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ABSTRACT
We consider the problem of extracting randomness from sumset
sources, a general class of weak sources introduced by Chattopad-

hyay and Li (STOC, 2016). An (𝑛, 𝑘,𝐶)-sumset source X is a distri-

bution on {0, 1}𝑛 of the form X1 + X2 + . . . + X𝐶 , where X𝑖 ’s are
independent sources on 𝑛 bits with min-entropy at least 𝑘 . Prior

extractors either required the number of sources 𝐶 to be a large

constant or the min-entropy 𝑘 to be at least 0.51𝑛.

As our main result, we construct an explicit extractor for sumset

sources in the setting of 𝐶 = 2 for min-entropy poly(log𝑛) and
polynomially small error. We can further improve the min-entropy

requirement to (log𝑛) · (log log𝑛)1+𝑜 (1) at the expense of worse
error parameter of our extractor. We find applications of our sumset

extractor for extracting randomness from other well-studiedmodels

of weak sources such as affine sources, small-space sources, and

interleaved sources.

Interestingly, it is unknown if a random function is an extractor

for sumset sources. We use techniques from additive combinatorics

to show that it is a disperser, and further prove that an affine ex-

tractor works for an interesting subclass of sumset sources which

informally corresponds to the “low doubling" case (i.e., the support

of X1 + X2 is not much larger than 2
𝑘
).

CCS CONCEPTS
• Theory of computation → Expander graphs and random-
ness extractors.
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1 INTRODUCTION
Randomness is a powerful resource in computer science, and has

been widely used in areas such as algorithm design, cryptography,

distributed computing, etc. Most of the applications assume the
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access to perfect randomness, i.e. a stream of uniform and indepen-

dent random bits. However, natural sources of randomness often

generate biased and correlated random bits, and in cryptographic

applications there are many scenarios where the adversary learns

some information about the random bits we use. This motivates the

area of randomness extraction, which aims to construct randomness
extractors, which are deterministic algorithms that can convert an

imperfect random source into a uniform random string.

Formally, the amount of randomness in an imperfect random

source X is captured by its min-entropy, defined as H∞ (X) =

min𝑥 ∈Supp(X) (− log(Pr [X = 𝑥])).1 We call X ∈ {0, 1}𝑛 a (𝑛, 𝑘)-
source if it satisfies H∞ (X) ≥ 𝑘 . Ideally we want a deterministic

function Ext with entropy requirement 𝑘 ≪ 𝑛, i.e. for every (𝑛, 𝑘)-
source X the output Ext(X) is close to a uniform string. Unfortu-

nately, a folklore result shows that it is impossible to construct such

a function even when 𝑘 = 𝑛 − 1.

To bypass the impossibility result, researchers have explored

two different approaches. The first one is based on the notion of

seeded extraction, introduced by Nisan and Zuckerman [38]. This

approach assumes that the extractor has access to a short indepen-

dent uniform random seed, and the extractor needs to convert the

given source X into a uniform string with high probability over the

seed. Through a successful line of research we now have seeded

extractors with almost optimal parameters [23, 25, 35]. In this paper,

we focus on the second approach, called deterministic extraction,
which assumes some structure in the given source. Formally, a

deterministic extractor is defined as follows.

Definition 1.1. LetX be a family of distribution over {0, 1}𝑛 . We
say a deterministic function Ext : {0, 1}𝑛 → {0, 1}𝑚 is a deterministic
extractor for X with error 𝜀 if for every distribution X ∈ X,

Ext(X) ≈𝜀 U𝑚 .
We say Ext is explicit if Ext is computable by a polynomial-time
algorithm.

The most well-studied deterministic extractors are multi-source

extractors, which assume that the extractor is given 𝐶 indepen-

dent (𝑛, 𝑘)-sources X1,X2, . . . ,X𝐶 . This model was first introduced

by Chor and Goldreich [14]. They constructed explicit two-source

extractors with error 2
−Ω (𝑛)

for entropy 0.51𝑛, and proved that

there exists a two-source extractor for entropy 𝑘 = 𝑂 (log(𝑛)) with
error 2

−Ω (𝑘)
. Significant progress was made by Chattopadhyay and

Zuckerman [13], who showed how to construct an extractor for

two sources with entropy 𝑘 = polylog(𝑛), after a long line of suc-
cessful work on independent source extractors (see the references

in [13]). The output length was later improved to Ω(𝑘) by Li [32].

Furthermore, Ben-Aroya, Doron and Ta-Shma [3] showed how to

improve the entropy requirement to 𝑂 (log1+𝑜 (1) (𝑛)) for constant
1
Supp(X) denotes the support of X. We use log to denote the base-2 logarithm in the

rest of this paper.
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error and 1-bit output. The entropy requirement was further im-

proved in subsequent works [19, 33], and the state-of-the-art result

is by Li [34], which requires 𝑘 = 𝑂 (log(𝑛) · log log(𝑛)
log log log(𝑛) ). For a

more elaborate discussion, see the survey by Chattopadhyay [4].

Apart from independent sources, many other classes of sources

have been studied for deterministic extraction. We briefly introduce

some of these research directions here. A well-studied class is obliv-

ious bit-fixing sources [15, 24, 27, 39], where some unknown coordi-

nates are uniform and independent (and the remaining coordinates

are fixed). Extractors for such sources have found applications in

cryptography [15, 27]. A natural generalization of bit-fixing sources

is the class of affine sources, which are uniform distributions over

some affine subspaces and have been widely studied in literature

(see [6] and references therein). Another important line of work fo-

cuses on the class of samplable sources, which are sources sampled

by a “low-complexity procedure" such as efficient algorithms [43],

small-space algorithms [26] or constant-depth circuits [44]. Re-

searchers have also studied interleaved sources [9, 10, 12, 40], which

is a generalization of independent sources such that the bits from

different independent sources are permuted in an unknown order.

In this paper, we consider a very general class of sources called

sumset sources, which was first studied by Chattopadhyay and Li [9].
A sumset source is the sum (XOR) of multiple independent sources,

which we formally define as follows.

Definition 1.2. A source X is a (𝑛, 𝑘,𝐶)-sumset source if there
exist 𝐶 independent (𝑛, 𝑘)-sources {X𝑖 }𝑖∈[𝐶 ] such that X =

∑𝐶
𝑖=1 X𝑖 .

If the parameters 𝑛, 𝑘 are clear from the context, we simply say 𝑋 is a
𝐶-sumset source.

Chattopadhyay and Li [9] showed that the class of sumset sources

generalize many different classes we mentioned above, including

oblivious bit-fixing sources, independent sources, affine sources

and small-space sources. They constructed an explicit extractor

for (𝑛, 𝑘,𝐶)-sumset sources where 𝑘 = polylog(𝑛) and 𝐶 is a large

enough constant, and used the extractor to obtain improved extrac-

tors for small-space sources and interleaved sources. It is left as

an open question in [9] to obtain explicit extractors for small 𝐶 ,

and with the most interesting question being whether it is possible

to construct an explicit extractor for 2-sumset sources with low

min-entropy.

Note that the model of weak sources, that is the sum of two

independent sources, captures and generalizes two central settings

in seedless extraction: (i) 2-independent sources setting: given ac-

cess to independent sources X1 and X2, clearly X = X1 + X2 is a

2-sumset source (ii) affine source setting: an affine source X with

min-entropy 𝑘 can be written as the sum of two independent affine

sources X1,X2, each with min-entropy 𝑘 .2 Thus, an extractor for

the sum of two sources directly gives a two-source extractor as well
as an affine extractor. As we discuss in Section 1.1, such an extrac-

tor yields further improved extractors for interleaved sources and

small-space sources as well.

However, it has been challenging to construct extractors for 2-

sumset sources with low min-entropy. The only known extractor

for the sum of two sources before this work is the Paley graph

extractor [14], which requires one source to have entropy 0.51𝑛

2
For example, we can pick any 𝑏 ∈ Supp(X) and take X1 = X and X2 = 𝑏 + X.

and the other to have entropy 𝑂 (log(𝑛)), based on character sum

estimates obtained by Karatsuba [28, 29] (see also [12, Theorem

4.2]). In fact, unlike other sources we discussed above, it is not clear

whether a random function is an extractor for sumset sources. (See

Section 1.3 for more discussion.)

In this paper, we give a positive answer to the question above.

Formally, we prove the following theorem.

Theorem 1. There exists a universal constant 𝐶 such that for ev-
ery 𝑘 ≥ log

𝐶 (𝑛), there exists an explicit extractor Ext : {0, 1}𝑛 →
{0, 1}𝑚 for (𝑛, 𝑘, 2)-sumset source with error𝑛−Ω (1) and output length
𝑚 = 𝑘Ω (1) .

We can further lower the entropy requirement to almost loga-

rithmic at the expense of worse error parameter of the extractor.

Theorem 2. For every constant 𝜀 > 0, there exists a constant 𝐶𝜀
such that there exists an explicit extractor Ext : {0, 1}𝑛 → {0, 1} with
error 𝜀 for (𝑛, 𝑘, 2)-sumset source where

𝑘 = 𝐶𝜀 log(𝑛) log log(𝑛) log log log3 (𝑛) .

As we noted above, a sumset source extractor is also an affine ex-

tractor, and hence Theorem 2 also gives an affine extractor with en-

tropy𝑂 (log(𝑛) log log(𝑛) log log log3 (𝑛)), which slightly improves

upon the𝑂 (log(𝑛) log log(𝑛) log log log6 (𝑛)) bound in [6]. This im-

provement comes from a new construction of an “affine correlation

breaker", which we discuss in Section 1.2.

1.1 Applications
Next we discuss some applications of our sumset extractors in

obtaining improved extractors for other well-studied models of

weak sources.

1.1.1 Extractors for Interleaved Sources. Interleaved sources are a

natural generalization of independent sources, introduced by Raz

and Yehudayoff [40] where they called it as “mixed sources". The

formal definition of interleaved sources is as follows. For a 𝑛-bit

string 𝑤 and a permutation 𝜎 : [𝑛] → [𝑛], we use 𝑤𝜎 to denote

the string such that the 𝜎 (𝑖)-th bit of𝑤𝜎 is exactly the 𝑖-th bit of𝑤 .

For two strings 𝑥,𝑦, we use 𝑥 ◦ 𝑦 to denote the concatenation of 𝑥

and 𝑦.

Definition 1.3. Let X1 be an (𝑛, 𝑘1)-source, X2 be an (𝑛, 𝑘2)-
source independent of X1 and 𝜎 : [2𝑛] → [2𝑛] be a permutation.
Then (X1 ◦ X2)𝜎 is an (𝑛, 𝑘1, 𝑘2)-interleaved sources, or an (𝑛, 𝑘1)-
interleaved sources if 𝑘1 = 𝑘2.

Such sources naturally arise in a scenario that the bits of the

input source are communicated remotely to the extractor from

two independent sources in an unknown (but fixed) order. Raz and

Yehudayoff [40] observed that an explicit extractor for such sources

yeilds a lower bound in best-partition communication complexity

model.

Raz and Yehudayoff [40] constructed an extractor for (𝑛, (1−𝛽)𝑛)-
interleaved sources with 2

−Ω (𝑛)
error for a small constant 𝛽 > 0.

Subsequently, Chattopadhyay and Zuckerman [12] constructed an

extractor for (𝑛, (1−𝛾)𝑛,𝑂 (log(𝑛)))-interleaved sources with error

𝑛−Ω (1)
for a small constant 𝛾 > 0. A recent work by Chattopadhay

and Li [10] gave an extractor for (𝑛, (2/3+𝛿)𝑛)-interleaved sources
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with error 2
−𝑛Ω (1)

, where 𝛿 is an arbitrarily small constant. In sum-

mary, all prior work required at least one of the sources to have

min-entropy at least 0.66𝑛.

Observe that interleaved sources is a special case of sumset

sources, as (X1◦X2)𝜎 = (X1◦0𝑛)𝜎 +(0𝑛◦X2)𝜎 . With our extractors

for sum of two sources, we obtain the first extractors for interleaved

two sources with polylogarithmic entropy.

Corollary 1.4. There exists a universal constant 𝐶 such that for
every 𝑘 ≥ log

𝐶 (𝑛), there exists an explicit extractor Ext : {0, 1}𝑛 →
{0, 1}𝑚 for (𝑛, 𝑘)-interleaved sources with error 𝑛−Ω (1) .

Corollary 1.5. For every constant 𝜀 > 0, there exists a constant
𝐶𝜀 and an explicit extractor Ext : {0, 1}𝑛 → {0, 1} with error 𝜀 for
(𝑛, 𝑘)-interleaved sources where

𝑘 = 𝐶𝜀 log(𝑛) log log(𝑛) log log log3 (𝑛).

We note that the above results easily extend to the setting when

the two interleaved sources are of different lengths. In particular,

this captures the following natural setting of “somewhere indepen-

dence": suppose we have a source X on 𝑛 bits such that for some

(unknown) 𝑖 , the sources X≤𝑖 (first 𝑖 bits of X) and X>𝑖 (the last

𝑛− 𝑖 bits of X) are independent and each have entropy at least 𝑘 . As

long as 𝑘 ≥ poly(log𝑛), we can use our sumset extractor to extract

from such sources.

1.1.2 Extractors for Small-space Sources. Kamp, Rao, Vadhan and

Zuckerman [26] first studied extractors for sources sampled by al-

gorithms with limited memory. We define such small-space sources

more formally as follows.

Definition 1.6. A space-𝑠 sampling procedure A with 𝑛-bit out-
put is defined as follows. For every (𝑖, 𝑗) s.t. 𝑖 ∈ Z, 0 ≤ 𝑖 < 𝑛 and
𝑗 ∈ {0, 1}𝑠 , let D𝑖, 𝑗 be a distribution over {0, 1} × {0, 1}𝑠 . Then A
maintains an internal state state ∈ {0, 1}𝑠 , which is initially 0

𝑠 , and
runs the following steps for time step 𝑖 from 0 to 𝑛 − 1:

(1) Sample (𝑥𝑖+1, nextstate) ∈ {0, 1} × {0, 1}𝑠 from D𝑖,state.
(2) Output 𝑥𝑖+1, and assign state B nextstate.

Furthermore, the distribution X of the output (𝑥1, . . . , 𝑥𝑛) is called a
space-𝑠 source.

Equivalently, a space-𝑠 source is sampled by a branching pro-

gram of width 2
𝑠
(see Section 3.4 for the formal definition). In

[26], they constructed an extractor for space-𝑠 source with entropy

𝑘 ≥ 𝐶𝑛1−𝛾𝑠𝛾 with error 2
−𝑛Ω (1)

, for a large enough constant 𝐶 and

a small constant 𝛾 > 0. Chattopadhyay and Li [9] then constructed

an extractor with error 𝑛−Ω (1)
for space-𝑠 source with entropy

𝑘 ≥ 𝑠1.12log0.51 (𝑛) based on their sumset source extractor construc-

tion. Recently, based on a new reduction to affine extractors, Chat-

topadhyay and Goodman [5] improved the entropy requirement

to 𝑘 ≥ 𝑠 · polylog(𝑛) (or 𝑘 ≥ 𝑠 log2+𝑜 (1) (𝑛) in the constant error

setting).
3

With our new extractors for the sum of two sources, we can

use the reduction in [9] to get extractors for space-𝑠 source with

entropy 𝑠 log(𝑛) + polylog(𝑛), which is already an improvement

3
Here we focus on the small-space extractors which minimize the entropy requirement.

For small-space extractors with negligible error, the best known extractor roughly

requires min-entropy 𝑛0.51𝑠0.49 [5].

over the result in [5]. In this work, we further improve the reduction

and obtain the following results.

Theorem 3. There exists a universal constant 𝐶 such that for
every 𝑠 and every 𝑘 ≥ 2𝑠 + log

𝐶 (𝑛), there exists an explicit extractor
Ext : {0, 1}𝑛 → {0, 1}𝑚 with error 𝑛−Ω (1) and output length𝑚 =

(𝑘 − 2𝑠)Ω (1) for space-𝑠 sources with min-entropy 𝑘 .

Theorem 4. For every constant 𝜀 > 0, there exists a constant 𝐶𝜀
such that there exists an explicit extractor Ext : {0, 1}𝑛 → {0, 1} with
error 𝜀 for space-𝑠 sources with min-entropy

2𝑠 +𝐶𝜀 log(𝑛) log log(𝑛) log log log3 (𝑛).

Interestingly, the entropy requirement of our extractors have

optimal dependence on the space 𝑠 , as Kamp, Rao, Vadhan and Zuck-

erman [26] showed that it is impossible to construct an extractor for

space-𝑠 source with min-entropy ≤ 2𝑠 . Moreover, the min-entropy

requirement in Theorem 4 almost matches the non-constructive

extractor in [26] that requires min-entropy at least 2𝑠 +𝑂 (log(𝑛)).

1.2 Affine Correlation Breakers
An important building blocks in our sumset source extractor con-

struction is an affine correlation breaker. While such an object has

been constructed in previous works [6, 9, 32], in this paper we

give a new construction with slightly better parameters. The main

benefit of our new construction is that it is based on a black-box
reduction from affine correlation breakers to (standard) correlation

breakers, which are simpler and more well-studied. We believe this

result is of independent interest.

First we define a (standard) correlation breaker. Roughly speak-

ing, a correlation breaker takes a source X and a uniform seed

Y, while an adversary controls a “tampered source" X′
correlated

with X and a “tampered seed" Y′
correlated with Y. The goal of

the correlation breaker is to “break the correlation" between (X,Y)
and (X′,Y′), with the help of some “advice" 𝛼, 𝛼 ′. One can also

consider the “multi-tampering" variant where there are many tam-

pered sources and seeds, but in this paper we only need the single-

tampering version which is defined as follows.

Definition 1.7. CB : {0, 1}𝑛 × {0, 1}𝑑 × {0, 1}𝑎 → {0, 1}𝑚 is a
correlation breaker for entropy 𝑘 with error 𝜀 (or a (𝑘, 𝜀)-correlation
breaker for short) if for every X,X′ ∈ {0, 1}𝑛 , Y,Y′ ∈ {0, 1}𝑑 , 𝛼, 𝛼 ′ ∈
{0, 1}𝑎 such that

• X is an (𝑛, 𝑘) source and Y is uniform
• (X,X′) is independent of (Y,Y′)
• 𝛼 ≠ 𝛼 ′,

it holds that(
CB(X,Y, 𝛼),CB(X,Y′, 𝛼 ′)

)
≈𝜀

(
U𝑚,CB(X,Y′, 𝛼 ′)

)
.

The first correlation breaker was constructed implicitly by Li [30]

as an important building block of his independent-source extractor.

Cohen [16] then formally defined and strengthened this object, and

showed other interesting applications. Chattopadhyay, Goyal and

Li [7] then used this object to construct the first non-malleable

extractor with polylogarithmic entropy, which became a key in-

gredient for the two-source extractor in [13]. Correlation breakers

have received a lot of attention and many new techniques were

introduced to improve the construction [8, 17–20, 33, 34].
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Affine correlation breakers were first introduced by Li in his

construction of affine extractors [32], and were later used in [9] to

construct sumset source extractors. An affine correlation breaker is

similar to a (standard) correlation breaker, with the main difference

being that it allows X and Y to have an “affine" correlation, i.e.

X can be written as A + B where A is independent of Y and B is

correlated with Y. The formal definition is as follows.

Definition 1.8. AffCB : {0, 1}𝑛 × {0, 1}𝑑 × {0, 1}𝑎 → {0, 1}𝑚 is
a 𝑡-affine correlation breaker for entropy 𝑘 with error 𝜀 (or a (𝑡, 𝑘, 𝜀)-
affine correlation breaker for short) if for every distributions X,A,B ∈
{0, 1}𝑛 , Y,Y1, . . . ,Y𝑡 ∈ {0, 1}𝑑 and strings 𝛼, 𝛼1, . . . , 𝛼𝑡 ∈ {0, 1}𝑎
such that

• X = A + B
• H∞ (A) ≥ 𝑘 and Y is uniform
• A is independent of (B,Y,Y1, . . . ,Y[𝑡 ] )
• ∀𝑖 ∈ [𝑡], 𝛼 ≠ 𝛼𝑖 ,

it holds that (
AffCB(X,Y, 𝛼), {AffCB(X,Y𝑖 , 𝛼𝑖 )}𝑖∈[𝑡 ]

)
≈𝛾

(
U𝑚, {AffCB(X,Y𝑖 , 𝛼𝑖 )}𝑖∈[𝑡 ]

)
.

We say AffCB is strong if(
AffCB(X,Y, 𝛼),Y, {AffCB(X,Y𝑖 , 𝛼𝑖 ),Y𝑖 }𝑖∈[𝑡 ]

)
≈𝛾

(
U𝑚,Y, {AffCB(X,Y𝑖 , 𝛼𝑖 ),Y𝑖 }𝑖∈[𝑡 ]

)
.

The first affine correlation breaker in [32] was constructed by

adapting techniques from the correlation breaker construction in

[30] to the affine setting. Chattopadhyay, Goodman and Liao [6]

then constructed an affine correlation breaker with better parame-

ters based on new techniques developed in more recent works on

correlation breakers [8, 16, 20, 33].

While the techniques for standard correlation breakers can be

(usually) made to work for affine correlation breakers, it generally

requires non-trivial modifications. Further, it is not clear whether

the ideas in the standard setting can always be adapted to the

affine setting. For example, the parameters of the affine correlation

breaker in [6] do not match the parameters of the state-of-the-art

standard correlation breaker by Li [34], because adapting the ideas

in [34] to the affine setting (without loss in parameters) seems to

be difficult. It is also likely that more improvements will be made

in the easier setting of standard correlation breakers. Thus, we

believe that a black-box reduction from affine correlation breakers

to standard correlation breakers without loss in parameters will be

useful. In this work, we provide such a reduction.

Theorem 5. Let 𝐶 be a large enough constant. Suppose that there
exists an explicit (𝑑0, 𝜀)-strong correlation breaker CB : {0, 1}𝑑 ×
{0, 1}𝑑0 × {0, 1}𝑎 → {0, 1}𝐶 log

2 (𝑡+1) log(𝑛/𝜀) for some 𝑛, 𝑡 ∈ N. Then
there exists an explicit strong 𝑡-affine correlation breaker AffCB :

{0, 1}𝑛 × {0, 1}𝑑 × {0, 1}𝑎 → {0, 1}𝑚 with error 𝑂 (𝑡𝜀) for entropy

𝑘 = 𝑂 (𝑡𝑑0 + 𝑡𝑚 + 𝑡2 log(𝑛/𝜀)),

where
𝑑 = 𝑂 (𝑡𝑑0 +𝑚 + 𝑡 log3 (𝑡 + 1) log(𝑛/𝜀)).

As a corollary, by applying this black-box reduction on Li’s cor-

relation breaker [34], we get an affine correlation breaker with

parameters slightly better than those of [6]. (See Theorem 5.5 for

more details.) With the new affine correlation breaker, our extrac-

tor in Theorem 2 only requires𝑂 (log(𝑛) log log(𝑛) log log log3 (𝑛))
entropy, while using the affine correlation breaker in [6] would

require 𝑂 (log(𝑛) log log(𝑛) log log log6 (𝑛)) entropy.
In fact, if one can construct an “optimal" standard correlation

breaker with entropy requirement and seed length𝑂 (log(𝑛)) (when
𝑡 = 𝑂 (1), 𝑎 = 𝑂 (log(𝑛)), 𝜀 = 𝑛−Ω (1)

), which would imply a two-

source extractor for entropy 𝑂 (log(𝑛)), by Theorem 5 this also

implies a sumset source extractor for entropy 𝑂 (log(𝑛)) (which is

also an affine extractor for entropy 𝑂 (log(𝑛)).)

1.3 On Sumset Sources with Small Doubling
Finally we briefly discuss why a standard probabilistic method

cannot be used to prove the existence of extractors for sumset

sources, and show some partial results in this direction.

Suppose we want to extract from a source A + B, where A and

B are independent (𝑛, 𝑘)-sources. Without loss of generality we

can assume that A is uniform over a set 𝐴, and B is uniform over

another set 𝐵, such that |𝐴| = |𝐵 | = 𝐾 , where 𝐾 = 2
𝑘
. A simple

calculation shows that there are at most 2
2𝑛𝐾

choices of sources.

In a standard probabilistic argument, we would like to show that

a random function
4
is an extractor for A + B with probability at

least 1 − 𝛿 , where 𝛿 ≪ 2
−2𝑛𝐾

, and then we could use union bound

to show that a random function is an extractor for (𝑛, 𝑘, 2)-sources.
However, this is not always true. For example, when 𝐴 = 𝐵 is a

linear subspace, then A + B is exactly A, which has support size 𝐾 .

In this case we can only guarantee that a random function is an

extractor for A + B with probability 1 − 2
−𝛽𝐾

for some 𝛽 < 1. In

general, if the “entropy" of A + B is not greater than 𝑘 by too much,

then the probabilistic argument above does not work.

Remark 1.9. Note that the “bad case" is not an uncommon case
that can be neglected: if we take 𝐴, 𝐵 to be subsets of a linear space of
dimension 𝑘 + 1, then |Supp(A + B) | ≤ 2

𝑘+1, which means a random
function is an extractor for A + B with probability at most 1 − 2

−2𝐾 .
However, there are roughly 2

4𝐾 choices of 𝐴 and 𝐵, so even if we
consider the bad cases separately the union bound still does not work.

Nevertheless, we can use techniques from additive combinatorics

to prove that the bad cases can be approximated with affine sources.

With this result we can show that a random function is in fact a

disperser
5
for sumset sources. To formally define the bad cases, first

we recall the definition of sumsets from additive combinatorics (cf.

[42]).

Definition 1.10. For 𝐴, 𝐵 ⊆ F𝑛
2
, define 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈

𝐴,𝑏 ∈ 𝐵}. For 𝐴, 𝐵 s.t. |𝐴| = |𝐵 | we say (𝐴, 𝐵) has doubling constant
𝑟 if |𝐴 + 𝐵 | ≤ 𝑟 |𝐴|.

It is not hard to see that a random function is a disperser forA+B
with probability exactly 1 − 2

−|𝐴+𝐵 |+1
. Therefore we can use union

bound to show that a random function is a disperser with high

4
A random function is sampled uniformly at random from all the possible choices of

Boolean functions on 𝑛 input bits.

5
A disperser for a class of source X is a boolean function 𝑓 which has non-constant

output on the support of every X ∈ X.
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probability for every sumset source A + B which satisfies |𝐴 + 𝐵 | >
3𝑛 |𝐴|. When |𝐴 + 𝐵 | ≤ 3𝑛 |𝐴|, a celebrated result by Sanders [41]

shows that 𝐴 + 𝐵 must contain 90% of an affine subspace with

dimension log( |𝐴|) −𝑂 (log4 (𝑛)). With the well-known fact that

a random function is an extractor for affine sources with entropy

𝑂 (log(𝑛)), we can conclude that a random function is a disperser

for sumset source with entropy 𝑂 (log4 (𝑛)).
Note that Sanders’ result only guarantees that𝐴+𝐵 almost covers

a large affine subspace, but this affine subspace might only be a

negligible fraction of A + B. Therefore, while a random function is

an extractor for affine sources, Sanders’ result only implies that it is

a disperser for sumset source with small doubling constant. In this

paper, we prove a “distributional variant" of Sanders’ result. That

is, a sumset source A + B with small doubling constant is actually

statistically close to a convex combination of affine sources.

Theorem 6. Let A,B be uniform distribution over 𝐴, 𝐵 ⊆ F𝑛
2

s.t. |𝐴| = |𝐵 | = 2
𝑘 and |𝐴 + 𝐵 | ≤ 𝑟 |𝐴|. Then A + B is 𝜀-close

to a convex combination of affine sources with min-entropy 𝑘 −
𝑂 (𝜀−2 log(𝑟 ) log3 (𝑟/𝜀)).

Then we get the following corollary which says that an affine

extractor is also an extractor for sumset source with small doubling.

Corollary 1.11. Let A,B be uniform distribution over 𝐴, 𝐵 ⊆ F𝑛
2

s.t. |𝐴| = |𝐵 | = 2
𝑘 and |𝐴 + 𝐵 | ≤ 𝑟 |𝐴|. If AffExt : {0, 1}𝑛 → {0, 1}𝑚

is an extractor for affine sources with min-entropy 𝑘 − log
4 (𝑟 ), then

AffExt(A + B) is 𝑂 (1)-close to U𝑚 .

We remark that while Corollary 1.11 implies that a random

function is an extractor for sumset sources with small doubling,

this does not mean a random function is an extractor for sumset

sources in general. This is because a lower bound on |𝐴 + 𝐵 | is not
sufficient for us to show that a random function is an extractor by

probabilistic argument. (See the full version [11, Appendix B] for

more discussions.)

1.4 Open Problems
In this paper we construct improved extractors for interleaved

two sources and small-space sources based on our extractors for

sum of two sources. Can we use our construction to get improved

extractors for other classes of sources? More specifically, both of the

applications require only an extractor for interleaved two sources,

which is only a special case of sumset sources. Can we further

exploit the generality of sumset sources?

Another natural open problem is whether we can construct

sumset source extractors for 𝑘 = 𝑜 (𝑛) entropy with negligible error.
Note that a special case of this problem, constructing low-error

two-source extractors for 𝑜 (𝑛) entropy, has been open for decades.

We can also relax this problem and try to construct a low-error

extractor for sum of𝐶 > 2 sources. This seemsmore achievable with

current techniques, as Li [31] has already shown how to construct

low-error 3-source extractors for polylogarithmic entropy. If one

can solve this relaxed problem for min-entropy 𝑘 = 𝑛0.99, then it

would also imply new results for affine extractors, because an affine

source can be written as the sum of infinitely many independent

sources.

Finally, it’s also interesting to see whether a random function

is an extractor for sum of two sources. In this paper we prove that

sumset sources have a “structure vs randomness dichotomy": the

sumset source is either close to an affine source, or has high enough

entropy. In both cases a random function is a disperser. However

our result does not seem strong enough to show that a random

function is an extractor for sum of two sources.

Organization. In Section 2, we give an overview of the proofs for

all our results. In Section 3, we introduce some necessary prelimi-

naries and prior works. We use Section 4 to show a new reduction

from small-space sources to sum of two sources which has optimal

dependence on the space parameter, and prove Theorem 3 and

Theorem 4. In Section 5, we show how to construct the extractors

for sum of two sources in Theorem 1 and Theorem 2, assuming

access to an affine correlation breaker based on Theorem 5. The

formal proofs of Theorem 5 and Theorem 6 can be found in the full

version [11, Section 6 and 7].

2 OVERVIEW OF PROOFS
In this section we give a high-level overview of our proofs. The

overview includes some standard notations which can be found in

Section 3.

2.1 Construction of Sumset Extractors
In this section we give an overview of construction of our sumset

source extractors. Similar to [9], our extractor follows the two-step

framework in [13]. First, we convert the sumset source into a non-

oblivious bit-fixing (NOBF) source. Roughly speaking, a 𝑡-NOBF

source is a string such that most of the bits are 𝑡-wise independent.

(See Definition 3.19 for the formal definition.) Second, we apply

known extractors for NOBF sources [13, 32, 37, 44] to get the output.

In the rest of this section, we focus on the first step, which is the

main contribution of this work.

2.1.1 Reduction from Two Sources. To see how our reductionworks,

first we recall the transformation from two independent sources

to NOBF sources in [13]. Given two (𝑛, 𝑘)-source X1,X2, first take

a 𝑡-non-malleable extractor nmExt : {0, 1}𝑛 × {0, 1}𝑑1 → {0, 1}
with error 𝜀1, enumerate all the seeds and output a string R1 :=

{nmExt(X1, 𝑠)}𝑠∈{0,1}𝑑1 with 𝐷1 = 2
𝑑1

bits. We do not give the

exact definition of non-malleable extractors here, but we need the

following property proved in [13]: except for

√
𝜀1 fraction of “bad

bits", every (𝑡 + 1) “good bits" in R1 are
√
𝜀1-close to uniform. With

this property it might seem like R1 is close to a (𝑡 +1)-NOBF source,
but unfortunately this is not true. While R1 is guaranteed to be

𝐷𝑡+1
1

√
𝜀1-close to a NOBF source by a result in [1], this bound is

trivial since 𝐷1 = poly(1/𝜀1). To get around this problem, [13] used

the second source X2 to sample 𝐷2 ≪ 𝐷1 bits from R1 and get R2.
Now R2 is guaranteed to be 𝐷𝑡+1

2

√
𝜀1-close to a NOBF source, and

the error bound 𝐷𝑡+1
2

√
𝜀1 can be very small since 𝐷2 is decoupled

from 𝜀1. We note that Li [31] also showed a reduction from two

independent sources to NOBF sources, and the sampling step is

also crucial in Li’s reduction.

Chattopadhyay and Li [9] conjectured that a similar construction

should work for sumset sources. However, in the setting of sumset

sources, it is not clear how to perform the sampling step. For exam-

ple, if one replaces both X1 and X2 in the above construction with a

sumset source X = X1 +X2, then the sampling step might not work
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because the randomness we use for sampling is now correlated

with R1. Therefore, they adopted an idea in [30] which requires the

given source X to be the sum of 𝐶 independent sources, for some

large enough constant 𝐶 . In this paper, we show that we can actu-

ally make the sampling step work with a (𝑛, polylog(𝑛), 2)-sumset

source. As a result we get an extractor for sum of two independent

sources.

2.1.2 Sampling with Sumset Source. As a warm up, first we assume

that we are sampling from the output of a “0-non-malleable extrac-

tor", i.e. a strong seeded extractor. Let Ext : {0, 1}𝑛 × {0, 1}𝑑1 →
{0, 1} be a strong seeded extractor with error 𝜀1. First observe that

the sampling method has the following equivalent interpretation.

Note that Ext and the source X1 together define a set of “good

seeds" such that a seed 𝑠 is good if Ext(X1, 𝑠) is
√
𝜀1-close to uni-

form. Since Ext is a strong seeded extractor, (1 − √
𝜀1) of the seeds

should be good. In the sampling step we apply a sampler Samp on

X2 to get some samples of seeds {Samp(X2, 𝑖)}𝑖∈{0,1}𝑑2 . Then we

can apply the function Ext(X1, ·) on these sampled seeds to get the

output R2 = {Ext(X, Samp(X, 𝑖))}𝑖∈{0,1}𝑑2 which is 2
𝑑2
√
𝜀1-close

to a 1-NOBF source.

Now we move to the setting of sumset sources and replace both

X1,X2 in the above steps with X = X1 + X2. Our goal is to show

that we can still view this reduction as if we were sampling good

seeds with X2 and using these seeds to extract from X1. Consider

the 𝑖-th output bit, Ext(X, Samp(X, 𝑖)). Our main observation is, if

Samp(·, 𝑖) is a linear function, then we can assume that we compute

Ext(X, Samp(X, 𝑖)) in the following steps:

(1) First sample 𝑥2 ∼ X2.

(2) Use 𝑥2 as the randomness of Samp to sample a “seed" 𝑠 :=

Samp(X2, 𝑖).
(3) Output Ext

′
𝑥2,𝑖

(X1, 𝑠) := Ext(X1 + 𝑥2, 𝑠 + Samp(X1, 𝑖)).

First we claim that Ext
′
𝑥2,𝑖

is also a strong seeded extractor. To

see why this is true, observe that if we fix Samp(X1, 𝑖) = Δ, then
Ext

′
𝑥2,𝑖

(X1,U) = Ext(X1 +𝑥2,U+Δ). As long as X1 still has enough

entropy after fixing Samp(X1, 𝑖), Ext works properly since X1 + 𝑥2
is independent of U +Δ, X1 +𝑥2 still has enough entropy and U+Δ
is also uniform. Therefore, we can use Ext

′
𝑥2,𝑖

and X1 to define a

set of good seeds 𝑠 which make Ext
′
𝑥2,𝑖

(X1, 𝑠) close to uniform, and

most of the seeds should be good. Then we can equivalently view

the sampling step as if we were sampling good seeds for Ext
′
𝑥2,𝑖

using X2 as the randomness.

There are still two problems left. First, the definition of Ext
′
𝑥2,𝑖

depends on 𝑥2, which is the randomness we use for sampling. To

solve this problem, we take Ext to be linear, and prove that (1−√𝜀1)
fraction of the seeds 𝑠 are good in the sense that Ext

′
𝑥2,𝑖

(X1, 𝑠) is
close to uniform for every 𝑥2. Second, Ext′𝑥2,𝑖 depends on 𝑖 , which is

the index of our samples. Similarly we change the definition of good

seeds so that a seed 𝑠 is good if Ext
′
𝑥2,𝑖

(X1, 𝑠) is good for every 𝑥2

and 𝑖 , and by union bound we can show that (1 − 2
𝑑2
√
𝜀1) fraction

of the seeds are good. As long as 𝜀1 ≪ 2
−2𝑑2

, most of the seeds

should be good. Now the definition of good seeds is decoupled from

the sampling step, and hence we can show that most of the sampled

seeds are good.

2.1.3 Sampling with Correlation Breakers. Next we turn to the

case of 𝑡-non-malleable extractors. Similar to how we changed the

definition of good seeds for a strong seeded extractor, we need to

generalize the definition of good seeds for a non-malleable extractor

in [13] to the sumset source setting. The main difference between

non-malleable extractors and strong seeded extractors is, for strong

seeded extractors we want a good seed to generate a uniform bit,

but for 𝑡-non-malleable extractors we want a good seed to generate

a bit which is uniform even when conditioned on every 𝑡 other bits.

Therefore the definition of good seeds for non-malleable extractors

should be with respect to every possible “(𝑡 + 1)-local view". For-
mally, we say a seed 𝑠 is good with respect to 𝑥2 and a set of indices

𝑇 = {𝑖1, . . . , 𝑖𝑡+1} if for every 𝑠1, . . . , 𝑠𝑡 ∈ {0, 1}𝑑1 ,

(nmExt(X1 + 𝑥2, 𝑠 + Samp(X1, 𝑖1)) ≈√
𝜀1

U1

conditioned on

{nmExt(X1 + 𝑥2, 𝑠 𝑗 + Samp(X1, 𝑖 𝑗+1))} 𝑗 ∈[𝑡 ] .

Based on the proof in [13] and the arguments in the previous section,

if X1 has enough entropy when conditioned on {Samp(X1, 𝑖)}𝑖∈𝑇 ,
then 1 − √

𝜀1 of the seeds are good with respect to 𝑥2 and 𝑇 . If we

can prove that most of the seeds we sample using 𝑥2 ∼ X2 are

good with respect to 𝑥2 and every set of indices 𝑇 , then the we can

conclude that the output R2 = {nmExt(X, Samp(X, 𝑖))}𝑖∈{0,1}𝑑2 is
𝐷𝑡+1
2

√
𝜀1-close to a NOBF source.

Next we need to show that most of the seeds are good with

respect to every 𝑥2 and 𝑇 , so that the sampling step is decoupled

from the definition of good seeds. To deal with the dependence on

𝑇 , we take the union bound over 𝑇 , and we can still guarantee that

1−𝐷𝑡+1
2

√
𝜀1 of the seeds are good. To deal with the dependency on

𝑥2, it suffices to replace the non-malleable extractor with a strong

affine correlation breaker. Although the correlation breaker needs

an additional advice string to work, here we can simply use the

indices of the samples as the advice. Our final construction would

be {AffCB(X, Samp(X, 𝛼), 𝛼)}𝛼 ∈{0,1}𝑑2 .
Finally, we note that in order to make the extractor work for

almost logarithmic entropy (Theorem 2), we need to replace the

sampler with a “somewhere random sampler" based on the tech-

niques in [3], and the construction and analysis should be changed

correspondingly. We present the details in Section 5.

2.2 Reduction from Small-Space Sources to
Sumset Sources

In this section we give an overview of our new reduction from

small-space sources to sumset sources. As in all the previous works

on small-space source extractors, our reduction is based on a simple

fact: conditioned on the event that the sampling procedure is in

state 𝑗 at time 𝑖 , the small-space source X can be divided into two

independent sources X1 ∈ {0, 1}𝑖 ,X2 ∈ {0, 1}𝑛−𝑖 , such that X1

contains the bits generated before time 𝑖 , and X2 contains the bits

generated after time 𝑖 . Kamp, Rao, Vadhan and Zuckerman [26]

proved that if we pick some equally distant time steps 𝑖1, . . . , 𝑖ℓ−1
and condition on the states visited at these time steps, we can divide

the small-space source into ℓ independent blocks such that some

of them have enough entropy. However, such a reduction does not

work for entropy smaller than

√
𝑛 (cf. [5]). Chattopadhyay and Li [9]
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observed that with a sumset source extractor we can extract from

the concatenation of independent sources with unknown and uneven
length. They then showed that with a sumset source extractor, we

can “adaptively" pick which time steps to condition on and break the√
𝑛 barrier. Chattopadhyay and Goodman [5] further refined this

reduction and showed how to improve the entropy requirement by

reducing to a convex combination of affine sources. The reductions

in [9] and [5] can be viewed as “binary searching" the correct

time steps to condition on, so that the given source X becomes

the concatenation of independent blocks (X1, . . . ,X𝑂 (log(𝑛)) ) such
that some of them have enough entropy. However, even though

with our extractors for sum of two sources we only need two of the

blocks to have enough entropy, the “binary search-based" reduction

would condition on at least log(𝑛) time steps and waste 𝑠 log(𝑛)
entropy.

A possible way to improve this reduction is by directly choosing

the “correct" time step to condition on so that we only get two

blocks X1 ◦X2 both of which have enough entropy. However this is

not always possible. For example, consider a distribution which is a

convex combination ofU𝑛/2◦0𝑛/2 and 0𝑛/2◦U𝑛/2. This distribution
is a space-1 source and has entropy 𝑛/2, but no matter which time

step we choose to condition on, one of the two blocks would have

zero entropy.

To resolve these problems, we carefully define the event to con-

dition on as follows. For ease of explanation we view the space-𝑠

sampling procedure as a branching program of width 2
𝑠
. (Unfa-

miliar readers can consult Section 3.4.) First, we define a vertex

𝑣 = (𝑖, 𝑗) to be a “stopping vertex" if the bits generated after vis-

iting 𝑣 has entropy less than some threshold. Then we condition

on a random variable V which is the first stopping vertex visited

by the sampling process. Note that V is well-defined since every

state at time 𝑛 is a stopping vertex. Besides, conditioning on V only

costs roughly 𝑠 + log(𝑛) entropy since there are only 𝑛 · 2𝑠 possible
outcomes.

Now observe that the event V = (𝑖, 𝑗) means the sampling pro-

cess visits (𝑖, 𝑗) but does not visit any stopping vertex before time

𝑖 . We call the bits generated before time 𝑖 the “first block" and the

bits generated after time 𝑖 the “second block". It is not hard to see

that the two blocks are still independent conditioned on V = 𝑣 .

Then observe that the first block has enough entropy because the

second block does not contain too much entropy (by our definition

of stopping vertex). Next we show that the second block also has

enough entropy. For every vertex𝑢, letX𝑢 denote the bits generated

after visiting 𝑢. The main observation is, if there is an edge from

a vertex 𝑢 to a vertex 𝑣 , then unless 𝑢 → 𝑣 is a “bad edge" which

is taken by 𝑢 with probability < 𝜀, the entropy of X𝑣 can only be

lower than X𝑢 by at most log(1/𝜀). If we take 𝜀 ≪ 2
−𝑠𝑛−1, then by

union bound the probability that any bad edge is traversed in the

sampling procedure is ≪ 1. Since we take V to be the first vertex
such that XV has entropy lower than some threshold, the entropy

ofXV can only be log(1/𝜀) ≈ 𝑠 + log(𝑛) lower than the threshold. In

conclusion, if we start with a space-𝑠 source with entropy roughly

2𝑠+2 log(𝑛)+2𝑘 , and pick the entropy threshold of the second block
to be roughly 𝑘 + 𝑠 + log(𝑛), we can get two blocks both having

entropy at least 𝑘 .

2.3 From Affine to Standard Correlation Breaker
Next we briefly discuss our black-box reduction from affine cor-

relation breakers to standard correlation breakers. To reduce an

affine correlation breaker to a standard correlation breaker, our

main idea is similar to that of [6]: to adapt the construction of

a correlation breaker from the independent-source setting to the

affine setting, we only need to make sure that every function on X
is linear, and every function on Y works properly when Y is a weak

source. However, instead of applying this idea step-by-step on ex-

isting constructions, we observe that every correlation breaker can

be converted into a “two-step" construction which is easily adapt-

able to the affine setting. First, we take a prefix of Y as the seed

to extract a string Z from X. Next, we apply a correlation breaker

which treats Y as the source and Z as the seed. This construction

only computes one function on X, which is a seeded extractor and

can be replaced with a linear one. Furthermore, the remaining step

(i.e. the correlation breaker) is a function on Y, which does not

need to be linear. Finally, we note that if the underlying standard

correlation breaker is strong, we can use the output as the seed to

extract from X linearly and get a strong affine correlation breaker.

A drawback of this simple reduction is that the resulting affine

correlation breaker has a worse dependence on the number of tam-

pering 𝑡 . To solve this problem, we only apply this reduction when

constructing a 1-affine correlation breaker based on a 1-correlation

breaker. To construct a 𝑡-affine correlation breaker, we show how

to strengthen a 1-affine correlation breaker to a 𝑡-affine correla-

tion breaker based on the “independence-merging lemma" in [6].

Roughly speaking, we observe that even in the 𝑡-tampering setting,

a 1-affine correlation breaker can still guarantee that the output

bit is uniform when conditioned on every single tampered output

(note that this is not true when conditioned on multiple tampered

outputs simultaneously.) Therefore we apply log(𝑡) rounds of alter-
nating extractions to “merge the independence of the output bit

with itself". A more detailed discussion and the formal proof can

be found in the full version of this paper [11].

2.4 Sumset Sources with Small Doubling
Finally we briefly sketch how to prove that a sumset source with

small doubling is close to a convex combination of affine sources. Let

𝐴, 𝐵 ⊆ F𝑛
2
be sets of size𝐾 = 2

𝑘
and letA,B be uniform distributions

over𝐴, 𝐵 respectively. A seminal result by Sanders [41] showed that

there exists a large affine subspace𝑉 such that at least 1−𝜀 fraction
of 𝑉 is in 𝐴 + 𝐵. We adapt Sanders’ proof to show that for every

distinguisher with output range [0, 1], the sumset source A + B
is indistinguishable from a convex combination of affine sources

(with large entropy). Then by an application of von Neumann’s

minimax theorem we can find a universal convex combination of

affine sources which is statistically close to A + B.
To describe the proof in more details, we first briefly recall

the outline of Sanders’ proof. Consider 𝐴′, 𝐵′ ⊆ F𝑚
2

such that

|𝐴′ | , |𝐵′ | ≥
��F𝑚
2

�� /𝑟 , and let A′,B′
be uniform distributions over

𝐴′, 𝐵′ respectively. Let 1𝐴′+𝐵′ denote the indicator function for

𝐴′ +𝐵′. Based on the Croot-Sisask lemma [21] and Fourier analysis,

Sanders showed that for arbitrarily small constant 𝜀 > 0 there exists

a distribution T ⊆ F𝑚
2

and a linear subspace 𝑉 of co-dimension
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𝑂 (log4 (𝑟 )) s.t.
E
[
1𝐴′+𝐵′ (A′ + B′)

]
≈𝜀 E [1𝐴′+𝐵′ (T + V)] ,

where V is the uniform distribution over 𝑉 . Then Sanders’ orig-

inal result follows directly by taking T = 𝑡 which maximizes

E [1𝐴′+𝐵′ (𝑡 + V)].
A closer inspection at Sanders’ proof shows that 1𝐴′+𝐵′ can

be replaced with any function 𝑓 : F𝑚
2

→ [0, 1]. (Note that the

distributions T,V depend on the function 𝑓 .) This implies that

A′ + B′
is indistinguishable from a convex combination of affine

sources by 𝑓 . With our minimax argument we can conclude that

A′+B′
is statistically close to a convex combination of affine sources.

However, the result above only works for dense sets 𝐴′, 𝐵′. To
generalize the result to sets 𝐴, 𝐵 with small doubling, a standard

trick in additive combinatorics is to consider a linear Freiman ho-

momorphism 𝜙 : F𝑛
2
→ F𝑚

2
, which is a linear injective function on

ℓ𝐴 + ℓ𝐵 for some constant ℓ , and consider 𝐴′ = 𝜙 (𝐴), 𝐵′ = 𝜙 (𝐵).
By considering the function 𝑓 ◦ 𝜙−1 we can still show that

E [𝑓 (A + B)] = E
[
𝑓 (𝜙−1 (A′ + B′))

]
≈ E

[
𝑓 (𝜙−1 (T + V))

]
.

However, it is not clear whether 𝜙−1 (T + V) is a also a convex

combination of affine sources in F𝑛
2
. To solve this problem, we

adapt Sanders’ proof to show that there exist T,V which satisfy

E
[
1𝐴′+𝐵′ (A′ + B′)

]
≈𝜀 E [1𝐴′+𝐵′ (T + V)] (1)

and

E
[
𝑓 (𝜙−1 (A′ + B′))

]
≈𝜀 E

[
𝑓 (𝜙−1 (T + V))

]
(2)

simultaneously. This relies on a variant of the Croot-Sisask lemma

which shows that there exists a large set of “common almost period"

for 1𝐴′+𝐵′ and 𝑓 ◦ 𝜙−1. Then (1) guarantees that with probability

at least 1 − 2𝜀 over 𝑡 ∼ T, 𝜙−1 (𝑡 + V) is an affine source in F𝑛
2

with entropy 𝑘 −𝑂 (log4 (𝑟 )). Therefore 𝜙−1 (T + V) is 2𝜀-close to a

convex combination of affine sources. Finally (2) shows that A + B
is indistinguishable from 𝜙−1 (T +V) by 𝑓 , which implies our claim.

3 PRELIMINARIES
In this section we introduce some preliminaries.

3.1 Notations
Basic notations. The logarithm in this paper is always base 2. For

every 𝑛 ∈ N, define [𝑛] = {1, 2, . . . , 𝑛}. In this paper, {0, 1}𝑛 and F𝑛
2

are interchangeable, and so are {0, 1}𝑛 and [2𝑛]. We use 𝑥 ◦ 𝑦 to

denote the concatenation of two strings 𝑥 and 𝑦. We say a function

is explicit if it is computable by a polynomial time algorithm. For

𝑥,𝑦 ∈ R we use 𝑥 ≈𝜀 𝑦 to denote |𝑥 − 𝑦 | ≤ 𝜀 and 𝑥 0𝜀 𝑦 to denote

|𝑥 − 𝑦 | > 𝜀. For every function 𝑓 : X → Y and set 𝐴 ⊆ X, define

𝑓 (𝐴) = {𝑓 (𝑥) : 𝑥 ∈ 𝐴}. For a set 𝐴 ⊆ X we use 1𝐴 : X → {0, 1} to
denote the indicator function of 𝐴 such that 1𝐴 (𝑥) = 1 if and only

if 𝑥 ∈ 𝐴.

Distributions and random variables. We sometimes abuse nota-

tion and treat distributions and random variables as the same. We

always write a random variable/distribution in boldface font. We

use Supp(X) to denote the support of a distribution. We use U𝑛
to denote the uniform distribution on {0, 1}𝑛 . When U𝑛 appears

with other random variables in the same joint distribution, U𝑛 is

considered to be independent of other random variables. Sometimes

we omit the subscript 𝑛 of U𝑛 if the length is less relevant and is

clear in the context.

Throughout this paper, “entropy" means min-entropy, unless

specified differently.

When there is a sequence of random variables X1,X2, . . . ,X𝑡
in the context, for every set 𝑆 ⊆ [𝑡] we use X𝑆 to denote the

sequence of random variables which use indices in 𝑆 as subscript,

i.e. X𝑆 := {X𝑖 }𝑖∈𝑆 . We also use similar notation for indices on

superscript.

3.2 Statistical Distance
Definition 3.1. Let D1,D2 be two distributions on the same uni-

verse Ω. The statistical distance between D1 and D2 is

Δ (D1;D2) B max

𝑇 ⊆Ω

(
Pr [D1 ∈ 𝑇 ] − Pr [D2 ∈ 𝑇 ]

)
=

1

2

∑︁
𝑠∈Ω

|D1 (𝑠) − D2 (𝑠) | .

We say D1 is 𝜀-close to D2 if Δ(D1;D2) ≤ 𝜀, which is also denoted
by D1 ≈𝜀 D2. Specifically, when there are two joint distributions
(X,Z) and (Y,Z) such that (X,Z) ≈𝜀 (Y,Z), we sometimes write
(X ≈𝜀 Y) | Z for short.

We frequently use the following standard properties.

Lemma 3.2. For every distributionD1,D2,D3 on the same universe,
the following properties hold:

• For any distribution Z,

Δ ((D1,Z); (D2,Z)) = E
𝑧∼Z

[Δ (D1 |Z=𝑧 ;D2 |Z=𝑧)] .

• For every function 𝑓 , Δ (𝑓 (D1); 𝑓 (D2)) ≤ Δ (D1;D2).
• (Triangle inequality) Δ (D1;D3) ≤ Δ (D1;D2) + Δ (D2;D3).

3.3 Conditional Min-entropy
Definition 3.3 ([22]). For a joint distribution (X,Z), the average

conditional min-entropy of X given Z is

H̃∞ (X | Z) := − log

(
E
𝑧∼Z

[
max

𝑥
(Pr [X = 𝑥 | Z = 𝑧])

] )
.

The following lemma, usually referred to as the chain rule, is
frequently used in this paper.

Lemma 3.4 ([22]). Let X,Y,Z be (correlated) random variables.
Then

H̃∞ (X | (Y,Z)) ≥ H̃∞ (X | Z) − log(Supp(Y)).

When we need to consider worst-case conditional min-entropy,

we use the following lemma.

Lemma 3.5 ([22]). Let X,Z be (correlated) random variables. For
every 𝜀 > 0,

Pr

𝑧∼Z
[H∞ (X|Z=𝑧) ≥ H∞ (X | Z) − log(1/𝜀)] ≥ 1 − 𝜀.

Note that the above two lemmas imply the following:

Lemma 3.6 ([36]). Let X,Z be (correlated) random variables. For
every 𝜀 > 0,

Pr

𝑧∼Z
[H∞ (X|Z=𝑧) ≥ H∞ (X) − log(Supp(Z)) − log(1/𝜀)] ≥ 1 − 𝜀.
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Lemma 3.7 ([22]). Let 𝜀, 𝛿 > 0 andX,Z be a random variables such
that H̃∞ (X | Z) ≥ 𝑘+log(1/𝛿). Let Ext : {0, 1}𝑛×{0, 1}𝑑 → {0, 1}𝑚
be a (𝑘, 𝜀)-seeded extractor. Then

(Ext(X,U𝑑 ) ≈𝜀+𝛿 U𝑚) | Z.

3.4 Branching Programs
The following definition is equivalent to Definition 1.6 in the sense

that each layer corresponds to a time step and each vertex in a layer

corresponds to a state in a certain time step.

Definition 3.8. A branching program 𝐵 of width𝑤 and length
𝑛 (for sampling) is a directed (multi)-graph with (𝑛 + 1) layers
𝐿0, 𝐿1, . . . , 𝐿𝑛 and has at most𝑤 vertices in each layer. The first layer
(indexed by 0) has only one vertex called the start vertex, and every
vertex in 𝐿𝑛 has no outgoing edge. For every vertex 𝑣 in layer 𝑖 < 𝑛,
the set of outgoing edges from 𝑣 , denoted by 𝐸𝑣 , satisfies the following.

• Every edge 𝑒 ∈ 𝐸𝑣 is connected to a vertex in 𝐿𝑖+1.
• Each edge 𝑒 ∈ 𝐸𝑣 is labeled with a probability, denoted by
Pr [𝑒], so that ∑𝑒∈𝐸𝑣 Pr [𝑒] = 1.

• Each edge 𝑒 ∈ 𝐸𝑣 is labeled with a bit 𝑏𝑒 ∈ {0, 1} , and if two
distinct edges 𝑒1, 𝑒2 ∈ 𝐸𝑣 are connected to the same vertex
𝑤 ∈ 𝐿𝑖+1 then 𝑏𝑒1 ≠ 𝑏𝑒2 . (Note that this implies |𝐸𝑣 | ≤ 2𝑤 .)

The output of 𝐵 is a 𝑛-bit string generated by the following process.
Let 𝑣0 be the start vertex. Repeat the following for 𝑖 from 1 to 𝑛: sample
an edge 𝑒𝑖 ∈ 𝐸𝑣𝑖−1 with probability Pr [𝑒𝑖 ], output 𝑏𝑒𝑖 and let 𝑣𝑖 be
the vertex which is connected by 𝑒𝑖 . We say (𝑣0, 𝑒1, 𝑣1, . . . , 𝑒𝑛, 𝑣𝑛) is
the computation path of 𝐵. We say a random variable X ∈ {0, 1}𝑛 is
a space-𝑠 source if it is generated by a branching program of width
2
𝑠 and length 𝑛.

We also consider the subprograms of a branching program.

Definition 3.9. Let 𝐵 = (𝐿0, 𝐿1, . . . , 𝐿𝑛) be a branching program
of width𝑤 and length 𝑛 and let 𝑣 be a vertex in layer 𝑖 of 𝐵. Then the
subprogram of 𝐵 starting at 𝑣 , denoted by 𝐵𝑣 , is the induced subgraph
of 𝐵 which consists of ({𝑣}, 𝐿𝑖+1, . . . , 𝐿𝑛). Note that 𝐵𝑣 is a branching
program of width𝑤 and length 𝑛 − 𝑖 which takes 𝑣 as the start vertex.

We need the following simple fact from [26].

Lemma 3.10 ([26]). Let X be a space-𝑠 source sampled by a branch-
ing program 𝐵, and let 𝑣 be a vertex in layer 𝑖 of 𝐵. Then condi-
tioned on the event that the computation path of X passes 𝑣 , X is
the concatenation of two independent random variables X1 ∈ {0, 1}𝑖 ,
X2 ∈ {0, 1}𝑛−𝑖 . Moreover X2 is exactly the source generated by the
subprogram 𝐵𝑣 .

3.5 Seeded Extractors
Definition 3.11. Ext : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is a seeded

extractor for entropy 𝑘 with error 𝜀 (or (𝑘, 𝜀)-seeded extractor for
short) if for every (𝑛, 𝑘) source X, and every Y = U𝑑 ,

Ext(X,Y) ≈𝜀 U𝑚 .

We call 𝑑 the seed length of Ext. We say Ext is linear if Ext(·, 𝑦) is a
linear function for every 𝑦 ∈ {0, 1}𝑑 . We say Ext is strong if

(Ext(X,Y) ≈𝜀 U𝑚) | Y.

Lemma 3.12 ([25]). There exists a constant 𝑐3.12 and a constant
𝛽 > 0 such that for every 𝜀 > 2

−𝛽𝑛 and every 𝑘 , there exists an explicit
(𝑘, 𝜀)-strong seeded extractor Ext : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 s.t.
𝑑 = 𝑐3.12 log(𝑛/𝜀) and𝑚 = 𝑘/2.

We also need the following extractor from [6] which is linear

but has worse parameters.

Lemma 3.13. There exists a constant 𝑐3.13 such that for every 𝑡,𝑚 ∈
N and 𝜀 > 0, there exists an explicit (𝑐3.13 (𝑚 + log(1/𝜀)), 𝜀)-linear
strong seeded extractor LExt : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 s.t. 𝑑 =

𝑂 (𝑚𝑡 + log(𝑛/𝜀) + log
2 (𝑡) log(𝑚/𝜀)).

Note that when𝑚 = 𝑡 log(𝑛/𝜀) the seed length is bounded by

𝑂

((
log

2 (𝑡) + 1

)
log(𝑛/𝜀))

)
.

3.6 Samplers
First we define a sampler. Note that the definition here is differ-

ent from the standard definition of averaging samplers [2] in the

following sense: first, we need the sampler to work even when

the given randomness is only a weak source. Second, we only care

about “small tests".

Definition 3.14. Samp : {0, 1}𝑛 × [𝐷] → {0, 1}𝑚 is an (𝜀, 𝛿)-
sampler for entropy 𝑘 if for every set 𝑇 ⊆ {0, 1}𝑚 s.t. |𝑇 | ≤ 𝜀2𝑚 and
every (𝑛, 𝑘)-source X,

Pr

𝑥∼X

[
Pr

𝑦∼[𝐷 ]
[Samp(𝑥,𝑦) ∈ 𝑇 ] > 2𝜀

]
≤ 𝛿.

We say Samp is linear if Samp(·, 𝑦) is linear for every 𝑦 ∈ [𝐷].

Zuckerman [45] showed that one can use a seeded extractor as

a sampler for weak sources.

Lemma 3.15 ([45]). A (𝑘 + log(1/𝛿), 𝜀)-seeded extractor is also an
(𝜀, 𝛿)-sampler for entropy 𝑘 .

The following is a relaxation of a sampler, which is called a

somewhere random sampler.

Definition 3.16. Samp : {0, 1}𝑛 × [𝐷] × [𝐶] → {0, 1}𝑚 is
an (𝜀, 𝛿)-somewhere random sampler for entropy 𝑘 if for every set
𝑇 ⊆ {0, 1}𝑚 s.t. |𝑇 | ≤ 𝜀2𝑚 and every (𝑛, 𝑘)-source X,

Pr

𝑥∼X

[
Pr

𝑦∼[𝐷 ]
[∀𝑧 ∈ [𝐶] Samp(𝑥,𝑦, 𝑧) ∈ 𝑇 ] > 2𝜀

]
≤ 𝛿.

We say Samp is linear if Samp(·, 𝑦, 𝑧) is linear for every 𝑦 ∈ [𝐷], 𝑧 ∈
[𝐶].

The following lemma is implicit in [3]. For completeness we

include a proof in the full version [11, Appendix A].

Lemma 3.17 ([3]). If there exists an explicit (𝜀, 𝛿)-sampler Samp :

{0, 1}𝑛 × [𝐷0] → {0, 1}𝑚 for entropy 𝑘 , then for every constant
𝛾 < 1 there exists an explicit (𝐷−𝛾 , 𝛿)-somewhere random sampler
Samp

′
: {0, 1}𝑛×[𝐷]× [𝐶] → {0, 1}𝑚 for entropy 𝑘 with𝐷 = 𝐷

𝑂 (1)
0

and 𝐶 = 𝑂

(
log(𝐷0)
log(1/𝜀)

)
. Furthermore if Samp is linear then Samp

′ is
also linear.

By Lemma 3.13, Lemma 3.15 and Lemma 3.17 we can get the

following explicit somewhere random smapler.
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Lemma 3.18. For every constant 𝛾 < 1, and every 𝛿 > 0, 𝑡 <

2

3

√
log(𝑛) there exists an explicit (𝐷−𝛾 , 𝛿)-linear somewhere random

sampler Samp : {0, 1}𝑛 × [𝐷] × [𝐶] → {0, 1}𝑡 log(𝑛) for entropy
𝑂 (𝑡 log(𝑛)) + log(1/𝛿), where 𝐷 = 𝑛𝑂 (1) and 𝐶 = 𝑂 (log2 (𝑡)).

Proof. By Lemma 3.13 and Lemma 3.15, there exists an explicit

(𝜀, 𝛿)-linear sampler Samp
′
: {0, 1}𝑛 × [𝐷0] → {0, 1}𝑡 log(𝑛) for

entropy𝑂 (𝑡 log(𝑛)) + log(1/𝛿) where 𝜀 = 2
− log(𝑛)/log2 (𝑡 )

and 𝐷0 =

𝑛𝑂 (1)
. The claim follows by applying Lemma 3.17 on Samp

′
. □

3.7 Non-Oblivious Bit-Fixing Sources
Definition 3.19. A distribution X = (X1,X2, . . . ,X𝑛) on {0, 1}𝑛

is called 𝑡-wise independent if for every subset 𝑆 ⊆ [𝑛] of size 𝑡 we
have X𝑆 = U𝑞 .

Lemma 3.20 ([1]). Let X = (X1,X2, . . . ,X𝑛) be a distribution on
{0, 1}𝑛 . If for every 𝑆 ⊆ [𝑛] s.t. |𝑆 | ≤ 𝑡 ,⊕

𝑖∈𝑆
X𝑖 ≈𝛾 U1,

then X is 2𝑛𝑡𝛾-close to a 𝑡-wise independent distribution.

Definition 3.21. A distribution X = (X1,X2, . . . ,X𝑛) on {0, 1}𝑛
is called a (𝑞, 𝑡)-non-oblivious bit-fixing (NOBF) source if there exists
a set 𝑄 s.t. |𝑄 | ≤ 𝑞 and X[𝑛]\𝑄 is 𝑡-wise independent.

In this paper we need the following extractors for NOBF sources.

Lemma 3.22 ([13, 32]). There exists an explicit function BFExt :

{0, 1}𝑛 → {0, 1}𝑚 for (𝑞, 𝑡)-NOBF sources with error 𝑛−Ω (1) where
𝑚 = 𝑛Ω (1) , 𝑞 = 𝑛0.9 and 𝑡 = (𝑚 log(𝑛))𝐶3.22 for some constant 𝐶3.22.

Lemma 3.23 ([44]). For every 𝜀 > 0, the majority function Maj :

{0, 1}𝑛 → {0, 1} is an extractor for (𝑞, 𝑡)-NOBF sources with error
𝜀 +𝑂 (𝑛−0.1) where 𝑞 = 𝑛0.4 and 𝑡 = 𝑂 (𝜀−2 log2 (1/𝜀)).

3.8 Markov Chain
In this paper we usually consider the scenario that we have two

sources X,Y which are independent conditioned on a collection of

random variables Z. We use Markov chain as a shorthand for this.

Definition 3.24. Let X,Y,Z be random variables. We say X ↔
Z ↔ Y is a Markov chain if X and Y are independent conditioned on
any fixing of Z.

We frequently use the following fact.

Lemma 3.25. If X ↔ Z ↔ Y is a Markov chain, then for every
deterministic function 𝑓 , letW = 𝑓 (X,Z). Then

• (X,W) ↔ Z ↔ Y is a Markov chain.
• X ↔ (W,Z) ↔ Y is a Markov chain.

We use “W is a deterministic function of X (conditioned on Z)" to
refer to the first item, and “fix W" to refer to the second item.

4 IMPROVED REDUCTION FOR SMALL-SPACE
SOURCES

Our improved small-space extractor results are based on the fol-

lowing key lemma.

Lemma 4.1. For every integer 𝐶 ≥ 2, every space-𝑠 source on 𝑛-bit
with min-entropy

𝑘 ′ ≥ 𝐶𝑘 + (𝐶 − 1) (2𝑠 + 2 log(𝑛/𝜀))
is (3𝐶𝜀)-close to a convex combination of (𝑛, 𝑘,𝐶)-sumset sources.

Note that by taking 𝐶 = 2 in Lemma 4.1, we get that the sumset

source extractor in Theorem 1 and Theorem 2 are also small-space

source extractors which satisfy the parameters in Theorem 3 and

Theorem 4 respectively. In the rest of this section we focus on

proving Lemma 4.1. First we show how to derive Lemma 4.1 based

on the following lemma.

Lemma 4.2. Every space-𝑠 source X ∈ {0, 1}𝑛 with entropy at least
𝑘 = 𝑘1 + 𝑘2 + 2𝑠 + 2 log(𝑛/𝜀) is 3𝜀-close to a convex combination of
sources of the form X1 ◦ X2 which satisfy the following properties:

• X1 is independent of X2

• H∞ (X1) ≥ 𝑘1, H∞ (X2) ≥ 𝑘2
• X2 is a space-𝑠 source

Proof of Lemma 4.1. By induction, Lemma 4.2 implies that a

space-𝑠 source with entropy 𝐶𝑘 + (𝐶 − 1) (2𝑠 + 2 log(𝑛/𝜀)) is 3𝐶𝜀-
close to a convex combination of sources of the form X1 ◦ X2 ◦
· · · ◦ X𝐶 where X1, . . . ,X𝐶 are independent, and for every 𝑖 ∈ [𝐶],
H∞ (X𝑖 ) ≥ 𝑘 . Let ℓ1, ℓ2, . . . , ℓ𝐶 denote the length of X1,X2, . . . ,X𝐶
respectively and define 𝑝𝑖 =

∑𝑖−1
𝑗=1 ℓ𝑖 and 𝑠𝑖 =

∑𝑛
𝑗=𝑖+1 ℓ𝑗 (note that

𝑝1 = 0 and 𝑠𝐶 = 0). Then observe that

X1 ◦ · · · ◦ X𝐶 =

𝐶∑︁
𝑖=1

0
𝑝𝑖 ◦ X𝑖 ◦ 0𝑠𝑖 ,

which implies thatX = X1◦· · ·◦X𝐶 is a (𝑛, 𝑘,𝐶)-sumset source. □

To prove Lemma 4.2, first we need the following lemma.

Lemma 4.3. Let 𝐵 be a branching program of width 2𝑠 and length𝑛
for sampling. Let 𝑒 be an edge in𝐵 connected from𝑢 to 𝑣 and letX𝑢 ,X𝑣
be the output distributions of the subprograms 𝐵𝑢 , 𝐵𝑣 respectively.
Then H∞ (X𝑣) ≥ H∞ (X𝑢 ) − log(1/Pr [𝑒]).

Proof. Let 𝑥∗ = argmax𝑥 Pr [X𝑣 = 𝑥]. Note that
H∞ (X𝑣) = − log(Pr

[
X𝑣 = 𝑥∗

]
)

by definition. Observe that

Pr

[
X𝑢 = 𝑏𝑒 ◦ 𝑥∗

]
≥ Pr [𝑒] · Pr

[
X𝑣 = 𝑥∗

]
.

Therefore,

H∞ (X𝑢 ) ≤ − log

(
Pr

[
X𝑢 = 𝑏𝑒 ◦ 𝑥∗

] )
≤ − log

(
Pr [𝑒] · Pr

[
X𝑣 = 𝑥∗

] )
= H∞ (X𝑣) + log(1/Pr [𝑒]).

□

Next we prove Lemma 4.2.

Proof of Lemma 4.2. Let 𝐵 denote the branching program that

samples X. For every 𝑣 , define X𝑣 to be the source generated by the

subprogram 𝐵𝑣 . Define 𝑣 to be a stopping vertex if

H∞ (X𝑣) ≤ 𝑘2 + 𝑠 + log(𝑛/𝜀).
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Observe that every vertex 𝑢 in the last layer is a stopping vertex

since H∞ (X𝑢 ) = 0. Therefore there is always a stopping vertex in

the computation path. We define an edge 𝑒 in 𝐵 to be a bad edge if

Pr [𝑒] ≤ 𝜀/(𝑛 · 2𝑠 ) .

Now define a random variable V as follows:

• V = ⊥ if the computation path of X visits a bad edge before

visiting any stopping vertex,

• otherwise, V = 𝑣 where 𝑣 is the first stopping vertex in the

computation path.

Observe that Pr [V = ⊥] ≤ 2𝜀, since in each step of 𝐵 there are at

most 2
𝑠+1

edges starting from the current vertex, and there are 𝑛

steps in total. Define

BAD = {𝑣 ∈ Supp(V) : H∞ (X|V=𝑣) ≤ 𝑘 − 𝑠 − log(𝑛/𝜀)}.
Then Pr [V ∈ BAD] ≤ 𝜀 by Lemma 3.6. We claim that if 𝑣 ∉ BAD
and 𝑣 ≠ ⊥, then conditioned on V = 𝑣 , the source X can be written

as X1 ◦ X2 which satisfies the properties stated in Lemma 4.2. The

claim directly implies Lemma 4.2 because Pr [𝑣 ∈ BAD ∨ 𝑣 = ⊥] ≤
3𝜀 by union bound. Next we prove the claim. Let 𝐸1 denote the

event “the computation path contains 𝑣", and 𝐸2 denote the event

“the computation path does not contain any bad edge or stopping

vertex before the layer of 𝑣". Observe that V = 𝑣 is equivalent to

𝐸1 ∧ 𝐸2. Conditioned on 𝐸1, by Lemma 3.10,X can be written as

X1 ◦X2 where X1 is independent of X2 and X2 = X𝑣 . Now observe

that 𝐸2 only involves layers before 𝑣 , so conditioned on 𝐸1, X2 is

independent of 𝐸2. Therefore, conditioned on V = 𝑣 , we still have

X2 = X𝑣 , which is a space-𝑠 source, and X1 is still independent of

X2. Next observe that

H∞ (X1) = H∞ (X|V=𝑣) − H∞ (X2)
≥ (𝑘 − 𝑠 − log(𝑛/𝜀)) − (𝑘2 + 𝑠 + log(𝑛/𝜀))
≥ 𝑘1 .

It remains to prove that H∞ (X2) ≥ 𝑘2. Assume for contradiction

that H∞ (X𝑣) < 𝑘2. Let 𝑒 be the edge in the computation path which

connects to 𝑣 , and suppose 𝑒 is from 𝑢. Now consider the following

two cases.

• If 𝑒 is not a bad edge, then

H∞ (X𝑢 ) ≤ H∞ (X𝑣) + log(1/Pr [𝑒]) < 𝑘2 + 𝑠 + log(𝑛/𝜀),

which means 𝑢 is also a stopping vertex. Therefore 𝑣 cannot

be the first stopping vertex.

• If 𝑒 is a bad edge, then either there is a stopping vertex before

𝑒 or V = ⊥.
In both cases V ≠ 𝑣 , which is a contradiction. In conclusion we

must have H∞ (X2) ≥ 𝑘2. □

5 EXTRACTORS FOR SUM OF TWO SOURCES
In this section we formally prove our main sumset extractor results

(Theorem 1 and Theorem 2). The construction of our extractors

relies on the following lemma:

Lemma 5.1 (main lemma). For every constant 𝛾 < 1 and every
𝑡 ∈ N, there exists 𝑁 = 𝑛𝑂 (1) and an explicit function Reduce :

{0, 1}𝑛 → {0, 1}𝑁 s.t. for every (𝑛, 𝑘, 2)-sumset source X, where

𝑘 = 𝑂

(
𝑡3 log (𝑛) ·

(
log log(𝑛)

log log log(𝑛) + log
3 (𝑡 )

)
·
(
log log log

4 (𝑛) + log
4 (𝑡 )

) )
,

Reduce(X) is 𝑁−𝛾 -close to a (𝑁 1−𝛾 , 𝑡)-NOBF source.

Before we prove Lemma 5.1, first we show how to prove Theo-

rem 1 and Theorem 2 based on Lemma 5.1.

Proof of Theorem 1. Let Reduce : {0, 1}𝑛 → {0, 1}𝑁 be the

function from Lemma 5.1 by taking 𝛾 = 0.1. Note that 𝑁 = poly(𝑛).
Let BFExt : {0, 1}𝑁 → {0, 1}𝑚 be the NOBF-source extractor from

Lemma 3.22. Let X be a (𝑛, 𝑘, 2)-source, where 𝑘 is defined later.

If Reduce(X) is 𝑁−Ω (1)
-close to a (𝑁 0.9, 𝑡)-NOBF source where

𝑡 = (𝑚 log(𝑁 ))𝐶3.22
, then

Ext(X) := BFExt(Reduce(X))
is 𝑛−Ω (1)

-close to uniform. By Lemma 5.1 it suffices to take 𝑘 =

𝑂 (𝑡3 log7 (𝑡) log(𝑛)) ≤ (𝑚 log(𝑛))1+3𝐶3.22 . □

Proof of Theorem 2. Let Reduce : {0, 1}𝑛 → {0, 1}𝑁 be the

function from Lemma 5.1 by taking 𝛾 = 0.6. Note that 𝑁 = poly(𝑛).
Let Maj : {0, 1}𝑁 → {0, 1} be the NOBF-source extractor from

Lemma 3.23, i.e. the majority function. Let X be a (𝑛, 𝑘, 2)-source,
where 𝑘 is defined later. If Reduce(X) is (𝜀/2)-close to a (𝑁 0.4, 𝑡)-
NOBF source where 𝑡 = 𝑂 (𝜀−2 log2 (1/𝜀)) = 𝑂 (1), then

Ext(X) := Maj(Reduce(X))
is 𝜀-close to uniform. By Lemma 5.1 it suffices to take

𝑘 = 𝑂 (log(𝑛) log log(𝑛) log log log3 (𝑛)) .
□

Next we prove Lemma 5.1. First we recall the definition of a

strong affine correlation breaker. To simplify our proof of Lemma 5.1,

here we use a definition which is slightly more general than Defini-

tion 1.8.

Definition 5.2. AffCB : {0, 1}𝑛 × {0, 1}𝑑 × {0, 1}𝑎 → {0, 1}𝑚 is
a (𝑡, 𝑘,𝛾)-affine correlation breaker if for every distribution X,A,B ∈
{0, 1}𝑛 , Y,Y[𝑡 ] ∈ {0, 1}𝑑 , Z and string 𝛼, 𝛼 [𝑡 ] ∈ {0, 1}𝑎 s.t.

• X = A + B
• H̃∞ (A | Z) ≥ 𝑘
• (Y,Z) = (U𝑑 ,Z)
• A ↔ Z ↔ (B,Y,Y[𝑡 ] ) is a Markov chain
• ∀𝑖 ∈ [𝑡], 𝛼 ≠ 𝛼𝑖

It holds that

(AffCB(X,Y, 𝛼) ≈𝛾 U𝑚) |
(
{AffCB(X,Y𝑖 , 𝛼𝑖 )}𝑖∈[𝑡 ] ,Z

)
.

We say AffCB is strong if

(AffCB(X,Y, 𝛼) ≈𝛾 U𝑚) |
(
{AffCB(X,Y𝑖 , 𝛼𝑖 )}𝑖∈[𝑡 ] ,Y,Y[𝑡 ] ,Z

)
.

To prove Lemma 5.1, we need the following lemma, which is an

analog of [13, Lemma 2.17]. Roughly speaking, we show that even

if the seeds of the correlation breaker are added by some leakage

from the source, most of the seeds are still good.

Lemma 5.3. For every error parameter 𝛾 > 0 the following holds.
Let

• AffCB : {0, 1}𝑛 × {0, 1}𝑑 × {0, 1}𝑎 → {0, 1}𝑚 be a (𝑡, 𝑘, 𝜀)-
strong affine correlation breaker

• 𝐿 : {0, 1}𝑛 × {0, 1}𝑎 → {0, 1}𝑑 be any deterministic function,
which we call the leakage function
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• 𝛼, 𝛼 [𝑡 ] be any 𝑎-bit advice s.t. 𝛼 ≠ 𝛼𝑖 for every 𝑖 ∈ [𝑡]
• A be an (𝑛, 𝑘 + (𝑡 + 1)ℓ)-source

For every 𝑏 ∈ {0, 1}𝑛 , 𝑦 ∈ {0, 1}𝑑 , define
R𝑏,𝑦 := AffCB(A + 𝑏,𝑦 + 𝐿(A, 𝛼), 𝛼)

and for every 𝑖 ∈ [𝑡] define
R𝑖
𝑏,𝑦

:= AffCB(A + 𝑏,𝑦 + 𝐿(A, 𝛼𝑖 ), 𝛼𝑖 ).

Let BAD𝛼,𝛼 [𝑡 ] be the set of “bad seeds", which is defined as{
𝑦 ∈ {0, 1}𝑑 : ∃𝑏,𝑦 [𝑡 ] s.t. (R𝑏,𝑦 0𝛾 U𝑚) | {R𝑖

𝑏,𝑦𝑖
}𝑖∈[𝑡 ]

}
.

Then
Pr

𝑦∼U𝑑

[
𝑦 ∈ BAD𝛼,𝛼 [𝑡 ]

]
≤ 𝜀

𝛾
.

Proof. Define deterministic functions 𝑓 1, . . . , 𝑓 𝑡 : {0, 1}𝑑 →
{0, 1}𝑑 and 𝑔 : {0, 1}𝑑 → {0, 1}𝑛 s.t. for every 𝑦 ∈ BAD𝛼,𝛼 [𝑡 ] ,(

R𝑔 (𝑦),𝑦 0𝛾 U𝑚
)
|
(
{R𝑖
𝑔 (𝑦),𝑓 𝑖 (𝑦) }𝑖∈[𝑡 ]

)
.

For 𝑦 ∉ BAD𝛼,𝛼 [𝑡 ] the values of 𝑓 1 (𝑦), 𝑓 2 (𝑦), . . . , 𝑓 𝑡 (𝑦), 𝑔(𝑦) are
defined arbitrarily. Note that the existence of 𝑓 1, . . . , 𝑓 𝑡 , 𝑔 is guar-

anteed by the definition of BAD𝛼,𝛼 [𝑡 ] . Let W := U𝑑 and 𝛿 :=

Pr

[
W ∈ BAD𝛼,𝛼 [𝑡 ]

]
. Observe that

(R𝑔 (W),W 0𝛾𝛿 U𝑚) | ({R𝑖
𝑔 (W),𝑓 𝑖 (W) }𝑖∈[𝑡 ] ,W).

Now define Y := W + 𝐿(A, 𝛼), Y𝑖 := W + 𝐿(A, 𝛼𝑖 ) for every 𝑖 ∈ [𝑡]
and B := 𝑔(W). Let Z := (𝐿(A, 𝛼), 𝐿(A, 𝛼1), . . . , 𝐿(A, 𝛼𝑡 )). Note
that Z ∈ {0, 1} (𝑡+1)ℓ is a deterministic function of A. With these

new definitions the above equation can be rewritten as

(AffCB(A + B,Y, 𝛼) 0𝛾𝛿 U𝑚) | ({AffCB(A + B,Y𝑖 , 𝛼𝑖 }𝑖∈[𝑡 ] ,W) .
(3)

Next, observe that the following conditions hold:

• H̃∞ (A | Z) ≥ 𝑘 (by Lemma 3.4)

• (Y,Z) = (U𝑑 ,Z).
• A ↔ Z ↔ (B,Y,Y[𝑡 ] ) is a Markov chain.

Note that the last condition holds because Z is a deterministic

function of A, which implies A ↔ Z ↔ (B,W), and Y,Y[𝑡 ]
are

deterministic functions of (Z,W). By the definition of AffCB we

have

(AffCB(A + B,Y, 𝛼) ≈𝜀 U𝑚) | ({AffCB(A + B,Y𝑖 , 𝛼𝑖 }𝑖∈[𝑡 ] ,Y,Z)
which implies

(AffCB(A+B,Y, 𝛼) ≈𝜀 U𝑚) | ({AffCB(A+B,Y𝑖 , 𝛼𝑖 }𝑖∈[𝑡 ] ,W) (4)

since W = Y − 𝐿(A, 𝛼) and 𝐿(A, 𝛼) is a part of Z. By (3) and (4) we

get 𝛿 ≤ 𝜀/𝛾 . □

Next we prove the following result, which will directly imply

Lemma 5.1 by plugging in proper choices of somewhere random

samplers and affine correlation breakers.

Lemma 5.4. For every 𝜀, 𝛿 > 0 the following holds. Let AffCB :

{0, 1}𝑛×{0, 1}𝑑×[𝐴𝐶] → {0, 1} be a (𝐶𝑡−1)-strong affine correlation
breaker for entropy 𝑘1 with error𝐴−2𝑡𝐶−1𝜀𝛿 , and let Samp : {0, 1}𝑛×
[𝐴] × [𝐶] → {0, 1}𝑑 be a (𝜀, 𝛿)-somewhere random sampler for
entropy 𝑘2. Then for every 𝑛-bit source X = X1 + X2 such that X1

is independent of X2, H∞ (X1) ≥ 𝑘1 + 𝐶𝑡𝑑 and H∞ (X2) ≥ 𝑘2, the
source

Reduce(X) :=

⊕
𝑧∈[𝐶 ]

AffCB (X, Samp(X, 𝛼, 𝑧), (𝛼, 𝑧))
𝛼 ∈[𝐴]

is 3𝛿-close to a convex combination of (2𝜀𝐴, 𝑡)-NOBF source.

Proof. Consider Lemma 5.3 by taking X1 as the source,𝐴
−𝑡𝛿 as

the error parameter and 𝐿(𝑥, (𝛼, 𝑧)) := Samp(𝑥, 𝛼, 𝑧) as the leakage
function. For every non-empty subset𝑇 ⊆ [𝐴] of size at most 𝑡 and

every 𝑧∗ ∈ [𝐶], define a set BAD′
𝑇,𝑧∗ as follows. Let 𝛼

∗
denote the

first element in 𝑇 . Let 𝛽 = (𝛼∗, 𝑧∗) and

𝛽 ′ = {(𝛼, 𝑧)}𝛼 ∈𝑇,𝑧∈[𝐶 ]\{𝛽}.

Note that 𝛽 ′ contains at most 2
𝑐𝑡 − 1 advice which are all different

from 𝛽 . Then we define

BAD′
𝑇,𝑧∗ := BAD𝛽,𝛽′,

where BAD𝛽,𝛽′ is defined as in Lemma 5.3. Observe that by def-

inition of BAD′
𝑇,𝑧∗ , for every 𝑥2 ∈ {0, 1}𝑛 , if Samp(𝑥2, 𝛼∗, 𝑧∗) ∉

BAD′
𝑇,𝑧∗ , then⊕

𝛼 ∈𝑇

⊕
𝑧∈[𝐶 ]

AffCB (X1 + 𝑥2, Samp(X1, 𝛼, 𝑧) + Samp(𝑥2, 𝛼, 𝑧), (𝛼, 𝑧))

is 𝐴−𝑡𝛿-close to U1. By the linearity of Samp, we know that for

every fixing X2 = 𝑥2, if Samp(𝑥2, 𝛼∗, 𝑧∗) ∉ BAD′
𝑇,𝑧∗ , then

©­«
⊕
𝛼 ∈𝑇

⊕
𝑧∈[𝐶 ]

AffCB (X, Samp(X, 𝛼, 𝑧), (𝛼, 𝑧))ª®¬ ≈𝐴−𝑡𝛿 U1 . (5)

By Lemma 5.3 we know that Pr𝑦∼U𝑑

[
𝑦 ∈ BAD′

𝑇,𝑧∗

]
≤ 𝐴−𝑡𝐶−1𝜀.

Now define BAD′
to be the union of BAD′

𝑇,𝑧∗ for all possible choices

of𝑇, 𝑧∗. Since there are at most 𝐴𝑡 choices of𝑇 and𝐶 choices of 𝑧∗,
by union bound we know that Pr𝑦∼U𝑑

[𝑦 ∈ BAD′] ≤ 𝜀. Therefore,
by definition of somewhere random sampler,

Pr

𝑥2∼X2

[��{𝛼 ∈ [𝐴] : ∀𝑧 Samp(𝑥2, 𝛼, 𝑧) ∈ BAD′}
�� ≤ 2𝜀𝐴

]
≥ 1 − 𝛿.

In other words, with probability at least 1 − 𝛿 over the fixing

X2 = 𝑥2, there exists a set 𝑄 ⊆ [𝐴] of size at most 2𝜀𝐴 which

satisfies the following: for every 𝛼 ∈ [𝐴]\𝑄 , there exists 𝑧𝛼 such

that Samp(𝑥2, 𝛼, 𝑧𝛼 ) ∉ BAD′
, which also implies Samp(𝑥2, 𝛼, 𝑧𝛼 ) ∉

BAD
′
𝑇,𝑧𝛼

. By Equation (5), for every 𝑇 ⊆ [𝐴]\𝑄 s.t. 1 ≤ |𝑇 | ≤ 𝑡 ,

©­«
⊕
𝛼 ∈𝑇

⊕
𝑧∈{0,1}𝑐

AffCB(X, Samp(X, 𝛼, 𝑧), (𝛼, 𝑧))ª®¬ ≈𝐴−𝑡𝛿 U1 .

By Lemma 3.20 this implies that with probability 1 − 𝛿 over the

fixing of X2,

Reduce(X) =


⊕
𝑧∈{0,1}𝑐

AffCB(X, Samp(X, 𝛼, 𝑧), (𝛼, 𝑧))
𝛼 ∈[𝐴]

is 2𝛿-close to a (2𝜀𝐴, 𝑡)-NOBF source. Therefore Reduce(X) is 3𝛿-
close to a convex combination of (2𝜀𝐴, 𝑡)-NOBF source. □
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To get Lemma 5.1, we need the following affine correlation

breaker. The formal proof of the following theorem can be found

in the full version [11].

Theorem 5.5. For every 𝑚,𝑎, 𝑡 ∈ N and 𝜀 > 0 there exists an
explicit strong 𝑡-affine correlation breaker AffCB : {0, 1}𝑛 × {0, 1}𝑑 ×
{0, 1}𝑎 → {0, 1}𝑚 with error 𝜀 for entropy 𝑘 such that the seed length
is

𝑑 = 𝑂

(
𝑡 log

(𝑛
𝜀

)
·
(

log(𝑎)
log log(𝑎) + log

3 (𝑡)
))

and

𝑘 = 𝑂

(
𝑡𝑚 + 𝑡 log

(𝑛
𝜀

)
·
(

log(𝑎)
log log(𝑎) + 𝑡

))
.

Proof (sketch). Apply Theorem 5 on the correlation breaker

in [34]. □

Now we are ready to prove Lemma 5.1.

Proof of Lemma 5.1. Let Samp : {0, 1}𝑛 × [𝑁 ] × [𝐶] → {0, 1}𝑑

be a

(
𝑁 −𝛾
2
, 𝑁

−𝛾
3

)
-somewhere random sampler from 𝐿𝑒𝑚𝑚𝑎 3.18,

where 𝑁 = 𝑛𝑂 (1)
. We want to choose proper parameters 𝑑,𝐶

so that there exists a (𝐶𝑡 − 1)-strong affine correlation breaker

AffCB : {0, 1}𝑛×{0, 1}𝑑×[𝑁𝐶] → {0, 1} with error𝑁−2(𝑡+𝛾 )𝐶−1/6.
Then Lemma 5.4 would imply Lemma 5.1. Observe that we need to

guarantee

𝑑 ≥ 𝐾1

(
𝐶𝑡2 log (𝑛) ·

(
log log(𝑛)

log log log(𝑛) + log
3 (𝐶𝑡)

))
and

𝐶 ≥ 𝐾2 log
2

(
𝑑

log(𝑛)

)
for some fixed constants 𝐾1, 𝐾2. It suffices to take

𝐶 = 𝑂 (log log log2 (𝑛) + log
2 (𝑡))

for some large enough constant factor. Then the entropy require-

ment of AffCB would be

𝑘1 = 𝑂

(
𝐶𝑡2 log (𝑛) ·

(
log log(𝑛)

log log log(𝑛) +𝐶𝑡
))
,

and the entropy requirement of Samp would be

𝑘2 = 𝑂 (𝑑 + log(𝑁𝛾 )) = 𝑂 (𝑑 + log(𝑛)) .

To make Reduce work, the entropy of the given sumset source

should be at least

𝑘 = max{𝑘1 +𝐶𝑡𝑑, 𝑘2}

= 𝑂

(
𝐶2𝑡3 log (𝑛) ·

(
log log(𝑛)

log log log(𝑛) + log
3 (𝑡)

))
.

Finally, observe that the running time of Reduce is 𝑁 times the

running time of AffCB and Samp, which is also poly(𝑛). □
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