is 36-
close to a convex combination of (2¢A, t)-NOBF source. O
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To get Lemma 5.1, we need the following affine correlation
breaker. The formal proof of the following theorem can be found
in the full version [11].

THEOREM 5.5. For every m,a,t € N and ¢ > 0 there exists an
explicit strong t-affine correlation breaker AffiCB : {0, 1}"* x {0, 134 x
{0,1}% — {0, 1}™ with error ¢ for entropy k such that the seed length

is
B n log(a)
d=0 (thg (;) . (w +10g3(t)))
and
log(a)

k=0(tm+tlog(g)-(

1))

Proor (sKETCH). Apply Theorem 5 on the correlation breaker
in [34]. O

loglog(a)

Now we are ready to prove Lemma 5.1.

PrOOF OF LEMMA 5.1. Let Samp : {0,1}" X [N] X [C] — {0, 1}
be a (ny N

2’3
where N = n°(1), We want to choose proper parameters d,C
so that there exists a (Ct — 1)-strong affine correlation breaker
AfFCB : {0, 1}"x{0, 1}¢X[NC] — {0, 1} with error N=2(t+V) c=1 /¢,
Then Lemma 5.4 would imply Lemma 5.1. Observe that we need to
guarantee

)-somewhere random sampler from Lemma 3.18,

log log(n)
2 . 3
d>K; (Ct log (n) (logloglog(n) +log”(Ct)
and
2
C > Ky log (log(n))

for some fixed constants Ki, K». It suffices to take
C = O(loglog log2 (n) + Iogz(t))

for some large enough constant factor. Then the entropy require-

ment of AffCB would be
Ct)) ,

ko = O(d +log(NY)) = O(d + log(n)).

loglog(n)

=0 et tog o - (LR

and the entropy requirement of Samp would be

To make Reduce work, the entropy of the given sumset source
should be at least

k = max{k; + Ctd, k2}

=0 (Czt?} IOg (T’!) . ( loglog(n)

3
logloglog(n) +log (t)))'

Finally, observe that the running time of Reduce is N times the
running time of AffCB and Samp, which is also poly(n). O
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