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Abstract— System identification poses a significant bottleneck
to characterizing and controlling complex systems. This chal-
lenge is greatest when both the system states and parameters
are not directly accessible, leading to a dual-estimation problem.
Current approaches to such problems are limited in their ability
to scale with many-parameter systems, as often occurs in net-
works. In the current work, we present a new, computationally
efficient approach to treat large dual-estimation problems. In
this work, we derive analytic back-propagated gradients for the
Prediction Error Method which enables efficient and accurate
identification of large systems. The PEM approach consists of
directly integrating state estimation into a dual-optimization
objective, leaving a differentiable cost/error function only in
terms of the unknown system parameters, which we solve using
numerical gradient/Hessian methods. Intuitively, this approach
consists of solving for the parameters that generate the most
accurate state estimator (Extended/Cubature Kalman Filter).
We demonstrate that this approach is at least as accurate in
state and parameter estimation as joint Kalman Filters (Ex-
tended/Unscented/Cubature) and Expectation-Maximization,
despite lower complexity. We demonstrate the utility of our ap-
proach by inverting anatomically-detailed individualized brain
models from human magnetoencephalography (MEG) data.

I. INTRODUCTION

Control of complex systems benefits greatly from knowl-
edge of the underlying system and the evolution of its
states [1], typically in the form of a dynamical systems
model. However, in many real-world examples, obtaining
such a model is challenging. Even in situations where
a general mathematical form of the underlying dynamics
is postulated, a number of unknown parameters typically
require specification. The identification of these parameters
is often complicated because measurements are opaquely
transformed from state variables and/or obfuscated by noise.
Substantial progress in system identification research has
been made treating these confounds. A wide variety of
techniques now enable model-parameterization with well-
measured state variables. Conversely, Bayesian methods

Corresponding Author: MS is with the Departments of Psychological &
Brain Sciences, and Electrical and Systems Engineering at Washington Uni-
versity in St. Louis, USA and the Center for Molecular and Behavioral Neu-
roscience at Rutgers University, Newark USA. f.singh@wustl.edu

CW is with the Departments of Psychological & Brain Sciences, Wash-
ington University in St. Louis, USA. chong.wang@wustl

MC is with the Center for Molecular and Behavioral Neuroscience at
Rutgers University, Newark USA, michael.cole@rutgers.edu

SC is with the Department of Electrical and Systems Engineering and
Biomedical Engineering, at Washington University in St. Louis, USA,
shinung@wustl.edu

MS was funded by NSF-DGE-1143954 from the US National Science
Foundation and NIH T32 DA007261-29 from the National Institute on
Drug Addiction. Portions of this work were supported by NSF 1653589
and NSF 1835209, from the US National Science Foundation and NIMH
Administrative Supplement MH066078-15S1.

(e.g., Kalman [3] and Particle filtering [2]) are now well-
established for estimating (latent) state variables from mea-
surements with a known system model (state estimation).
However, the estimation of both states and parameters (dual-
estimation) remains an unmet challenge, especially for large
scale problems relevant to applications in the control of
biological and/or network-systems

In this work, we are interested in an emerging application
of dual estimation for system identification: neurocontrol
engineering, i.e., modeling and control of brain networks.
Such an application brings forth a number of technical
and conceptual challenges. The brain is commonly modeled
as containing hundreds of distinct regions (state variables)
with thousands of interconnections and heterogeneous local
circuitry (unknown parameters). Modern solutions for dual
estimation, such as joint-Filtering [4]–[6] and Expectation
Maximization [7], perform well for low-dimensional sys-
tems, but become computationally cost-prohibitive for sys-
tems with a large number of states and unknown parameters.
In systems involving many interacting states (e.g., networks),
the total number of parameters typically scales quadratically
with the state-variables (O(n2) parameters), resulting in
joint-Filter complexities of O(n4) to O(n6) in terms of state
variables (depending upon how covariances are stored).

Furthermore, identification is limited because it is diffi-
cult to causally interact with the brain through exogenous
inputs while simultaneously recording activity. This renders
traditional active system identification protocols difficult,
meaning identification has to proceed from passive output-
only measurements. Compounding this challenge is that the
activity of brain regions cannot be directly measured in-vivo,
due to volume conduction and the fact that noninvasive mea-
surements are taken at far-field (the scalp) which results in
signal-mixing. Due to their geometry, many important classes
of brain cell (neurons) generate no far-field signals. These
features form a bottleneck for modeling and control design
as identification entails a high-dimensional dual-estimation
problem. However, obviating these challenges would provide
significant leverage for analysis and design, since having
large-scale brain models may provide new insights into the
generate mechanisms underlying overt measurements, and
further, suggest new ways of imparting control over the
identified dynamics using acute (e.g., brain stimulation) or
systemic (e.g. pharmacological) perturbations.

Here, we address the above considerations by building on
the Prediction Error Method [8]–[10] for nonlinear system
identification and gradient-based training of EKF-coupled
neural-networks [11]. In this framework, derivatives with
respect to parameter are calculated alongside state-estimation



to form a coupled filter. While especially accurate (see
Sec.III), this method ( [10]) has complexity O(n5) for
large networks which becomes cost-prohibitive. Our primary
contribution is to generalize and reformulate the ”EKF-
output error method” proposed by [10] to enable efficient
identification of large-scale network process-models. Our key
formulation is to conceptualize the filter-optimization of [10]
as analogous to training an artificial neural network, with
each ‘layer’ corresponding to one iteration of the Kalman
Filter [11]. We then use the methods typical for training
neural networks by deriving the analytic backpropagated
gradients and using deep-learning style update rules (gradient
clipping [12] and NADAM [13]). Our algorithm reduces
complexity from O(n5) to O(n3) which is dramatic with
n > 100 and enables us to directly fit biological brain models
to human MEG recording. Such model fitting would be
computationally intractable under contemporary approaches.
We also present exploratory analyses which demonstrate the
potential of these models to identify directions for future
neuro-control design.

II. FORMULATION AND METHODS

A. Dual Estimation Problem

We address the problem of estimating parameters for high-
dimensional nonlinear systems in the presence of imperfect
state measurement. We consider discrete-time system of
state-variables xt ∈ Rn evolving according to the nonlinear
dynamics ft+1(xt, θ) with process noise wt ∼ N (0, Qt).
The noise process wt is independently realized in time
(no autocorrelation) and independent of states/measurements.
The vector field f is characterized by a set of unknown
parameters θ and f is allowed to vary in time, hence known
inputs are absorbed in f :

xt = ft(xt−1, θ) + wt (1)
yt = Htxt + vt. (2)

Here, yt ∈ Rp represents measurements produced by a linear
transformation Ht of the state-variables xt and measurement
noise vt ∼ N (0, Rt) (with the same independence assump-
tions as process noise). Our task is to estimate the system
parameters θt and states xt given knowledge of Ht, Qt, Rt

and the general functional form ft. Since the parameter θ
operates within the latent state-space of x, we first discuss
state-estimation.

B. Bayesian Filtering

For a system with known parameterization, the problem
of estimating (continuous-valued) states from measurement
has been primarily treated using Bayesian Filtering. Common
frameworks include the Particle Filter [14], which represents
arbitrary distributions via particle-sampling, and the Kalman
Filter [3], which classically assumes that all distributions are
Gaussian and provides a closed-form recursion for estimating
the conditional mean/covariance of states given measure-
ments. While the original Kalman Filter is optimal (in least-
squares) for the linear-Gaussian case, multiple nonlinear
variants of the Kalman Filter have been proposed to estimate
statistics under nonlinear transformations. Generally, the

Kalman-based approach evolves estimates of the conditional
state mean xt and covariance Pt given measurements yt
according to:

Xt−1 ∼ N (x̂t−1, Pt−1) (3)
x̂t|t−1 = E[ft(Xt−1)] (4)
Pt|t−1 = Qt + cov[ft(Xt−1)] (5)
zt = yt −Htx̂t|t−1 (6)

St = HtPt|t−1H
T
t +Rt, Kt = Pt|t−1H

T
t S

−1
t (7)

x̂t = x̂t|t−1 +Ktzt (8)
Gt = I −KtHt; Pt = GtPt|t−1 (9)

The mean and covariance after the nonlinear transformation
f are most commonly estimated using either first-order lin-
earization or sample-based statistics. First-order linearization
results in the Extended Kalman Filter [15]):

E[ft(X)] ≈ ft(x̂t−1); cov[ft(X)] ≈ F ′
tPt−1F

′T
t (10)

with F ′
t denoting the Jacobian of ft which (unless otherwise

indicated) is evaluated at xt−1. By contrast, the Unscented
[5] and Cubature [6] Kalman Filters represent the prior
distribution via a basis {β(i)} and weighting {κ(i)} with

χ
(i)
t := x̂t−1 +

√
Pt−1β

(i); E[ft] ≈
∑
i

f(χ
(i)
t )κi (11)

cov[f ] ≈
∑
i

(f(χ
(i)
t )− x̂t|t−1)(f(χ

(i)
t )− x̂t|t−1)

Tκi (12)

with
√
P denoting the Cholesky factor of P . The primary

distinction between EKF and UKF/CKF is that the former
is generally faster to compute, but its accuracy suffers for
systems that are not amenable to linearization and it requires
differentiability of f . The Unscented [5] and Cubature [6]
Kalman Filters only differ in the choice of basis (β) and
weights (κ) used to approximate the prior distribution.

C. Parameter Estimation with Latent States

We now consider the ‘dual’ estimation problem: estimating
states and parameters (‘dual’ in this context simply refers to
the pairing of states and parameters, not Lagrange Duality).
This problem has been conventionally treating by either aug-
menting the state space to include parameters with stationary
dynamics (i.e. θ̂t = θ̂t−1+ηt) as in the joint Kalman/Particle
Filters, or by alternating between state and parameter es-
timations as is done in Expectation Maximization [7]. As
previously mentioned, these approaches scale poorly to high-
dimensional networks. By contrast, the Prediction Error
Method (PEM) [8]–[10] takes an alternate path: directly
reducing the problem to parameter-estimation which is then
optimized using gradients [10]. This method (like other
Prediction Error Methods) solves for parameters that produce
the most accurate state-estimator as indicated by predicting
future measurements. Gradients are computed with respect
to parameters for the entire filter/prediction process [8]–[10].
This approach differs from EM in that the former considers
state-estimates to be a deterministic function of parameters
and measurements (i.e. xt = Filter(x0, P0, θ,Ft−1[y]))
in which F [y] denotes the filtration induced by previous
measurements. As a result, differentiating this relationship
directly accounts for how changes in parameter affect state-
estimates, whereas EM deals with these problems separately.



Thus, PEM treats the dual-estimation of states and param-
eters using a min-min strategy. Put simply, one solves for
parameters that generate the best state-estimator/predictor.

This work has recently been advanced by Sjanic and
Skoglund’s [10] derivation of analytic gradients for the case
of an EKF state-estimator using forward recursion (‘EKF
output-error approach’). This advance is significant and use-
ful in many identification-for-control scenarios, as it reformu-
lates the gradient estimation by online tracking of the state
and covariance Jacobians with respect to parameters. This
forward-accumulation of gradients enables online estimation
in the form of an additional filter. However, this property
also prevents application to problems featuring a very large
numbers of parameters as the forward accumulation has
complexity O(n3

xnθ) for state and parameter dimension,
respectively. Thus, while this approach is effective for identi-
fication of many systems, it remains computationally arduous
for large networks (Sec. III) as the quadratic scaling of
parameters with state leads to complexity O(n5).

D. Backpropagated Kalman Filtering

We propose to overcome these scaling limitations by
instead deriving the analytic back-propagated gradients for
the general case of Kalman-Filter (i.e. EKF, UKF, CKF
etc.) Whereas the forward accumulation of gradients keeps
track of the Jacobians (∂P/∂θ, ∂x̂/∂θ) and is computed
simultaneously with state-estimation, back-propagation first
evaluates the state-estimation/error function and then cal-
culates gradients recursively through time which avoids
accumulating Jacobians with respect to θ. Although analyti-
cally equivalent to Sjanic and Skoguland’s approach for the
EKF case, our algorithm achieves O(n3) complexity which
powers our application to high-dimensional brain networks
that would be otherwise intractable.

We note that this concept has been previously proposed
for training convolutional neural networks by Haarnoja and
colleagues [11] with great success. However, whereas their
approach involved training a neural-network-based Extended
Kalman-Filter end-to-end using automatic differentiation, we
instead seek to solve grey-box system-identification problems
and present the analytic gradients for a generalized definition
of the Kalman Filter and arbitrary process models.

Our contributions to the existing PEM frameworks are:
1) we derive the backpropagated analytic gradients of the
Kalman Filter; 2) we extend the analytic PEM method to
a general class of Kalman Filter (rather than just EKF);
3) we treat cases without initial state/covariance priors.
These changes are meant to combat the three pitfalls
encountered with nonlinear networks: high-dimensionality;
nonlinearity/non-stationarity; and a lack of available prior
estimates. Our objective is to minimize prediction-error with
respect to a quadratic objective. For an initialization time t
and filter-length m, we denote the backwards accumulation
of error as
←−
E (t0)

t :=

t0+m∑
k=t0+t

(yk −Hx̂
{θ,F[y]}
k|k−1 )TMk(yk −Hx̂

{θ,F[y]}
k|k−1 ) (13)

With the objective being to solve for θ which minimizes
the total error over all initialization times Et0 [

←−
E (t0)

1 ]. From
here on, we will omit the start-time notation for E and the

dependency of x̂ on θ, F [y] for brevity’s sake. We now derive
the backpropagated error-gradients.

∇
←−
E t = 2(∂ωzt)H

TMzt +
∂
←−
E t+1

∂x̂t
(∂ωx̂t)+

←−
E t+1

∂Pt
(∂ωPt) (14)

Evaluating the first term: ∂ωzt = −H∂ωx̂t|t−1

∂ωx̂t+1 = Gt+1(∂ωx̂t+1|t) + (∂ωK)zt+1 (15)
∂ωPt+1 = Gt+1(∂ωPt+1|t)− (∂ωK)HPt+1|t (16)

Since H,Q,R are fixed, the Kalman gain is a direct function
of Pt|t−1 (and its influence on S). Using that Kt minimizes
Tr[Pt] and the implicit function theorem:

−∂Pt|t−1H
T + ∂KtS +KtH∂Pt|t−1H

T = 0 (17)

∂ωKt = Gt(∂ωPt|t−1)H
TS−1 (18)

∂ωx̂t = Gt[∂ωx̂t|t−1 + (∂ωPt|t−1)H
TS−1zt] (19)

∂
←−
Et

∂x̂t|t−1

= GT
t
∂
←−
E t

∂x̂t
− 2HTMtzt (20)

∂ωPt = Gt(∂ωPt|t−1)G
T
t (21)

Zt := HTS−1zt

[
Gt

∂
←−
E t+1

∂x̂t

]T

(22)

∂
←−
E t

∂Pt|t−1

=
1

2
(Zt + ZT

t ) +GT
t
∂
←−
E t

∂Pt
Gt (23)

Since Kalman-Filter approximations of E preserve linearity
and cov preserve bilinearity, we have, for ϕ := {x̂t, θt}:

∂ϕ
←−
Et =

∂
←−
Et

∂x̂t|t−1

E[∂ϕf ] +
∂
←−
Et

∂Pt|t−1

[cov[f, ∂ϕf ] + cov[∂ϕf, f ]]

(24)
In particular, for the EKF, we have:

∂Pt−1

←−
E t = F ′T

t
∂
←−
E t

∂Pt|t−1

F ′
t (25)

∂
←−
E t

∂x̂t
= F ′T ∂

←−
E t

∂x̂t|t−1

+ 2
∂vec[F ′])

∂x̂t

T

vec

[
∂
←−
E t

∂Pt|t−1

F ′Pt

]
(26)

∂E
∂θ

=
∑
t

∂fT
t

∂θ

∂
←−
E t

∂x̂t|t−1

+ 2
∂vec[F ′]

∂θ

T

vec

[
∂
←−
E t

∂Pt|t−1

F ′Pt

]
(27)

For sample-based (e.g. Unscented and Cubature) Kalman
Filters, we denote the sampling basis β and the weights for
each point as κi. The sampled-points are: χt := x̂t+

√
Ptβ.

∂
←−
E t

∂χ
(i)
t

= 2κiF
′T
χ(i)

∂
←−
E t

∂Pt|t−1

[f(χi)− x̂t|t−1] (28)

∂E
∂θ

= 2
∑
t,i

κi
∂f(χi

t)
T

∂θ

∂
←−
E t

∂Pt|t−1

[f(χi
t)− x̂t|t−1] (29)

Qt := Φ⊙ [
√
Pt

∂
←−
E t

∂χ
(i)
t

βT ]; Φi,j :=


1/2 i = j

1 i > j

0 i < j

(30)

∂
←−
E t

∂Pt−1
=

√
P−1
t−1

T

(Qt +QT
t )

√
P−1
t−1 (31)

∂
←−
E t

∂x̂t−1
=

∑
i

∂
←−
E t

∂χ
(i)
t

(32)

with ⊙ denoting the Hadamard product.
Thus, by deriving the analytic gradients, the error function

is decomposed into a direct function of parameters, mea-
surements, and the initial state/error-covariance estimates.
In practice, estimates of the initial states and their error
covariances are not typically available but, given knowledge
of the state distribution’s covariance (cov[X] not to be
confused with Pt), they can be estimated via a linear filter
(L). In order to estimate this covariance, we simulate the
model (with process noise) according to current parameter
estimates and calculated the covariance (denoted “C”). The



resultant estimates are:
L := CHT (HCHT +R)−1, x̂0 = Ly0, P0 = (I − LH)C (33)

The estimated state-covariance is thus a function of param-

eters and we analogously back-propagated error-gradients

through the initialization and simulation steps. In later analy-

ses, we compare the efficacy of adding this initialization step

to the PEM approach, as opposed to guessing initial values.

E. Application to Large Networks

Our approach is most useful for systems in which the

number of unknown parameters scales nonlinearly with the

number of state variables as occurs in networks/circuits.

For benchmarking, we tested algorithms in parameterizing

systems represented as recurrent nonlinear-networks. As

universal approximators, randomly parameterized nonlinear

networks generate a wide range of dynamical phenomena and

are thus provide a useful basis for benchmarking. As states

are unknown, even this case generates a highly nonlinear

E with respect to θ, while enabling analytic M-steps for

comparison with EM [7], [19]. We consider generic recurrent

neural network models ( [20]), of the form:

xt+1 = θψ(xt) +Dxt + c+ wt (34)

with measurements generated by yt = Hxt + vt and the

unknown connection matrix θ ∈ R
n. In all cases, the

vector c and the positive-diagonal matrix D are known and

ψ = tanh (applied element-wise). We compared run-time

across different network sizes but maintained that there were

twice as many state variables as measurement channels (i.e.

y ∈ R
15 for x ∈ R

30). The diagonal entries of D were

distributed N(.8, (1/50)2) and entries of c were distributed

N(0, (1/20)2). H was generated by creating a matrix with

normal iid. entries and redistributing the singular values

by |N(2, .25)| which gave more variety to the spectral

distribution between simulations. We considered two values

for Q: I/4 (low-noise) and I (high-noise) to test the possible

interaction of performance with process noise-level. We

randomly generated
√
R according to N(0, (1/5)2). The

connection matrix θ was defined by first generating a base

matrix: θ0 ∼ N(0, 1)/20 + N(0, 1)3/20. Thus, θ0 was

the sum of terms drawn from a normal and normal-cubed

distribution which better reflects the heavy-tailed connection

statistics of most networks. The connectivity matrix θ was

defined as θ = θ0 − (θT0 /2) for off-diagonal elements

and 1 for diagonals to ensure non-trivial dynamics (i.e.

promoting complex eigenvalues). Half of off-diagonal entries

were then set equal to zero which was treated as a known

prior on network structure, resulting in n(n+1)/2 non-zero

(unknown) parameters.

III. IMPLEMENTATION AND RESULTS

We view the primary contribution of our method to be en-

abling dual state-parameter estimation in very large systems.

However, we also tested whether the proposed technique is

beneficial within the (relatively) lower-dimensional domains

that are applicable to existing methods: joint Filters (Ex-

tended, Unscented, and Cubature), Expectation Maximiza-

tion with cubature smoothing [19], and PEM with forward-
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Fig. 1. The proposed technique is accurate and efficient. A) The method
quickly converges to a competitively accurate estimate of connectivity for
a 30-node network (average over 24 networks). Benefits of using BP-
CKF over BP-EKF depend upon the amount of noise (low: A.1, high:
A.2) and whether initial statistics are also estimated (i.e. BP-CKF+Init).
B) Convergence of joint-KF (B.1) and BP-KF (B.2) in terms of iteration.
C) BP-KF generates accurate state-estimates and experiences little loss
between training/testing data and cross-validation to new measurement
models (new H ,R). D) The proposed method scales well to larger net-
work sizes. EM=Expectation Maximiation, jEKF/UKF/CKF= joint Ex-
tended/Unscented/Cubature Kalman Filters, BP-E/C=back-propagation tech-
nique using EKF/CKF for state-estimation. ForwProp+EKF=using forward-
propagated gradients ( [10]) Dashed-line=algorithm finished.

propagated gradients (”EKF output error method”). We con-

firmed that parameters estimated with forward gradients were

essentially identical to those using back-propagated-EKF

(exactly so when using the same random-number-generator).

Joint filters used 60,000 iterations with parameter noise-

variance of .0001, which was decreased by 2% every 250

intervals. EM used either the full timeseries (120,000 points;

300 reps) or random batches of 5,000 per interval (600 reps)

which we found was more accurate, stable, and efficient (due

to failures, performance for EM-Full is not shown). We used

24 randomly-generated 30-node networks for comparing

accuracy as well as several simulations for 10 through 60

nodes to benchmark run-time. For 40+ node networks, the

runtime was extrapolated from several iterations of each

alternative algorithm Gradient-based optimization was per-

formed using the NADAM algorithm [13] with rate .00025

and memory parameters .98, and .95 for the gradients and

their squares, respectively. Prior to NADAM, we performed

gradient-clipping [12] with the threshold set to twice the

mean-square gradient over the first 200 minibatches. For

comparison with joint Kalman Filters, each minibatch used

a single randomly chosen start-time and evaluated Kalman

prediction-errors over the subsequent 20 steps. All initial

state estimates were distributed N (0, .052). Analyses were

run single-core on Intel Xeon Gold 6226R 2.9GHz.

We found that the proposed technique performed com-

petitively with the joint Kalman-filters and expectation-

maximization in identifying system parameters (Fig. 1A).

Interestingly, we found that the approach was not always

more accurate when applied to CKF compared to EKF.

In particular, we found that in the low-noise condition

(Fig. 1A.1), our CKF approach actually performed worse

than EKF when using the naive initialization (e.g. random

initial state-estimates), but performance was rescued when

the initial-distributions were simultaneously optimized by

backpropagating gradients through Eq. 33. For the high-noise
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indicates standard-deviation of the state-distribution. F) Phase-space projec-
tions illustrate that the identified control switches brain activity between two
sets (E.1) corresponding to the reference signal’s peak/trough. E.2) Phase-
space projection of switching regions (boundaries between modes).

case (Fig. 1A.2) BP-CKF always performed better. We also

note that, whereas joint Kalman Filters still exhibited some

instability in parameter estimates (Fig. 1B.1), despite anneal-

ing the parameter-variance (their ”process-noise”), gradient

based-approaches converged smoothly (Fig. 1B.2)

We also tested the accuracy in predicting latent-state val-

ues from measurement data. We performed this comparison

at three levels: using the training data, new testing data

from the same system, or new testing data in which the

measurement model (H ,R) had changed from that used

during training. In the last case, state-estimators (Kalman Fil-

ters) combined the new measurement model with state-space

models parameterized according to the original data. Across

conditions, we found that results favored our approach (Fig.

1C) and there was relatively little loss in accuracy even when

applied to the new measurement model.

Results also indicate that the proposed technique is highly

scalable (Fig. 1D). In terms of computational complexity,

our approach inherits the complexity of the underlying state

estimator (E/CKF) but is not significantly affected by the

number of parameters. By contrast, joint-filtering approaches

scale nonlinearly with both the number of state variables

and the number of unknown parameters (itself a quadratic

function of network size). We found that our approach

was two orders-of-magnitude faster than jEKF/jUKF/jCKF

in performing dual estimation for 60-node networks. At

all scales, results favored our back-propagated variant of

the prediction-error method over the analogous (forward-

propagated) “EKF-output Error Method” ( [10]) as indicated

by drastically reduced run-time for large n.

A. Identification and Control of Human Brain Dynamics

The primary motivation for our methodology is to enable

systems identification and control of human brain dynamics

for single subjects. We demonstrate our method?s capability

in inferring parameters of a high-dimensional brain network

model from magnetoencelephagraphy (MEG) recordings and

present exploratory analyses indicating the potential of these

models to inform neurocontrol design.

The human brain consists of a large number of distinct

regions containing neurons (brain cells). Neurons emit elec-

trical impulses at a rate which depends nonlinearly upon

their current voltage. The outer-shell (membrane) of each

neuron forms an RC circuit with the outside fluid leading to

a gradual discharge of accumulated inputs. Each brain area

contains two cell types: excitatory (pt) and inhibitory (rt).
Excitatory cells send positive currents throughout the brain

and are oriented normal to the brain surface. Their activity

results in electromagnetic dipoles which (after much mixing

and volume conduction) are measurable from the scalp.

Inhibitory cells decrease the membrane potential of nearby

neurons (suppress activity) and are spherical so they do not

generate measurable dipoles. They are, however, absolutely

essential in modeling brain oscillations. We modeled 100

brain areas [23] each with an excitatory (pt ∈ R
100) and

inhibitory (rt) population

pt+1 = Wpψp(pt)− βp � ψr(rt) + τp � pt + wp
t (35)

rt+1 = Wrψp(pt)− βr � ψr(rt) + τr � rt + wr
t (36)

The non-negative 100×100 matrices Wp,Wr describe excita-

tory connections throughout the brain (leading to excitatory

and inhibitory cells, respectively). Admissible connections

were pre-specified at group-level by thresholding fMRI

models [16]–[18]. The local inhibitory connection strengths

are described by the non-negative vectors βpβr and the

discretized time-constants are positive vectors τp, τr. The

baseline input to each brain area is denoted by the vector

cp, cr. The relative output of each brain region is modeled

as the parameterized sigmoid ψp(pt) = tanh(sp � pt + vp)
with scaling factor sp = .25 and the threshold vector vp
unknown. We similarly modeled ψr with sr = .375. We

assumed that the process noise wp
t and wr

t was iid between

brain areas and with variance=1/4. Unknown parameters thus

correspond to Wp,r,βp.r, and vp,r. The sparsity of W was

roughly 18% which resulted in 4040 unknown parameters.

We used five subjects’ 248-channel publicly-available

MEG data from the Human Connectome Project [21] which

we downsampled to 500 Hz. Each subject contributed three

separate “resting-state” scans lasting 5 minutes each in a

single testing session. We used MRI and single-shell bound-

ary element method [22] to estimate the magnetic fields

due to dipoles at each brain location (oriented normal the

surface and summed within regions) which were condensed

into the ”lead-field” matrix L describing the relative gain

between brain areas and channels (e.g. Fig. 2A) which we

rank-reduced to have a maximal matrix-condition number of

100 (resulting in 70-80 measurement dimensions per scan).

Thus the measurement model was:yt = [L 0]

[
pt
rt

]
+ vt.

The covariance (R) for measurement noise vt was directly

estimated from empty-room measurements. We fit models

using the back-propagated EKF with 150 random initial

conditions per minibatch and 50,000 minibatches which each

featured 20-steps of the prediction-error-method and 20 steps

of pure forecasting (no Kalman Filtering).

Identified brain models were reliable (Fig. 2B) with



very similar parameters (Wp, Wr) estimated from different
scans of the same subject (pairwise-mean r = .71 ± .06,
r = .60±.11, respectively). By contrast, parameter estimates
had far less similarity between subjects (r = .35 ± .04,
r = .24±.04) indicating the ability to identify individual
brain circuitry, as opposed to features which are common
among all humans. Group-average brain-connectivity
matrices are reported in Fig. 2C. We also note that fitted
models were accurate in forecasting future measurements
in cross-validated data over the 20-step horizon used in
training (Fig. 2D).

We next considered leveraging the identified models to
perform exploratory offline analysis for noninvasive neu-
rocontrol (transcranial electrical stimulation/tES). As these
analyses are the first of their kind, our objective is to use
offline-simulations to discover which control techniques may
be particularly promising for future study. A common aim
of neurostimulation is increasing the prevalence of phase-
locked oscillations in a particular brain area (e.g. prefrontal
cortex) and frequency (e.g. ”alpha-band”:8-12Hz). Our con-
trol objective was inducing a target region (parcel 32) to
follow a 10.5Hz reference signal. Formally, we considered
a stochastic target-tracking control problem with quadratic
cost function for errors. We bounded inputs to ±1 but
did not penalize the control energy. For preliminary analy-
ses, we therefore considered open-loop finite-horizon (1000
steps=2s) control separately optimized for different initial
conditions (analogous to one prediction-phase of model-
predictive control). We directly optimized the expected error
(separately for each initial condition) using quasi-Newton
methods and single-shooting with distributions approximated
by 100 particles (reset each iteration). These methods were
chosen to explore potential input strategies with minimal pre-
specification; real-world applications will need to be much
more efficient. Interestingly, the identified open-loop controls
for most subjects, consistently approximated a bang-bang
style solution for brief periods (Fig. 2E.1) with intermittent
periods of more complex dynamics. This solution was highly
accurate in tracking the reference signal (Fig. 2E.2). Fur-
ther examination suggested that this numerically-identified
control was approximating a sliding-mode style solution in
which the system switched between two manifolds (F.1) by
alternating between +1 and -1 where these manifolds touched
(F.2). These analyses and interpretations are, of course, ex-
ploratory and should not take the place of rigorous analyses
to identify control features (e.g. sliding modes). They do,
however, demonstrate the potential of system-identification
to identify directions for future, rigorous control analyses
and experimentation.
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