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Fast, sensitive, and compact devices that implement nonlinear activation functions are needed to form
fully connected photonic neural networks (PNNs). However, even in highly nonlinear media, optical non-
linearities are relatively weak. We propose here a scheme for implementing nonlinear activation functions
that relies on band-structure-engineered nanostructures. This scheme realizes the smallest possible hybrid
optoelectronic approach, relying on fast electronic processes to implement nonlinearity instead of a true
optical nonlinearity. Using well-established simplified density-matrix models, we demonstrate architec-
tures that exhibit a low-intensity threshold of 3.5 µW along with a fast optical response of 10 ps in a
relatively small linear footprint of 4 µm. We also show that PNN training performance is improved in
handwritten pattern recognition when applying our simulated nonlinear activation function, indicating
potential for creating deep fully connected PNNs.
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I. INTRODUCTION

Deep learning algorithms have had a remarkable impact
on many technologies [1]. One of the essential tools
for deep learning, artificial neural networks, allow for
any function to be learned given a sufficiently large net-
work and training on a sufficiently large data set. Their
power lies in parallel computations of two aspects: linear
matrix-vector operations and nonlinear activation func-
tions. Recent developments have greatly improved the
performance of each, such as the use of graphical pro-
cessing units for faster linear matrix multiplication [2]
and the introduction of rectified linear units for nonlinear
processing [3].

While traditional artificial neural networks use electron-
ics as the information processing medium, photonic neural
networks (PNNs) use photons to perform calculations [4].
PNNs could potentially be appealing for highly dense pro-
cessing platforms due to their high power efficiency, low
latency, and ultrawide bandwidths [5,6]. The linear compu-
tations of PNNs can be constructed with fairly simple opti-
cal elements, such as programmable Mach-Zehnder inter-
ferometers [7,8], wavelength division multiplexers [9], and
diffractive optical elements [10,11]. Moreover, convolu-
tional accelerators can, in principle, achieve speeds of 1
petaflops [12], and power efficiency of MZI-based passive
nanophotonic circuits are reported at least 5 orders of mag-
nitude better than conventional GPUs even for deep neural
networks [7]. As more mature and systematic PNN models
and fabrication processes may decrease the cost of large-
scale photonic circuit integration [13–16], PNNs could
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become more comparable to electronic processors. How-
ever, PNNs still have several bottlenecks that have made
them less competitive than electronic neural networks, par-
ticularly with respect to the nonlinear activation function.
One of the main reasons for this is that optical nonlin-
earities [17,18] are intrinsically weak, making low-power
operation challenging. Although it is possible to address
this issue by enhancing nonlinearity in a resonant cavity
or long waveguide, implementing high-intensity inputs, or
other all-optical approaches, such as relying on free-carrier
dispersion [19,20], phase change materials [21], or pho-
tonic lattices [22], the requirements on device footprint
and energy consumption creates a severe speed-power-
size trade-off. This limits the prospects for information
processing and large-scale integration.

An alternative strategy relies on hybrid electronic-
photonic approaches [23–27], which bypass this issue
by relying on electronics to implement a nonlinearity.
There are multiple ways of accomplishing this, but the
most general implementation converts an optical signal
into an electrical one, amplifies the electrical signal, and
uses the amplified signal to drive a modulator of some
kind. Provided the modulator response is nonlinear in
the field, this can provoke a nonlinear response. One
could also add additional nonlinearity through the use of
conventional electronics. While these optical-to-electrical-
to-optical approaches can, in principle, be compact and
sensitive, they sacrifice most of the large bandwidth avail-
able to photons. In addition, they require sophisticated
microwave engineering to properly extract and amplify the
signal at high speeds. Meanwhile, their speeds are typically
limited by the same mechanisms limiting conventional
CMOS, which is already very developed.
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From a fundamental standpoint, how small and fast
can hybrid devices be made? Each of the core elements
can be implemented using a two-level quantum sys-
tem—detection by absorption, amplification by resonant
tunneling, and modulation by the quantum-confined Stark
effect [see Figs. 1(a) and 1(b)]—and so it stands to rea-
son that only a few levels are needed to implement hybrid
nonlinearity. In this work, we show that band-structure-
engineered devices can act as integrated hybrid nonlinear
activation functions, potentially acting as scalable drop-in
elements for photonic neural networks.

The approach we consider here relies on intersubband
(ISB) nanostructures and leverages the nanostructure’s
nonlinear electrical properties to modify its linear optical
properties. As these devices do not require extraction of
any electrical signal, they can, in principle, achieve opera-
tion speeds that are on par with the fastest electrical devices
while achieving excellent sensitivity (µW thresholds), fast
speeds (ps level), and in small footprints (µm2 level).
Based on numerical simulations of the ISB nanostructures
using a periodic density matrix Schrödinger Poisson (DM
SP) model, we demonstrate that such a nonlinear activation
function has potential for creating deep fully connected
PNNs. A large transmission contrast between light on-

off states is found, while a low activation threshold and
a relatively fast response time is achieved. Based on these
results, a neural network is implemented that shows the
capabilities of the ISB device as an elementwise nonlin-
ear classifier. While the approach considered here relies
on intersubband devices in established platforms and is
therefore limited to operation in the midinfrared (analo-
gous to quantum cascade lasers), similar principles can be
used to make interband devices (analgous to interband cas-
cade lasers), or intersubband devices based on high-barrier
quantum wells.

II. BASIC PRINCIPLE

To illustrate the principle of how optoelectronic non-
linearity can arise in ISB nanostructures, we consider the
simplest system that demonstrates this behavior: a three-
level system. A schematic is shown in Fig. 1(b). The
entire multiple quantum well system within one module
is divided into a low-doped active region and a high-doped
injector. The active region mainly involves intersubband
transitions and consists of two aspects: an absorption tran-
sition where photons are absorbed and a resonant tunneling
transition where electrons can tunnel. Because electronic
transport is a function of photon absorption, this portion
acts as a photodetector. In addition, if the main optical
transition is diagonal, this portion of the structure will be
sensitive to the field across it. In this sense, it acts as a
modulator. Finally, the presence of a resonant tunneling
stage acts to provide electrical gain. When it is properly
biased, the current passing through the structure reaches a

maximum; beyond this point it exhibits negative differen-
tial resistance (NDR). This structure can be repeated and
inserted into a typical dielectric waveguide [see Fig. 1(c)].

To see how this structure gives rise to hybrid nonlin-
earity, assume that the injector region is heavily doped, so
that its current-voltage relationship is approximately lin-
ear. The entire structure can then be treated as the active
region (which exhibits NDR) and a load resistor connected
in series [see Fig. 1(d)]. If the bias across the whole struc-
ture is chosen so that the load line just misses the peak of
the off-state curve, the system will behave very differently
depending on the incident intensity. At low illuminations,
the active region is overbiased (point B), the optical tran-
sition is detuned, and the net absorption of the structure is
low. When illumination exceeds the intensity threshold, the
active region is properly biased (point A), electrons tunnel
robustly and the absorption becomes high. Consequently,
the transmission of the ISB nanostructure varies with the
illumination’s intensity, leading to a thresholding behav-
ior and a nonlinear optical response of output intensity.
Note that for different designs, the nanostructures could
exhibit different activation behavior. For instance, the more
detailed simulations in this work use a short injector with
miniband resonant tunneling, which itself exhibits NDR.
Thus, the absorption rate would reach a high level at low
illumination while deceasing at high intensity. This hybrid
approach achieves an effective nonlinear response without
relying on nonlinear optics. Instead, it derives its nonlin-
ear properties from an electrical nonlinearity present in an
optical system.

The proposed ISB devices for PNN nonlinear acti-
vation have several unique features, chief among them
being compactness. The detection comes from intersub-
band absorption, gain comes from resonant tunneling,
and modulation comes from potential-tuned absorption.
All of the elements in traditional hybrid approaches are
still present, but within a few nanometers of each other.
Another key feature of this approach is that its optical
nonlinearity is induced by resonant tunneling, which is
essentially the fastest known electrical process. The pres-
ence of NDR in resonant tunneling diodes can provide
gain and nonlinearity up to terahertz frequencies [28],
which is comparable with most PNNs using photode-
tection. Therefore, compared with optical-to-electrical-to-
optical approaches [23,24,26,29], ISB nanostructures can
work as highly integrated nonlinear activation circuits
for ultrafast PNNs without separated photonics devices.
This scheme provides more benefits over discrete opto-
electronics since the signal is never extracted from the
device, eliminating the sophisticated microwave engineer-
ing that would be required for high-speed operation. Our
design also presents a convenient way for probing and in

situ monitoring. Since this nanostructure is effectively a
modified quantum well infrared photodetector, one could
probe each neuron state in the system by simply
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(d)(a) (b) (c)

FIG. 1. (a) Simplest schematic representation of a hybrid electronic-photonic nonlinear activation function. (b) Three-level micro-
scopic schematic for a nanostructure that implements the same functionality. (c) Vertical layout of an intersubband nanostructure
implementing nonlinearity, showing the optoelectronic active region and waveguiding layers. The length of the device is on the order
of micrometers. (d) Current-voltage relation of the active region under different illumination conditions. When biased, the current and
voltage of active region are selected by the intersection with a finite impedance load line. At low illumination, the active region selects
a high voltage. At high illumination, it selects a lower voltage.

measuring the current. One could similarly read the
output of the system directly without any additional detec-
tors, which is critical for efficiently training the net-
work [30]. The nanostructures are reminiscent of quantum
cascade laser (QCL) gain media and are highly com-
patible with QCL gain media. By growing gain media
above or below the neuronal layers, regenerative gain
could be added, which would be beneficial for deep
PNNs [31].

These intersubband neuron devices have some design
features in common with both midinfrared QCLs [32] and
quantum well infrared photodetectors (QWIPs). Intersub-
band systems have very fast (approximately ps) scattering
times, which is beneficial for making fast detectors [33]
and frequency combs [34]. The waveguides and active
region are on InP substrates and have periodic mod-
ules composed of ternary (In,Ga)As/(In,Al)As, one of the
most well-established material systems available for inter-
subband photonics, with simulated waveguide losses of
approximately 1 cm−1. To implement a nonlinear opti-
cal transfer function, bias is added on the top of the
device for threshold tuning and hysteresis reset (the highly
doped substrate provides the ground). An incident pho-
ton generated by compact lasers such as QCLs is then
shined into one side of the device, and the output is the
light that has been modulated by the nonlinear absorption
response. Of course, the major limitation of the struc-
ture considered here is that ternary (In,Ga)As/(In,Al)As
can only be effectively designed in the midinfrared,
as the barrier height is too low for the near-infrared
telecommunication wavelength (1550 nm). We consider
this system because it is the most well established and
most well understood for band-structure engineering—to
address this limitation, advances in material growth
are needed (particular tall-barrier systems like the III
nitrides).

III. THEORY

To demonstrate the efficacy of this approach, we use
the well-established simplified density-matrix approach,
which treats each subband as a single state and relies on
effective scattering rates [35–38]. This allows us to cal-
culate both the nonlinearity of our structure as well as its
transient response. We use a nearest-neighbor (NN) tight-
binding model, which allows states in adjacent modules to
couple [39]. Each module contains N basis states that are
calculated from the one-dimensional Schrödinger-Poisson
equation:

−
�2

2
∂

∂x

1
m∗

∂ψ

∂x
+ Vψ = Hψ = Eψ , x ∈ (0, L) , (1)

−εrε0
∂2V

∂x2
= e2(n − nD), (2a)

V (0) = 0, V (L) = −eU, (2b)

where ψ is the wave function, L indicates module length, �

is the reduced Planck constant, m∗ is the effective mass of
an electron, U is the potential drop within one module, nD

is average doping density, εr is relative permittivity, and ε0

is the permittivity of vacuum.
In order to statistically describe the interactions of

these quantum states ψ , a simplified density-matrix model,
which has been widely used in QCL simulations, is intro-
duced. A general density matrix ρ is defined by ρ =
∑

i ωi |ψi〉 〈ψi|, where ωi is the probability of the ith state.
In a nearest-neighbor three-period system, the block matrix
ρ and Hamiltonians can be expressed as

ρ =

⎡

⎣

ρ0 ρ−1 ρ1

ρ1 ρ0 ρ−1

ρ−1 ρ1 ρ0

⎤

⎦ (3)
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and

H =

⎡

⎣

H0 + eU H−1 H1

H1 H0 H−1

H−1 H1 H0 − eU

⎤

⎦ , (4)

where ρ0 represents the density matrix in the center module
and ρ1 = ρ

†
−1 represent the coherence of the center module

with its neighbor. Each block contains N 2 matrix elements,
as

ρ0 =

⎡

⎢

⎣

(ρ0)11 · · · (ρ0)1N
...

. . .
...

(ρ0)N1 · · · (ρ0)NN

⎤

⎥

⎦
. (5)

The time evolution of the density matrix is given by the
quantum Liouville equation:

∂ρ

∂t
=

1
i�

[H , ρ] +
1
i�

[H ′, ρ] + �ρ, (6)

where the first term describes the coherent transport of the
system (corrected to account for the energy shift per mod-
ule), the second term represents coherent interaction with
the incident photon, and the third includes decoherence and
scattering, obtained using the thermally averaged Fermi
golden rule. It has a block matrix form of

�ρ =

⎡

⎣

�ρ0 �||ρ−1 �||ρ1

�||ρ1 �ρ0 �||ρ−1

�||ρ−1 �||ρ1 �ρ0

⎤

⎦ . (7)

In the above expression, �||ρ contains only dephasing
between the states of different periods, while �ρ contains
both intraperiod scattering and dephasing [40,41].

Each block can be described by

(�ρ)nm = −
1
�

�||nmρnm, n �= m, (8a)

(�ρ)nn =
1
�

⎛

⎝

∑

n�=m

�mnρmm − �nρnn

⎞

⎠ , (8b)

where �mn is the scattering between the mth state and nth
state, �n represents the total intersubband scattering rate,
and �||nm represents the dephasing rate between the nth
state and mth state, which has the following form:

�n =
∑

n�=m

�nm, (9a)

�||nm =
1
2
(�intra + �m + �n) +

�

T∗
2

. (9b)

Here, �intra is the intrasubband scattering rate (which
includes interface roughness and LO phonon scattering)
and T∗

2 is the pure dephasing that randomizes phase.

For simplification, the Liouville Eq. (6) can also be
written in a linear system form with superoperators:

dρ

dt
= (LC + LS + LD + LOD) ρ. (10)

This linearized equation (10) involves the coherent super-
operator LC, the scattering superoperator LS, the dephasing
superoperator LD, and the optical drive superoperator LOD.

To find steady-state solutions of the Liouville equation
(10), the rotating-wave approximation is adopted. Diago-
nal elements of the density matrix indicate populations in
different states, while off-diagonal elements denote coher-
ence between states. After solving Eq. (1) numerically, a
steady-state density matrix ρ is attained, and an alternative
electron density can be found using

n(x) = nDρ(x, x), (11)

where ρ(0) is the self-consistent steady-state density matrix
under the initial environment. In this transient simulation
algorithm illustrated as Fig. 2, the fast-changing density
matrix would affect the slowly evolved electron density in
Eq. (11). The potential distribution is then altered by Eq.
(2a). Subsequently, a distorted band leads to varied wave
functions by Eq. (1), generating an alternative Hamiltonian
and coherent superoperator. This in turn changes the den-
sity matrix, and these effects continue until another balance
is reached. Similarly, when the bias is varied in time the
boundary condition of the Poisson equation can be allowed
to be time-dependent; the absorption value is calculated at
each time step and the entire response can be attained.

To implement the entire DM SP process, the potential
is initialized to be linear under a constant bias. Itera-
tions between Eqs. (1), (2a), (10), and (11) would yield a
self-consistent steady-state DM SP solution. Although this
calculation is fully quantum, to improve our understand-
ing of device operation we also compute the semiclassical
absorption rate using

α = �̄
	Ne2fn→mγ (ν)

4m∗cnrε0L
, (12a)

fn→m =
2m∗(Em − En)

�2
|zn→m|2 , (12b)

	N = nD(ρnn − ρmm), (12c)

zn→m =
〈

ψn

∣

∣ẑ
∣

∣ ψm

〉

, (12d)

where �̄ is the mode confinement factor, fn→m is the dimen-
sionless oscillator strength, zn→m is the dipole moment
matrix element, Em is the energy level of mth state, nr is the
refractive index, c is the speed of light, ν0 is transition cen-
ter frequency, and γ (ν) is the normalized lineshape, found
from Eq. (9b).
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FIG. 2. Flow chart of the self-consistent transient DM SP
algorithm, where q is the iteration number.

For transient simulations under time-varied illumina-
tion, we start by computing the self-consistent DM SP
steady-state solution with an initial optical drive super-
operator LOD. When the interaction superoperator changes
from LOD to L′

OD at t0 = 0, all variables related to the den-
sity matrix reach an alternative equilibrium. The evolution
of the density matrix can then be formally written in terms
of matrix exponentiation as

ρ(t0 + 	t) = ρ(0)e(LC+LS+LD+L′
OD)	t. (13)

IV. DESIGN AND SIMULATION

To investigate the performance of hypothetical inter-
subband neurons, we design and simulate a device. We

design a lattice-matched In0.53Ga0.47As/In0.52Al0.48As ISB
nanostructure with a device length Ldev = 1 µm and a
modal area of 2.3 × 5.2 µm2. The ISB device with 57
modules is embedded in In0.52Al0.48As waveguide grown
on n-doped InP substrate for planar optical confinement.
For such a waveguide, a simulation result shows a loss of
1.06 cm−1 and a fundamental mode confinement factor of
0.67 [see Fig. 3(a)]. The incident light has energy of 0.185
eV (wavelength of 6.7 µm) and interacts with the structure
at optical powers ranging from 10−8 W to 10−3 W. The
pure dephasing rate assumed for optical calculations and
transport is 0.2 ps, while the device temperature is 300 K.
In the device absorption simulation, we assume unity mode
confinement factor for consistency. The position grid is 0.7
Å and the time step for transient simulations is 0.1 ps to
ensure the convergence of the numerical results.

The periodic energy band profile under a constant bias
of 2.3 V/µm is calculated in Fig. 3 from steady-state
solution of the self-consistent DM SP model. The entire
doping of the nanostructure is at a relatively high level
(5 × 17 cm−3 for active region and 3.7 × 18 cm−3 for
multiwell injector), which ensures that enough carriers are
available to make absorption efficient, keeping the device
footprint small and the impedance low. Due to miniband
resonant tunneling (states in red shaded region), the struc-
ture possesses a NDR regime in the absence of light [see
Fig. 4(a)]. In order to create appropriate NDR, barriers in
the active region and multiwell injector should be carefully
chosen. Too thick, and electrons do not efficiently tunnel
into the next states and relax back down to the tunnel bar-
riers, making the efficiency of the device low. Too thin,
and the current-field relation will be less nonlinear, as for
a two-level system current density is a Lorentzian func-
tion of the energy separation, with a linewidth proportional
to the anticrossing strength [42]. In the absence of opti-
cal interaction, resonant tunneling within the active region
is not sufficient. The absorption of the structure, mainly
involving states |1〉 and |2〉, is tuned onto the laser fre-
quency. As a result, the net absorption of the structure is
high. When sufficient light is present (> 3.5 µW), a por-
tion of electrons shared by main absorption states moves
from left to right within the active region, causing popula-
tion decrease and band distortion. The altered energy band
thus aligns states that are responsible for resonant tunnel-
ing (especially states |1〉 and |4〉), creating a better channel
for transport. In addition, the flow of electron density in the
active region leads to a change of the wave-function shape
of state |2〉 and |3〉, and the oscillator strength between the
main absorption states decreases, making the ISB nanos-
tructure more diagonal. Furthermore, the change of space
charge would also detune the optical transition by vary-
ing the energy difference in the main absorption states.
In summary, the combination of a diagonal structure,
reduced population within the main absorption states, and
frequency detuning can all suppress the absorption as
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FIG. 3. (a) Fundamental mode profile of the design, with the shaded region indicating the active region of the device (57
modules). (b),(c) ISB nanostructure periodic energy band diagram and (d),(e) electron density distribution, with (5 µW) illumina-
tion (c),(e) and without illumination (b),(d). The gray shaded regions represent the injector, and the red shaded regions indicate
resonant tunneling. The layer thicknesses, starting with the thick resonant tunneling barrier (where two modules connect), are
61.2/60/8.7/20.3/30.5/20.3/24.6/40.4/33/36.6/65 Å. These thicknesses are chosen to be near an integer multiple of monolayers.
The In0.52Al0.48As barriers are shown in bold. Underlined layers are n-doped with a doping level of 3.7 × 1018 cm−3, while other layers
are n-doped with a doping level of 5 × 1017 cm−3. Results are calculated self-consistently by the steady-state solution of the DM SP
model with the boundary conditions that preserve charge neutrality.

light impinges on the structure [43], as shown in
Fig. 4(b).

Figure 4(c) shows the potential distribution of three
modules under different illumination conditions, show-
ing that the potential distribution can change drastically
between the light-off and light-on (5 µW) states. In the
design, substantial difference of the doping level between
the active region and the injector is adopted to enhance
the effect. Even though the extra current is small, it causes
the structure to lose electrical stability, abruptly changing
the internal space charge. Within one module, this causes
the bias to decrease in the active region while increasing
the bias in the injector within one module. This potential
drop redistribution results in insufficient bias on the active
region, making the absorption decrease with higher optical
power.

The absorption optical sensitivity of the ISB nanos-
tructure under fixed bias is shown in Fig. 4(d).
It exhibits behavior reminiscent of saturable absorp-
tion—transmitting high intensities while blocking low
intensities, with a large transmission modulation of
approximately 0.6 (corresponding to 4.8 dB/µm). More-
over, the absorption value remains nearly the same when
the optical power is below or above the threshold; thus, it
also acts as a step transmission function. In this ISB nanos-
tructure design, a relatively small threshold at 3.5 µW is
achieved due to the competing effects of the two differ-
ent NDRs. In addition, the optical threshold can be tuned
by selecting different constant biases, providing a degree
of freedom for determining its nonlinear response and
allowing for in situ optimization of the activation. As

shown in the figure, the sensitivity at 310 K could
be tuned to nearly the same one as 300 K by select-
ing different biases. Therefore, optimization of the
bias would help the ISB device tolerate temperature
changes, or other variations like doping and well width
fluctuations.

The transient evolution of the transmission is shown in
Fig. 5. When the system is in a high-transmission state
and the optical intensity of 0.1 mW turns off, the system
responds by transiting to a low-transmission state. This
occurs in just 10 ps, which would be difficult to accomplish
with pure electronics. However, we find that this design
also exhibits a hysteresis, caused by the space charge
becoming trapped on one side of the injection barrier. Con-
ceptually, this is similar to what occurs in high-sensitivity
photodetectors, which usually need to be quenched once
they have fired. While such hysteresis effects could be
used to store information [44] and to make recurrent neu-
ral networks, it is not ideal for the implementation of
straightforward networks. To bypass this issue, we reset
the device from light-off state to light-on state by apply-
ing a 40-ps ramp to the applied bias to rearm it. (Note
that this scheme does not require information processing:
rearming could be performed at very high speeds and at a
constant rate, such as by a single global clock. In addi-
tion, the entire neuron network could be rearmed at the
same time by only a single voltage modulator.) Once the
device has been reset, it is free to fire once again. Note
also that fast transmission change also occurs when the
light turns on (without hysteresis), although the contrast is
reduced.
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(a) (b)

(c) (d)

0.0

1.0

2.0

FIG. 4. (a) Simulated current-field relation without illumina-
tion. (b) Absorption (in the modules) and (c) potential distribu-
tion (of three modules) comparison between ISB light-on state
and light-off state under constant applied field. (d) Transmis-
sion as a function of input optical power and structure bias.
The transmission is effectively a step function, whose threshold
can be tuned by choice of structure bias. The device length is
Ldev = 1 µm, the modal area is 2.3 × 5.2 µm2, and the temper-
ature is 300 K except when stated otherwise. All data is taken
from steady-state simulations.

V. HANDWRITTEN DIGIT RECOGNITION

Next, we demonstrate the efficacy of our devices as a
nonlinear classifier in a simulated network. In the ISB
nanostructure, transmission as a function of input power
resembles a step function, creating the nonlinearity needed
for PNNs. Our simulation results demonstrate that these
devices can have small footprints, low optical thresh-
olds, and relatively short latencies. Therefore, ISB devices
represent a promising direction for nonlinear activation
function in PNNs operated at high speeds and low power.
The activation function according to the simulated trans-
mission optical sensitivity, which describes the normalized
output signal intensity as a function of normalized input
signal intensity, is shown in Fig. 6(c). The nonlinear acti-
vation behaves like a modified parametric rectified linear
unit, with a suppressed transmission for inputs with low
intensity and a large transmission for inputs with inten-
sity above threshold [23]. It is also an odd function since
the difference between signals with positive and negative
intensity is only reflected by their phases [45]. In addition,
the ISB nanostructure is basically a square-law device and
does not need to be phase coherent.

For the demonstration of the PNN-based handwritten-
digit recognition task, a feed-forward two-layer shallow
network is configured using handwritten digits obtained

0.00

0.50

1.00

1.0(a)

(b)

FIG. 5. Transmission versus time during a on-off switching
event. (a) Response time of transmission with a change of light-
ing condition. The light intensity during the transient evolution
is 0.1 mW, and response time is defined as the time duration
between 10% and 90% of the stable levels after switching inten-
sity. Inset shows response time as a function of input optical
power under light-on condition. (b) Periodic transmission-time
characteristics (using a 40-ps ramp to reset hysteresis from
light-off to light-on states).

from the Modified National Institute of Standards and
Technology (MNIST) database, which is one of the most
commonly used datasets in machine learning [46]. It con-
tains 60 000 training images and 10 000 testing images
with 28 × 28 grayscale pixels, labeled by numbers 0–9.
The grayscale value of each pixel is normalized into the
range of [0, 1] for fitting the normalized input intensity.

The structure of a fully connected feed-forward optical
neuron network in this application is depicted in Fig. 6(a).
The entire PNN architecture consists of 784 inputs, cor-
responding to 282 real pixel value, and ten final outputs,
corresponding to ten digits. There are Nn = 40 neurons in
the hidden layer and ten neurons in the output layer. In
each layer, the information vector is multiplied by a weight
matrix and then processed by an elementwise activation
function to generate outputs. In the demonstration, a 4-
µm-long device is chosen since it has the largest amplitude
modulation depth, which could offer the best activation
nonlinearity [see Fig. 6(b)]. We also assume that the large
number of optical inputs is achieved by high-power laser
with power splitters [47] or an array of QCLs [48], and
the PNN operates under optical pulse width larger than
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(c)

(e)
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(d)

FIG. 6. Overview of the ISB nanostructure applied in a machine learning task. (a) General two-layer PNN architecture for image
recognition. (b) Modulation depth as a function of device length. (c) Nonlinear activation function based on the ISB nanostructure
(blue lines) and linear activation function (dashed lines). (d) Cross-entropy loss performance with and without activation function. (e)
Confusion matrix for trained PNN with activation functions. The number of observations and the corresponding percentages are shown
in each cell.

optical response time of the device to reach the light-
on steady state. A comparison between a linear classifier
and a nonlinear classifier based on ISB nanostructures
(ISB nonlinear activation function) is carried out in a
hidden layer. The loss function is computed by softmax,
which is commonly used for multiclass image classifica-
tion [49]. It normalizes the intensity outputs of the PNN
into a probability distribution over predicted classes, and
the corresponding performance function is cross-entropy
loss. After adequate data feeding and prediction error opti-
mization by backpropagation, trained PNN could perform
image recognition tasks.

During each training epoch, training data is divided ran-
domly into training and validation subsets with a ratio of
4 : 1. After feeding the network with the training set, the
remaining testing images are used to compute the accu-
racy and confusion matrices. The training performance

comparison is shown in Fig. 6(d). It can be observed that
compared with a linear classifier, the nonlinear activation
function improves PNN performance by increasing train-
ing speed and decreasing errors. The confusion matrix is
also shown in Fig. 6(e). The final accuracy of PNN with the
ISB nonlinear activation function is 92% for 200 epochs of
training (the linear one is 90.8%). Moreover, other evalu-
ations of the nanostructure’s performance are also carried
out to show the practicality of ISB activation in PNNs.

To evaluate the performance of this network, we follow
the convention in Ref. [23] and ignore electrical control
lines and coupling waveguides. The estimated footprint of
the nanostructures in the PNN is A = LNnLdevWdev, where
L = 1 is the number of layers and Wdev is the device
width. The estimated energy consumption for the nonlinear
activation can be expressed as Pn = LNnJVLdevWdevHdev,
where J is the current density, V is the bias applied on
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TABLE I. Comparison between the ISB device approach and optoelectronic approaches in PNN nonlinearity. The activation func-
tions are compared in terms of main figures of merit: transmission modulation (dB/µm), activation threshold (µW), latency, linear
footprint (µm), working wavelength (µm), and energy consumption (µW).

Approach Transmission modulation Activation threshold Latency Linear footprint Wavelength Energy consumption

This work 4.8 dB/µm 3.5 µW 10 ps 4 µm 6.7 µm 562 µW
Ref. [23] > 0.2 dB/µm 100 µW 120 ps < 60 µm · · · > 10 000 µW
Ref. [24] > 1 dB/µm · · · 160 ps 11.5 µm 1.545 µm > 1000 µW
Ref. [26] 0.1 dB/µm > 30 µW 50 ps > 25 µm · · · · · ·
Ref. [50] 0.132 dB/µm > 40 µW 1000 ps 15 µm 1.55 µm > 1000 µW
Ref. [51] 1 dB/µm > 10 µW 40 ps 5 µm 1.55 µm 1500 µW
Ref. [52] 1.2 dB/µm · · · 300 s 5 µm 1.55 µm > 0.2 µW
Ref. [53] · · · · · · 10 ms > 2 µm 1.55 µm > 0.15 µW

the device, and Hdev is the height of the device. The
energy consumption during the rearming process could be
express as Pre = (

∫ t2
t1

LN nJ (t)V(t)LdevWdevHdevdt)/(t2 −

t1), where t2 − t1 is the time for rearming process. By tak-
ing the same duration for both nonlinear activation and
rearming process, the average overall power consumption
is (Pn + Pre)/2 + Pac, where Pac is the optical threshold
power needed for the PNN. For a device dimension of
4 × 5.2 × 2.3 µm, the single activation performance with
comparisons of other optoelectronic methods is also shown
in Table I. It is noted that the physical footprint of the acti-
vation function with 40 neurons in the demonstration is
only 8.3 × 10−4 mm2 per layer with an average total power
consumption of approximately 22.48 mW under operation,
which is superior to other optoelectronic methods. More-
over, the efficiency of the ISB nanostructures could be
greatly improved. For instance, one could add wells that
suppress leakage using shorter modules or rely on higher-
barrier material systems. Similar nanostructures could be
the scalable elements that allow for deep photonic neural
networks with even millions of neurons.

VI. DISCUSSION

It is worthwhile to emphasize that the origin of the
apparent nonlinearity in these devices is not due to optical
nonlinearity, it is due to band bending arising from coher-
ent population transfer. Because this effect is ultimately
electronic, this allows a substantial transmission change
at micron-scale lengths, much higher than similar-sized
devices relying on giant intersubband χ (3) nonlinearities
at the same power. For example, though it is possible
to achieve Kerr nonlinearities of n2 ∼ 105 − 106 nm2/W
in intersubband structures [54,55], at powers of 5 µW,
if the Kerr effect is used in conjunction with an inter-
ferometer to create a modulator, such a device would
require that the path be LISB = 4.59 m long (assuming a
Kerr nonlinearity of 1 × 106 nm2/W). In this regard, the
nonlinearity can be considered an ultrafast electronic non-
linearity like that present in resonant tunneling diodes [56].

In these devices, the ultimate speed is limited by the sub-
picosecond phonon-scattering relaxation times; similarly,
the ISB devices could also respond to changes in incident
light on picosecond time scales. Moreover, the nonlin-
ear activation has a hysteresis, which means the device
could be exploited to behave similar to optoelectronic
memristors [57–59]. In principle, the same band struc-
ture could be used to act as nonlinear activation functions,
as optical detectors or amplifiers, and as optical memory
storage units, which would be beneficial for large-scale
integration.

As for the activation threshold, its origin is more com-
plicated. As this device combines features of the three
most-common intersubband devices, the design space is
complex and has significant room for improvement. For
example, realistic designs typically have NDR in both the
active region and the injector, which must be accounted
for. Moreover, by shifting the absorption frequency, the
structure can be made to act in the reverse mode of nonlin-
ear operation, transmitting low intensities while blocking
high intensities. Therefore, most figures of merit of ISB
devices could be further improved or modified by ISB
structure parameter optimization with different injection
schemes. In addition, compared with electro-optic nonlin-
ear activation functions where light is tapped, detected, and
used to drive an intensity modulator, all these elements
of our ISB device—photon detection, high-speed gain,
and electroabsorption—are effectively contained within a
single nanostructure. Thus the main challenge for ISB acti-
vation in deep PNNs would not be the device themselves,
but rather the large diameters of the waveguides and the
larger optical losses. In our structure, due to the high
leakage currents there is an estimated dc power consump-
tion of 384 µW for a single activation function in PNN,
which could be further reduced by managing the leakage
mechanism of the system [60].

Although we consider only ISB nonlinear acti-
vation functions operating in the midinfrared using
(In,Ga)As/(In,Al)As system, one could extend the same
principles to the near-infrared by using GaN/AlN
system, where essentially every metric—device size,
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power consumption, nonlinear threshold, response time,
etc.—improve drastically, due to the increased photon
energy. For example, the QWIP-like transport mecha-
nism experiences electron leakage similar to thermionic
emission [61]. At room temperature and a wavelength of
6.7 µm, this leakage mechanism dominates, resulting in an
unavoidable dark current that scales with exp(−�ω0/kT).
Therefore, higher optical frequency in ISB activation
devices would not only reduce the power dissipation expo-
nentially, but it would also decrease the dark current noise
(related to the square root of the leakage current [62]).
The noise improvement could further lead to a smaller
activation threshold in practical PNN applications of ISB
devices. In addition, GaN/AlN-based devices are attractive
for terahertz modulation frequencies due to their extremely
short absorption recovery times [63]. Other advantages of
the GaN/AlN system for ISB nonlinear activation func-
tions include the feasibility of low-loss integrated photonic
circuits at near-infrared wavelengths and improved ther-
mal robustness of devices. However, the GaN/AlN system
is not as well understood due to its less-mature growth
technology (for example, the effect of built-in fields and
the ultimate interface roughness that can be achieved).
Given the recent development of room-temperature high-
frequency GaN/AlN resonant tunneling diodes [64,65],
quantum cascade detectors [66], and QWIPs [67], the real-
ization of near-infrared intersubband nonlinear activation
devices in the future could potentially revolutionize deep
photonic neural networks.

VII. CONCLUSION

In conclusion, we introduce a strategy for achiev-
ing nonlinear optical activation functions based on
band-structure-engineered nanostructures. Our simulations
revealed that the designed ISB nanostructures are capa-
ble of high-speed nonlinear processing in deep PNNs. In
contrast to standard optoelectronic approaches, this ISB
architecture leverages the nanostructure’s nonlinear elec-
trical properties to modify its linear optical properties.
Therefore, this approach could achieve a low activation
threshold around 3.5 µW with fast response of 10 ps while
maintaining a single linear footprint of 4 µm, which is
much smaller than previously proposed schemes. Finally,
based on numerical simulations of the ISB nanostruc-
tures, we demonstrate such a nonlinear activation function
enhances PNNs’ performance on the benchmark task of
handwritten-number recognition from the MNIST dataset.
This approach has significant potential for the creation of
deep fully connected PNNs.
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R. Mohandas, L. Li, E. H. Linfield, A. G. Davies, and D.
Indjin, Infinite-period density-matrix model for terahertz-
frequency quantum cascade lasers, IEEE Trans. Terahertz
Sci. Technol. 7, 368 (2017).

[42] B. S. Williams, Terahertz quantum-cascade lasers, Nat.
Photonics 1, 517 (2007).

[43] S. Kumar, Q. Hu, and J. L. Reno, 186 K operation of ter-
ahertz quantum-cascade lasers based on a diagonal design,
Appl. Phys. Lett. 94, 131105 (2009).

[44] M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F.
George, Intersubband optical bistability induced by res-
onant tunneling in an asymmetric double quantum well,
Phys. Rev. B 48, 10966 (1993).

[45] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-
Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D.
Englund, and Marin Soljacic, Supplementary information:

064038-11



ZHEHENG XU and DAVID BURGHOFF PHYS. REV. APPLIED 18, 064038 (2022)

Deep learning with coherent nanophotonic circuits, Nat.
Photonics 11, 441 (2017).

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-
based learning applied to document recognition, Proc. IEEE
86, 2278 (1998).

[47] X. Xiao, M. B. On, T. Van Vaerenbergh, D. Liang, R. G.
Beausoleil, and S. B. Yoo, Large-scale and energy-efficient
tensorized optical neural networks on III–V-on-silicon
MOSCAP platform, APL Photonics 6, 126107 (2021).

[48] W. Zhou, S. Slivken, and M. Razeghi, Phase-locked, high
power, mid-infrared quantum cascade laser arrays, Appl.
Phys. Lett. 112, 181106 (2018).

[49] W. Liu, Y. Wen, Z. Yu, and M. Yang, in International Con-

ference on Machine Learning (PMLR, New York, USA,
2016), p. 507.

[50] R. Amin, J. K. George, H. Wang, R. Maiti, Z. Ma, H. Dalir,
J. B. Khurgin, and V. J. Sorger, An ITO–graphene hetero-
junction integrated absorption modulator on Si-photonics
for neuromorphic nonlinear activation, APL Photonics 6,
120801 (2021).

[51] R. Amin, J. George, S. Sun, T. Ferreira de Lima, A. N. Tait,
J. Khurgin, M. Miscuglio, B. J. Shastri, P. R. Prucnal, T.
El-Ghazawi, and V. J. Sorger, ITO-based electro-absorption
modulator for photonic neural activation function, APL
Mater. 7, 081112 (2019).

[52] C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan,
M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, The
plasmonic memristor: A latching optical switch, Optica 1,
198 (2014).

[53] A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L.
Stern, J. Shappir, and U. Levy, Nanoscale plasmonic mem-
ristor with optical readout functionality, Nano Lett. 13,
6151 (2013).

[54] J. Bai and D. Citrin, Enhancement of optical Kerr effect
in quantum-cascade lasers with multiple resonance levels,
Opt. Express 16, 12599 (2008).

[55] P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck,
and J. Faist, Four-wave mixing in a quantum cascade laser
amplifier, Appl. Phys. Lett. 102, 222104 (2013).

[56] T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, Oscil-
lation up to 1.92 THz in resonant tunneling diode by
reduced conduction loss, Appl. Phys. Express 9, 024101
(2016).

[57] T.-Y. Wang, J.-L. Meng, Q.-X. Li, Z.-Y. He, H. Zhu, L. Ji,
Q.-Q. Sun, L. Chen, and D. W. Zhang, Reconfigurable opto-
electronic memristor for in-sensor computing applications,
Nano Energy 89, 106291 (2021).

[58] L. Hu, J. Yang, J. Wang, P. Cheng, L. O. Chua, and F.
Zhuge, All-optically controlled memristor for optoelec-
tronic neuromorphic computing, Adv. Funct. Mater. 31,
2005582 (2021).

[59] Z.-D. Luo, X. Xia, M.-M. Yang, N. R. Wilson, A. Gru-
verman, and M. Alexe, Artificial optoelectronic synapses
based on ferroelectric field-effect enabled 2D transition
metal dichalcogenide memristive transistors, ACS Nano
14, 746 (2019).

[60] H. T. Miyazaki, T. Mano, T. Kasaya, H. Osato, K. Watan-
abe, Y. Sugimoto, T. Kawazu, Y. Arai, A. Shigetou, T.
Ochiai, Yoji Jimba, and Hiroshi Miyazaki, Synchronously
wired infrared antennas for resonant single-quantum-well
photodetection up to room temperature, Nat. Commun. 11,
1 (2020).

[61] H. Liu, A. Steele, M. Buchanan, and Z. Wasilewski, Dark
current in quantum well infrared photodetectors, J. Appl.
Phys. 73, 2029 (1993).

[62] B. Levine, A. Zussman, J. Kuo, and J. De Jong, 19µm cutoff
long-wavelength GaAs/AlxGa1−x as quantum-well infrared
photodetectors, J. Appl. Phys. 71, 5130 (1992).

[63] N. Iizuka, K. Kaneko, and N. Suzuki, Near-infrared inter-
subband absorption in GaN/AlN quantum wells grown by
molecular beam epitaxy, Appl. Phys. Lett. 81, 1803 (2002).

[64] T. A. Growden, D. F. Storm, E. M. Cornuelle, E. R. Brown,
W. Zhang, B. P. Downey, J. A. Roussos, N. Cronk, L. B.
Ruppalt, J. G. Champlain, Paul R. Berger, and David J.
Meyer, Superior growth, yield, repeatability, and switch-
ing performance in GaN-based resonant tunneling diodes,
Appl. Phys. Lett. 116, 113501 (2020).

[65] W.-D. Zhang, T. Growden, D. Storm, D. Meyer, P. Berger,
and E. Brown, Investigation of switching time in GaN/AlN
resonant tunneling diodes by experiments and p-spice mod-
els, IEEE Trans. Electron Devices 67, 75 (2019).

[66] P. Quach, S. Liu, A. Jollivet, D. Wang, J. Cheng, N. Isac, S.
Pirotta, D. Bouville, S. Sheng, A. Imran, L. Chen, D. Li, X.
T. Zheng, Y. X. Wang, Z. X. Qin, M. Tchernycheva, F. H.
Julien, B. Shen, and X. Q. Wang, A GaN/AlN quantum cas-
cade detector with a broad response from the mid-infrared
(4.1 µm) to the visible (550 nm) spectral range, Appl. Phys.
Lett. 116, 171102 (2020).

[67] P. M. Mensz, B. Dror, A. Ajay, C. Bougerol, E. Monroy,
M. Orenstein, and G. Bahir, Design and implementation of
bound-to-quasibound GaN/AlGaN photovoltaic quantum
well infrared photodetectors operating in the short wave-
length infrared range at room temperature, J. Appl. Phys.
125, 174505 (2019).

064038-12


	I. INTRODUCTION
	II. BASIC PRINCIPLE
	III. THEORY
	IV. DESIGN AND SIMULATION
	V. HANDWRITTEN DIGIT RECOGNITION
	VI. DISCUSSION
	VII. CONCLUSION
	ACKNOWLEDGMENTS
	. References

